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Table S1. EDX comparing the atomic percent (at%) of different element for samples after different 
treatments. 

 
  Cr Fe Mn Mo Si Ni S 

SLS 33.36 42.16 1.75 2.67 2.35 17.72 - 
SLS Treated with only TAA 34.12 42.87 1.41 2.12 1.55 17.92 - 

NiS@SLS 7.1 7.86 0.44 0.1 0.51 38.49 45.5 

NiS@SLS after 10-h 
Chronoamperometry test 

15.44 17.99 0.56 1.2 1.04 48.43 15.33 
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Figure S1. SEM images of pristine SLS (A-B) and SLS treated with only TAA (C-D). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S2. XRD of SLS treated with only TAA. 
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Figure S3. SEM images (A−B) of NiS synthesized without SLS substrate at different magnifications.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure S4. (A) CV profile of NiS@SLS at a scan rate of 25 mV s-1; (B) Polarization curves of 

NiS@SLS at different scan rates; (C) dependence of charge and peak current on scan rate derived 

from B. The dotted line in C shows the fitted result of current vs. scan rate.  
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Figure S5. Cyclic voltammograms obtatined at non-faradaic potential region between 0.1 V and -0.1 

V (vs. Ag/AgCl) (i.e., 1.064 V and 0.864 V vs. RHE) and  of different samples: NiS@SLS (A), Pt/C 

on SLS (C), NiS on SLS (E) and Ni3S2@Ni (G) at different scan rates: 10 mV s-1 (black line), 20 mV 

s-1 (red line), 50 mV s-1 (blue line), and 100 mV s-1 (pink line). The anodic currents measured at 75 

mV (anodic sweep, marked by the dotted line) were plotted against scan rates of the corresponding 

sample (B, D, F and H).  
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Detailed calculation of EASA, jg, and js 

The electrochemically active surface area (EASA) of the sample was estimated from the 

electrochemical double-layer capacitance (CDL) of the catalyst.1 The CDL was measured via cyclic 

voltammograms (CVs) with a potential range where no apparent Faradaic process was taking place. 

The double-layer charging current ic can be related to the scan rates v through the following 

equation:1  

ic = CDL × v 

Thus, plotting the charging currents at a specific potential against various scan rates leads to a 

straight line with the slope equal to CDL (Figure S5). Subsequently, the EASA can be obtained by the 

following equation:1  

EASA = CDL ÷ Cs 

where Cs is the capacitance measured from ideally smooth, planar surfaces of catalysts, and here we 

use the typical value for Ni of 0.040 mF cm-2 for calculation.1 The roughness factor (RF) can then be 

calculated by dividing the EASA by the geometric area of the catalyst. We can therefore obtain the 

specific current density per catalyst surface area js by diving the current density per geometric area, jg, 

at a given overpotential by RF:1   

js = jg ÷ RF 

By following the above procedures and we selected the jg value at the overpotential η = 297 mV, the 

js values of the samples can be finally calculated to be ~1 mA·cm-2 for NiS@SLS, 0.018 mA·cm-2 for 

Pt/C on SLS, 0.089 mA·cm-2 for NiS on SLS, 0.01 mA·cm-2 for Ni3S2@Ni, and 0.097 mA·cm-2 for 

SLS. Apparently, the as-prepared NiS@SLS sample demonstrates much higher js compared to other 

samples. 
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Table S2. Fitted equivalent circuit elements of different samples. 

Rs 
(Ω·cm-2) 

RF 
(Ω·cm-2) 

QPEDL RCT 

(Ω·cm-2) 
WS QPECT 

Q2 (F·cm-2·sn-1) n2 W-R  (Ω·cm-2) W-T (s) Q1  (F·cm-2·sn-1) n1 
8.03 0.64 0.67 0.85 0.08 1.32 1.93 0.013 0.85 
3.4 0.14 1.70E-04 0.85 0.54 1.23 3.20E-03 6.20E-04 0.85 
8 0.61 0.52 0.85 2.07 0.12 5.88 0.0069 0.7 

9.7 0.43 1.20E-04 0.85 1.77 2.81 0.015 5.30E-04 0.85 
 

 

Table S3. Comparison of OER activities of different Ni-based and the state-of-the-art IrO2, RuO2 
catalysts. 
 

Name of Catalyst Form of Catalyst 
Potential (V) vs. RHE at 

jg = 10 mA·cm-2 
Tafel slope 
(mV·dec-1) Reference 

NiS nanosheets on SLS mesh 1.524 47 this work 

Ni anodized on Ni foam 1.764 - 2
 

Ni nanoparticle on graphene 1.587 188.6 3
 

Ni3S2 nanorod on Ni foam 1.414 159.3 4
 

NiCoS4 nanoparticle on rGO 1.697 - 5
 

NiCo nanosheets on rGO 1.314 514 6
 

Ni-Fe  thin film 1.507 55 7
 

NiOH thin film 1.647 - 8
 

NiO thin film 1.628 72 9
 

NiCo2O4 spinel nanowire 1.639 95.9 10
 

Ni/Fe(OH)2 thin film 1.448 33 11
 

NiOx 

electrodeposited on different 
substrates 

 

1.643 

- 
 

1 
 

NiCeOx 1.653 
NiCoOx 1.603 
NiCuOx 1.633 
NiFeOx 1.573 
NiLaOx 1.633 

IrO2 1.548 
IrO2 

Commercial product 

1.59 67 
12

 

RuO2 
1.64 89 

1.62 - 13
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Figure S6. Post-mortem analysis of NiS@SLS after the 10-h chronoamperometry test: SEM (A−B), 

TEM (C) and HRTEM (D) images, XRD pattern (E) and XPS spectrum of Ni 2p (F). The asterisks in 

E mark the diffraction peaks that can still be identified after the test.  
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