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SUMMARY

The cricket paralysis virus (CrPV) uses an internal
ribosomal entry site (IRES) to hijack the ribosome.
In a remarkable RNA-based mechanism involving
neither initiation factor nor initiator tRNA, the CrPV
IRES jumpstarts translation in the elongation phase
from the ribosomal A site. Here, we present cryoe-
lectron microscopy (cryo-EM) maps of 80S,CrPV-
STOP,eRF1,eRF3,GMPPNP and 80S,CrPV-STOP,
eRF1 complexes, revealing a previously unseen bind-
ing state of the IRES and directly rationalizing that an
eEF2-dependent translocation of the IRES is required
toallow thefirstA-siteoccupation.During this unusual
translocation event, the IRES undergoes a pro-
nounced conformational change to a more stretched
conformation.At thesametime,our structural analysis
provides information about the binding modes of
eRF1,eRF3,GMPPNP and eRF1 in a minimal system.
It shows that neither eRF3 nor ABCE1 are required
for the active conformation of eRF1 at the intersection
between eukaryotic termination and recycling.

INTRODUCTION

During protein synthesis, the information encoded in mRNA is

translated into a polypeptide chain by the ribosome. The transla-

tion process is subdivided into four phases: initiation, elongation,

termination, and recycling. During initiation, functionally compe-

tent ribosomes are assembled on the messenger RNA (mRNA)

with initiator transfer RNA (tRNA Met-tRNAMet
i) positioned in

the ribosomal P site and base-paired with the AUG codon of

the mRNA. Canonical translation initiation in eukaryotes requires

at least 12 initiation factors and a cap structure at the 50 end of

the mRNA (Aitken and Lorsch, 2012; Hinnebusch and Lorsch,

2012; Jackson et al., 2010). However, alternative pathways of in-
422 Molecular Cell 57, 422–432, February 5, 2015 ª2015 Elsevier Inc
ternal initiation exist that are cap and end independent and

require a reduced set of initiation factors (Jackson et al., 2010).

Internal initiation is driven by structured RNA elements present

in the 50 untranslated region (UTR) of the mRNAs, which are

known as internal ribosome entry sites (IRESs). Internal initiation

via IRES elements is used by many viruses.

IRESs can be classified into four major types depending on

their secondary structure, factor requirements, and initiation

site (Jackson et al., 2010). A particularly simple mechanism of

translation initiation is used by type IV IRESs present in the inter-

genic region (IGR) of the genome of dicistroviruses, such as

Cricket paralysis virus (CrPV) (Wilson et al., 2000a). The IGR

IRESs assemble functionally active 80S ribosomes without any

initiation factor, initiator tRNA, and AUG start codon, but jump-

start translation directly in the elongation phase from the A site

(Pestova and Hellen, 2003; Sasaki and Nakashima, 2000; Wilson

et al., 2000b). All IGR IRESs characterized so far share a highly

conserved secondary structure comprising three domains,

each characterized by a pseudoknot element (PK I–PK III) (Fig-

ure 1A; Kanamori and Nakashima, 2001; Pfingsten et al.,

2007). The first sense codon present at the 30 edge of the PK I

structure is alanine-encoding GCU.

To fulfill their functional tasks, members of the IGR IRES family

adopt a complex tertiary fold to facilitate specific interactions

with the 40S subunit and the 80S ribosome in the intersubunit

space (Schüler et al., 2006; Spahn et al., 2004). Domains 1 and

2 of the IGR IRES—containing PK II and PK III, respectively—

tightly bind the 40S subunit and fold independently of domain

3 and can therefore be combined into a ribosome-binding

domain (Costantino and Kieft, 2005; Jan and Sarnow, 2002;

Nishiyama et al., 2003). The CrPV IRES structure has been

derived independently by X-ray crystallography (Pfingsten

et al., 2006; Costantino et al., 2008) and by cryoelectron micro-

scopy (cryo-EM)-based de novo RNA modeling (Schüler et al.,

2006). Crucial for the recruitment of the 40S subunit are the

two RNA stem loops SL2.1 and SL2.3 of domain 2 of the IGR

IRES (Jan and Sarnow, 2002) interacting with ribosomal proteins

eS25 (rpS25; for a new nomenclature of ribosomal protein

names, see Ban et al., 2014) and uS7 (rpS5), respectively, at
.
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Figure 1. eEF2-Dependent Association of eRF1 and eRF1/eRF3 with

80S Ribosomal Complexes Assembled on CrPV-STOP mRNA

(A) Secondary structure of the CrPV IRES with the first Ala codon mutated

to a UAA stop codon (in red). Blue circles indicate the positions of toe-prints

(B) caused by the contacts of the IRES with the 40S and 60S ribosomal

subunits.

(B) Toe-printing analysis of binding of eRF1 and eRF3 to 80S ribosomal

complexes assembled on CrPV-STOP mRNA, depending on the presence of

eEF2. Toe-prints corresponding to the pre-translocated ribosomal com-

plexes (+14–15 nts from the CCU codon) are indicated by a black arrow.

Toe-prints corresponding to the eRF1- or eRF1/eRF3-associated post-

translocated ribosomal complexes (+18–19 nts from the CCU codon) are

indicated by a red arrow. The +4 nt toe-print shift in post-translocated

complexes includes the +2 nt shift due to the presence of eRF1 (Alkalaeva

et al., 2006). Additional toe-prints caused by the contacts of the IRES with

Mo
the head of the 40S subunit (Landry et al., 2009; Muhs et al.,

2011; Schüler et al., 2006). Domain 3 containing PK I, in turn, is

responsible for placing the start of the coding sequence into

the ribosomal decoding center. A part of PK I mimics a tRNA

anticodon stem loop (ASL) undergoing codon-anticodon inter-

actions with a mRNA triplet (Costantino et al., 2008).

In the current model of IGR IRES-mediated translation (for

review, see Thompson, 2012), the first Ala-tRNA is brought to

the ribosome as a ternary complex with elongation factor 1A

(eEF1A) and GTP once the binary 80S,IRES complex has been

assembled from a 40S,IRES complex and a 60S subunit. Subse-

quently, the tRNA is translocated from the A site into the P site by

elongation factor 2 (eEF2). However, while initial toe-print anal-

ysis (Jan et al., 2003; Pestova and Hellen, 2003; Wilson et al.,

2000b) suggested that PK I is positioned in the ribosomal P

site and the first GCU codon in the ribosomal A site, cryo-EM re-

constructions of binary 80S,CrPV IRES complexes depicted the

apical part of PK I in the A site overlapping with the ASL of an A

site tRNA and forming A site-specific interactions with helices

h18 and h34 of 18S rRNA (Schüler et al., 2006). Moreover, very

recent cryo-EM reconstructions revealed that the apical part of

PK I mimics tRNA/mRNA interaction in the decoding center of

the A site (Fernández et al., 2014; Koh et al., 2014).

Thus, it follows that the PK I has to be moved out of the A site

before the first Ala-tRNA containing ternary complex can decode

the GCU codon (Schüler et al., 2006; Fernández et al., 2014;

Koh et al., 2014). Indeed, it has been shown that stable binding

of the first tRNA to 80S,CrPV IRES complexes requires not

only eEF1A, but also eEF2 (Yamamoto et al., 2007; Fernández

et al., 2014). During this combined event, toe-printing indicates

a movement of the 80S ribosome relative to the CrPV IRES

RNA by 6 nucleotides (Jan et al., 2003), consistent with a move-

ment of PK I (domain 3) of the IRES from the A site to the E site via

the P site. The need for an initial eEF2-dependent translocation

of the CrPV IRES preceding the first tRNA binding has been

recently re-emphasized by the finding that the binary 80S,CrPV
IRES complex coexists in ribosome states with classical and

rotated subunit rearrangements and therefore functionally

mimics an elongation pre-translocational (PRE) state (Fernández

et al., 2014; Koh et al., 2014). However, structural information

about a potential post-translocational (POST) state of the CrPV

IRES remains elusive.

Here, we have used a minimal system to study binding of

release factor eRF1 to the ribosome using a stop codon-contain-

ing CrPV IRES (CrPV-STOP) mRNA. In agreement with a previ-

ous study (Jan et al., 2003), we see eEF2-dependent binding

of eRF1 and also of eRF1,eRF3,GMPPNP. Interestingly, our

visualization of these complexes using cryo-EM shows the

IRES in a POST state and directly rationalizes the need for an

unusual eEF2-dependent translocation of the CrPV IRES as

a prerequisite for binding of A site ligands during internal initia-

tion. At the same time, our structural analysis provides informa-

tion about the binding modes of eRF1,eRF3,GMPPNP and
the 40S subunit (at AA6161–6162) and with the 60S subunit (U6217 and G6183)

are consistent with previous reports (Wilson et al., 2000b; Pestova and

Hellen, 2003) and are shown in blue.
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Figure 2. Cryo-EM Maps of the 80S,CrPV-STOP,eRF1,eRF3,
GMPPNP and 80S,CrPV-STOP,eRF1 Termination Complexes

(A and B) Cryo-EM maps of the 80S,CrPV-STOP,eRF1,eRF3,GMPPNP (A)

and 80S,CrPV-STOP,eRF1 (B) termination complexes. In vitro termination

complexes were prepared on CrPV-STOP mRNA (green). Upper panel

displays the 80S,CrPV-STOP,eRF1,eRF3,GMPPNP and the 80S,CrPV-

STOP,eRF1 complexes, with 40S subunit shown in yellow, 60S subunit in

blue, eRF1 in hot pink, and eRF3 in red. Middle and bottom panels display the

corresponding 40S and 60S subunits with docked ligandmodels, respectively.

Ribosomal RNA is shown in yellow or blue and ribosomal proteins in gray or

orange for the 40S and 60S subunit, respectively. Landmarks of the 40S

subunit are the head (h) and the body (b) domains. Landmarks of the 60S

subunit: central protuberance (CP), the L1 stalk (L1), and the stalk base (SB).

See also Figure S1.
eRF1 and suggests how a conformational change of eRF1 links

the eukaryotic termination and recycling phases (Pisarev et al.,

2010).

RESULTS

TheBinding of eRF1 to 80S,CrPV-STOP Is Dependent on
eEF2 Action
Direct structural investigations of CrPV IRES translocation is

difficult because binary 80S,CrPV IRES complexes are present
424 Molecular Cell 57, 422–432, February 5, 2015 ª2015 Elsevier Inc
predominantly in the PRE state, and eEF2-dependent transloca-

tion may be followed by a spontaneous back-translocation un-

less the achieved POST state is stabilized by an A site ligand.

In the presence of the canonical aminoacyl-tRNA ligand, how-

ever, not one, but two, eEF2-dependent translocation events

can occur, moving the aminoacyl-tRNA further from the A site

to the P site. Interestingly, a modified CrPV IRES with the first

alanine codon mutated to a stop codon (CrPV-STOP) allows

the binding of eukaryotic release factor 1 (eRF1). In this case, a

change of the toe-print by +4 nucleotides was observed, but

the binding of eRF1 was nevertheless dependent on eEF2 (Jan

et al., 2003). We reasoned that in this system eRF1 contacts

the stop codon in the ribosomal A site of a translocated CrPV-

STOP and, in contrast to a tRNA molecule, cannot be translo-

cated to the P site of the ribosome. Thus, eRF1 as an A site ligand

can be used to disentangle a possible first IRES translocation

step from a second one.

To test this hypothesis, we assembled 80S,CrPV-STOP,eRF1
and 80S,CrPV-STOP,eRF1,eRF3,GMPPNP complexes in vitro

and analyzed the complexes by means of toe-printing and cryo-

EM experiments. In order to obtain the 80S,CrPV-STOP,
eRF1,eRF3,GMPPNP complex, ribosomal subunits were first

incubated with CrPV-STOP mRNA and eEF2 in the presence of

GTP followed by addition of preformed eRF1,eRF3,GMPPNP

complex. For the 80S,CrPV-STOP,eRF1 complex, ribosomal

subunits were incubated with eEF2, eRF1, and GTP, simulta-

neously. Complex formation was monitored by toe-printing

in situ (Figure 1B). Toe-printing is a method to determine the po-

sition of the ribsome on mRNA and involves primer extension by

reverse transcriptase. The reverse transcriptase is blocked by

the bound ribosome resulting in a cDNA, whose specific length

indicates the 30 border of the ribosome-bound mRNA sequence.

Incubation of 80S,CrPV-STOP complexes with eRF1 or with

eRF1,eRF3,GMPPNP ternary complex resulted in a shift of

the toe-print signal by +4 nt from +14–15 to +18–19 (Figure 1B,

lanes 8 and 10), indicating that the position of the ribosome on

the CrPV-STOP RNA has changed. Importantly, the change in

the toe-print signal was dependent on the presence of eEF2,

in excellent agreement with previous studies (Jan et al., 2003;

Yamamoto et al., 2007).

CrPV-STOP IRES Is Fully Translocated by eEF2
The resulting 80S,CrPV-STOP complexes were analyzed by

multiparticle cryo-EM (Loerke et al., 2010) in order to overcome

the expected substoichiometric occupancy of the factors and

the overall heterogeneity of the samples (Figure S1). The final re-

constructions of the 80S,CrPV-STOP,eRF1,eRF3,GMPPNP

and 80S,CrPV-STOP,eRF1 complexes were obtained from

64,902 (10% of total number) and 109,596 particle images

(22% of total number), respectively. The resolution was deter-

mined to 8.9 Å for the 80S,CrPV-STOP,eRF1,eRF3,GMPPNP

complex and 8.7 Å for the 80S,CrPV-STOP,eRF1, according
to the FSC curve using the 0.5 cutoff criterion (Figure S1). Both

maps exhibit strong densities for the factors as well as the

CrPV-STOP IRES (Figure 2). The conformation of the present

80S complexes does not show intersubunit rotation or 40S sub-

unit rolling and is similar overall to the POST state of themamma-

lian 80S ribosome (Budkevich et al., 2014).
.



Figure 3. Post-Translocational State of the CrPV IGR IRES and Its

Interactions with the 40S Subunit

(A) Extracted densities for CrPV IRES and ribosomal 40S subunit are shown for

the PRE (left) (Schüler et al., 2006) and POST translocational state from the

80S,CrPV-STOP,eRF1 complex (right).

(B) Close-up view of the apical tip of PK I (green). Interactions to conserved

nucleotides G1639, C1249, C1701, and G1207 are depicted (red), as well as

interactions to h24 and h44.

(C) Interactions of loop L3.2 of CrPV IRES (green) with the ribosomal protein

uS7 and helix 23b.

See also Figure S2.
The subnanometer resolution of our maps facilitated the anal-

ysis of interactions between release factors, CrPV IRES, and the

80S ribosome. For an interpretation in molecular terms, we

docked our previous cryo-EM-based homology model of the hu-

man 80S ribosome (Budkevich et al., 2014), which was gener-

ated on the basis of S. cerevisiae 80S (Ben-Shem et al., 2011)

and T. thermophila 40S and 60S X-ray structures (Klinge et al.,

2011; Rabl et al., 2011). eRF3 wasmodeled based on the homol-

ogy with its archaeal eEF1A ortholog (aEF1a) from the aEF1a/

aRF1 complex (Kobayashi et al., 2012) and eRF1 by docking in-

dividual domains of the human factor (Mantsyzov et al., 2010;

Song et al., 2000) into the cryo-EM density. The CrPV-STOP
Mo
IRES has been modeled based on the previously published X-

ray structure for domain 3 (Zhu et al., 2011) and cryo-EM model

for domains 1 and 2 (Schüler et al., 2006). During the preparation

of our manuscript, a cryo-EM structure of a 80S,CrPV IRES at

high resolution was published (Fernández et al., 2014), present-

ing a refined CrPV IRES model. However, the root-mean-square

deviation (RMSD) calculation for domains 1 and 2 between the

recent structure (Fernández et al., 2014) and the previous model

(Schüler et al., 2006) resulted in a value of only 2.9 Å, indicating a

high degree of similarity between both models. Only the SL2.1 of

domain 2 has beenmodeled in a slightly different conformation in

both studies (Figure S2).

Comparison of the present complexeswith the previous binary

80S,IRES structures (Fernández et al., 2014; Schüler et al., 2006)

reveals a previously unseen binding state of the IRES in the

presence of release factors (Figure 3A). The CrPV-STOP IRES

density in both of our complexes is indistinguishable in terms of

location and conformation. Therefore, the following interpreta-

tions concerning the IRES are based on the reconstruction of

the 80S,CrPV-STOP,eRF1 complex but are also valid for the

80S,CrPV-STOP,eRF1,eRF3,GMPPNP complex. As predicted

from the toe-printing analysis, the PK I element has been translo-

cated by eEF2 to the P site, leading to a POST state (Figure 4A).

The 60S alignment of the PRE (Fernández et al., 2014) and POST

state IREScomplexes indicatesa shift of thePK I by22 Å,which is

comparable to the distance between ASL of the A and P site-

bound tRNAs (Budkevich et al., 2011) (Figure 4B). Moreover,

like a tRNA ASL being translocated from the A to the P site, the

PK I undergoes a rotational movement. Accordingly, the apical

part of the PK I mimics an ASL-codon duplex not only in the A

site of the PRE state, but also in the present P site of the POST

state like in the crystal structure of the PK I element bound to

the bacterial 70S ribosome (Zhu et al., 2011).

However, our cryo-EM analysis clearly shows that not only has

the PK I element been translocated, but the ribosome-binding

domain (domains 1 and 2) moves as a rigid body by �25 Å

toward the E site region (Figures 4A and 4B). While the lateral

movement of the ribosome binding domain and PK I is compara-

ble, the ribosome binding domain cannot undergo the same

rotational movement as PK I because this would lead to a steric

clash with the 40S subunit. As a consequence, the IRES changes

its conformation, and PK I undergoes a rotation relative to do-

mains 1 and 2 of �50� around the linker region (U6171-C6172)

between domains 1 and 3 (Figure 4C). Overall, the IRES un-

dergoes a transformation from a bent conformation in the PRE

state to a more stretched conformation in the POST state.

Interactions of the Translocated CrPV IRESwith the 80S
Ribosome
In the POST state, contacts between the PK I element and the

18S rRNA at positions around nucleotides C1249, G1639,

C1701, and G1207 can be observed (Figure 3B). Interestingly,

all these interactions have been found in the X-ray structure of

the isolated PK I element bound to the bacterial ribosome (Zhu

et al., 2011), indicating that the P site occupation in the bacterial

complex corresponds to our present POST state of the IRES and

not to the initial PRE state. In addition, we see contacts of PK I to

h30, h24, as well as h44 (nt 1,827–1,829 [1,495–1,497 in E. coli])
lecular Cell 57, 422–432, February 5, 2015 ª2015 Elsevier Inc. 425



Figure 4. Comparison of the POST State IRES with tRNA Positions

and with PRE State IRES

(A) Superposition of the PRE state IRES (left) (Fernández et al., 2014) and POST

state IRES in the 80S,CrPV-STOP,eRF1 complex (right) with positions of

canonical bound tRNAs (Budkevich et al., 2011) after 60S alignment. The CrPV

IRES is colored according to the domain organization: domain 1, blue; domain

2, gold; domain 3, green. The first codon of the open reading frame is depicted

in red.

(B) Superposition of the PRE state IRES (gray) (Fernández et al., 2014) with the

POST state IRES after corresponding 60S alignment.

(C) Superposition of the PRE (gray) and POST state IRES after alignment of the

corresponding ribosome-binding domains (domains 1 and 2).
of the 18S rRNA. As a consequence of the translocation event,

the IRES loses the PRE state contacts (Fernández et al., 2014;

Schüler et al., 2006) to the central protuberance of the 60S sub-

unit and to the head of the 40S subunit. Also, the stem loops

SL2.1 and 2.3 of CrPV IRES domain 2 have lost their contacts

with uS7 and eS25, respectively, at the head of the 40S subunit

and are solvent exposed. Both elements have been shown to

play a crucial role for IRES-driven translation initiation, and their

interactions with the 40S head provide binding affinity (Jan and

Sarnow, 2002; Nishiyama et al., 2003).

Instead, with SL2.1 of the PRE state IRES, protein uS7 inter-

acts with the POST state IRES via loop L3.2 of domain 3

(Figure 3C). The contact seems to exist in the context of an inter-

action with helix 23b at the 40S body. The same site of the

ribosome is occupied by the anticodon-stem loop (ASL) of E

site-bound tRNA in the bacterial termination (Jin et al., 2010)

as well as in the mammalian POST complex (Budkevich et al.,

2014). In the PRE state 80S,CrPV IRES structures (Fernández

et al., 2014; Schüler et al., 2006), the density assigned to L3.2

was fragmented, and in the crystal structures of domain 3 bound

to the P site of the bacterial ribosome (Zhu et al., 2011) the loop

was disordered, revealing a dynamic, flexible state of this IRES

part. However, in our present structures the solid density at the

contact site between L3.2 and the 40S subunit indicates a poten-

tial ordering of the loop caused by interactions with the ribosome

(Figure 3C).

The interactions of the IRES and the 60S subunit are confined

to interactions of IRES domain 1 with the L1 stalk. Like in the bi-

nary 80S,IRES structure (Fernández et al., 2014; Schüler et al.,
426 Molecular Cell 57, 422–432, February 5, 2015 ª2015 Elsevier Inc
2006), the internal loop L1.1 interacts with rpL1 and 28S rRNA

helices 76–78 of the L1 stalk. This highly mobile element of the

60S subunit is part of the E site. The L1 stalk can swing in and

out to facilitate interactions with tRNA in P/E or E/E states and

is known to exist in at least three conformational states, i.e.,

closed, open, and an intermediate half-open state (Cornish

et al., 2009). In both POST state IRES complexes, we find the

L1 stalk in a more open position than in PRE state IRES com-

plexes (Fernández et al., 2014; Schüler et al., 2006) (Figure 5A)

or in the canonical POST state with P/P- and E/E-tRNAs (Budke-

vich et al., 2014) (Figure 5B) and in an even more outward posi-

tion than in the ribosome with a vacant E site (Becker et al.,

2011). This extended outward position is apparently required

to adapt the POST state IRES. During IRES translocation, the

L1 stalkmoves by�13 Å. Remarkably, comparison of the canon-

ical 80S complex carrying classical P/P and E/E tRNAs (canoni-

cal POST) (Budkevich et al., 2014) with canonical PRE complex

carrying hybrid A/P and P/E tRNAs (rotated PRE) (Budkevich

et al., 2011) reveals a similar shift of �15 Å for the L1 position

(Figure 5B). Accordingly, despite the dramatic overall difference

in the L1 stalk position caused by IRES binding (46 Å between

canonical POST and IRES-bound POST), the relative movement

of the L1 stalk during the translocation step is preserved.

The 80S,CrPV-STOP,eRF1,eRF3,GMPPNP Complex Is
Structurally Related to the Mammalian Decoding
Complex
The POST state 80S,CrPV-STOP complex allows stable binding

of eRF1,eRF3,GMPPNP or eRF1. The structure of the 80S,
CrPV-STOP,eRF1,eRF3,GMPPNP complex is overall similar

to a previous structure of an equivalent canonical termination

complex (des Georges et al., 2014; Taylor et al., 2012) in terms

of ribosome conformation and the binding sites of eRF1 and

eRF3. Accordingly, the 80S,CrPV-STOP,eRF1,eRF3,GMPPNP

complex faithfully represents a canonical termination complex.

The POST state CrPV-STOP IRES with a P site ASL mimic and

the stop codon in the ribosomal decoding center are sufficient

for stop codon recognition by eRF1. Thus, the CrPV-STOP

construct can be used as a tool to study termination factor bind-

ing in a minimal system.

Comparison between the present 80S,CrPV-STOP,eRF1,
eRF3,GMPPNP complex and our recent cryo-EM map of the

mammalian decoding complex (Budkevich et al., 2014) reveals

striking similarities. Domains N and M of eRF1 mimic the tRNA

in the A/T state, and eRF3 resembles eEF1A (Figure S3). The M

domain of eRF1 overlaps with the acceptor stem of the A/T

tRNA and even appears to mimic the 30-CCA end of the tRNA

(Figure 6A). The GGQ motif (aa 183–185) of eRF1’s M domain

is in a similar position to C75 of the A/T tRNA (Budkevich et al.,

2014), and both elements appear to interact with a homologous

region of domain 2 (aa 441–442) of eRF3 or eEF1A, respectively

(Figure 6C).

Furthermore, the M domain of eRF1 interacts with ribosomal

protein uS12, localized at the shoulder of the 40S (Figure 6D).

An analogous contact with nucleotide 68 in the acceptor stem

of the A/T tRNA is present in bacterial (Schmeing et al., 2009)

and mammalian decoding complexes (Figure 6D). Moreover, a

mammalian specific interaction between the C-terminal end of
.



Figure 5. Interaction of the POST State IRES with the L1 Stalk and Comparison of L1 Positions in Different Ribosomal States

(A) Depiction of three distinct L1 positions during translocation of the IRES; distance measurements were made between axes of mass centers. From the un-

rotated PRE state (purple) to the rotated PRE state (yellow) (both from Fernández et al., 2014), L1 moves 14 Å toward the E site. Upon translocation to the POST

state (green), a movement of another 13 Å can be observed.

(B) Comparison of the L1 stalk position in rotated 80S,CrPV IGR IRES complex (yellow) (Fernández et al., 2014) and 80S,CrPV-STOP (POST) complex (green)

with corresponding canonical complexes (Budkevich et al., 2014).
uS12 and the translational GTPase factor can be observed in

both systems. Domain C of eRF1 is interacting with the stalk

base (H43/H44) of the 28S rRNA at the 60S subunit and with

eS31 at the head of the 40S via the characteristic mini-domain

of eRF1 (Figure 6E). The eS31 interaction seems to be unique

for eRF1, as it could not be observed for Dom34 in the Dom34/

Hbs1 complex (Becker et al., 2011) or A/T tRNA in the decoding

complex (Budkevich et al., 2014) because both are lacking a

similar domain. Mutational analysis indicated that the mini-

domain influences the specificity of eRF1 for certain stop codons

during stop codon recognition (Mantsyzov et al., 2010), which

may explain its exclusive presence in eRF1.

The mammalian decoding complex with a GMPPNP stalled

ternary complex has been visualized in two substates, i.e., a

codon sampling state and a codon recognition state (Budkevich

et al., 2014). A smaller rotational movement of the ternary com-

plex was found to have an influence on the exact position of

eEF1A, leading to full interactions with the functionally important

sarcin-ricin loop (SRL, H95 of 28S rRNA) of the ribosome’s

GTPase associated center only in the codon-recognition state.

eRF3 seems to be closer to the codon recognition state, and

we observe interactions to the 60S subunit, in particular the

SRL, via the G domain (Figure 6F) as well as to h5, h14, and

uS12 of the 40S subunit incorporating the helical insertion and

domain 2.

Structure of the 80S,CrPV-STOP,eRF1 Complex
In the context of our minimal system, we were able to directly

visualize eRF1 within the 80S,CrPV-STOP,eRF1 complex in

the absence of eRF3. This state of eRF1 resembles an important
Mo
stage between eRF1 delivery to the ribosome by eRF3 and the

recycling step mediated by ABCE1. In current models of termi-

nation, the structure of this intermediate is unclear (Becker

et al., 2012; Preis et al., 2014). When compared with the eRF3

bound state, the orientation of the M domain of eRF1 is dramat-

ically changed and rotates by nearly 150�, orienting the GGQ

motif at the tip of the long a5 helix toward the peptidyl

transferase center (PTC) on the 60S subunit (Figure 7A). eRF1

in its catalytically active state has been proposed to adopt a

similar conformation as its homolog Dom34 within the Dom34/

Rli1 complex involved in mRNA decay (Franckenberg et al.,

2012). Indeed, both factors adopt a similar, but not identical,

orientation. Domain C of eRF1 overlaps nicely with domain C

of Dom34, whereas domains N and M of eRF1 are rotated

around domain C by an additional �18�. As a result, the GGQ

motif of eRF1 is positioned more closely to the PTC. It appears

that the presence of a stop codon in the A site and an ASL mimic

in the P site is requisite and sufficient for the binding and accom-

modation of eRF1 to the ribosome. Thus, eRF1 requires neither

eRF3 nor ABCE1 to adopt its catalytically active conformation

on the ribosome, bringing the GGQ motif close to its substrate

in the PTC.

Despite the lack of sequence homology, in bacterial termina-

tion complexes a similar orientation of domain 3 comprising

the extended a7 helix with GGQ motif of RF1 or RF2 has

been observed (Figure S4) (Jin et al., 2010; Korostelev

et al., 2008; Laurberg et al., 2008; Weixlbaumer et al., 2008).

Consistent with this observation, several ribosomal contacts

of the M domain of eRF1 are preserved between bacteria

and eukaryotes. The M domain appears to make extensive
lecular Cell 57, 422–432, February 5, 2015 ª2015 Elsevier Inc. 427



Figure 6. The 80S,eRF1,eRF3,GMPPNP

Complex Strongly Resembles the Eukary-

otic Decoding Complex

(A) Superposition of the A/T tRNA model (gray)

(Budkevich et al., 2014) with the eRF1model (pink)

from the 80S,eRF1,eRF3,GMPPNP complex.

The GGQ motif at the tip of the long a5 helix is

colored in yellow.

(B) Interactions of the N domain of eRF1 with the

stop codon of CrPV IRES mRNA (green) via the

TASNIKS motif (yellow). The UAA stop codon is

shown in red.

(C) GGQmotif of eRF1 contacts domain 2 of eRF3

(red) in context with h5 of the 18S rRNA. Further-

more, eRF1 contacts h14 of the 18S rRNA via its

a5 helix, interaction not seen in the decoding

complex.

(D) Ribosomal protein uS12 positioned at the

shoulder of the 40S forms a network of in-

teractions, including domains 2 and 3 of eRF3 as

well as M domain of eRF1 at the position that

would overlap with nt 68 of the A/T tRNA.

(E) eRF1-specific contact of the minidomain of

eRF1 with eukaryotic-specific ribosomal protein

eS31 at the head of the 40S.

(F) eRF3 contacts the SRL via its helical expansion

of SW I region as well as via a eukaryotic insertion

around Glu324-Lys325.

See also Figure S3.
interactions in the PTC with conserved nucleotides A4508,

U4398, and C4465 of the 28S rRNA (human numbering, corre-

sponding residues in E. coli are A2602, U2492, and C2558,

respectively) (Figure 7B). The presence of these evolutionary

preserved interactions corroborates that eRF1 bound to the pre-

sent 80S,IRES complex is in a biologically relevant intermediate

state of the pathway of eukaryotic translation termination/

recycling.

In addition, we see several interactions between domain M of

eRF1 and the ribosome, which have not been described for bac-

terial termination complexes (Figure 7B). Two of these eukary-

otic-specific contacts appear to involve H71 of the 28S rRNA,

around G3761 and C3758 and Ser253 and Ala226 of the M

domain, respectively. Further eukaryotic-specific contacts

seem to exist around G4367 of H89 and Tyr197 of the long a5

helix of domainM and, less obviously, between theG4158 region

of H80 and the GGQ motif of eRF1.

In the bacterial system, residues 1,913–1,915 in the loop of

H69 of 23S rRNA have been shown to play a crucial role in
428 Molecular Cell 57, 422–432, February 5, 2015 ª2015 Elsevier Inc.
stabilizing the rearrangements of the

switch loop of RF1/2 required for proper

positioning of the extended a7 helix

and docking of the GGQ motif in the

PTC (Korostelev et al., 2008; Laurberg

et al., 2008; Weixlbaumer et al., 2008).

However, these events are strongly

interdependent with the recognition of

the stop codon and subsequent molec-

ular rearrangements in A1492–1493 of

h44 of the 16S rRNA. As far as the
stop codon is recognized, A1492 flips out from its position,

whereas A1493 remains stacked within h44. The gap caused

by the flipping out of A1492 is filled by A1913 of 23S rRNA,

which stacks on A1493 (Korostelev et al., 2008; Laurberg

et al., 2008; Weixlbaumer et al., 2008). We do not observe

such an interaction in our maps, suggesting a different mode

of stop codon recognition in eukaryotes. However, higher res-

olution will be required to interpret the changes in the decod-

ing center in detail.

Due to a rotation of the C domain of eRF1 by�39�, the contact
formed by the minidomain of the factor and eS31 at the head of

the 40S, as seen in the 80S,CrPV-STOP,eRF1,eRF3,GMPPNP

structure, is disrupted. Furthermore, a contact not present in the

80S,CrPV-STOP,eRF1,eRF3,GMPPNP complex is formed be-

tween the tip of the SRL and Ser295 of eRF1 (Figure 7C). Inter-

estingly, a similar interaction was described for the mammalian

decoding complex between the T loop of the A/T tRNA and the

SRL (Budkevich et al., 2014) (Figure S3), but not in the homolo-

gous bacterial system.



Figure 7. Ribosomal Contacts of eRF1 in the 80S,CrPV-STOP,eRF1
Complex

(A) eRF1 conformation in the 80S,CrPV-STOP,eRF3,eRF1,GMPPNP (left)

and the 80S,CrPV-STOP,eRF1 complex (right). As a marker, the canonical P

site-bound tRNA is shown in green. The eRF1model is colored according to its

domain organization: N domain in pink, M domain in yellow, and C domain in

green with the minidomain in blue.

(B) The M domain of eRF1 is positioned in the PTC on the 60S subunit and

forms conserved (red) as well as unique (yellow) ribosomal contacts.

(C) In the 80S,eRF1 complex, the tip of the SRL interacts with the C domain of

eRF1, which is analogous to the eukaryote-specific interaction involving the T

loop of A/T tRNA seen in the decoding complex (Budkevich et al., 2014).

See also Figure S4.
DISCUSSION

The Mechanism of IGR IRES Facilitated Internal
Initiation
IRES-containing viral RNAs are capable of initiating translation

with a strongly reduced set of initiation factors (Wilson et al.,

2000b). In the case of the CrPV IGR IRES family, neither cellular

initiation factors nor initiator Met-tRNA are needed for synthesis

of viral gene products by the host. IGR IRESs start translation

from the A site and only need elongation factor eEF2 to assemble

elongation-competent 80S ribosomes from 40S and 60S sub-

units. Initial biochemical studies suggested that after subunit as-

sociation, the IRES occupies the ribosomal P site and sets the

translation frame so that the first codon is positioned in the A

site. In contrast, we present here cryo-EM maps of 80S,CrPV-
STOP,eRF1,eRF3,GMPPNP and 80S,CrPV-STOP,eRF1 com-

plexes directly showing that an eEF2-dependent translocation

resulting in a POST state of the IRES is required to allow the first

A site occupation.

Our finding is in excellent agreement with previous structural

studies (Schüler et al., 2006; Fernández et al., 2014; Koh et al.,

2014) demonstrating that in the binary 80S,CrPV IRES complex,

domain 3 of the CrPV IRES is placed between the ribosomal A

and P sites with the apical part of the PK I element mimicking

an ASL of an A site-bound tRNA. Consequently, domain 3 has

to move completely out of the A site to allow the decoding of
Mo
the first codon at the 30 edge of the IRES structure (Schüler

et al., 2006) and, in line with previous experiments showing

that binding of the first aa-tRNA,eEF1A,GTP ternary complex

requires the action of eEF2 (Yamamoto et al., 2007), an initial

eEF2-dependent translocation of the IRES on binary 80S,IRES
complex has been suggested (Fernández et al., 2014; Koh

et al., 2014). Our present cryo-EM maps show that the action

of eEF2 leads to the movement of the entire CrPV IRESmolecule

toward the ribosomal E site, resulting in the POST state with the

apical part of the PK I structure mimicking the ASL of a tRNA in

the P/P state (Figure 4A).

It appears that during the translocation reaction the IRES be-

comes more loosely bound. In particular, the two important

stem loops, SL2.1 and 2.3 of CrPV IRES domain 2, no longer

interact with the ribosome in the POST state. However, it has

been shown previously by mutagenesis studies that a major

part of the binding energy of the IRES for the ribosome is

derived by the SL2.1 and 2.3 interactions with uS7 and eS25,

respectively (Jan and Sarnow, 2002). Therefore, the PRE state

may be energetically preferred over the POST complex, and it

is therefore very likely that after translocation and dissociation

of eEF2,GDP the A site has to be occupied by a ligand in order

to stabilize the POST complex and to prevent spontaneous

back-translocation of the IRES. A short lifetime of the translo-

cated binary 80S,CrPV IRES complex could be the reason

why it has been difficult to detect this state and why the pres-

ence of release factors is needed to shift the toe-print signal

(Figure 1B, lane 4 versus lanes 8–10). We note that during our

multiparticle processing we obtained a subpopulation of the bi-

nary 80S,IGR-IRES complex in the PRE, but not in the POST,

state.

The question arises as to why the IGR IRES family employs

not the more simple mechanism with direct P site binding of

the PK I structure and only one unusual translocation (Pestova

and Hellen, 2003; Wilson et al., 2000b), but a more compli-

cated one with two unusual translocation events. A possible

reason may be that during internal initiation the need for a

high binding affinity to efficiently recruit the translational appa-

ratus has to be balanced with the need to dissociate the IRES

again during downstream events. It may be more efficient to

partition the energetic penalty for IRES dissociation into two

translocation steps, or even three, when we consider the trans-

location of the first elongation complex with two tRNAs in A

and P sites and the IRES possibly still interacting in the ribo-

somal E site.

A second factormay be the general task of translation initiation

to thread the open reading frame into the mRNA entry tunnel of

the 40S subunit. The CrPV IRES (Spahn et al., 2004) and also

the unrelated HCV IRES (Spahn et al., 2001) aswell as the canon-

ical initiation factors eIF1 and eIF1A (Passmore et al., 2007) all

induce a similar conformational change in the ribosomal 40S

subunit to open the latch of the mRNA entry tunnel for inserting

the mRNA. In this context, initial positioning of the PK I element

into the A site places the neighboring first sense codon directly

into the opened mRNA entry tunnel, and after closing the latch,

the upstream part of the mRNA will be stably bound. In the

case of P site location, however, the coupling to mRNA insertion

into the entry tunnel would be less direct due to the flexible
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character of the single stranded RNA. Thus, the initial PK I posi-

tioning into the A site rather than the P site appears advanta-

geous in the context of mRNA loading.

Eukaryotic Translation Termination
Eukaryotic translation termination is mediated by two release

factors: eRF1 and eRF3. The position of the release factors in

our 80S,CrPV-STOP,eRF1,eRF3,GMPPNP complex as well

as the overall conformation of the complex is essentially the

same compared to the canonical termination complex (des

Georges et al., 2014; Taylor et al., 2012). We can therefore

conclude that using the CrPV-STOP RNA as a tool to study

termination factor binding in a simplified minimal system is a

valid approach. It follows that domain 3 of the CrPV IRES resem-

bles the ASL of a P site tRNA sufficiently well and that the

presence of the IRES does not alter the termination complex in

a major way.

The minimal system allowed us to analyze eRF1 binding

in the absence of eRF3 and to visualize the factor in a state

in the 80S,CrPV-STOP,eRF1 complex. This complex mimics

the intermediate state of the eukaryotic termination process

that arises after binding of eRF1,eRF3,GTP, decoding of the

stop codon, GTP hydrolysis, and subsequent dissociation of

eRF3,GDP, leaving eRF1 bound to the ribosome alone. In the

next step, the hydrolysis of peptidyl tRNA is induced by eRF1

followed by release of the peptide chain and recycling of

the post-termination complex. Our complex reveals major

rearrangements in eRF1 providing structural insights into the

active conformation of eRF1. Accordingly, the M domain of

the factor is reoriented compared to its position when bound

to eRF3 positioning the GGQ motif into the peptidyl transferase

center. The adopted conformation of the factor and its ribo-

somal contact sites suggest an idea where eRF1 combines fea-

tures of a eukaryotic A/T and A/A tRNA in one molecule by

mimicking the A/T elbow region and the A/A acceptor stem,

respectively.

Taking into account that the 80S,CrPV-STOP,eRF1 com-

plex has been prepared without addition of eRF3, the presence

of a stop codon in the ribosomal A site and the ASL in the P

site are sufficient for eRF1 to adopt the active conformation

regardless of the presence and activity of eRF3. The results

are in good agreement with biochemical studies showing

that eRF1 can mediate peptide hydrolysis in vitro alone (Alka-

laeva et al., 2006). The established role of eRF3 is to facilitate

efficient binding of eRF1 to ribosomal pre-termination com-

plexes. However, the finding that eRF1 can adopt the active

conformation on the ribosome without additional factors sug-

gests that eRF3 may have an additional function to prevent

eRF1 from initiating premature translation termination and re-

cycling. Regarding the cellular levels (Ghaemmaghami et al.,

2003) of eRF1, eRF3, GDP and GTP, it is reasonable to pre-

sume that eRF1 within the cell is found predominantly as

ternary complex with eRF3 and GTP. It is tempting to specu-

late that eRF3, like the homologous elongation factor EF-Tu/

eEF1A, may be involved in enhancing the accuracy of termina-

tion by separating codon recognition from peptidyl-hydrolysis

via interposed GTPase activation and eRF1 accommodation

steps.
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EXPERIMENTAL PROCEDURES

Cryo-EM of Mammalian Termination Complexes

Mammalian termination complexes were prepared with isolated ribosomal

subunits from RRL and in vitro transcribed CrPV-STOP RNA. Translocation

was achieved by incubation with eEF2,GTP. In case of 80S,CrPV-STOP,

eRF1, the release factor was added directly to the translocation reaction;

for the 80S,CrPV-STOP,eRF1,eRF3 sample, a preformed eRF1,eRF3,

GMPPNP complex was used. Micrographs were recorded with a FEI Tecnai

G2 Polara electron microscope, and multiparticle refinement was carried out

with SPIDER as described previously (Loerke et al., 2010; Penczek et al.,

2006a, 2006b). Further details can be found in the Supplemental Experimental

Procedures.

Modeling

Modeling of the translocated CrPV IRES was done based on the pre-trans-

located CrPV IRES (Schüler et al., 2006) and a crystal structure of PK I

(Zhu et al., 2011) by MDfit (Ratje et al., 2010), COOT (Emsley and Cowtan,

2004), and ERRASER (Chou et al., 2013). The initial structural model for

eRF1 was built by domain-wise rigid-body fitting (Mantsyzov et al., 2010;

Song et al., 2000) accompanied by MDfit (Ratje et al., 2010; Whitford

et al., 2011), COOT, and CNS (Brünger et al., 1998). eRF3 was modeled

based on homology to aEF1a (Kelley and Sternberg, 2009; Kobayashi

et al., 2012; Tung and Sanbonmatsu, 2004) and yeast eRF3 (Kong et al.,

2004).

ACCESSION NUMBERS

The electron density maps of mammalian termination complexes were depos-

ited in the Electron Microscopy Data Bank (European Molecular Biology Lab-

oratory-European Bioinformatics Institute, Cambridge, UK) with the accession

numbers EMD-2810 and EMD-2813. Models for the mammalian release fac-

tors and the post-translocated CrPV-IRES have been deposited in the Protein

Data Bank database with PDB IDs 4d5n, 4d5l, 4d5y, and 4d5z (eRF1 complex)

and 4d61, 4d66, 4d67, and 4d68 (eRF1/eRF3 complex).
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