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ON THE STRUCTURE OF LINEARIZED GRAVITY ON VACUUM

SPACETIMES OF PETROV TYPE D

STEFFEN AKSTEINER, LARS ANDERSSON, AND THOMAS BÄCKDAHL

Abstract. In this paper we prove a new identity for linearized gravity on vacuum spacetimes
of Petrov type D. The new identity yields a covariant version of the Teukolsky-Starobinsky
identities for linearized gravity, which in addition to the two classical identities for the extreme
linearized Weyl scalars includes three additional equations. By analogy with the spin-1 case, we
expect the new identity to be relevant in deriving new conservation laws for linearized gravity.

1. Introduction

The black hole stability problem, i.e. the problem of proving dynamical stability of the Kerr
vacuum black hole solution is one of the most important open problems in general relativity.
Proving dispersive estimates for fields, including Maxwell and linearized gravity on the Kerr
background is an essential step towards solving this problem. In the paper [4] a new conserved
energy-momentum tensor for the Maxwell field on the Kerr spacetime was constructed. This
construction relies on an analysis of the Teukolsky Master Equation (TME) and the Teukolsky-
Starobinsky Identities (TSI) implied by the Maxwell field equations. In this paper we shall,
motivated by the above considerations, study the TSI for linearized gravity on vacuum space-
times of Petrov type D, which includes in particular the Kerr spacetime. Our main result is a
fundamental new identity for linearized gravity which leads to a new, covariant form of the spin-2
TSI. This extends the two classically known TSI relations by three additional identities. In the
following, we shall refer to the two classical TSI as the extreme TSI.

In its classical form, the Teukolsky-Press, or Teukolsky-Starobinsky relations [19, 18] relate
the solutions of the radial Teukolsky equations for ±s, and is thus valid only for the separated
form of the equations. For the case of linearized gravity on the Kerr spacetime, a derivation of
the extreme TSI using the Newman-Penrose formalism, which does not require a separation of
variables, was given by Torres del Castillo [20], later corrected by Silva-Ortigoza [17], see the
paper by Whiting and Price [22] for discussion and background. We shall refer to this pair of
classical identities for the Maxwell and linearized gravity cases as the extreme TSI.

Consider a Petrov type D spacetime and let a principal null tetrad be given1. Recall that in

this case, only one of the Newman-Penrose Weyl scalars, Ψ2 is non-zero. Let κ1 ∝ Ψ
−1/3
2 , let φi,

i = 0, 1, 2 the Maxwell scalars and let Ψ̇0, Ψ̇4 be the gauge invariant linearized Weyl scalars of
spin weights ±2. In terms of the GHP operators þ, þ

′, ð, ð′ the TME take the form

(þ−ρ− ρ̄)þ
′(κ1φ0)− (ð−τ − τ̄ ′)ð′(κ1φ0) = 0, (1.1a)

(þ′ −ρ′ − ρ̄′)þ(κ1φ2)− (ð′ −τ̄ − τ ′)ð(κ1φ2) = 0. (1.1b)

for the spin-1 case, while the spin-2 TME for linearized gravity are given by

(þ−3ρ− ρ̄)þ
′(κ1Ψ̇0)− (ð−3τ − τ̄ ′)ð′(κ1Ψ̇0)− 3Ψ2(κ1Ψ̇0) = 0, (1.2a)

(þ′ −3ρ′ − ρ̄′)þ(κ1Ψ̇4)− (ð′ −3τ ′ − τ̄ )ð(κ1Ψ̇4)− 3Ψ2(κ1Ψ̇4) = 0, (1.2b)

see [2]. The spin-1 extreme TSI are

ð
′
ð
′(κ2

1φ0) = þ þ(κ2
1φ2) (1.3a)

þ
′
þ
′(κ2

1φ0) = ð ð(κ2
1φ2) (1.3b)
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1In this paper, we shall use the GHP formalism and 2-spinor formalisms, see [3, 7, 15] for notation and

background.
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and the spin-2 extreme TSI are

ð
′
ð
′
ð
′
ð
′(κ4

1Ψ̇0) = þ þ þ þ(κ4
1Ψ̇4) + κ3

1Ψ2LξΨ̇0 (1.4a)

þ
′
þ
′
þ
′
þ
′(κ4

1Ψ̇0) = ð ð ð ð(κ4
1Ψ̇4)− κ3

1Ψ2LξΨ̇4 (1.4b)

where in the Kerr spacetime, κ3
1Ψ2 = M/27, with M the ADM mass, and the Killing field

ξa ∝ (∂t)
a, cf. Remark 2.2. A version of the spin-1 TSI in Newman-Penrose notation can be

found in [10]. For the extreme spin-2 TSI, see [22]. However, this form does not make the Lξ

term explicit. In general κ3
1Ψ2 and ξa are a complex constant and Killing field, respectively. See

(2.2) for the definition of ξa. Here we have stated the form of the equations for the case without
sources. The general version of the TME, with sources, is given in Corollary 3.3, and the a version
of TSI with sources can be deduced from Remark 4.3.

A näıve argument counting degrees of freedom indicates that it should be possible to represent
the full dynamical degrees of freedom of the Maxwell and linearized gravity fields in terms of one
complex scalar potential, solving the TME. However, although one may use a Debye potential
construction to produce a new Maxwell of linearized gravity field from a solution of the second
order TME [9, 12, 11, 13], both Maxwell and linearized gravity on a type D background have
conserved charges, which correspond to non-radiative modes, and these cannot be represented
in terms of Debye potentials. For the Maxwell field on the Kerr spacetime, the non-radiative
mode is the well-known Coulomb solution, while for linearized gravity, the non-radiative modes
correspond to variations of the moduli parameters M,a. Thus, it is only the radiative modes
which can be represented by Debye potentials. In particular, it must be emphasized that the
TME is not equivalent to the Maxwell or linearized gravity systems, and in particular, if we
consider a Maxwell or linearized gravity field, it is not possible to reconstruct either of these
fields given only one of the extreme scalars.

For the Maxwell field, the full set of TSI in fact contains a third relation, cf. [10], which can
be written in the form

τ̄ ′ þ(κ2
1φ2) + þ ð(κ2

1 φ2) = τ̄ þ
′(κ2

1φ0) + þ
′
ð
′ (κ2

1φ0). (1.5)

As mentioned above, the full set of TME/TSI equations implied by the Maxwell field equation,
has the important consequence that the symmetric tensor Vab introduced in [4] is conserved.
The tensor Vab is, in contrast to the standard Maxwell stress-energy tensor independent of the
non-radiative modes of the Maxwell field, and is therefore a suitable tool to construct dispersive
estimates for the Maxwell field on the Kerr spacetime.

We now recall the Debye potential construction of solutions of linearized gravity. We first
restrict to Minkowski space. Following Sachs and Bergmann [16], let Habcd be an anti-selfdual
Weyl field2, i.e. a tensor with the symmetries of the Riemann tensor, Habcd = H[ab]cd = Hcdab,

H[abc]d = 0, satisfying Ha
bac = 0 and 1

2ǫab
efHefcd = −iHabcd, and let

gab = ∇c∇d
Hacbd. (1.6)

Then, if ∇e∇eHabcd = 0, it holds that gab solves the linearized vacuum Einstein equation.
The analogous construction for massless spin-s fields on the 4-dimensional Minkowski space was

discussed by Penrose [14]. In [6] this was used to prove decay estimates for such fields, based on
decay estimates for the wave equation. We shall now describe the analog of the Sachs-Bergmann
construction in the case of a vacuum type D metric.

Introduce the following complex anti-selfdual tensors with the symmetries of the Weyl tensor

Z0
abcd = 4m̄[anb]m̄[cnd],

Z4
abcd = 4l[amb]l[cmd],

where (la, na,ma, m̄a) constitutes a principal null tetrad. These are analogs of the anti-selfdual
bivectors Z0

ab, Z
2
ab, see [3, §2]. For a weighted scalar χ0, let Habcd be given by

Habcd = κ4
1χ0Z

0
abcd. (1.7)

2Here we use a complex anti-selfdual Weyl field for consistence with the rest of the paper, although this is not
used in [16].
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Define the 1-form Ua by
Ua = −∇a log(κ1),

cf. (2.7), and consider the following analog of (1.6), which sends Habcd to a 2-tensor gab,

gab = ∇c(∇d + 4Ud)H(a
d
b)c.

A calculation shows that gab is a complex solution to the linearized vacuum Einstein equation
provided the scalar χ0 solves the Teukolsky Master Equation (TME) for spin weight +2 [12].

Applying the GHP prime operation la ↔ na, ma ↔ m̄a to the above construction, leads to
the fact that the analogous construction with

Habcd = κ4
1χ4Z

4
abcd (1.8)

yields a solution to the linearized Einstein equation in the same way, provided that now the
scalar κ4

1χ4 solves the TME for spin weight −2. Note that in general, the linearized metrics gab
constructed from (1.7) and (1.8) are different. We are now able to state the tensor version of our
main result, which describes this difference.

Theorem 1.1 (Tensor version). Let δgab be a solution to the linearized Einstein equation on a

vacuum type D background, and let Ψ̇0, Ψ̇4 be the corresponding linearized Weyl scalars of spin
weight ±2. Let

Ĥabcd = κ4
1Ψ̇0Z

0
abcd − κ4

1Ψ̇4Z
4
abcd, (1.9)

and let
Mab = ∇c(∇d + 4Ud)Ĥ(a

d
b)c. (1.10)

Then there is a complex vector field Aa, depending on up to three derivatives of the linearized
metric δgab, and independent of the extreme linearized Weyl scalars Ψ̇0, Ψ̇4, such that

Mab = ∇(aAb) +
1
2Ψ2κ

3
1Lξδgab. (1.11)

Remark 1.2. (1) From (1.11), it is clear that Mab is a complex solution of the linearized
Einstein equation.

(2) In the Maxwell case, the analogue of (1.11) is that the vector potential arising out of
the Debye potential construction by taking the difference of the extreme Maxwell scalars
from the same Maxwell field is pure gauge, see [1, Proposition 5.2.5]. In the spin-2 case
above, the term involving Lξδgab is a new feature, which indicates an important qualitative
difference between the spin-1 and spin-2 cases.

As will be shown below, the identity (1.11) implies the the full TSI for linearized gravity, a set
of five scalar equations of fourth order. To see that the extreme TSI follows from this identity, it
is sufficient to recall that the extreme linearized Weyl scalars Ψ̇0, Ψ̇4 are gauge invariant.

In order to discuss further details of the main result and its proof, we shall use the 2-spinor
formalism, see [15] and [7] for background. We shall further make use of the variational formalism
for spinors, which was introduced in [8].

The fundamental operators Ck,l,C
†
k,l,Tk,l,Dk,l acting on symmetric spinors of valence k, l are

defined as the irreducible parts of the covariant derivative ∇AA′φBC···DB′C′···D′ of the symmetric
spinor φAB···DA′B′···D′ of valence k, l. They were introduced in the paper [5], which also contains
a detailed discussion of their properties. The main features of the type D geometry is encoded in
the Killing spinor κAB = κ1o(AιB), satisfying

(T2,0κ)ABCA′ = 0.

We shall also make use of the extended operators Ck,l,m,C †
k,l,m,Tk,l,m,Dk,l,m, introduced here

for the first time, defined in an analogous manner as the irreducible parts of

(∇AA′ +mUAA′)φBC···DB′C′···D′ , (1.12)

see Section 2.2 below for details.
Given a 2-tensor δgab solving the linearized Einstein equations, define

G = δgCC
C′

C′ , GABA′B′ = δg(AB)(A′B′),

and let

φABCD =
1

2
(C3,1C2,2G)ABCD. (1.13)
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Then φABCD is a modified linearized Weyl spinor, see (3.3). The extreme scalars φ0, φ4 coincide

with Ψ̇0, Ψ̇4 introduced above.

Theorem 1.1′ (Spinor version). Let δgABA′B′ be a solution to the linearized Einstein equation
on a vacuum type D background, let φABCD be given by (1.13), and let φ0, φ4 be the corresponding
linearized Weyl scalars of spin weight ±2. Let oA, ιA be a principal dyad. Define

φ̂ABCD = ιAιBιCιDκ4
1φ0 − oAoBoCoDκ4

1φ4, (1.14)

and let

MABA′B′ = (C †
3,1C

†
4,0,4φ̂)ABA′B′ . (1.15)

Then, there is a complex vector field AAA′ depending on up to three derivatives of the linearized
metric δgABA′B′ , and independent of the extreme linearized Weyl scalars φ0, φ4, such that

MABA′B′ = 1
2∇AA′ABB′ + 1

2∇BB′AAA′ + 1
2Ψ2κ

3
1(Lξδg)ABA′B′ . (1.16)

Remark 1.3. Equation (1.14) can be written purely in terms of the Killing spinor κAB, without
reference to a specific dyad, see Example 2.8.

We now apply two more derivatives to both sides of equation (1.16) (or equivalently, to equation
(1.11)). This gives the following result, which is the covariant form of the spin-2 TSI.

Corollary 1.4. For a vacuum type D spacetime, we have the covariant generalization of the
Teukolsky–Starobinski identities for linearized gravity

(C †
1,3C

†
2,2C

†
3,1C

†
4,0,4φ̂)A′B′C′D′ = κ3

1Ψ2(Lξφ̄)A′B′C′D′ + (L̂AΨ̄)A′B′C′D′ , (1.17)

where φABCD is defined in (1.13), and

(L̂AΨ̄)A′B′C′D′ = 1
2 Ψ̄A′B′C′D′(D1,1,0,6A) + 2Ψ̄(A′B′C′

F ′

(C †
1,1,0,2A)D′)F ′ . (1.18)

is the Lie derivative on spinors.

Remark 1.5. Given a pair φ0, φ4 of spin weight ±2 scalars, we say that they solve the spin-2
TME/TSI system, provided they solve the second order spin-2 TME system (1.2) and also that
they solve the fourth order spin-2 TSI system (1.17), or alternatively the second order identity
(1.16), in a suitable sense. In view of the result by Coll et al. mentioned above, it is natural to
conjecture at this point that the combined spin-2 TME/TSI system (1.2) and (1.17) (or alterna-
tively (1.2) and (1.16)) yields an equivalent system for linearized gravity, in the sense that given
such a pair of scalars, it is possible, modulo gauge conditions and charges, to reconstruct the rest
of the linearized gravitational field.

Recall that in the case of the Kerr spacetime, κ3
1Ψ2 and ξa are real. This means that we can

take the real and imaginary parts of Mab, yelding the following result.

Corollary 1.6. On the Kerr spacetime, the imaginary part of (1.16) is gauge invariant and for
the real part we get

ReMABA′B′ = 1
2∇AA′ReABB′ + 1

2∇BB′ReAAA′ + 1
54M(Lξδg)ABA′B′ . (1.19)

Remark 1.7. The spinor ReMABA′B′ can be interpreted as a linearized metric. It is independent
of the coordinate gauge of the original metric and constructed only from the spin-2 part of the
linearized Weyl curvature. Therefore it is gauge invariant. With a particular gauge choice one
could hope to set ReAAA′ = 0. One could then hope to reconstruct δgABA′B′ from the curvature
through integration in time.

The paper is organized as follows. In Section 2 we give some background and preliminary
results. Section 2.1 contains a review of the consequences of the existence of a Killing spinor
on vacuum type D spacetimes. In particular we introduce extended fundamental operators and
projection operators based on the Killing spinor. Example 2.8 introduces the spin-projected, sign-

reversed linearized Weyl spinor φ̂ABCD which will play a central role in the paper. The section
ends with two technical lemmata. In Section 3 a spinorial form af the field equations of linearized

gravity is presented. Corollary 3.2 gives an equation for φ̂ABCD which is a consequence of the
linearized Bianchi identity. This equation plays a central role in the proof of the main theorem,
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given in section 4. In Appendix A we give the GHP form of the vector field AAA′ introduced in
the main theorem, and of the spin-2 TSI.

2. Preliminaries

2.1. Geometric structure of Petrov type D spacetimes. It is well known [21] that vacuum
spacetimes of Petrov type D admit a non-trivial irreducible symmetric 2-spinor κAB solving the
Killing spinor equation

(T2,0κ)ABCA′ = 0. (2.1)

Defining the spinors

ξAA′ = (C †
2,0κ)AA′ , (2.2)

λA′B′ = (C †
1,1C

†
2,0κ)A′B′ , (2.3)

the complete table of derivatives reads

∇AA′κBC = − 1
3ξCA′ǫAB − 1

3 ξBA′ǫAC , (2.4a)

∇AA′ξLL′ = − 1
2λA′L′ǫAL − 3

4κ
BCΨALBC ǭA′L′ , (2.4b)

∇CC′λA′B′ = 2ξC
D′

Ψ̄A′B′C′D′ . (2.4c)

The fact that the system of equations (2.4) for (κAB, ξAA′ , λA′B′) is closed, implies in particular
higher derivatives of κAB do not give any further information.

Remark 2.1. If we furthermore assume the generalized Kerr-NUT condition that ξAA′ is real,
the middle equation simplifies to λA′L′ = 3

2 κ̄
B′C′

Ψ̄A′L′B′C′ so the λA′B′ is not an independent
field any more and the system reduces to

∇AA′κBC = − 1
3ξCA′ǫAB − 1

3ξBA′ǫAC , (2.5a)

∇AA′ξLL′ = − 3
4 κ̄

B′C′

Ψ̄A′L′B′C′ǫAL − 3
4κ

BCΨALBC ǭA′L′ . (2.5b)

Using a principal dyad the Killing spinor takes the form

κAB = − 2κ1o(AιB), (2.6)

with κ1 ∝ Ψ
−1/3
2 . Beside the Killing vector field (2.2) another important vector field is defined

by

UAA′ = −
κABξ

B
A′

3κ2
1

= −∇AA′ log(κ1). (2.7)

Because it is completely determined by the Killing spinor (2.6), we have the complete table of
derivatives

(D1,1U) = − 2Ψ2 +
ξAA′ξAA′

9κ2
1

, (2.8a)

(C1,1U)AB = 0, (2.8b)

(C †
1,1U)A′B′ = 0, (2.8c)

(T1,1U)AB
A′B′

=
κAB(C

†
1,1ξ)

A′B′

6κ2
1

+ 2U(A
(A′

UB)
B′) −

ξ(A
(A′

ξB)
B′)

9κ2
1

, (2.8d)

in particular UAA′ is closed.
From the integrability condition (LξΨ)ABCD = 0 it follows that

(T4,0Ψ)ABCDFA′ = 5Ψ(ABCDUF )A′ . (2.9)

The curvature can be expressed in terms of the Killing spinor according to

ΨABCD =
3Ψ2κ(ABκCD)

2κ2
1

. (2.10)

Remark 2.2. On Kerr with parameters (M,a) in Boyer-Lindquist coordinates Ψ2 = − M
(r−ia cos θ)3

and we can set κ1 = − 1
3 (r − ia cos θ). Then ξa = ∂t,Ψ2κ

3
1 = 1

27M .
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2.2. Extended fundamental spinor operators. Based on the irreducible decomposition of
covariant derivatives on symmetric spinors, see [5], we define the extended fundamental operators
with additional (extended) indices n,m,

(Dk,l,n,mϕ)A1...Ak−1

A′

1...A
′

l−1 ≡
[
∇BB′

+ nUBB′

+mŪBB′

]
ϕA1...Ak−1B

A′

1...A
′

l−1
B′ , (2.11a)

(Ck,l,n,mϕ)A1...Ak+1

A′

1...A
′

l−1 ≡
[
∇(A1

B′

+ nU(A1

B′

+mŪ(A1

B′

]
ϕA2...Ak+1)

A′

1...A
′

l−1B′ , (2.11b)

(C †
k,l,n,mϕ)A1...Ak−1

A′

1...A
′

l+1 ≡
[
∇B(A′

1 + nUB(A′

1 +mŪB(A′

1

]
ϕA1...Ak−1B

A′

2...A
′

l+1), (2.11c)

(Tk,l,n,mϕ)A1...Ak+1

A′

1...A
′

l+1 ≡
[
∇(A1

(A′

1 + nU(A1

(A′

1 +mŪ(A1

(A′

1

]
ϕA2...Ak+1)

A′

2...A
′

l+1). (2.11d)

For n = m = 0 it coincides with the usual definition of the fundamental operators and the indices
will be suppressed in that case. Because UAA′ is a logarithmic derivative we have

(Dk,l,n,mϕ)A1...Ak−1

A′

1...A
′

l−1 = κn
1 κ̄

m
1 (Dk,lκ

−n
1 κ̄−m

1 ϕ)A1...Ak−1

A′

1...A
′

l−1 , (2.12a)

(Ck,l,n,mϕ)A1...Ak+1

A′

1...A
′

l−1 = κn
1 κ̄

m
1 (Ck,lκ

−n
1 κ̄−m

1 ϕ)A1...Ak+1

A′

1...A
′

l−1 , (2.12b)

(C †
k,l,n,mϕ)A1...Ak−1

A′

1...A
′

l+1 = κn
1 κ̄

m
1 (C †

k,lκ
−n
1 κ̄−m

1 ϕ)A1...Ak−1

A′

1...A
′

l+1 , (2.12c)

(Tk,l,n,mϕ)A1...Ak+1

A′

1...A
′

l+1 = κn
1 κ̄

m
1 (Tk,lκ

−n
1 κ̄−m

1 ϕ)A1...Ak+1

A′

1...A
′

l+1 . (2.12d)

In particular it follows that the commutator of extended fundamental spinor operators with
n1 = n2,m1 = m2 reduces to the commutator of the usual fundamental spinor operators. For
commutators of the extended operators with unequal weights n1, n2,m1,m2 one simply splits into
first derivatives and remainder with equal weights.

2.3. Projection operators and the spin decomposition.

Definition 2.3. Given the Killing spinor (2.6), define the operators Ki
k,l : Sk,l → Sk−2i+2,l, i =

0, 1, 2 via

(K0
k,lϕ)A1...Ak+2A′

1
...A′

l
= 2κ−1

1 κ(A1A2
ϕA3...Ak+2)A′

1
...A′

l
, (2.13a)

(K1
k,lϕ)A1...AkA′

1
...A′

l
= κ−1

1 κ(A1

FϕA2...Ak)FA′

1
...A′

l
, (2.13b)

(K2
k,lϕ)A1...Ak−2A′

1
...A′

l
= − 1

2κ
−1
1 κCDϕA1...Ak−2CDA′

1
...A′

l
. (2.13c)

Example 2.4. The “spin raising” operator K0
k,l on a symmetric (2, 0) spinor ϕAB has compo-

nents

(K0
2,0ϕ)0 = 0, (K0

2,0ϕ)1 = ϕ0, (K0
2,0ϕ)2 = 4

3ϕ1, (K0
2,0ϕ)3 = ϕ2, (K0

2,0ϕ)4 = 0.

The ”sign flip” operator K1
k,l on a symmetric (4, 0) spinor ϕABCD has components

(K1
4,0ϕ)0 = ϕ0, (K1

4,0ϕ)1 = 1
2ϕ1, (K1

4,0ϕ)2 = 0, (K1
4,0ϕ)3 = − 1

2ϕ3, (K1
4,0ϕ)4 = − ϕ4.

The “spin lowering” operator K2
k,l on a symmetric (4, 0) spinor ϕABCD has components

(K2
4,0ϕ)0 = ϕ1, (K2

4,0ϕ)1 = ϕ2, (K2
4,0ϕ)2 = ϕ3.

Definition 2.5 (Spin decomposition). For any symmetric spinor ϕA1...A2s
,

• with integer s, define s+1 symmetric valence 2s spinors (Pi
2s,0ϕ)A1...A2s

, i = 0 . . . s solving

ϕA1...A2s
=

s∑

i=0

(Pi
2s,0ϕ)A1...A2s

, (2.14)

with (Pi
2s,0ϕ)A1...A2s

depending only on the components ϕs+i and ϕs−i.

• with half-integer s, define s+ 1
2 symmetric valence 2s spinors (Pi

2s,0ϕ)A1...A2s
, i = 1

2 . . . s
solving

ϕA1...A2s
=

s∑

i=1/2

(Pi
2s,0ϕ)A1...A2s

, (2.15)

with (Pi
2s,0ϕ)A1...A2s

depending only on the components ϕs+i and ϕs−i.
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Remark 2.6. The spin decomposition can also be defined for spinors with primed indices and
more generally for mixed valence. In that case the decompositions combine linearly.

Example 2.7. (1) For s = 2 the decomposition is given by

ϕABCD = (P0
4,0ϕ)ABCD + (P1

4,0ϕ)ABCD + (P2
4,0ϕ)ABCD (2.16)

and the components, written as vectors, are



ϕ0

ϕ1

ϕ2

ϕ3

ϕ4




=




0
0
ϕ2

0
0




+




0
ϕ1

0
ϕ3

0




+




ϕ0

0
0
0
ϕ4




. (2.17)

In terms of the operators (2.13) they read

(P0
4,0ϕ)ABCD = 3

8 (K
0
2,0K

0
0,0K

2
2,0K

2
4,0ϕ)ABCD, (2.18a)

(P1
4,0ϕ)ABCD = (K0

2,0K
1
2,0K

1
2,0K

2
4,0ϕ)ABCD, (2.18b)

(P2
4,0ϕ)ABCD = (K1

4,0K
1
4,0K

1
4,0K

1
4,0ϕ)ABCD − 1

16 (K
0
2,0K

1
2,0K

1
2,0K

2
4,0ϕ)ABCD. (2.18c)

(2) For s = 3/2 on a (3, 1) spinor the decomposition is given by

ϕABCA′ = (P
1/2
3,1 ϕ)ABCA′ + (P

3/2
3,1 ϕ)ABCA′ (2.19)

and the components, written as vectors, are



ϕ0A′

ϕ1A′

ϕ2A′

ϕ3A′


 =




0
ϕ1A′

ϕ2A′

0


+




ϕ0A′

0
0

ϕ3A′


 . (2.20)

In terms of the operators (2.13) they read

(P
1/2
3,1 ϕ)ABCA′ = 3

4 (K
0
1,1K

2
3,1ϕ)ABCA′ , (2.21a)

(P
3/2
3,1 ϕ)ABCA′ = − 1

12 (K
0
1,1K

2
3,1ϕ)ABCA′ + (K1

3,1K
1
3,1ϕ)ABCA′ . (2.21b)

Example 2.8. Given a symmetric spinor ϕABCD, let

ϕ̂ABCD = κ4
1(K

1
4,0P

2
4,0ϕ)ABCD.

Then the components of ϕ̂ABCD are



ϕ̂0

ϕ̂1

ϕ̂2

ϕ̂3

ϕ̂4




=




κ4
1ϕ0

0
0
0

−κ4
1ϕ4




.

Lemma 2.9. For any symmetric spinors ϕABCD, ϕAB, ϕ, ϕAA′ , ϕABCA′ and an integer w, we
have the algebraic identities

(K1
4,0P

1
4,0ϕ)ABCD = 1

2 (K
0
2,0K

1
2,0K

2
4,0ϕ)ABCD, (2.22a)

(K1
1,1K

1
1,1ϕ)AA′ = ϕAA′ , (2.22b)

(K2
2,0K

1
2,0ϕ) = 0, (2.22c)

(P
3/2
3,1 K

0
1,1φ)ABCA′ = 0, (2.22d)

(K1
2,0K

1
2,0K

1
2,0φ)AB = (K1

2,0φ)AB , (2.22e)

(K1
3,1K

1
3,1K

1
3,1φ)ABCA′ = − 2

9 (K
0
1,1K

1
1,1K

2
3,1φ)ABCA′ + (K1

3,1φ)ABCA′ , (2.22f)
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and the first order differential identities

(C †
4,0,wK

1
4,0ϕ)ABCA′ = (K1

3,1C
†
4,0,wϕ)ABCA′ + 1

2 (T2,0,−4+wK
2
4,0ϕ)ABCA′ , (2.23a)

(C †
4,0,wK

0
2,0ϕ)ABCA′ = (K0

1,1C
†
2,0,−1+wϕ)ABCA′ − (T2,0,−4+wK

1
2,0ϕ)ABCA′ , (2.23b)

(C †
3,1,wK

0
1,1ϕ)ABA′B′ = (K0

0,2C
†
1,1,−1+wϕ)ABA′B′ − 4

3 (T1,1,−3+wK
1
1,1ϕ)ABA′B′ , (2.23c)

(C †
2,0,wK

1
2,0ϕ)AA′ = (K1

1,1C
†
2,0,wϕ)AA′ + (T0,0,−2+wK

2
2,0ϕ)AA′ , (2.23d)

(C †
2,0,wK

2
4,0ϕ)AA′ = (K2

3,1C
†
4,0,1+wϕ)AA′ , (2.23e)

(C †
2,0,wK

0
0,0ϕ)AA′ = − 2(K1

1,1T0,0,−2+wϕ)AA′ , (2.23f)

(D1,1,wK
1
1,1φ) = 2(K2

2,0C1,1,−2+wφ), (2.23g)

(D1,1,wK
2
3,1φ) = (K2

2,0D3,1,1+wφ), (2.23h)

(K1
3,1P

3/2
3,1 T2,0,wφ)ABCA′ = − 1

4 (C
†
4,0,4+wK

0
2,0K

1
2,0K

1
2,0φ)ABCA′ + 3

4 (T2,0,wK
1
2,0φ)ABCA′ . (2.23i)

Proof. For (2.22a) we calculate

(K1
4,0P

1
4,0ϕ)ABCD = (K1

4,0K
0
2,0K

1
2,0K

1
2,0K

2
4,0ϕ)ABCD

= 1
2 (K

0
2,0K

1
2,0K

1
2,0K

1
2,0K

2
4,0ϕ)ABCD

= 1
2 (K

0
2,0K

1
2,0K

2
4,0ϕ)ABCD.

In the first step uses (2.18b), the second one is a commutator of K1 and K0 and the third step
makes use of the fact that three sign-flips are equal to one sign-flip. For (2.22b) we note that K1

on a (1, 1) spinor changes sign in two of the four components,

(K1
1,1ϕ)00′ = ϕ00′ , (K1

1,1ϕ)01′ = ϕ01′ , (K1
1,1ϕ)10′ = − ϕ10′ , (K1

1,1ϕ)11′ = − ϕ11′ ,

so K1
1,1K

1
1,1 = Id. Equation (2.22c) is true because K1

2,0 cancels the middle component of ϕAB

and K2
2,0 singles out that middle component. The rest of the algebraic identities are proved anal-

ogously. The proof of the differential identities relies on a straightforward but tedious expansion
of projectors (2.13) and fundamental operators (2.11). We only calculate (2.23e).

(C †
2,0,−1K

2
4,0φ)AA′ − (K2

3,1C
†
4,0φ)AA′ =

UB
A′κCDφABCD

2κ1
+

κBC(C †
4,0φ)ABCA′

2κ1
+ (C †

2,0K
2
4,0φ)AA′

=
UB

A′κCDφABCD

2κ1
−

φABCD(T2,0κ)
BCD

A′

2κ1

+
κCDφABCD(T0,0κ1)

B
A′

2κ2
1

= 0.

The rest are proved along similar lines. �

Lemma 2.10. The following identities hold

0 = (K0
0,2C

†
1,1,−5T0,0,−3ϕ)ABA′B′ + 4

3 (T1,1,−4K
1
1,1T0,0,−6ϕ)ABA′B′

− 4
3 (T1,1,−7K

1
1,1T0,0,−3ϕ)ABA′B′ , (2.24a)

0 = (C †
3,1,−1K

0
1,1T0,0ϕ)ABA′B′ + 2(K0

0,2C
†
1,1T0,0ϕ)ABA′B′ + 12(K1

2,2T1,1T0,0ϕ)ABA′B′

− 32
3 (T1,1,−1K

1
1,1T0,0,3/2ϕ)ABA′B′ , (2.24b)

0 = − 1
12 (C

†
3,1,−1K

0
1,1D2,2,4ϕ)ABA′B′ + (C †

3,1,−1K
1
3,1C2,2,1ϕ)ABA′B′ −Ψ2(K

1
2,2ϕ)ABA′B′

− (K1
2,2C

†
3,1C2,2ϕ)ABA′B′ − 1

3 (K
1
2,2T1,1D2,2ϕ)ABA′B′ +

(Lξϕ)ABA′B′

3κ1

+ 2
9 (T1,1,−1K

1
1,1D2,2,1ϕ)ABA′B′ − 2

3 (T1,1,−1K
2
3,1C2,2,−2ϕ)ABA′B′ . (2.24c)

Proof. This can be verified by expanding in components. �
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3. Spinorial formulation of linearized gravity

In this section we review the field equations of linearized gravity for a general vacuum back-
ground and allow for sources of the linearized field. The spinor variational operator ϑ developed
in [8] will be used. Let δgABA′B′ be a solution of the linearized Einstein equations

12ǫAB ǭA′B′ϑΛ− 4ϑΦABA′B′ = �δgABA′B′ −∇AA′FBB′ −∇BB′FAA′

− 2Ψ̄A′B′C′D′δgAB
C′D′

− 2ΨABCDδg
CD

A′B′ , (3.1)

with Λ the Ricci scalar, ΦABA′B′ the trace-free Ricci spinor, ΨABCD the Weyl spinor and
FAA′

= − 1
2∇

AA′

δgBB
B′

B′ + ∇BB′δgABA′B′

the gauge source function. Observe that we make
the variation with the indices down, and raise them and take traces afterwards. We define the
irreducible parts of the linearized metric as

GABA′B′ = δg(AB)(A′B′), G = δgCC
C′

C′ , (3.2)

and introduce

φABCD = 1
4GΨABCD + ϑΨABCD. (3.3)

as a modification of the varied Weyl spinor ϑΨABCD
3. Then we get, see [8], for a general vacuum

background

φABCD = 1
2 (C3,1C2,2G)ABCD, (3.4a)

ϑΦABA′B′ = 1
2G

CD
A′B′ΨABCD + 1

2 (C
†
3,1C2,2G)ABA′B′ + 1

6 (T1,1D2,2G)ABA′B′

− 1
8 (T1,1T0,0G)ABA′B′ , (3.4b)

ϑΛ = − 1
24 (D1,1D2,2G) + 1

32 (D1,1T0,0G). (3.4c)

In particular (3.4b) and (3.4c) together are equivalent to (3.1). Note also that ϑΛ = 0 = ϑΦABA′B′

in the source-free case. As a consequence of (3.4) we derive the linearized Binachi identity.

Lemma 3.1. For a general vacuum background the modified Weyl spinor (3.4a) satisfies

(C †
4,0φ)ABCA′ = (C2,2ϑΦ)ABCA′ + 1

2ΨABCD(D2,2G)DA′ − 3
2Ψ(AB

DF (C2,2G)C)DFA′

− 1
8ΨABCD(T0,0G)DA′ + 1

2G
DF

A′

B′

(T4,0Ψ)ABCDFB′ . (3.5)

Restricting to a type D background this simplifies to

(C †
4,0φ)ABCA′ = (C2,2ϑΦ)ABCA′ − 3

2Ψ2(C2,2,1G)ABCA′ − 3
8Ψ2(K

0
1,1K

1
1,1D2,2,4G)ABCA′

+ 3
32Ψ2(K

0
1,1K

1
1,1T0,0G)ABCA′ + 9

4Ψ2(K
0
1,1K

2
3,1C2,2,1G)ABCA′ . (3.6)

Proof. We apply C2,2 on (3.4b), commute C2,2C
†
3,1, use (3.4a) to get

(C2,2ϑΦ)ABCA′ = 1
2 (C2,2C

†
3,1C2,2G)ABCA′ + 1

6 (C2,2T1,1D2,2G)ABCA′ − 1
8 (C2,2T1,1T0,0G)ABCA′

− 1
3ΨABCD(D2,2G)DA′ + 1

2Ψ(AB
DF (C2,2G)C)DFA′

− 1
2G

DF
A′

B′

(T4,0Ψ)ABCDFB′ (3.7)

= 1
6 (C2,2T1,1D2,2G)ABCA′ − 1

8 (C2,2T1,1T0,0G)ABCA′ + (C †
4,0φ)ABCA′

− 1
3ΨABCD(D2,2G)DA′ + 3

2Ψ(AB
DF (C2,2G)C)DFA′

− 1
2G

DF
A′

B′

(T4,0Ψ)ABCDFB′ − 1
8 (T2,0D3,1C2,2G)ABCA′ . (3.8)

3In a type D principal frame this modification only affects the middle component.
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We then commute the C2,2T1,1 operators, and in the last step we commute D3,1C2,2 and use
C1,1T0,0 = 0 to get

(C2,2ϑΦ)ABCA′ = (C †
4,0φ)ABCA′ − 1

2ΨABCD(D2,2G)DA′ + 3
2Ψ(AB

DF (C2,2G)C)DFA′

+ 1
8ΨABCD(T0,0G)DA′ − 1

2G
DF

A′

B′

(T4,0Ψ)ABCDFB′

+ 1
12 (T2,0C1,1D2,2G)ABCA′ − 1

16 (T2,0C1,1T0,0G)ABCA′

− 1
8 (T2,0D3,1C2,2G)ABCA′ (3.9)

= (C †
4,0φ)ABCA′ − 1

2ΨABCD(D2,2G)DA′ + 3
2Ψ(AB

DF (C2,2G)C)DFA′

+ 1
8ΨABCD(T0,0G)DA′ − 1

2G
DF

A′

B′

(T4,0Ψ)ABCDFB′ . (3.10)

This gives (3.5). On a type D spacetime, we can use (2.9) and (2.10). The resulting UAA′ spinors
can be incorporated as extended indices, and the κAB spinors can then be rewritten in terms the
Ki operators to get (3.6). �

Note that on a Minkowski background and without sources the right hand side of (3.5) vanishes
and the linearized Bianchi identity reduces to the spin-2 equation. The linearized Bianchi identity
(3.6) is of fundamental importance and next we derive some differential identities for it which are
needed for the main theorem.

Corollary 3.2. The rescaled spin-projected Weyl spinor φ̂ABCD = κ4
1(K

1
4,0P

2
4,0φ)ABCD satisfies

(C †
4,0,4φ̂)ABCA′ = −

(
κ4
1K

1
3,1P

3/2
3,1 C

†
4,0P

1
4,0φ

)
ABCA′

− 3
2

(
κ4
1Ψ2K

1
3,1P

3/2
3,1 C2,2,1G

)
ABCA′

+
(
κ4
1K

1
3,1P

3/2
3,1 C2,2ϑΦ

)
ABCA′

. (3.11)

Proof. Applying the operator K1
3,1P

3/2
3,1 κ

4
1C

†
4,0 to (2.16) and using (2.23a) gives the identity

(C †
4,0,4φ̂)ABCA′ = −

(
K

1
3,1P

3/2
3,1 C

†
4,0,4(κ

4
1P

1
4,0φ)

)
ABCA′

+
(
K

1
3,1P

3/2
3,1 (κ

4
1C

†
4,0φ)

)
ABCA′

. (3.12)

The result follows from (P
3/2
3,1 K

0
1,1φ)ABCA′ = 0 together with (3.6). �

Corollary 3.3 (Covariant TME). The covariant form of the spin-2 Teukolsky Master equation
with source is given by

(C3,1C
†
4,0,4φ̂)ABCD = − 3Ψ2φ̂ABCD + κ4

1(P
2
4,0K

1
4,0C3,1,−4C2,2ϑΦ)ABCD. (3.13)

Proof. Apply the operator P2
4,0C3,1 to (3.11) and use

(
P
2
4,0C3,1K

1
3,1P

3/2
3,1 C

†
4,0,4(κ

4
1P

1
4,0φ)

)
ABCD

= 0, (3.14a)
(
P
2
4,0C3,1K

1
3,1P

3/2
3,1 (κ

4
1C2,2ϑΦ)

)
ABCD

= κ4
1(P

2
4,0K

1
4,0C3,1,−4C2,2ϑΦ)ABCD, (3.14b)

(
P
2
4,0C3,1K

1
3,1P

3/2
3,1 (κ

4
1Ψ2C2,2,1G)

)
ABCD

= Ψ2κ
4
1(P

2
4,0K

1
4,0C3,1C2,2G)ABCD. (3.14c)

�

4. Main theorem

We shall now prove our main theorem. The following is the detailed statement of Theorem 1.1′.

Theorem 4.1. Let φABCD be the modified linearized Weyl spinor given in (3.3) and let

φ̂ABCD = κ4
1(K

1
4,0P

2
4,0φ)ABCD (4.1)

be the rescaled spin-projected field as in example 2.8, and let

MABA′B′ = (C †
3,1C

†
4,0,4φ̂)ABA′B′ . (4.2)

Then we have

MABA′B′ = 1
2∇AA′ABB′ + 1

2∇BB′AAA′ + 1
2Ψ2κ

3
1(Lξδg)ABA′B′ , (4.3)

where the complex vector field AAA′

is given by

AAA′ = − 1
2Ψ2κ

3
1ξ

BB′

(K0
0,2K

2
2,2G)ABA′B′ + 2

3κ
3
1ξ

B
A′(K1

2,0K
2
4,0φ)AB

+ (K1
1,1T0,0K

2
2,0K

2
4,0(κ

4
1φ))AA′ − 1

4Ψ2κ
4
1(K

1
1,1T0,0,2G)AA′ . (4.4)
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Proof. Apply the operator C † to (3.11) and moving out the scalars Ψ2 and κ1 we get

(C †
3,1C

†
4,0,4φ̂)ABA′B′ = κ4

1(C
†
3,1,−4K

1
3,1P

3/2
3,1 C2,2ϑΦ)ABA′B′ − κ4

1(C
†
3,1,−4K

1
3,1P

3/2
3,1 C

†
4,0P

1
4,0φ)ABA′B′

− 3
2Ψ2κ

4
1(C

†
3,1,−1K

1
3,1P

3/2
3,1 C2,2,1G)ABA′B′ . (4.5)

The second term can be rewritten by expanding the spin-1 projector according to (2.18b) and
commuting out the K0

2,0 using (2.23b) together with (2.22d),(2.22e),

κ4
1(C

†
3,1,−4K

1
3,1P

3/2
3,1 C

†
4,0P

1
4,0φ)ABA′B′ = − κ4

1(C
†
3,1,−4K

1
3,1P

3/2
3,1 T2,0,−4K

1
2,0K

2
4,0φ)ABA′B′

= 1
4κ

4
1(C

†
3,1,−4K

0
1,1C

†
2,0,−1K

1
2,0K

2
4,0φ)ABA′B′

− 2
3κ

4
1(T1,1,−4C

†
2,0,−4K

1
2,0K

1
2,0K

2
4,0φ)ABA′B′ . (4.6)

In the second step (2.23i) and (2.23b) with (2.22e) and a commutator is used. To commute out
the K

1
2,0K

2
4,0 in the first term, we first use (2.23d) and (2.23e) to get

(C †
3,1,−4K

0
1,1C

†
2,0,−1K

1
2,0K

2
4,0φ)ABA′B′ = (C †

3,1,−4K
0
1,1K

1
1,1K

2
3,1C

†
4,0φ)ABA′B′

+ (C †
3,1,−4K

0
1,1T0,0,−3K

2
2,0K

2
4,0φ)ABA′B′ ,

= (C †
3,1,−4K

0
1,1K

1
1,1K

2
3,1C

†
4,0φ)ABA′B′

− 4
3 (T1,1,−4K

1
1,1T0,0,−6K

2
2,0K

2
4,0φ)ABA′B′ . (4.7)

In the second step (2.23c) is used together with (2.24a). Using (4.7) in (4.6) and the linearized
Bianchi identity (3.6) in the first term of (4.7) yields

κ4
1(C

†
3,1,−4K

1
3,1P

3/2
3,1 C

†
4,0P

1
4,0φ)ABA′B′ = 1

4κ
4
1(C

†
3,1,−4K

0
1,1K

1
1,1K

2
3,1C2,2ϑΦ)ABA′B′

− 1
8κ

4
1

(
C

†
3,1,−4K

0
1,1K

1
1,1

(
Ψ2(K

1
1,1D2,2,4G)

))
ABA′B′

+ 1
32κ

4
1

(
C

†
3,1,−4K

0
1,1K

1
1,1

(
Ψ2(K

1
1,1T0,0G)

))
ABA′B′

+ 3
8κ

4
1

(
C

†
3,1,−4K

0
1,1K

1
1,1

(
Ψ2(K

2
3,1C2,2,1G)

))
ABA′B′

− 2
3κ

4
1(T1,1,−4C

†
2,0,−4K

1
2,0K

1
2,0K

2
4,0φ)ABA′B′

− 1
3κ

4
1(T1,1,−4K

1
1,1T0,0,−6K

2
2,0K

2
4,0φ)ABA′B′ . (4.8)

The second and third term on the right hand side can be simplified further using (2.22b). Using
(4.8) in (4.5) and expanding the spin decomposition in the last term of (4.5) leads to

(C †
3,1C

†
4,0,4φ̂)ABA′B′ =

(
C

†
3,1K

1
3,1P

3/2
3,1

(
κ4
1(C2,2ϑΦ)

))
ABA′B′

+ 1
8Ψ2κ

4
1(C

†
3,1,−1K

0
1,1D2,2,4G)ABA′B′

− 1
4κ

4
1(C

†
3,1,−4K

0
1,1K

1
1,1K

2
3,1C2,2ϑΦ)ABA′B′

− 1
3Ψ2κ

4
1(C

†
3,1,−1K

0
1,1K

1
1,1K

2
3,1C2,2,1G)ABA′B′

− 1
32Ψ2κ

4
1(C

†
3,1,−1K

0
1,1T0,0G)ABA′B′

− 3
2Ψ2κ

4
1(C

†
3,1,−1K

1
3,1K

1
3,1K

1
3,1C2,2,1G)ABA′B′

+ 2
3κ

4
1(T1,1,−4C

†
2,0,−4K

1
2,0K

1
2,0K

2
4,0φ)ABA′B′

+ 1
3κ

4
1(T1,1,−4K

1
1,1T0,0,−6K

2
2,0K

2
4,0φ)ABA′B′ . (4.9)

The fourth and sixth term on the right hand side can be combined via (2.22f). Defining the
complex vector field

AAA′ = − 1
2κ

4
1(C

†
2,0,−4K

0
0,0K

2
2,0K

2
4,0φ)AA′ + 2

3κ
4
1(C

†
2,0,−4K

2
4,0φ)AA′ + 1

3Ψ2κ
4
1(K

1
1,1D2,2,1G)AA′

− 1
3Ψ2κ

4
1(K

1
1,1T0,0,3/2G)AA′ −Ψ2κ

4
1(K

2
3,1C2,2,−2G)AA′ (4.10a)

= − 1
2Ψ2κ

3
1ξ

BB′

(K0
0,2K

2
2,2G)ABA′B′ + 2

3κ
3
1ξ

B
A′(K1

2,0K
2
4,0φ)AB

+
(
K

1
1,1T0,0K

2
2,0K

2
4,0(κ

4
1φ)

)
AA′

− 1
4Ψ2κ

4
1(K

1
1,1T0,0,2G)AA′ + 2

3κ
4
1(K

2
3,1C2,2ϑΦ)AA′

(4.10b)
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(for the second version we used the linearized Bianchi identity (3.6)) we find

(C †
3,1C

†
4,0,4φ̂)ABA′B′ =

(
C

†
3,1K

1
3,1P

3/2
3,1 (κ

4
1C2,2ϑΦ)

)
ABA′B′

− 3Ψ2κ
4
1(K

1
2,2ϑΦ)ABA′B′

− 1
4κ

4
1(C

†
3,1,−4K

0
1,1K

1
1,1K

2
3,1C2,2ϑΦ)ABA′B′ + 1

2Ψ2κ
3
1(LξG)ABA′B′

+ (T1,1A)ABA′B′ (4.11)

by using (2.24). Setting sources to zero, ϑΦABA′B′ = 0, and using (4.13) proves the theorem. In
general the third term on the right hand side can be rewritten using (2.21a), see Remark 4.3. �

The following lemma collects some properties of the vector field A.

Lemma 4.2.

A
AA′

UAA′ = −
1

3
κ3
1(LξK

2
2,0K

2
4,0ϑΨ), (4.12)

(D1,1A) = −
1

54
MLξG, (4.13)

Proof. Equation (4.12) can be verified by a direct calculation. To prove (4.13), we start with

AAA′ = − 1
2

(
C

†
2,0K

0
0,0K

2
2,0K

2
4,0(κ

4
1φ)

)
AA′

+ 2
3

(
C

†
2,0K

2
4,0(κ

4
1φ)

)
AA′

+ 1
3

(
K

1
1,1D2,2,2(κ

4
1Ψ2G)

)
AA′

− 1
3

(
K

1
1,1T0,0,5/2(κ

4
1Ψ2G)

)
AA′

−
(
K

2
3,1C2,2,−1(κ

4
1Ψ2G)

)
AA′

. (4.14)

Applying D1,1 to this and using the commutator relation D1,1C
†
2,0 = 0 gives

(D1,1A) = 1
3

(
D1,1K

1
1,1D2,2,2(κ

4
1Ψ2G)

)
− 1

3

(
D1,1K

1
1,1T0,0,5/2(κ

4
1Ψ2G)

)

−
(
D1,1K

2
3,1C2,2,−1(κ

4
1Ψ2G)

)
. (4.15)

Using (2.23g) on the first two terms, and (2.23h) on the last term gives

(D1,1A) = 2
3

(
K

2
2,0C1,1,−2D2,2,2(κ

4
1Ψ2G)

)
− 2

3

(
K

2
2,0C1,1,−2T0,0,5/2(κ

4
1Ψ2G)

)

−
(
K

2
2,0D3,1,1C2,2,−1(κ

4
1Ψ2G)

)
. (4.16)

The first and the last term cancel due to the general identity

(K2
2,0D3,1,1C2,2,−1φ) =

2
3 (K

2
2,0C1,1,−2D2,2,2φ). (4.17)

This identity can be proven by expanding the extended indices and commuting the derivatives.
In the same way we can also prove the identity

(K2
2,0C1,1,vT0,0,wφ) =

(w − v)(Lξφ)

6κ1
, (4.18)

for arbitrary weights v and w. This finally gives

(D1,1A) = − 1
2Ψ2κ

3
1(LξG), (4.19)

where we in the last step commuted Ψ2κ
3
1 through the Lie derivative. �

Remark 4.3. If we allow for sources the general form of (4.3) is given by

(C †
3,1C

†
4,0,4φ̂)ABA′B′ = −

(
C

†
3,1(κ

4
1K

1
3,1P

1/2
3,1 C2,2ϑΦ)

)
ABA′B′

+
(
C

†
3,1(κ

4
1K

1
3,1P

3/2
3,1 C2,2ϑΦ)

)
ABA′B′

− 3Ψ2κ
4
1(K

1
2,2ϑΦ)ABA′B′ + 1

2Ψ2κ
3
1(LξG)ABA′B′ + (T1,1A)ABA′B′ .

(4.20)

Lemma 4.4. For linearized diffeomorphism of the background metric, generated by a real vector
ζAA′ of the original metric we get

GABA′B′ = 2(T1,1ζ)ABA′B′ , G = 2(D1,1ζ). (4.21)

For the curvature and AAA′ we get

ϑΦABA′B′ = 0, (4.22a)

φABCD = 3
16Ψ2(K

0
2,0K

0
0,0D1,1,6ζ)ABCD + 3

2Ψ2(K
0
2,0K

1
2,0C1,1,2ζ)ABCD, (4.22b)

AAA′ = −Ψ2κ
3
1(Lξζ)AA′ . (4.22c)
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Proof. For the curvature, one can use the results of [8] and transform it to the operators of this
paper using the type D structure of the curvature. Applying K2

2,0K
2
4,0 or K1

2,0K
2
4,0 onto φABCD

gives

(K2
2,0K

2
4,0φ) =

1
2Ψ2(D1,1,6ζ), (4.23)

(K1
2,0K

2
4,0φ)AB = 3

2Ψ2(K
1
2,0K

1
2,0C1,1,2ζ)AB . (4.24)

These relations can then be used in the definition of AAA′ to yield

AAA′ = −Ψ2κ
3
1ξ

BB′

(K0
0,2K

2
2,2T1,1ζ)ABA′B′ +Ψ2κ

3
1ξ

B
A′(K1

2,0K
1
2,0C1,1,2ζ)AB

− 1
2Ψ2κ

4
1(K

1
1,1T0,0,2D1,1ζ)AA′ + 1

2Ψ2κ
4
1(K

1
1,1T0,0,−1D1,1,6ζ)AA′ . (4.25)

An expansion of the extended indices and a reformulation of the Lie derivative in terms of fun-
damental spinor operators gives the gauge dependence of AAA′ . �

Remark 4.5. (1) In view of (4.22c), ImAAA′ is gauge invariant, and further, ReAAA′ = 0
is essentially pure gauge.

(2) Moving the last term in (1.19) to the left hand side, we can interpret

ReMABA′B′ − 1
54M(Lξδg)ABA′B′

as a pure linearized diffeomorphism since it is a symmetrized covariant derivative of a
real vector field.

Appendix A. GHP form of some expressions

The components of the complex vector field AAA′ defined in (4.4) are given by

A00′ = − 3G11′Ψ2κ
4
1ρ+ 3G10′Ψ2κ

4
1τ − 2κ4

1τ
′φ1 −

1
4Ψ2κ

4
1(þ+2ρ)G+ κ4

1(þ−4ρ)φ2, (A.1a)

A01′ = − 3G12′Ψ2κ
4
1ρ+ 3G11′Ψ2κ

4
1τ − 2κ4

1ρ
′φ1 −

1
4Ψ2κ

4
1(ð+2τ)G+ κ4

1(ð−4τ)φ2, (A.1b)

A10′ = 3G10′Ψ2κ
4
1ρ

′ − 3G11′Ψ2κ
4
1τ

′ + 2κ4
1ρφ3 +

1
4Ψ2κ

4
1(ð

′ +2τ ′)G− κ4
1(ð

′ −4τ ′)φ2, (A.1c)

A11′ = 3G11′Ψ2κ
4
1ρ

′ − 3G12′Ψ2κ
4
1τ

′ + 2κ4
1τφ3 +

1
4Ψ2κ

4
1(þ

′ +2ρ′)G− κ4
1(þ

′ −4ρ′)φ2. (A.1d)

The dyad components of (1.17) on a Kerr background are given by

1
27MLξφ4 = þ

′
þ
′
þ
′
þ
′ φ̂0 + ð ð ð ð φ̂4, (A.2a)

1
27MLξφ3 =

(
ð
′(þ′ − ρ̄′)− 6ρ̄′τ̄

)
(þ′ + 2ρ̄′)(þ′ + 2ρ̄′)φ̂0

+
(
þ(ð − τ̄ ′)− 6ρ̄τ̄ ′

)
(ð + 2τ̄ ′)(ð + 2τ̄ ′

)
φ̂4

+ 3
2 Ψ̄2(þ

′ − ρ′ + 2ρ̄′)A01′ −
3
2 Ψ̄2(ð − τ + 2τ̄ ′)A11′ , (A.2b)

1
27MLξφ2 =

(
(ð′ − τ̄ )þ

′ − 12ρ̄′τ̄
)(
(ð′ + 2τ̄)(þ′ + 3ρ̄′)− 2ρ̄′τ̄

)
φ̂0

+
(
(ð − τ̄ ′)þ − 12ρ̄τ̄ ′

)(
(ð + 2τ̄ ′)(þ + 3ρ̄)− 2ρ̄τ̄ ′

)
φ̂4

− 1
2 Ψ̄2(þ − ρ+ 5ρ̄)A11′ −

1
2 Ψ̄2(þ

′ − ρ′ + 5ρ̄′)A00′

+ 1
2 Ψ̄2(ð − τ + 5τ̄ ′)A10′ +

1
2 Ψ̄2(ð

′ − τ ′ + 5τ̄)A01′ , (A.2c)

1
27MLξφ1 =

(
þ
′(ð′ − τ̄)− 6ρ̄′τ̄

)
(ð′ + 2τ̄)(ð′ + 2τ̄)φ̂0

+
(
ð(þ − ρ̄)− 6ρ̄τ̄ ′

)
(þ + 2ρ̄)(þ + 2ρ̄)φ̂4

+ 3
2 Ψ̄2(þ − ρ+ 2ρ̄)A10′ −

3
2 Ψ̄2(ð

′ − τ ′ + 2τ̄)A00′ , (A.2d)

1
27MLξφ0 = þ þ þ þ φ̂4 + ð

′
ð
′
ð
′
ð
′ φ̂0. (A.2e)
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