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NEW IDENTITIES FOR LINEARIZED GRAVITY ON THE KERR

SPACETIME

STEFFEN AKSTEINER, LARS ANDERSSON, AND THOMAS BÄCKDAHL

Abstract. In this paper we prove a new identity for linearized gravity on the Kerr spacetime
and more generally on vacuum spacetimes of Petrov type D. The new identity yields a covariant
version of the Teukolsky-Starobinsky identities for linearized gravity which, in addition to the
two classical identities for linearized Weyl scalars with extreme spin weights, includes three
additional equations. By analogy with the spin-1 case, we expect the new identity to be relevant
in deriving new conservation laws for linearized gravity and in particular for proving integrated
local decay estimates, as well as pointwise decay estimates for the linearized gravitational field
on the vacuum spacetimes of Petrov type D, including the Kerr spacetime.

1. Introduction

The black hole stability problem, i.e. the problem of proving dynamical stability of the Kerr
vacuum black hole solution is one of the most important open problems in general relativity.
Proving dispersive estimates, in particular integrated local energy decay or Morawetz estimates
for test fields with spin such as Maxwell and linearized gravity on the Kerr background is an
essential step towards proving the pointwise decay estimates needed for solving the black hole
stability problem. For the spin-0 case of scalar fields on the Kerr spacetime, Morawetz and
pointwise decay estimates are known [7, 21]. For spin-1 (Maxwell) and spin-2 (linearized gravity)
test fields on the spherically symmetric Schwarzschild spacetime, Morawetz and pointwise decay
estimates are known [17, 20], see also [12] for a different approach in the Maxwell case. For
spinning fields on the rotating Kerr spacetime, the problem is more difficult. Morawetz and
energy estimates were proven for Maxwell fields on very slowly rotating Kerr spacetimes in [8].
However, for the case of linearized gravity on Kerr, results of this type are not available. The
only stability results for linearized gravity on Kerr in this direction known to date are the mode
stability result of Whiting [39] and its generalization to the case of real frequencies [13].

The vector fields method of Klainerman, and its generalization incorporating the hidden sym-
metries present in the Kerr geometry [7] is an important tool in constructing Morawetz estimates.
In this approach, currents constructed via the energy-momentum tensor play a central role. As
discussed in e.g. [12, 8], in order to prove a Morawetz estimate for a spinning field on a black hole
background, it is necessary to construct currents where the non-radiating modes are eliminated.
In the Maxwell case, the non-radiating modes correspond to the conserved charges, while in the
case of linearized gravity on Kerr, they correspond to linearized mass and angular momentum.

In the paper [14] a new symmetric conserved tensor Vab for the Maxwell field on the Kerr
spacetime was constructed, which can be viewed as a higher order energy-momentum tensor. It
has properties which are desirable from the point of view of Morawetz estimates. In particular,
Vab is quadratic in the Maxwell field strength and its first derivative, and independent of the non-
radiating modes of the Maxwell field. Further, in contrast to the classical symmetric Maxwell
energy-momentum tensor it has non-vanishing trace, which for technical reasons is important in
the construction of Morawetz currents. In addition, to leading order Vab satisfies the dominant
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2 NEW IDENTITIES FOR LINEARIZED GRAVITY ON THE KERR SPACETIME

energy condition. Work on applying Morawetz currents constructed in terms of Vab using the
approach developed in [7] based on generalized vector fields defined in terms of second order sym-
metry operators for the Maxwell field, is ongoing. Here the classification of symmetry operators
for the Maxwell equation [9], generalizing the classical results of Carter [18] for the scalar field
case plays a crucial role.

At this point it is important to recall that the Kerr spacetime is algebraically special. In par-
ticular it belongs to the family of Petrov type D vacuum spacetimes, and shares many properties
with other members of that family. See [11, 29] for background. We emphasize that the facts
mentioned in the previous paragraph, as well as the work in the present paper are valid not just
in Kerr but in Petrov type D vacuum spacetimes. Since our results require only the presence of
a non-null conformal Killing-Yano tensor1 they are valid in Minkowski space2 as well.

For the analysis of Maxwell and linearized gravitational fields on Kerr, the Teukolsky Master
Equation (TME) [34] and the Teukolsky-Starobinsky Identities (TSI) [35, 33] play a crucial role.
For a spin-s field, s = 1, 2, the TME are wave equations governing the components (here we
refer to the Maxwell or linearized Weyl Newman-Penrose scalars [27, 23] defined with respect
a principal null tetrad) of the field with extreme spin weights ±s, while the classical TSI are
differential relations of order 2s between these components.

In its classical form, the TSI [35, 33] relate the solutions of the radial Teukolsky equations
for fields of spin-weights ±s, and are thus valid only for the separated form of the equations. In
that context the TSI are sometimes referred to as the Teukolsky-Press identities. For the case
of linearized gravity on a Petrov type D vacuum spacetime, a derivation of the TSI using the
Newman-Penrose formalism, which does not require a separation of variables, was given by Torres
del Castillo [36], later corrected by Silva-Ortigoza [32]. See the paper by Whiting and Price [40]
for discussion and background.

The TME and TSI are consequences of the spin-s field equations and may thus be viewed
as integrability conditions. As pointed out by Coll et al. [19], in the spin-1 case the classical
TSI system must be completed by adding one equation in order for the system of integrability
conditions given by the TME and TSI systems to be equivalent to the Maxwell system, modulo
charge. Examining the full TSI system, one finds that those equations which correspond to the
classical TSI have extreme spin weights. For this reason we shall use the term extreme TSI when
referring to the classical form of the TSI.

Due to the fact that the TME and TSI involve only the Maxwell scalars of extreme spin weight
the non-radiating mode carrying the charge, also known as the Coulomb solution, cancels out of
the TME and TSI systems. Thus, in order to reconstruct a Maxwell field from a solution of the
TME and full TSI systems, it is necessary to specify the charge as an additional parameter.

The fact that the tensor Vab defined in [14] is conserved can be seen by direct computation to
be a consequence of the full TSI system for the Maxwell field. Hence, this tensor may be viewed as
an energy-momentum tensor for the TSI system. Due to the fact that Vab satisfies the dominant
energy condition to leading order makes it plausible that the full TSI system is hyperbolic. In
fact, as shall be demonstrated in a separate paper [5], the TME as well as the full TSI system
independently yield hyperbolic systems both for Maxwell and linearized gravity. Further, as will
be shown in future work, there are actions which yield the TME and TSI systems as Euler-
Lagrange equations. Remarkably, the tensor Vab appears as the symmetric energy-momentum
tensor for the spin-1 TSI action [6].

The above discussion makes it interesting to develop the corresponding ideas for the spin-2
or linearized gravity case. In particular, we would like to find an analogue of the tensor Vab for
the spin-2 case. An important step, which we carry out in this paper, is to derive the full TSI
system for linearized gravity, thus generalizing the result of Coll et al. to the spin-2 case. As
we shall see, the full TSI system for linearized gravity contains, in addition to the extreme TSI,
three additional equations.

In order to understand how to derive the full TSI for the spin-2 case, the following remarks
are helpful. In the Maxwell case, the Debye potential construction [37] on the Kerr background

1A conformal Killing-Yano tensor is non-null if it is of algebraic type {1, 1}.
2In this case it is necessary to specify a conformal Killing-Yano tensor on Minkowski space.
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can be used to construct from the Maxwell field a complex pure gauge vector potential

αa = (df)a

given by a first order differential operator acting on the Maxwell field strength. The field strength
of αa has vanishing complex anti-self dual and self dual parts, which correspond to the TME and
full TSI systems respectively. In the case of linearized gravity, the role of the vector potential
is played by the linearized metric. Here, the analogous situation holds. The Debye potential
construction can be used to construct from a solution ġab of the linearized vacuum Einstein
equations3, a complex, traceless, symmetric 2-tensor Mab which is essentially a pure gauge metric
satisfying the linearized vacuum Einstein equations. This result is the main theorem of the present
paper, cf. Theorem 1.1.

The self dual Weyl curvature of Mab yields the full TSI for linearized gravity on vacuum
spacetimes of Petrov type D, and in particular on the Kerr spacetime. The full TSI system is a
differential relation of order four in the linearized Weyl curvature. We also note that the anti-self
dual Weyl curvature of Mab yields a fourth order identity related to the TME. A new feature is
encountered compared to the spin-1 case, since the resulting identities contain terms involving
the Lie derivative of the background curvature.

As just mentioned, the intermediate metric Mab is defined in terms of Debye potentials for
the linearized vacuum Einstein equations. We now recall this construction, first restricting to
Minkowski space. Following Sachs and Bergmann [30], let Habcd be an anti-self dual Weyl field4,
i.e. a tensor with the symmetries of the Riemann tensor, Habcd = H[ab]cd = Hcdab, H[abc]d = 0,

satisfying H
a
bac = 0 and 1

2ǫab
ef
Hefcd = −iHabcd, and let

gab = ∇c∇d
Hacbd. (1.1)

Then, if ∇e∇eHabcd = 0, it follows that gab solves the linearized vacuum Einstein equation.
The analogous construction for massless spin-s fields on the 4-dimensional Minkowski space

was discussed by Penrose [28]. In [10] this was used to prove decay estimates for such fields,
based on decay estimates for the wave equation. We shall now describe the analogue of the
Sachs-Bergmann construction in the case of a vacuum Petrov type D metric.

Introduce the following complex anti-self dual tensors with the symmetries of the Weyl tensor

Z0
abcd = 4m̄[anb]m̄[cnd],

Z4
abcd = 4l[amb]l[cmd],

where (la, na,ma, m̄a) constitutes a principal null tetrad. These are analogues of the anti-self
dual bivectors Z0

ab, Z
2
ab, see [2, §2]. For a complex scalar χ0, let Habcd be given by

Habcd = κ4
1χ0Z

0
abcd. (1.2)

with the complex function κ1 being the Killing spinor coefficient, see (2.11) for details. Define
the 1-form Ua by

Ua = −∇a log(κ1),

cf. (2.12), and consider the following analogue5 of (1.1), which sends Habcd to a 2-tensor gab,

gab = ∇c(∇d + 4Ud)H(a
d
b)c.

A calculation shows that gab is a complex solution to the linearized vacuum Einstein equation
provided the scalar κ4

1χ0 solves the TME for spin weight +2 [24]. See corollary 3.4 below for
the covariant form of the TME system, see also equation (A.2) for the component form. The
analogous construction with

Habcd = κ4
1χ4Z

4
abcd (1.3)

yields a solution to the linearized Einstein equation in the same way, provided that now the
scalar κ4

1χ4 solves the TME for spin weight −2. Note that in general, the linearized metrics gab

3We shall sometimes refer to the linearized vacuum Einstein equations as the source-free linearized Einstein
equations.

4Here we use a complex anti-self dual Weyl field for consistence with the rest of the paper, although this is not
used in [30].

5More precisely it differs by a gauge transformation of third kind, cf. [24], so that the scalar potential solves
the TME.
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constructed from (1.2) and (1.3) are different. We are now able to state the tensor version of

our main result, which describes this difference. Given scalars Ψ̇0, Ψ̇4 of spin weights 2 and −2
respectively, define

H
±
abcd = κ4

1Ψ̇0Z
0
abcd ± κ4

1Ψ̇4Z
4
abcd. (1.4)

Theorem 1.1 (Tensor version). Let ġab be a solution to the source-free linearized Einstein equa-

tion on a vacuum background of Petrov type D, and let Ψ̇0, Ψ̇4 be the linearized Weyl scalars of
spin weights ±2 defined with respect to a principal null tetrad. Let

Mab = ∇c(∇d + 4Ud)H
−
(a

d
b)c. (1.5)

Then, there is a complex vector field Aa depending on up to three derivatives of the linearized
metric ġab, such that

Mab = ∇(aAb) +
1
2Ψ2κ

3
1Lξ ġab. (1.6)

Here, ξa is a Killing vector defined in (2.7) and Ψ2 is the only non-vanishing component of the
background curvature.

Remark 1.2. In the Maxwell case, the analogue of (1.6) is that the vector potential arising out
of the Debye potential construction by taking the difference of the extreme Maxwell scalars from
the same Maxwell field, is pure gauge, see [1, eq. (5.40)]. In the spin-2 case above, the term
involving Lξ ġab is a new feature, which indicates an important qualitative difference between the
spin-1 and spin-2 cases.

In a Petrov type D vacuum spacetime we have that ξa is Killing and Ψ2κ
3
1 is constant, see

(2.11) below. Hence, the intermediate metric Mab given in (1.6) is a complex solution of the
linearized Einstein equation6. It is natural to ask for the remaining (Weyl) curvature and we find

Corollary 1.3. The TSI is the self dual Weyl curvature of the metric Mab given in (1.6). With

TFsd the projection operator on the self dual trace free part, it is given by

(TFsdṘ[M])abcd = i(TFsd
LImAR)abcd +

Ψ2κ1
3

κ1
4

(LξH
+)abcd, (1.7)

where Ṙ[M]abcd is defined using

Ṙ[M]abcd = 2ge[d∇c]∇[aMb]
e − 2

3R[cd]
f
[aMb]f + 2

3R
f
[cd][aMb]f . (1.8)

Overview of this paper. In section 2 we give some background and preliminary results, in
particular we introduce the 2-spinor formalism which shall be used throughout the paper. Sec-
tion 2.2 contains a review of the consequences of the existence of a Killing spinor on vacuum
type D spacetimes. In sections 2.3 and 2.4 we introduce a set of geometrically defined operators
together with commutation rules, which allow us to exploit the special geometry in Petrov type D
spacetimes. In section 3 a spinorial form of the field equations of linearized gravity is presented.
We derive a convenient form of the linearized Bianchi identity in corollary 3.3. This equation
plays a central role in the proof of the main theorem given in section 4. In lemma 4.4 we analyze
the curvature of the intermediate metricMab. In particular, its self dual linearized Weyl curvature
gives a covariant form of the full spin-2 TSI. Finally, in corollary 4.7 we give a simplified form of
the TSI for the Kerr case, containing only gauge invariant quantities. Appendix A contains the
GHP component form of various equations discussed in this paper.

2. Preliminaries

2.1. 2-spinors and irreducible decompositions. Let (N, gab) be a Lorentzian 3+1 dimen-
sional spin manifold with metric of signature +−−−. The spacetimes we are interested in here
are spin, in particular any orientable, globally hyperbolic 3+1 dimensional spacetime is spin, cf.
[22, page 346]. We shall throughout the paper make use of 2-spinor formalism, which simpli-
fies calculations and makes many geometrical structures more transparent. See [29] and [11] for
background.

6The first term on the right-hand side of equation (1.6) is pure gauge since it is the action of a linearized
diffeomorphism generated by Aa.
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If N is spin, then the orthonormal frame bundle SO(N) admits a lift to Spin(N), a principal
SL(2,C)-bundle. The group SL(2,C) has two fundamental inequivalent representations C2 and
C̄2. We denote sections of the corresponding spinor bundles with unprimed primed uppercase
indices, respectively. The action of SL(2,C) leaves invariant an anti-symmetric 2-spinor ǫAB, the
spin-metric.

The associated bundle construction now gives vector bundles over N corresponding to the
representations of SL(2,C), in particular we have bundles of valence (k, l) spinors with sections
ϕA···DA′···D′ . Here k, l are the number of unprimed and primed indices. An important aspect
of the 2-spinor formalism is the correspondence between tensors and spinors. An example is
provided by the correspondence between metric and spin-metric gab = ǫAB ǭA′B′ . The Levi-Civita
connection lifts to act on sections of the spinor bundles,

∇AA′ : ϕB···DB′···D′ → ∇AA′ϕB···DB′···D′ (2.1)

where we have used the tensor-spinor correspondence to replace the index a by AA′.
Irreducible representations of SL(2,C) and hence also of SO(1, 3) correspond exactly to sym-

metric spinors, which are automatically traceless. The space of symmetric spinors of valence (k, l)
is denoted by Sk,l. The correspondence between symmetric spinors and irreducible representations
of SL(2,C) yields efficient methods for decomposition of geometric expressions into irreducible
pieces, which can be used for canonicalization. The SymManipulator package [15], which has been
developed by one of the authors (T.B.) for the Mathematica based symbolic differential geometry
suite xAct [26], exploits in a systematic way the above mentioned decompositions and allows
one to carry out investigations which are not feasible to do by hand. The related SpinFrames
package [3] developed by two of the authors (S.A. and T.B.) implements computations in tetrad
components using the Newman-Penrose (NP) and Geroch-Held-Penrose (GHP) [23] formalisms.

The above mentioned correspondence between spinors and tensors, and the decomposition into
irreducible pieces, can be applied to the Riemann curvature tensor. In this case, they correspond
to the scalar curvature R, traceless Ricci tensor Sab, and the Weyl tensor Cabcd. The Riemann
tensor then takes the form

Rabcd = − 1
12gadgbcR+ 1

12gacgbdR+ 1
2gbdSac −

1
2gbcSad −

1
2gadSbc +

1
2gacSbd + Cabcd, (2.2)

and the spinor equivalents of these tensors are

Cabcd = ΨABCDǭA′B′ ǭC′D′ + Ψ̄A′B′C′D′ǫABǫCD, (2.3a)

Sab = − 2ΦABA′B′ , (2.3b)

R = 24Λ. (2.3c)

The irreducible decomposition into symmetric spinors in particular applies to covariant derivatives
of symmetric spinors ϕA···DA′···D′ ∈ Sk,l. Decomposing (2.1) into its irreducible parts leads to

∇A
A′

ϕA1···Ak

A′

1···A
′

l = (Tk,lϕ)AA1···Ak

A′A′

1···A
′

l

− l
l+1 ǭ

A′(A′

1(Ck,lϕ)AA1···Ak

A′

2···A
′

l
)

− k
k+1ǫA(A1

(C †
k,lϕ)A2···Ak)

A′A′

1···A
′

l

+ kl
(k+1)(l+1)ǫA(A1

ǭA
′(A′

1(Dk,lϕ)A2···Ak)
A′

2···A
′

l
) (2.4)

with coefficients given by the following four fundamental spinor operators [9, §2.1], also imple-
mented in the SymManipulator package [15].

Definition 2.1. The differential operators

Dk,l : Sk,l → Sk−1,l−1, Ck,l : Sk,l → Sk+1,l−1, C
†
k,l : Sk,l → Sk−1,l+1, Tk,l : Sk,l → Sk+1,l+1

are defined as

(Dk,lϕ)A1...Ak−1

A′

1...A
′

l−1 ≡ ∇BB′

ϕA1...Ak−1B
A′

1...A
′

l−1B′ , (2.5a)

(Ck,lϕ)A1...Ak+1

A′

1...A
′

l−1 ≡ ∇(A1

B′

ϕA2...Ak+1)
A′

1...A
′

l−1
B′ , (2.5b)

(C †
k,lϕ)A1...Ak−1

A′

1...A
′

l+1 ≡ ∇B(A′

1ϕA1...Ak−1B
A′

2...A
′

l+1), (2.5c)

(Tk,lϕ)A1...Ak+1

A′

1...A
′

l+1 ≡ ∇(A1

(A′

1ϕA2...Ak+1)
A′

2...A
′

l+1). (2.5d)
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The operators are called respectively the divergence, curl, curl-dagger, and twistor operators.

With respect to complex conjugation, the operators D ,T satisfy Dk,l = Dl,k, Tk,l = Tl,k,

while Ck,l = C
†
l,k, C

†
k,l = Cl,k. A complete set of commutation formulas for the fundamental

operators has been given in [9, §2.2].

2.2. Geometric structure of Petrov type D spacetimes. It is well known [38] that vacuum
spacetimes of Petrov type D admit a non-trivial irreducible symmetric 2-spinor κAB solving the
Killing spinor equation

(T2,0κ)ABCA′ = 0. (2.6)

Defining the spinors

ξAA′ = (C †
2,0κ)AA′ , (2.7)

λA′B′ = (C †
1,1C

†
2,0κ)A′B′ , (2.8)

the complete table of derivatives reads

∇AA′κBC = − 1
3ξCA′ǫAB − 1

3 ξBA′ǫAC , (2.9a)

∇AA′ξLL′ = − 1
2λA′L′ǫAL − 3

4κ
BCΨALBC ǭA′L′ , (2.9b)

∇CC′λA′B′ = 2ξC
D′

Ψ̄A′B′C′D′ . (2.9c)

The fact that the system of equations (2.9) for (κAB, ξAA′ , λA′B′) is closed, implies in particular
that higher derivatives of κAB do not contain any further information. Tensor symmetrizing
(2.9b) leads to zero on the right-hand side and shows that ξAA′

is a Killing vector.

Remark 2.2. If we furthermore assume the generalized Kerr-NUT condition that ξAA′ is real,
the middle equation simplifies to λA′L′ = 3

2 κ̄
B′C′

Ψ̄A′L′B′C′ so the λA′B′ is not an independent
field anymore and the complete table reduces to

∇AA′κBC = − 1
3ξCA′ǫAB − 1

3ξBA′ǫAC , (2.10a)

∇AA′ξLL′ = − 3
4 κ̄

B′C′

Ψ̄A′L′B′C′ǫAL − 3
4κ

BCΨALBC ǭA′L′ . (2.10b)

Using a principal dyad 7 the Killing spinor takes the form

κAB = − 2κ1o(AιB), (2.11)

with κ1 ∝ Ψ
−1/3
2 . Beside the Killing vector field (2.7) another important vector field is defined

by

UAA′ = −
κABξ

B
A′

3κ2
1

= −∇AA′ log(κ1). (2.12)

Because it is completely determined by the Killing spinor (2.11), we have the complete table of
derivatives

(D1,1U) = − 2Ψ2 +
ξAA′ξAA′

9κ2
1

, (2.13a)

(C1,1U)AB = 0, (2.13b)

(C †
1,1U)A′B′ = 0, (2.13c)

(T1,1U)AB
A′B′

=
κAB(C

†
1,1ξ)

A′B′

6κ2
1

+ 2U(A
(A′

UB)
B′) −

ξ(A
(A′

ξB)
B′)

9κ2
1

, (2.13d)

in particular UAA′ is closed, (dU)ab = 0.
From the integrability condition (LξΨ)ABCD = 0 it follows that

(T4,0Ψ)ABCDFA′ = 5Ψ(ABCDUF )A′ . (2.14)

7Note that κ1 and Ψ2 can be expressed covariantly via the relations κABκ
AB = −2κ1

2 and ΨABCDΨABCD =
6Ψ2

2
. Hence, we can allow κ1 and Ψ2 in covariant expressions.
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The curvature can be expressed in terms of the Killing spinor according to

ΨABCD =
3Ψ2κ(ABκCD)

2κ2
1

. (2.15)

Remark 2.3. On Kerr spacetime with parameters (M,a) in a principal tetrad in Boyer-Lindquist
coordinates (t, r, θ, φ), the curvature scalar is given by Ψ2 = −M(r − ia cos θ)−3 and we can set
κ1 = − 1

3 (r − ia cos θ). Then one finds Ψ2κ
3
1 = 1

27M and ξa = (∂t)
a.

2.3. Extended fundamental spinor operators. As we often need to rescale with powers of
κ1 and κ̄1 we introduce extended fundamental operators with additional (extended) indices n,m:

(Dk,l,n,mϕ)A1...Ak−1

A′

1...A
′

l−1 ≡ κn
1 κ̄

m
1 (Dk,lκ

−n
1 κ̄−m

1 ϕ)A1...Ak−1

A′

1...A
′

l−1 , (2.16a)

(Ck,l,n,mϕ)A1...Ak+1

A′

1...A
′

l−1 ≡ κn
1 κ̄

m
1 (Ck,lκ

−n
1 κ̄−m

1 ϕ)A1...Ak+1

A′

1...A
′

l−1 , (2.16b)

(C †
k,l,n,mϕ)A1...Ak−1

A′

1...A
′

l+1 ≡ κn
1 κ̄

m
1 (C †

k,lκ
−n
1 κ̄−m

1 ϕ)A1...Ak−1

A′

1...A
′

l+1 , (2.16c)

(Tk,l,n,mϕ)A1...Ak+1

A′

1...A
′

l+1 ≡ κn
1 κ̄

m
1 (Tk,lκ

−n
1 κ̄−m

1 ϕ)A1...Ak+1

A′

1...A
′

l+1 . (2.16d)

For n = m = 0 it coincides with the definition (2.5) of the fundamental operators and the
indices will be suppressed in that case. Because UAA′ is a logarithmic derivative, (2.12), we can
equivalently express them as

(Dk,l,n,mϕ)A1...Ak−1

A′

1...A
′

l−1 =
[
∇BB′

+ nUBB′

+mŪBB′

]
ϕA1...Ak−1B

A′

1...A
′

l−1
B′ , (2.17a)

(Ck,l,n,mϕ)A1...Ak+1

A′

1...A
′

l−1 =
[
∇(A1

B′

+ nU(A1

B′

+mŪ(A1

B′

]
ϕA2...Ak+1)

A′

1...A
′

l−1B′ , (2.17b)

(C †
k,l,n,mϕ)A1...Ak−1

A′

1...A
′

l+1 =
[
∇B(A′

1 + nUB(A′

1 +mŪB(A′

1

]
ϕA1...Ak−1B

A′

2...A
′

l+1), (2.17c)

(Tk,l,n,mϕ)A1...Ak+1

A′

1...A
′

l+1 =
[
∇(A1

(A′

1 + nU(A1

(A′

1 +mŪ(A1

(A′

1

]
ϕA2...Ak+1)

A′

2...A
′

l+1). (2.17d)

It follows that the commutator of extended fundamental spinor operators with n1 = n2,m1 = m2

reduces to the commutator of the usual fundamental spinor operators [9, §2.2]. For commuta-
tors of the extended operators with unequal weights n1, n2,m1,m2 one simply splits into first
derivatives and remainder with equal weights.

2.4. Projection operators and the spin decomposition. The Killing spinor κAB plays a
central role in the geometry of Petrov type D spaces. The tensor product of κAB with a symmetric
spinor has at most three different irreducible components. These involve either zero, one or two
contractions and symmetrization. For these operations we introduce the K-operators in

Definition 2.4. Given the Killing spinor (2.11), define the operators Ki
k,l : Sk,l → Sk−2i+2,l, i =

0, 1, 2 via

(K0
k,lϕ)A1...Ak+2A′

1
...A′

l
= 2κ−1

1 κ(A1A2
ϕA3...Ak+2)A′

1
...A′

l
, (2.18a)

(K1
k,lϕ)A1...AkA′

1
...A′

l
= κ−1

1 κ(A1

FϕA2...Ak)FA′

1
...A′

l
, (2.18b)

(K2
k,lϕ)A1...Ak−2A′

1
...A′

l
= − 1

2κ
−1
1 κCDϕA1...Ak−2CDA′

1
...A′

l
. (2.18c)

Note that the complex conjugated operators act on the primed indices in the analogous way.
The action of the K-operators does have an interpretation in terms of the resulting components
with respect to a principal dyad.

Example 2.5. The “spin raising” operator8 K
0
k,l on a symmetric (2, 0) spinor ϕAB has compo-

nents

(K0
2,0ϕ)0 = 0, (K0

2,0ϕ)1 = ϕ0, (K0
2,0ϕ)2 = 4

3ϕ1, (K0
2,0ϕ)3 = ϕ2, (K0

2,0ϕ)4 = 0.

8The name spin raising and lowering is due to the fact that multiplication and symmetrization or contraction
of a spin-s field with a valence-2 Killing spinor leads to a spin-s + 1 or spin-s − 1 field respectively, see [29, Sec.
6.4].
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The “sign flip” operator K
1
k,l on a symmetric (4, 0) spinor ϕABCD has components

(K1
4,0ϕ)0 = ϕ0, (K1

4,0ϕ)1 = 1
2ϕ1, (K1

4,0ϕ)2 = 0, (K1
4,0ϕ)3 = − 1

2ϕ3, (K1
4,0ϕ)4 = − ϕ4.

The “spin lowering” operator K2
k,l on a symmetric (4, 0) spinor ϕABCD has components

(K2
4,0ϕ)0 = ϕ1, (K2

4,0ϕ)1 = ϕ2, (K2
4,0ϕ)2 = ϕ3.

Definition 2.6 (Spin decomposition). For any symmetric spinor ϕA1...A2s
,

• with integer s, define s+1 symmetric valence 2s spinors (Pi
2s,0ϕ)A1...A2s

, i = 0 . . . s solving

ϕA1...A2s
=

s∑

i=0

(Pi
2s,0ϕ)A1...A2s

, (2.19)

with (Pi
2s,0ϕ)A1...A2s

depending only on the components ϕs+i and ϕs−i.

• with half-integer s, define s+ 1
2 symmetric valence 2s spinors (Pi

2s,0ϕ)A1...A2s
, i = 1

2 . . . s
solving

ϕA1...A2s
=

s∑

i=1/2

(Pi
2s,0ϕ)A1...A2s

, (2.20)

with (Pi
2s,0ϕ)A1...A2s

depending only on the components ϕs+i and ϕs−i.

Remark 2.7. The spin decomposition can also be defined for spinors with primed indices and
more generally for mixed valence. In that case the decompositions combine linearly.

Example 2.8. (1) For s = 2 the decomposition is given by

ϕABCD = (P0
4,0ϕ)ABCD + (P1

4,0ϕ)ABCD + (P2
4,0ϕ)ABCD (2.21)

and the components, written as vectors, are



ϕ0

ϕ1

ϕ2

ϕ3

ϕ4




=




0
0
ϕ2

0
0




+




0
ϕ1

0
ϕ3

0




+




ϕ0

0
0
0
ϕ4




. (2.22)

In terms of the operators (2.18) they read

(P0
4,0ϕ)ABCD = 3

8 (K
0
2,0K

0
0,0K

2
2,0K

2
4,0ϕ)ABCD, (2.23a)

(P1
4,0ϕ)ABCD = (K0

2,0K
1
2,0K

1
2,0K

2
4,0ϕ)ABCD, (2.23b)

(P2
4,0ϕ)ABCD = (K1

4,0K
1
4,0K

1
4,0K

1
4,0ϕ)ABCD − 1

16 (K
0
2,0K

1
2,0K

1
2,0K

2
4,0ϕ)ABCD. (2.23c)

(2) For s = 3/2 on a (3, 1) spinor the decomposition is given by

ϕABCA′ = (P
1/2
3,1 ϕ)ABCA′ + (P

3/2
3,1 ϕ)ABCA′ (2.24)

and the components, written as vectors, are



ϕ0A′

ϕ1A′

ϕ2A′

ϕ3A′


 =




0
ϕ1A′

ϕ2A′

0


+




ϕ0A′

0
0

ϕ3A′


 . (2.25)

In terms of the operators (2.18) they read

(P
1/2
3,1 ϕ)ABCA′ = 3

4 (K
0
1,1K

2
3,1ϕ)ABCA′ , (2.26a)

(P
3/2
3,1 ϕ)ABCA′ = − 1

12 (K
0
1,1K

2
3,1ϕ)ABCA′ + (K1

3,1K
1
3,1ϕ)ABCA′ . (2.26b)

For the proof of the main theorem we need various commutator relations of the above intro-
duced operators. The complete set of commutators of K-operators with extended fundamental
operators can be found in [4, Appendix B] and here we restrict to the special cases needed for
the proof.
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Lemma 2.9. For any symmetric spinors ϕABCD, ϕAB, ϕ, ϕAA′ , ϕABCA′ and an integer w, we
have the algebraic identities

(K1
4,0P

1
4,0ϕ)ABCD = 1

2 (K
0
2,0K

1
2,0K

2
4,0ϕ)ABCD, (2.27a)

(K1
1,1K

1
1,1ϕ)AA′ = ϕAA′ , (2.27b)

(K2
2,0K

1
2,0ϕ) = 0, (2.27c)

(P
3/2
3,1 K

0
1,1ϕ)ABCA′ = 0, (2.27d)

(K1
2,0K

1
2,0K

1
2,0ϕ)AB = (K1

2,0ϕ)AB , (2.27e)

(K1
3,1K

1
3,1K

1
3,1ϕ)ABCA′ = − 2

9 (K
0
1,1K

1
1,1K

2
3,1ϕ)ABCA′ + (K1

3,1ϕ)ABCA′ , (2.27f)

and the first order differential identities

(C †
4,0,wK

1
4,0ϕ)ABCA′ = (K1

3,1C
†
4,0,wϕ)ABCA′ + 1

2 (T2,0,−4+wK
2
4,0ϕ)ABCA′ , (2.28a)

(C †
4,0,wK

0
2,0ϕ)ABCA′ = (K0

1,1C
†
2,0,−1+wϕ)ABCA′ − (T2,0,−4+wK

1
2,0ϕ)ABCA′ , (2.28b)

(C †
3,1,wK

0
1,1ϕ)ABA′B′ = (K0

0,2C
†
1,1,−1+wϕ)ABA′B′ − 4

3 (T1,1,−3+wK
1
1,1ϕ)ABA′B′ , (2.28c)

(C †
2,0,wK

1
2,0ϕ)AA′ = (K1

1,1C
†
2,0,wϕ)AA′ + (T0,0,−2+wK

2
2,0ϕ)AA′ , (2.28d)

(C †
2,0,wK

2
4,0ϕ)AA′ = (K2

3,1C
†
4,0,1+wϕ)AA′ , (2.28e)

(C †
2,0,wK

0
0,0ϕ)AA′ = − 2(K1

1,1T0,0,−2+wϕ)AA′ , (2.28f)

(D1,1,wK
1
1,1ϕ) = 2(K2

2,0C1,1,−2+wϕ), (2.28g)

(D1,1,wK
2
3,1ϕ) = (K2

2,0D3,1,1+wϕ), (2.28h)

(K1
3,1P

3/2
3,1 T2,0,wϕ)ABCA′ = − 1

4 (C
†
4,0,4+wK

0
2,0K

1
2,0K

1
2,0ϕ)ABCA′ + 3

4 (T2,0,wK
1
2,0ϕ)ABCA′ .

(2.28i)

Proof. For (2.27a) we calculate

(K1
4,0P

1
4,0ϕ)ABCD = (K1

4,0K
0
2,0K

1
2,0K

1
2,0K

2
4,0ϕ)ABCD

= 1
2 (K

0
2,0K

1
2,0K

1
2,0K

1
2,0K

2
4,0ϕ)ABCD

= 1
2 (K

0
2,0K

1
2,0K

2
4,0ϕ)ABCD.

In the first step uses (2.23b), the second one is a commutator of K1 and K0 and the third step
makes use of the fact that three sign-flips are equal to one sign-flip. For (2.27b) we note that K1

on a (1, 1) spinor changes sign in two of the four components,

(K1
1,1ϕ)00′ = ϕ00′ , (K1

1,1ϕ)01′ = ϕ01′ , (K1
1,1ϕ)10′ = − ϕ10′ , (K1

1,1ϕ)11′ = − ϕ11′ ,

so K1
1,1K

1
1,1 = Id. Equation (2.27c) is true because K1

2,0 cancels the middle component of ϕAB

and K2
2,0 singles out that middle component. The rest of the algebraic identities are proved anal-

ogously. The proof of the differential identities relies on a straightforward but tedious expansion
of projectors (2.18) and extended fundamental operators (2.17). We only calculate (2.28e).

(C †
2,0,−1K

2
4,0ϕ)AA′ − (K2

3,1C
†
4,0ϕ)AA′ =

UB
A′κCDϕABCD

2κ1
+

κBC(C †
4,0ϕ)ABCA′

2κ1
+ (C †

2,0K
2
4,0ϕ)AA′

=
UB

A′κCDϕABCD

2κ1
−

ϕABCD(T2,0κ)
BCD

A′

2κ1

+
κCDϕABCD(T0,0κ1)

B
A′

2κ2
1

= 0.

The other identities are proved along the same lines. �
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Lemma 2.10. For any symmetric spinors ϕ, ϕABA′B′ the following identities hold

0 = (K0
0,2C

†
1,1,−5T0,0,−3ϕ)ABA′B′ + 4

3 (T1,1,−4K
1
1,1T0,0,−6ϕ)ABA′B′

− 4
3 (T1,1,−7K

1
1,1T0,0,−3ϕ)ABA′B′ , (2.29a)

0 = (C †
3,1,−1K

0
1,1T0,0ϕ)ABA′B′ + 2(K0

0,2C
†
1,1T0,0ϕ)ABA′B′ + 12(K1

2,2T1,1T0,0ϕ)ABA′B′

− 32
3 (T1,1,−1K

1
1,1T0,0,3/2ϕ)ABA′B′ , (2.29b)

0 = − 1
12 (C

†
3,1,−1K

0
1,1D2,2,4ϕ)ABA′B′ + (C †

3,1,−1K
1
3,1C2,2,1ϕ)ABA′B′ −Ψ2(K

1
2,2ϕ)ABA′B′

− (K1
2,2C

†
3,1C2,2ϕ)ABA′B′ − 1

3 (K
1
2,2T1,1D2,2ϕ)ABA′B′ +

(Lξϕ)ABA′B′

3κ1

+ 2
9 (T1,1,−1K

1
1,1D2,2,1ϕ)ABA′B′ − 2

3 (T1,1,−1K
2
3,1C2,2,−2ϕ)ABA′B′ . (2.29c)

Proof. This can be verified by expanding all operators in terms of the non-extended fundamental
spinor operators. Alternatively the verification can be done by expanding in components using
the SpinFrames package [3]. �

3. Spinorial formulation of linearized gravity

In this section we review the field equations of linearized gravity for a general vacuum back-
ground and allow for sources of the linearized field. The spinor variational operator ϑ developed
in [16] will be used. Let ġab be a linearized metric and ġABA′B′ the spinorial version. Observe
that we make the variation with the indices down, and raise them and take traces afterwards.
We define the irreducible parts of the linearized metric as

GABA′B′ = ġ(AB)(A′B′), /G = ġCC
C′

C′ , (3.1)

so the decomposition into traceless and trace parts is given by

ġABA′B′ = GABA′B′ + 1
4
/GǫAB ǭA′B′ . (3.2)

For the spinor variation of the irreducible parts of the curvature we get, see [16], for a general
vacuum background

ϑΨABCD = 1
2 (C3,1C2,2G)ABCD − 1

4
/GΨABCD (3.3a)

ϑΦABA′B′ = 1
2G

CD
A′B′ΨABCD + 1

2 (C
†
3,1C2,2G)ABA′B′ + 1

6 (T1,1D2,2G)ABA′B′

− 1
8 (T1,1T0,0 /G)ABA′B′ , (3.3b)

ϑΛ = − 1
24 (D1,1D2,2G) + 1

32 (D1,1T0,0 /G). (3.3c)

Note also that ϑΛ = 0 = ϑΦABA′B′ in the source-free case, i.e. when ġABA′B′ is a solution to the
linearized vacuum Einstein equations.

For later use, see lemma 4.4 below, we introduce the notation ϑΨ[ϕ, /ϕ]ABCD for the linearized
Weyl curvature operator acting on a symmetric tensor field with irreducible parts ϕABA′B′ , /ϕ

(and analogously the other curvature operators). In case the field is given by GABA′B′ , /G or 0,
we suppress the additional argument. It will also be convenient to introduce

φABCD = 1
2 (C3,1C2,2G)ABCD = ϑΨABCD + 1

4
/GΨABCD. (3.4)

as a modification of the varied Weyl spinor ϑΨABCD
9. In some equations it will be more conve-

nient to use φABCD and in others to use ϑΨABCD.
As a consequence of (3.3) we derive the linearized Bianchi identity.

Lemma 3.1. For a general vacuum background the modified Weyl spinor (3.4) satisfies

(C †
4,0φ)ABCA′ = (C2,2ϑΦ)ABCA′ + 1

2ΨABCD(D2,2G)DA′ − 3
2Ψ(AB

DF (C2,2G)C)DFA′

− 1
8ΨABCD(T0,0 /G)DA′ + 1

2G
DF

A′

B′

(T4,0Ψ)ABCDFB′ . (3.5)

Restricting to a type D background this simplifies to

(C †
4,0φ)ABCA′ = (C2,2ϑΦ)ABCA′ − 3

2Ψ2(C2,2,1G)ABCA′ − 3
8Ψ2(K

0
1,1K

1
1,1D2,2,4G)ABCA′

+ 3
32Ψ2(K

0
1,1K

1
1,1T0,0 /G)ABCA′ + 9

4Ψ2(K
0
1,1K

2
3,1C2,2,1G)ABCA′ . (3.6)

9In a type D principal frame this modification only affects the middle component.
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Proof. We apply C2,2 on (3.3b), commute C2,2C
†
3,1, use (3.4) to get

(C2,2ϑΦ)ABCA′ = 1
2 (C2,2C

†
3,1C2,2G)ABCA′ + 1

6 (C2,2T1,1D2,2G)ABCA′ − 1
8 (C2,2T1,1T0,0 /G)ABCA′

− 1
3ΨABCD(D2,2G)DA′ + 1

2Ψ(AB
DF (C2,2G)C)DFA′

− 1
2G

DF
A′

B′

(T4,0Ψ)ABCDFB′ (3.7)

= 1
6 (C2,2T1,1D2,2G)ABCA′ − 1

8 (C2,2T1,1T0,0 /G)ABCA′ + (C †
4,0φ)ABCA′

− 1
3ΨABCD(D2,2G)DA′ + 3

2Ψ(AB
DF (C2,2G)C)DFA′

− 1
2G

DF
A′

B′

(T4,0Ψ)ABCDFB′ − 1
8 (T2,0D3,1C2,2G)ABCA′ . (3.8)

We then commute the C2,2T1,1 operators, and in the last step we commute D3,1C2,2 and use
C1,1T0,0 = 0 to get

(C2,2ϑΦ)ABCA′ = (C †
4,0φ)ABCA′ − 1

2ΨABCD(D2,2G)DA′ + 3
2Ψ(AB

DF (C2,2G)C)DFA′

+ 1
8ΨABCD(T0,0 /G)DA′ − 1

2G
DF

A′

B′

(T4,0Ψ)ABCDFB′

+ 1
12 (T2,0C1,1D2,2G)ABCA′ − 1

16 (T2,0C1,1T0,0 /G)ABCA′

− 1
8 (T2,0D3,1C2,2G)ABCA′ (3.9)

= (C †
4,0φ)ABCA′ − 1

2ΨABCD(D2,2G)DA′ + 3
2Ψ(AB

DF (C2,2G)C)DFA′

+ 1
8ΨABCD(T0,0 /G)DA′ − 1

2G
DF

A′

B′

(T4,0Ψ)ABCDFB′ . (3.10)

This gives (3.5). On a type D spacetime, we can use (2.14) and (2.15). The resulting UAA′ spinors
can be incorporated as extended indices, and the κAB spinors can then be rewritten in terms the
Ki operators to get (3.6). �

Note that on a Minkowski background and without sources the right-hand side of (3.5) vanishes
and the linearized Bianchi identity reduces to the spin-2 equation. The linearized Bianchi identity
(3.6) is of fundamental importance and next we derive some differential identities for it which are
needed for the main theorem. The following variable appears naturally.

Definition 3.2. Define the symmetric spinor φ̂ABCD as the rescaled, sign-flipped and spin-2
projected linearized Weyl spinor,

φ̂ABCD = κ4
1(K

1
4,0P

2
4,0ϑΨ)ABCD. (3.11)

The components of φ̂ABCD in a principal dyad are



φ̂0

φ̂1

φ̂2

φ̂3

φ̂4




=




κ4
1ϑΨ0

0
0
0

−κ4
1ϑΨ4




.

Corollary 3.3. An alternative form of the linearized Bianchi identity (3.6), involving the variable
(3.11), is given by

(C †
4,0,4φ̂)ABCA′ = −

(
κ4
1K

1
3,1P

3/2
3,1 C

†
4,0P

1
4,0φ

)
ABCA′

− 3
2

(
κ4
1Ψ2K

1
3,1P

3/2
3,1 C2,2,1G

)
ABCA′

+
(
κ4
1K

1
3,1P

3/2
3,1 C2,2ϑΦ

)
ABCA′

. (3.12)

Proof. Applying the operator K1
3,1P

3/2
3,1 κ

4
1C

†
4,0 to (2.21) and using (2.28a) gives the identity

(C †
4,0,4φ̂)ABCA′ = −

(
K

1
3,1P

3/2
3,1 C

†
4,0,4(κ

4
1P

1
4,0φ)

)
ABCA′

+
(
K

1
3,1P

3/2
3,1 (κ

4
1C

†
4,0φ)

)
ABCA′

. (3.13)

The result follows from (P
3/2
3,1 K

0
1,1φ)ABCA′ = 0 together with (3.6). �

Corollary 3.4 (Covariant TME). The covariant form of the spin-2 Teukolsky Master equation
with source on a vacuum type D background is given by

(C3,1C
†
4,0,4φ̂)ABCD = − 3Ψ2φ̂ABCD + κ4

1(P
2
4,0K

1
4,0C3,1,−4C2,2ϑΦ)ABCD. (3.14)
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Proof. Apply the operator P2
4,0C3,1 to (3.12) and use

(
P
2
4,0C3,1K

1
3,1P

3/2
3,1 C

†
4,0,4(κ

4
1P

1
4,0φ)

)
ABCD

= 0, (3.15a)
(
P
2
4,0C3,1K

1
3,1P

3/2
3,1 (κ

4
1C2,2ϑΦ)

)
ABCD

= κ4
1(P

2
4,0K

1
4,0C3,1,−4C2,2ϑΦ)ABCD, (3.15b)

(
P
2
4,0C3,1K

1
3,1P

3/2
3,1 (κ

4
1Ψ2C2,2,1G)

)
ABCD

= Ψ2κ
4
1(P

2
4,0K

1
4,0C3,1C2,2G)ABCD. (3.15c)

�

4. Main theorem

We shall now prove our main theorem. The following is the detailed statement of Theorem 1.1
including source terms.

Theorem 4.1. Let ġABA′B′ be a solution to the linearized Einstein equations with linearized Weyl
curvature ϑΨABCD and linearized source ϑΦABA′B′ on a vacuum background of Petrov type D.

Furthermore, let φ̂ABCD = κ4
1(K

1
4,0P

2
4,0ϑΨ)ABCD be the modified linearized Weyl spinor and let

MABA′B′ = (C †
3,1C

†
4,0,4φ̂)ABA′B′ . (4.1)

Then we have

MABA′B′ = 1
2∇AA′ABB′ + 1

2∇BB′AAA′ + 1
2Ψ2κ

3
1(Lξ ġ)ABA′B′ + (N2,2ϑΦ)ABA′B′ , (4.2)

where the complex one form AAA′ and the source term (N2,2ϑΦ)ABA′B′ are given by

AAA′ = − 1
4
/GΨ2κ

3
1ξAA′ − 1

2Ψ2κ
3
1ξ

BB′

(K0
0,2K

2
2,2G)ABA′B′ + 2

3κ
3
1ξ

B
A′(K1

2,0K
2
4,0ϑΨ)AB

+ (K1
1,1T0,0K

2
2,0K

2
4,0κ

4
1ϑΨ)AA′ + 2

3κ
4
1(K

2
3,1C2,2ϑΦ)AA′ , (4.3a)

(N2,2ϑΦ)ABA′B′ = −
(
C

†
3,1(κ

4
1K

1
3,1P

1/2
3,1 C2,2ϑΦ)

)
ABA′B′

+
(
C

†
3,1(κ

4
1K

1
3,1P

3/2
3,1 C2,2ϑΦ)

)
ABA′B′

− 3Ψ2κ
4
1(K

1
2,2ϑΦ)ABA′B′ . (4.3b)

Before proving the theorem we collect some algebraic and differential identities for AAA′ .

Lemma 4.2. The one-form AAA′ defined in (4.3a) has the following properties:

A
AA′

UAA′ = − 1
3κ

3
1(LξK

2
2,0K

2
4,0ϑΨ) + 2

3κ1
4UAA′

(K2
3,1C2,2ϑΦ)AA′ (4.4a)

(D1,1A) = − 1
2Ψ2κ

3
1(Lξ /G) (4.4b)

(C1,1,2K
1
1,1A)AB = − 1

8Ψ2κ1
3(LξK

0
0,0 /G)AB − 2

3κ1
3(LξK

2
4,0ϑΨ)AB

+ 2
3κ1

4(C1,1,−2K
1
1,1K

2
3,1C2,2ϑΦ)AB − 2

3κ1
3ξ(A

A′

(K2
3,1C2,2ϑΦ)B)A′ . (4.4c)

Proof. Equation (4.4a) can be verified by a direct calculation using (2.12). To prove (4.4b), we
make use of the form of AAA′ given in equation (4.19a) below,

AAA′ = − 1
2

(
C

†
2,0K

0
0,0K

2
2,0K

2
4,0(κ

4
1φ)

)
AA′

+ 2
3

(
C

†
2,0K

2
4,0(κ

4
1φ)

)
AA′

+ 1
3

(
K

1
1,1D2,2,2(κ

4
1Ψ2G)

)
AA′

− 1
3

(
K

1
1,1T0,0,5/2(κ

4
1Ψ2 /G)

)
AA′

−
(
K

2
3,1C2,2,−1(κ

4
1Ψ2G)

)
AA′

. (4.5)

Applying D1,1 to this and using the commutator relation D1,1C
†
2,0 = 0 gives

(D1,1A) = 1
3

(
D1,1K

1
1,1D2,2,2(κ

4
1Ψ2G)

)
− 1

3

(
D1,1K

1
1,1T0,0,5/2(κ

4
1Ψ2 /G)

)

−
(
D1,1K

2
3,1C2,2,−1(κ

4
1Ψ2G)

)
. (4.6)

Using (2.28g) on the first two terms, and (2.28h) on the last term gives

(D1,1A) = 2
3

(
K

2
2,0C1,1,−2D2,2,2(κ

4
1Ψ2G)

)
− 2

3

(
K

2
2,0C1,1,−2T0,0,5/2(κ

4
1Ψ2 /G)

)

−
(
K

2
2,0D3,1,1C2,2,−1(κ

4
1Ψ2G)

)
. (4.7)

The first and the last term cancel due to the general identity

(K2
2,0D3,1,1C2,2,−1φ) =

2
3 (K

2
2,0C1,1,−2D2,2,2φ). (4.8)
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This identity can be proven by expanding the extended indices and commuting the derivatives.
In the same way we can also prove the identity

(K2
2,0C1,1,vT0,0,wϕ) =

(w − v)(Lξϕ)

6κ1
, (4.9)

for arbitrary weights v and w. This finally gives (4.4b), where we in the last step commuted Ψ2κ
3
1

through the Lie derivative.
To prove (4.4c), we first note the following relation that is a consequence of linearized Bianchi

(C †
2,0K

2
4,0φ)AA′ = 3

2Ψ2(C0,2,2K
2
2,2G)AA′ + 1

8Ψ2(K
1
1,1T0,0 /G)AA′ + UB

A′(K2
4,0φ)AB

+ (K2
3,1C2,2ϑΦ)AA′ . (4.10)

Applying a K1
1,1 to (4.3a) gives after minor algebraic manipulations

(K1
1,1A)AA′ = − 1

4
/GΨ2UAA′κ1

4 + 2
3κ1

4(K1
1,1K

2
3,1C2,2ϑΦ)AA′ +Ψ2κ1

3ξA
B′

(K2
2,2G)A′B′

+ 2
3κ1

3ξBA′(K2
4,0φ)AB + (T0,0,2K

2
2,0K

2
4,0κ1

4φ)AA′ − 1
4 (T0,0,2Ψ2κ1

4 /G)AA′ .
(4.11)

Applying C1,1,2 on this, using the commutator relation C1,1,2T0,0,2 = 0 and translating ξAA′

T

terms to Lie derivatives, we end up with

(C1,1,2K
1
1,1A)AB = 2

3 (C1,1,2κ1
4
K

1
1,1K

2
3,1C2,2ϑΦ)AB − 1

24Ψ2κ1
3(K0

0,0Lξ /G)AB

+ 1
9κ1

2ξCA′ξCA′

(K1
2,0K

2
4,0φ)AB − 2

3κ1
3(LξK

2
4,0φ)AB

− 2
3κ1

3ξ(A
A′

(C †
2,0K

2
4,0φ)B)A′ +Ψ2κ1

3ξ(A
A′

(C0,2,2K
2
2,2G)B)A′

+ 1
12Ψ2κ1

3ξ(A
A′

(K1
1,1T0,0 /G)B)A′ . (4.12)

Using (4.10) to eliminate the C
†
2,0K

2
4,0φ terms yields

(C1,1,2K
1
1,1A)AB = − 1

24Ψ2κ1
3(K0

0,0Lξ /G)AB − 2
3κ1

3(LξK
2
4,0φ)AB

+ 2
3κ1

4(C1,1,−2K
1
1,1K

2
3,1C2,2ϑΦ)AB − 2

3κ1
3ξ(A

A′

(K2
3,1C2,2ϑΦ)B)A′ . (4.13)

Inserting (3.4) leads to the result. �

Proof of theorem 4.1. Apply the operator C † to (3.12) and moving out the scalars Ψ2 and κ1 we
get

(C †
3,1C

†
4,0,4φ̂)ABA′B′ = κ4

1(C
†
3,1,−4K

1
3,1P

3/2
3,1 C2,2ϑΦ)ABA′B′ − κ4

1(C
†
3,1,−4K

1
3,1P

3/2
3,1 C

†
4,0P

1
4,0φ)ABA′B′

− 3
2Ψ2κ

4
1(C

†
3,1,−1K

1
3,1P

3/2
3,1 C2,2,1G)ABA′B′ . (4.14)

The second term can be rewritten by expanding the spin-1 projector according to (2.23b) and
commuting out the K0

2,0 using (2.28b) together with (2.27d),(2.27e),

κ4
1(C

†
3,1,−4K

1
3,1P

3/2
3,1 C

†
4,0P

1
4,0φ)ABA′B′ = − κ4

1(C
†
3,1,−4K

1
3,1P

3/2
3,1 T2,0,−4K

1
2,0K

2
4,0φ)ABA′B′

= 1
4κ

4
1(C

†
3,1,−4K

0
1,1C

†
2,0,−1K

1
2,0K

2
4,0φ)ABA′B′

− 2
3κ

4
1(T1,1,−4C

†
2,0,−4K

1
2,0K

1
2,0K

2
4,0φ)ABA′B′ . (4.15)

In the second step (2.28i) and (2.28b) with (2.27e) and a commutator is used. To commute out
the K1

2,0K
2
4,0 in the first term, we first use (2.28d) and (2.28e) to get

(C †
3,1,−4K

0
1,1C

†
2,0,−1K

1
2,0K

2
4,0φ)ABA′B′ = (C †

3,1,−4K
0
1,1K

1
1,1K

2
3,1C

†
4,0φ)ABA′B′

+ (C †
3,1,−4K

0
1,1T0,0,−3K

2
2,0K

2
4,0φ)ABA′B′ ,

= (C †
3,1,−4K

0
1,1K

1
1,1K

2
3,1C

†
4,0φ)ABA′B′

− 4
3 (T1,1,−4K

1
1,1T0,0,−6K

2
2,0K

2
4,0φ)ABA′B′ . (4.16)
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In the second step (2.28c) is used together with (2.29a). Using (4.16) in (4.15) and the linearized
Bianchi identity (3.6) in the first term of (4.16) yields

κ4
1(C

†
3,1,−4K

1
3,1P

3/2
3,1 C

†
4,0P

1
4,0φ)ABA′B′ = 1

4κ
4
1(C

†
3,1,−4K

0
1,1K

1
1,1K

2
3,1C2,2ϑΦ)ABA′B′

− 1
8κ

4
1

(
C

†
3,1,−4K

0
1,1K

1
1,1(Ψ2K

1
1,1D2,2,4G)

)
ABA′B′

+ 1
32κ

4
1

(
C

†
3,1,−4K

0
1,1K

1
1,1(Ψ2K

1
1,1T0,0 /G)

)
ABA′B′

+ 3
8κ

4
1

(
C

†
3,1,−4K

0
1,1K

1
1,1(Ψ2K

2
3,1C2,2,1G)

)
ABA′B′

− 2
3κ

4
1(T1,1,−4C

†
2,0,−4K

1
2,0K

1
2,0K

2
4,0φ)ABA′B′

− 1
3κ

4
1(T1,1,−4K

1
1,1T0,0,−6K

2
2,0K

2
4,0φ)ABA′B′ . (4.17)

The second and third term on the right-hand side can be simplified further using (2.27b). Using
(4.17) in (4.14) and expanding the spin decomposition in the last term of (4.14) leads to

(C †
3,1C

†
4,0,4φ̂)ABA′B′ =

(
C

†
3,1K

1
3,1P

3/2
3,1 (κ

4
1C2,2ϑΦ)

)
ABA′B′

+ 1
8Ψ2κ

4
1(C

†
3,1,−1K

0
1,1D2,2,4G)ABA′B′

− 1
4κ

4
1(C

†
3,1,−4K

0
1,1K

1
1,1K

2
3,1C2,2ϑΦ)ABA′B′

− 1
3Ψ2κ

4
1(C

†
3,1,−1K

0
1,1K

1
1,1K

2
3,1C2,2,1G)ABA′B′

− 1
32Ψ2κ

4
1(C

†
3,1,−1K

0
1,1T0,0 /G)ABA′B′

− 3
2Ψ2κ

4
1(C

†
3,1,−1K

1
3,1K

1
3,1K

1
3,1C2,2,1G)ABA′B′

+ 2
3κ

4
1(T1,1,−4C

†
2,0,−4K

1
2,0K

1
2,0K

2
4,0φ)ABA′B′

+ 1
3κ

4
1(T1,1,−4K

1
1,1T0,0,−6K

2
2,0K

2
4,0φ)ABA′B′ . (4.18)

The fourth and sixth term on the right-hand side can be combined via (2.27f). Defining the
complex vector field

AAA′ = − 1
2κ

4
1(C

†
2,0,−4K

0
0,0K

2
2,0K

2
4,0φ)AA′ + 2

3κ
4
1(C

†
2,0,−4K

2
4,0φ)AA′ + 1

3Ψ2κ
4
1(K

1
1,1D2,2,1G)AA′

− 1
3Ψ2κ

4
1(K

1
1,1T0,0,3/2 /G)AA′ −Ψ2κ

4
1(K

2
3,1C2,2,−2G)AA′ (4.19a)

=
(
K

1
1,1T0,0K

2
2,0K

2
4,0(κ

4
1φ)

)
AA′

− 1
4Ψ2κ

4
1(K

1
1,1T0,0,2 /G)AA′ + 2

3κ
4
1(K

2
3,1C2,2ϑΦ)AA′

− 1
2Ψ2κ

3
1ξ

BB′

(K0
0,2K

2
2,2G)ABA′B′ + 2

3κ
3
1ξ

B
A′(K1

2,0K
2
4,0φ)AB (4.19b)

(for the second version we used the linearized Bianchi identity (3.6)) we find

(C †
3,1C

†
4,0,4φ̂)ABA′B′ =

(
C

†
3,1K

1
3,1P

3/2
3,1 (κ

4
1C2,2ϑΦ)

)
ABA′B′

− 3Ψ2κ
4
1(K

1
2,2ϑΦ)ABA′B′

− 1
4κ

4
1(C

†
3,1,−4K

0
1,1K

1
1,1K

2
3,1C2,2ϑΦ)ABA′B′ + 1

2Ψ2κ
3
1(LξG)ABA′B′

+ (T1,1A)ABA′B′ (4.20)

by using (2.29) (the third term on the right-hand side can be rewritten using (2.26a)). Since

1
2∇AA′ABB′ + 1

2∇BB′AAA′ = 1
4ǫAB ǭA′B′(D1,1A) + (T1,1A)ABA′B′ , (4.21)

(4.4b) for the trace terms and (3.2) finally proves the theorem. �

We will restrict to the source-free case ϑΦABA′B′ = 0, ϑΛ = 0 for the rest of this section. In
this case the last term in (4.2) is zero and MABA′B′ has the following property.

Corollary 4.3. The complex field MABA′B′ is a traceless (by definition (4.1)) solution to the
source-free linearized vacuum Einstein equations because the first two terms on the right-hand side
of (4.2) form a linearized diffeomorphism and the third term is a symmetry operator on ġABA′B′

(remember that Ψ2κ
3
1 is a constant) which is itself a solution.

We can more generally derive all curvature components of the complex metric MABA′B′ .
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Lemma 4.4. In the source-free case, the curvature, see (3.3), of the complex metric (4.1) is
given by

ϑΨ[M]ABCD = 1
2 (L̂AΨ)ABCD + 1

2Ψ2κ
3
1(Lξφ)ABCD (4.22a)

= 1
2Ψ2κ

3
1(LξP

2
4,0φ)ABCD (4.22b)

ϑΨ[M]A′B′C′D′ = 1
2 (L̂AΨ̄)A′B′C′D′ + 1

2κ
3
1Ψ2(Lξφ̄)A′B′C′D′ (4.22c)

ϑΦ[M]ABA′B′ = 0 (4.22d)

ϑΛ[M] = 0 (4.22e)

where

(L̂AΨ̄)A′B′C′D′ = 1
2 Ψ̄A′B′C′D′(D1,1,0,6A) + 2Ψ̄(A′B′C′

F ′

(C †
1,1,0,2A)D′)F ′ , (4.23a)

(L̂AΨ)ABCD = 1
2ΨABCD(D1,1,6A) + 2Ψ(ABC

F (C1,1,2A)D)F . (4.23b)

Remark 4.5. Expanding the left-hand side of equation (4.22c) using the complex conjugate of
equation (3.3a) gives

(C †
1,3C

†
2,2C

†
3,1C

†
4,0,4(κ

4
1K

1
4,0P

2
4,0ϑΨ))A′B′C′D′ = (L̂AΨ̄)A′B′C′D′ + κ3

1Ψ2(Lξφ̄)A′B′C′D′ (4.24)

which is the covariant form of the full TSI for source-free linearized gravity on a general Petrov
type D vacuum background, see also corollary 4.7 for a manifestly gauge-invariant form of the
covariant TSI on a Kerr background.

Proof. Commuting two derivatives in vacuum type D leads to the operator identity

(C3,1C2,2T1,1ϕ)ABCD = 1
2ΨABCD(D1,1,6ϕ) + 2Ψ(ABC

F (C1,1,2ϕ)D)F . (4.25)

Using this identity and its complex conjugate together with the source-free version of (4.20)
and the fact that M is traceless, the curvature relations (4.22a) and (4.22c) follow.

In the source-free case, we find using (4.4c), (4.4b) and (4.4a) that

(L̂AΨ)ABCD = 3
16Ψ2(K

0
2,0K

0
0,0D1,1,6A)ABCD + 3

2Ψ2(K
0
2,0K

1
2,0C1,1,2A)ABCD

= 3
2Ψ2(K

0
2,0C1,1,2K

1
1,1A)ABCD − 3

8Ψ2(K
0
2,0K

0
0,0D1,1,4A)ABCD

+ 3
16Ψ2(K

0
2,0K

0
0,0D1,1,6A)ABCD

= 1
8Ψ2κ1

3(K0
2,0K

0
0,0LξK

2
2,0K

2
4,0φ)ABCD −Ψ2κ1

3(K0
2,0LξK

2
4,0φ)ABCD

= −Ψ2κ1
3(Lξφ)ABCD +Ψ2κ1

3(LξP
2
4,0φ)ABCD. (4.26)

from which (4.22b) follows. Equations (4.22d) and (4.22e) follow from corollary 4.3. �

An important property of the linearized curvature scalars ϑΨ0, ϑΨ4 entering MABA′B′ is that
they are invariant under infinitesimal diffeomorphisms and so is MABA′B′ itself. We find the
following behavior under gauge transformations.

Lemma 4.6. For linearized diffeomorphism of the background metric, generated by a real vector
ζAA′

of the original metric we get

GABA′B′ = 2(T1,1ζ)ABA′B′ , /G = 2(D1,1ζ). (4.27)

For the curvature and AAA′ we get

ϑΦABA′B′ = 0, (4.28a)

ϑΛ = 0, (4.28b)

φABCD = 3
16Ψ2(K

0
2,0K

0
0,0D1,1,6ζ)ABCD + 3

2Ψ2(K
0
2,0K

1
2,0C1,1,2ζ)ABCD, (4.28c)

AAA′ = −Ψ2κ
3
1(Lξζ)AA′ . (4.28d)

Proof. For the curvature, one can use the results of [16] and transform it to the operators of this
paper using the type D structure of the curvature. Applying K

2
2,0K

2
4,0 or K1

2,0K
2
4,0 onto φABCD

gives

(K2
2,0K

2
4,0φ) =

1
2Ψ2(D1,1,6ζ), (4.29)

(K1
2,0K

2
4,0φ)AB = 3

2Ψ2(K
1
2,0K

1
2,0C1,1,2ζ)AB . (4.30)
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These relations can then be used in (4.19b) to yield

AAA′ = −Ψ2κ
3
1ξ

BB′

(K0
0,2K

2
2,2T1,1ζ)ABA′B′ +Ψ2κ

3
1ξ

B
A′(K1

2,0K
1
2,0C1,1,2ζ)AB

− 1
2Ψ2κ

4
1(K

1
1,1T0,0,2D1,1ζ)AA′ + 1

2Ψ2κ
4
1(K

1
1,1T0,0,−1D1,1,6ζ)AA′ . (4.31)

An expansion of the extended indices and a reformulation of the Lie derivative in terms of fun-
damental spinor operators gives the gauge dependence of AAA′ . �

Corollary 4.7. For linearized diffeomorphism generated by a real vector ζAA′

on a Kerr back-
ground, we have

ImAAA′ =0. (4.32)

Then we have the covariant form of the Teukolsky-Starobinsky identities for linearized gravity
on Kerr in terms of manifestly gauge invariant quantities,

(C †
1,3C

†
2,2C

†
3,1C

†
4,0,4(κ

4
1K

1
4,0P

2
4,0ϑΨ))A′B′C′D′ = Ψ2κ

3
1(LξP

2
0,4ϑΨ)A′B′C′D′ + 2i(L̂ImAΨ)A′B′C′D′ .

(4.33)

Proof. Equation (4.32) follows from reality of ξAA′

, ζAA′

and Ψ2κ
3
1 on Kerr , see remark 2.3.

Expand the curvature operator in (4.22c) and subtract the complex conjugate of the vacuum
identity between (4.22a) and (4.22b). To end up with the identity in terms of ϑΨABCD, use
(3.11) and (3.4). �

5. Conclusions and outlook

In theorem 4.1 we have shown how the Debye potential construction for linearized gravity
on a vacuum spacetime of Petrov type D (generalizing the Sachs-Bergmann super-potential for
linearized gravity on Minkowski space) can be used to define a complex solution Mab to the field
equations of linearized gravity, which in view of the identity (4.2) is essentially pure gauge. In
particular,

MABA′B′ − 1
2Ψ2κ

3
1(Lξ ġ)ABA′B′

is a pure gauge metric.
Calculating the self-dual linearized Weyl curvature intermediate metric Mab on the Kerr back-

ground leads to a covariant form of the Teukolsky-Starobinsky Identities for linearized gravity
(4.33), which when viewed as a system of scalar equations in terms of Newman-Penrose scalars
includes three additional equations compared to the classical form of the TSI. As will be shown
in a future paper [5], the full TSI system can be seen as a hyperbolic evolution equation.

In view of the fundamental role played by the full TSI for the spin-1 case in analyzing the
conservation laws implied by the Maxwell field equations [14], we expect that this new covariant
identity providing the full TSI for the spin-2 case will lead to a more complete understanding of
the structure of linearized gravity on the Kerr spacetime, and in particular the conservation laws
implied by this system. It is worth emphasizing that when restricted to the Kerr background,
the identity (4.2) yields a manifestly gauge invariant form of the full TSI, given in (4.33). In
particular, ImAAA′ is gauge invariant in that case.

The fact that ImAAA′ is gauge invariant is relevant for the problem of classifying gauge invari-
ant quantities for linearized gravity on the Kerr spacetime. Work on this problem, extending and
completing analysis of gauge invariant quantities on the Schwarzschild spacetime given in [31], is
ongoing.

Recall that the Bianchi identity in differential geometry is a geometric identity which is valid
independently of any field equation. The same is true for the linearized Bianchi identity with
sources (3.5), and its specialization to Petrov type D backgrounds (3.6). It is important to
note that several of the fundamental identities including (3.14) and (4.2) presented here are
operator identities derived from the Bianchi identity by applying suitable fundamental operators
and making use of commutation rules, and are therefore valid for any linearized metric, not
necessarily a solution of the linearized Einstein equations.

Operator identities as the ones just mentioned have many interesting applications. For exam-
ple, they lead to symmetry operators for linearized gravity via the method of adjoint operators,
see [4]. Further, expect that they will play a major role in the derivation of differential complexes
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for fields on algebraically special backgrounds, for example the complex extending the Killing
operator, cf. [25].

The black hole stability problem has provided a major motivation for the present investigation,
and we believe that the results proved here, and their consequences mentioned above, such as
the hyperbolic formulation and conservation laws for TSI, as well as construction of symmetry
operators for linearized gravity are relevant for proving stability of the Kerr black hole.

Appendix A. GHP form of some expressions

In this section we present the components of certain spinor equations with respect to a principal
null dyad in a Petrov type D spacetime. Recall that in this case, only one of the Newman-
Penrose Weyl scalars, Ψ2, is non-zero. We are using the compact GHP formalism [23] in which
the operators þ, þ

′, ð, ð′ are weighted directional derivatives along the tetrad. The computations
have been performed using the SpinFrames package [3].

We note the relation between components of the varied Weyl spinor ϑΨABCD used in this
paper and the linearized Newman-Penrose Weyl scalars (the difference is due to the variation of
the tetrad/dyad).

ϑΨ0 = Ψ̇0, ϑΨ1 = Ψ̇1 + 3Ψ2(ϑo)0, ϑΨ2 = Ψ̇2, ϑΨ3 = Ψ̇3 − 3Ψ2(ϑι)1, ϑΨ4 = Ψ̇4. (A.1)

The components of the spin-2 TME (3.14) in the source-free case take the compact form
(
(þ−3ρ− ρ̄)þ

′ −(ð−3τ − τ̄ ′)ð′ −3Ψ2

)
(κ1ϑΨ0) = 0, (A.2a)

(
(þ′ −3ρ′ − ρ̄′)þ−(ð′ −3τ ′ − τ̄)ð−3Ψ2

)
(κ1ϑΨ4) = 0. (A.2b)

The components of the complex vector field AAA′ defined in (4.3a) in the source-free case are
given by

A00′ = − 3
4
/GΨ2κ1

4ρ− 3G11′Ψ2κ1
4ρ+ 3G10′Ψ2κ1

4τ − 2κ4
1ϑΨ1τ

′ + þ(κ4
1ϑΨ2), (A.3a)

A01′ = − 3
4
/GΨ2κ1

4τ − 3G12′Ψ2κ1
4ρ+ 3G11′Ψ2κ1

4τ − 2κ4
1ϑΨ1ρ

′ + ð(κ4
1ϑΨ2), (A.3b)

A10′ =
3
4
/GΨ2κ1

4τ ′ + 3G10′Ψ2κ1
4ρ′ − 3G11′Ψ2κ1

4τ ′ + 2κ4
1ϑΨ3ρ− ð

′(κ4
1ϑΨ2), (A.3c)

A11′ =
3
4
/GΨ2κ1

4ρ′ + 3G11′Ψ2κ1
4ρ′ − 3G12′Ψ2κ1

4τ ′ + 2κ4
1ϑΨ3τ − þ

′(κ4
1ϑΨ2). (A.3d)

We also state an explicit form of the imaginary part on Kerr, since it is gauge invariant,

ImA00′ = − 3
2 iG10′Ψ2κ1

4τ − 3
2 iG01′Ψ2κ1

4τ ′ + iκ4
1ϑΨ1τ

′ − iκ̄4
1′ϑΨ1′ τ̄

′ + þ Im(κ4
1ϑΨ2), (A.4a)

ImA01′ =
3
2 iG12′Ψ2κ1

4ρ+ 3
2 iG01′Ψ2κ1

4ρ′ + iκ4
1ϑΨ1ρ

′ + iκ̄4
1′ϑΨ3′ ρ̄− i ðRe(κ4

1ϑΨ2), (A.4b)

ImA10′ = − 3
2 iG21′Ψ2κ1

4ρ− 3
2 iG10′Ψ2κ1

4ρ′ − iκ4
1ϑΨ3ρ− iκ̄4

1′ϑΨ1′ ρ̄
′ + i ð′ Re(κ4

1ϑΨ2), (A.4c)

ImA11′ =
3
2 iG21′Ψ2κ1

4τ + 3
2 iG12′Ψ2κ1

4τ ′ − iκ4
1ϑΨ3τ + iκ̄4

1′ϑΨ3′ τ̄ − þ
′ Im(κ4

1ϑΨ2). (A.4d)

The dyad components of the full covariant TSI (4.33) on a Kerr background are given by

0 = þ
′
þ
′
þ
′
þ
′(κ4

1ϑΨ0)− ð ð ð ð(κ4
1ϑΨ4)−

M
27LξϑΨ4, (A.5a)

0 =
(
ð
′(þ′ − ρ̄′)− 6ρ̄′τ̄

)
(þ′ + 2ρ̄′)(þ′ + 2ρ̄′)(κ4

1ϑΨ0)

−
(
þ(ð − τ̄ ′)− 6ρ̄τ̄ ′

)
(ð + 2τ̄ ′)(ð + 2τ̄ ′)(κ4

1ϑΨ4)

− 3iΨ̄2(ð − τ + 2τ̄ ′)ImA11′ + 3iΨ̄2(þ
′ − ρ′ + 2ρ̄′)ImA01′ , (A.5b)

0 =
(
(ð′ − τ̄ )þ

′ − 12ρ̄′τ̄
)
((ð′ + 2τ̄)(þ′ + 3ρ̄′)− 2ρ̄′τ̄)(κ4

1ϑΨ0)

−
(
(ð − τ̄ ′)þ − 12ρ̄τ̄ ′

)(
(ð + 2τ̄ ′)(þ + 3ρ̄)− 2ρ̄τ̄ ′

)
(κ4

1ϑΨ4)

+ iΨ̄2(ð
′ + 5τ̄ − τ ′)ImA01′ + iΨ̄2(ð − τ + 5τ̄ ′)ImA10′

− iΨ̄2(þ − ρ+ 5ρ̄)ImA11′ − iΨ̄2(þ
′ − ρ′ + 5ρ̄′)ImA00′ , (A.5c)

0 =
(
þ
′(ð′ − τ̄ )− 6ρ̄′τ̄

)
(ð′ + 2τ̄ )(ð′ + 2τ̄)(κ4

1ϑΨ0)

−
(
ð(þ − ρ̄)− 6ρ̄τ̄ ′

)
(þ + 2ρ̄)(þ + 2ρ̄)(κ4

1ϑΨ4)

− 3iΨ̄2(ð
′ + 2τ̄ − τ ′)ImA00′ + 3iΨ̄2(þ − ρ+ 2ρ̄)ImA10′ , (A.5d)

0 = ð
′
ð
′
ð
′
ð
′(κ4

1ϑΨ0)− þ þ þ þ(κ4
1ϑΨ4)−

M
27LξϑΨ0. (A.5e)
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Remark A.1. Let φAB be a solution to the source-free Maxwell equations and let φi, i = 0, 1, 2
be the Maxwell scalars. The spin-1 TME is given by

(
(þ−ρ− ρ̄)þ

′ −(ð−τ − τ̄ ′)ð′
)
(κ1φ0) = 0, (A.6a)

(
(þ′ −ρ′ − ρ̄′)þ−(ð′ −τ ′ − τ̄ )ð

)
(κ1φ2) = 0, (A.6b)

and the spin-1 extreme TSI are

ð
′
ð
′(κ2

1φ0) = þ þ(κ2
1φ2) (A.7a)

þ
′
þ
′(κ2

1φ0) = ð ð(κ2
1φ2). (A.7b)

For the Maxwell field, the full set of TSI in fact contains a third relation, cf. [19], which can
be written in the form

(þ ð+τ̄ ′ þ)(κ2
1φ2) = (þ′

ð
′ +τ̄ þ

′)(κ2
1φ0). (A.8)

As mentioned above, the full set of TME/TSI equations implied by the Maxwell field equation,
has the important consequence that the symmetric tensor Vab introduced in [14] is conserved.
The tensor Vab is, in contrast to the standard Maxwell stress-energy tensor, independent of the
non-radiative modes of the Maxwell field, and is therefore a suitable tool to construct dispersive
estimates for the Maxwell field on the Kerr spacetime.
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[15] T. Bäckdahl. SymManipulator, 2011-2016. http://www.xact.es/SymManipulator.
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