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Abstract

We consider the Einstein-dust equations with positive cosmologi-
cal constant A on manifolds with time slices diffeomorphic to an ori-
entable, compact 3-manifold S. It is shown that the set of standard
Cauchy data for the Einstein-A-dust equations on S contains an open
(in terms of suitable Sobolev norms) subset of data that develop into
solutions which admit at future time-like infinity a space-like confor-
mal boundary J*+ that is O if the data are of class C*° and of
correspondingly lower smoothness otherwise. As a particular case fol-
lows a strong stability result for FLRW solutions. The solutions can
conveniently be characterized in terms of their asymptotic end data
induced on J 7T, only a linear equation must be solved to construct
such data. In the case where the energy density g is everywhere pos-
itive such data can be constructed without solving any differential
equation at all.
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1 Introduction

It has been known for a while that among the solutions to Einstein’s vacuum field equa-
tions Ruu = A g, with positive cosmological constant A on manifolds with space-sections
diffeomorphic to an orientable, compact 3-manifold S there is an open (in terms of Sobolev
norms on Cauchy data) subset of solutions which are future asymptotically simple in the
sense of Penrose [I7], i.e. the solutions admit the construction of a conformal boundary
J7T at their infinite time-like future which is C® if the solutions are C>® and is of cor-
respondingly lower smoothness otherwise (see [II] for more details and references). This
property generalises to the Einstein-\ equations coupled to conformally covariant matter
field equations with trace free energy momentum tensor. In [6] this has been discussed
in detail for the Maxwell and the Yang-Mills equations, where a procedure has been laid
out which applies, possibly which some modifications in specific cases, to other such field
equations (see [I6] for a recent example).

Matter fields with energy momentum tensors which are not trace free were generally
expected to lead to difficulties in the construction of reasonably smooth conformal bound-
aries. (The emphasis here is on results about the evolution problem, we are not talking
about geometric studies near conformal boundaries which postulate properties of energy
momentum tensors convenient for their analysis). It has recently been observed, however,
that this need not be the true [10].

In the case of the Einstein-Klein-Gordon equations the conformal field equations with
suitably transformed matter field imply evolutions system which are hyperbolic, irrespec-
tive of the sign of the conformal factor, if the mass and the cosmological constants are
related by the equation m? = % A. If this condition is imposed a fairly direct calculation
shows that the equation for the rescaled scalar field becomes regular where the confor-
mal factor goes to zero. However, that the conformal equations for the geometric fields
become regular in this limit is far from immediate and, as in the case discussed in the
following, came as a surprise after various attempts to cast the singular equations into a
form which would allow one to draw conclusions about the precise asymptotic behaviour
of the solutions in the presence of singularities.

Leaving aside the questions about the significance of this particular result, the present
article is concerned with the analysis of another matter model with non-vanishing trace
of the energy momentum tensor. We study in detail the future asymptotic behaviour of
solutions to the Einstein-A-dust equations.

In a recent article HadZi¢ and Speck have shown that the FLRW solutions to the
Einstein-\-dust equations with underlying manifolds of the form R x T? are future stable,
i.e. slightly perturbed FLRW data on T? develop into solutions to the Einstein-A-dust
equations whose causal geodesics are future complete [I3]. The authors use the method
proposed in [3] to control the evolution of a general wave gauge in terms of its gauge
source functions. As emphasized in [3], it is clear that (under fairly weak smoothness
assumptions) any coordinate system can in principle be controlled in terms of its gauge
source functions and suitable initial data. But finding gauge source functions which are
useful in a specific problem is quite a delicate matter. The authors manage to identify
gauge source functions which allow them to derive estimates that give control on the long
time evolution of their solutions (see [I9] for another such case).



It is, however, quite a different question whether the gauge so established lends itself
to analyzing the asymptotic behaviour of solutions in detail and to deciding, for instance,
whether the differentiable as well as the conformal structure of the solutions admit si-
multaneously extensions of some smoothness to (future) time-like infinity as required by
asymptotic simplicity.

FLRW solutions are known to be future asymptotically simple (see section [6.2]). This
may be expected to be is just an artifact of the high symmetry requirements which imply
local conformal flatness and hypersurface orthogonality of the flow field. The present study
grew out of attempts to understand what may go wrong under more general assumptions
and what kind of obstruction to the asymptotic smoothness of the conformal structure
may possibly arise from the presence of a non-vanishing energy density p.

In the article [8] have been derived hyperbolic evolution equations from the Einstein-
dust equation in a geometric gauge based of the flow field. The following analysis may
be seen as a conformal version of this discussion. After presenting the Einstein-A-dust
equations in section 2] we derive in section [3] the conformal field equations and suitably
transformed matter field equations. It turns out that two equations of the system are
singular in the sense that there occur factors of the form Q~! on the right hand side,
where (2 is the conformal factor which is positive on the physical solution space-time
and relates the physical metric g, there to the conformal metric gu, by g, = 02 Juv-
Since things are to be arranged such that Q@ — 0 at future time-like infinity, where we
want to understand the precise nature of the solutions, there arise problems. One of the
singularities, namely the one in the transformed (geodesic) flow field equation, was to be
expected. Much more serious is a singularity in the equation for the rescaled conformal
Weyl tensor W# 5, = QLo waplg], which plays a central role in the system. The
singularities carry, however, interesting geometric information. They imply that the (so
far formally defined) set {2 = 0} can only define a smooth conformal boundary of the
solution space-time if the flow lines approach this set orthogonally. Thus, if one wants to
approach the problem in terms of estimates, one has to aim for sufficient control to be
able to define simultaneously a conformal boundary at time-like infinity, if admitted by
the solution at all, and correspondingly control the behaviour of the flow lines.

In the present article we try to exploit the conformal properties of the system in the
most direct way. In section Ml it is shown that due to the specific form of the energy
momentum tensor for dust the geodesics tangent to the flow field can be identified after
a parameter transformation with curves underlying certain conformal geodesics. Since
conformal geodesics are invariants of the conformal structure, this opens the possibility to
define a gauge which extends regular across the conformal boundary J+ = {2 = 0} if the
latter can indeed be attached in a smooth way to the solution manifold (on which > 0,
of course). It turns out that this gauge implies a certain reqularising relation which proves
useful in three different contexts. Its first important merit is to render the conformal field
equations regular.

In section [l it is shown that the conformal field equations imply a hyperbolic reduced
system of evolution equations which can make sense up to and beyond the conformal
boundary at time-like infinity (if it exists). This system is not obtained immediately. The
regularizing relation leads to a system which is hyperbolic where {2 > 0 but becomes
singular where 2 — 0. A further regularization is performed to obtain a system which is



hyperbolic independent of the sign of the conformal factor.

In section [ is derived a subsidiary system which implies that solutions to the hyper-
bolic evolution system for data that satisfy the constraints on a given Cauchy hypersurface
(with respect to the metric provided by the evolution system) will satisfy in fact the com-
plete system of conformal field equations. This closes the hyperbolic reduction argument.

To obtain complete information on the class of future asymptotically simple solutions
to the Einstein-A-dust solutions we characterize in Lemma [6.1] the possible asymptotic end
data which may be prescribed on the conformal boundary J+ = {Q = 0} (assumed to be
3-dimensional, orientable, compact) of a solution that admits the construction of such a
boundary with sufficient smoothness. As observed already in [4] in the vacuum case, the
constraints reduce on J* to a linear system of equations. Remarkably, there is a case
where the problem of solving the constraints simplifies even further. In the case where
the density p is positive everywhere certain fields can be prescribed completely freely on
J T and the rest follows by algebra and taking derivatives. There is no need to solve any
differential equation at all (but see the remarks following Lemma [6.T]).

The reduced system of evolution equations is used in section [B to derive our main
results. Being based on hyperbolic equations, a completely detailed statement of the
results should give information about Sobolev norms. Since we only use properties of
symmetric hyperbolic systems which can be found in the literature at various places and
because we are mainly interested in solutions of class C*°, we refrain from listing Sobolev
indices. We would consider these only be of interest if the weakest possible smoothness
assumptions were needed in the context of some concrete problems.

Theorem 1.1 Let S be a smooth, orientable, compact 3-manifold, assume X\ > 0, and
denote by Ay s the set of standard Cauchy data on S to the Einstein-A-dust equations
with energy density p > 0. Then

(i) There is an open (with respect to suitable Sobolev norms) subset By g of data in Ax s
which develop into solutions that admit the construction of conformal boundaries in their
infinite time-like future which are of class C*° if the data are of class C*° and of corre-
spondingly lower differentiability if the data are of lower differentiability.

(i) The solutions which develop from data in Bxs are completely parametrized by the
asymptotic end data on S (specified in Lemma[6.1]) which correspond to the data induced
on the future conformal boundaries J+ of the solutions.

The case of the Nariai solution, an explicit, geodesically complete solution to the
Einstein-A-dust equations with p = 0 that admits not even a patch of a smooth conformal
boundary (see [II]), shows that our reduced evolution system is by itself not sufficient
to ensure the existence of a smooth conformal boundary. Some extra information on the
Cauchy data is required.

Because the FLRW solutions do admit a smooth conformal future boundary one could
consider data close to FLRW data. Following instead the arguments introduced in [5] and
[6], a much larger class of suitable reference solutions (which includes the FLRW solutions)
will be constructed in section B by solving a backward Cauchy problem for the reduced
equations with asymptotic end data that are given on a 3-manifold S which in the end



will represent the future conformal boundary J+ = {Q = 0} of the physical space-time
defined on the set {Q > 0}.

In a second step we consider the ‘physical’ standard Cauchy data that are induced
by one of these solutions on a ‘physical’ Cauchy hypersurface. It is shown that under
sufficiently small perturbations of these data the resulting solutions are strongly stable in
the sense that the smooth extensibility of their conformal structures at future time-like
infinity is preserved. This makes use of the fact that a future asymptotically simple solution
admits a conformal representation that extends as a smooth solution to the conformal
Einstein-A-dust equations beyond the conformal boundary into a domain where Q < 0.
The strong stability result follows then as a consequence of the well known Cauchy stability
property of hyperbolic equations and the fact that the equation themselves ensure that
the set of points where 2 = 0 defines a smooth space-like hypersurface.

Though they lead to the same sets of solutions in the end, it is of interest to distinguish
the two different ways of looking at the solutions. In the construction of the reference solu-
tions some features of asymptotic simplicity are built in from the start by using asymptotic
end data. In the stability result, however, asymptotic simplicity for the perturbed solution
is deduced as a consequence of the conformal properties of the equations and the reference
solution.

In contrast to the approach of [13], which concentrates on deriving suitable estimates,
the emphasis is put in this article on the analysis of the field equations and the explicit
use of their conformal properties. While the conformal equations may lead to serious dif-
ficulties when the conformal structure of the solutions is intrinsically not well behaved at
time-like infinity, they give results which are sharp and complete if the conformal struc-
ture extends smoothly and only the standard energy estimates for symmetric hyperbolic
systems are needed.

Moreover, the information obtained on the equations is in that case of considerable
practical interest. The reduced evolution system provides the possibility to calculate
numerically - on a finite grid - future complete solutions to Einstein’s field equations,
including the details of their asymptotic behaviour. In the Einstein-\ case this has been
successfully demonstrated by the work of Beyer (see [2] and the references given there).

Besides the one analysed in [10] this is the second example that illustrates that even in
cases in which the energy momentum tensor is not trace free the conformal field equations
with A > 0 and suitably rescaled matter fields can imply hyperbolic evolution equations
that are well defined up to and beyond the future time-like infinity of the physical solutions.
The two cases are quite different but the results suggest that the analysis of the asymptotic
conformal structure in the presence of matter fields can be more useful than expected.

The possibility to extend solutions to the conformal field equations into a domain in
which © < 0, where they define another solution to the original equations (see section ),
has been used here only as a technical device in the stability argument leading to Theorem
[LIl Whether it is of any significance in the context of Penrose’s proposal of conformal
cyclic cosmologies [18] is a question not discussed here.



2 The Einstein-\-dust system

The Einstein-Euler system with cosmological constant A consists of the Einstein equations

1. A .
R#y - 5 Rg#y + Ag,UJ/ - K:T,U,l/7 (2]‘)

for a Lorentz metric g, on a four-dimensional manifold M with an energy momentum
tensor of a simple ideal fluid

Tow = (p+D) U Uy + P G- (2.2)

Here U is the future directed time-like flow vector field, normalized so that U P Ur = -1,
and p and p denote the total energy density and the pressure as measured by an observer
moving with the fluid. The equations require the relation Y T;w = 0, which is equivalent
to the system consisting of the equations

(p+p) 0"V, Uy + {0, 0"V, + Vi } p =0, (2.3)

UrN L p+ (p+p)V, U* =0. (2.4)

These equations must be implemented by an equation of state.

In the following we set x = 1, assume A > 0, and consider solutions on manifolds
diffeomorphic to M = R x S where S is a compact (without boundary), orientable 3-
manifold which specifies the topology of the time slices. We will be interested in the case
where p = 0 throughout, referred to as pressure free matter or, shortly, as dust. It is

supposed that p does not vanish identically and satisfies
p>0 on M. (2.5)

Equation (Z3) reduces then to p U*V, U” = 0. This will be satisfied without condition
on U" on sets where p = 0 and implies that the flow is geodesic where p # 0. We require
U* to be geodesic everywhere. The system to be considered consists then of (2.1]),

Ty =p U, U, (2.6)
Urv, U =0, U, 0" =1, (2.7)
V. (p U*) = 0. (2.8)

Let S be a hypersurface in M which is space-like for g,,, and denote by n#* the future
directed normal of $ normalized by n, 7" = —1. Let coordinates z* be given near S so that
S = {2 = 0} and the 2%, a, B = 1,2, 3, are local coordinates on S. Denote by fzag, Rag
the first and the second fundamental form induced on S by 9w and by IA"LH V=g, +n,n"

the orthogonal projector onto the tangent spaces of S. Equations (Z7), (2.8) are evolution
equations for U* and p. Equation (ZI)) induces with (28] on S the constraints

0= R[A] — frap 8% 4 (Fa ®)? — 21 — 201 2" T,
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0=Dghia® —Dyip? —i'hy” Ty

Setting a = —n# U# >0, 4, = B# v Ul,, so that

U, =an, +1, with —1=—a?+as49” where aga®=hr"0s4a.,,
the constraints take the form
0= R[A] — fap 8% + (ha ©)? =21 =25 (1 + 04 0%), (2.9)

0=Dgha® —Dakp?®+p\/1+1a50° . (2.10)

It has been shown in [§] how to derive from equations 1)), 206), 1), 23J) a
symmetric hyperbolic evolution system of equations for all unknowns in a gauge based on
the flow vector field U. Given A > 0 and a sufliciently smooth initial data set

(S, hag, Fap, 0%, p), (2.11)

satisfying (2Z9), 2I0) with hep a Riemannian metric and p > 0, the evolution system
can be used to construct a globally hyperbolic solution (M s Guws U " p) to the Einstein-
dust equations with cosmological constant A into which the initial data set is isometrically
embedded so that S represents after an identification a space-like Cauchy hypersurface for
(M, Gy ). The manifold M will then be ruled by the geodesics tangent to U*. The ODE’s

0%, p+ 5%, 0 =0,

along the geodesics tangent to U* ensure that p > 0 or = 0 along a given geodesic,
depending on whether this relation is satisfied at the point where the geodesic intersects
S. Thus p > 0 will hold on M.

For smooth initial data the evolution system given in [§] provides a smooth solution
in coordinates z° = t, 2 so that < dx“,U >=0, < dt,U > = 1, whence U= O¢. The
initial hypersurfac is given by S = {t = t.} for some fixed value t,, the metric is of the
form

§=—(adt)? + hag (0% dt + dz®) (0P dt + dz®) on M, (2.12)

the future directed g-unit normal to S is given by

1
At = — (6" —a*) with shift vector field 4* so that 4% =0, (2.13)
a

and the lapse function a satisfies —1 = g(U, U) = —a® + hop 0> aB. If U is hypersurface
orthogonal we can assume that a = 1, 4 = 0 and the coordinates define a Gauss system.
This will not necessarily be assumed in this article.

The questions to be analyzed in the following asks whether there exist a reasonably
large set of data for which the solutions can be extended to become future complete,
so that t takes values in [t., o0, and whether these solutions allow us to give a sharp
and detailed description of the asymptotic behaviour of the conformal structure in the
expanding direction, where ¢ — co.



3 The metric conformal field equations

Let Q denote a positive conformal factor on M and G = Q% g, the rescaled metric. We
shall in the following consider the tensor fields

1 1 1 1
Q7 S = Z V,U.V#Q + ﬂ QR[g]a L,ul/ = 5 (R#V[g] - 6 R[g] gl“’> ’ (31)
WHpx = Q71 C* ualgl, (3.2)

where V,, denotes the Levi-Civita connection of g and the last two fields denote the
Schouten and the rescaled conformal Weyl tensor of g, respectively. Moreover, we shall
consider the conformal matter fields

U, =QU,, p=9073p
The vector fields U* = g"* U,, and Ur = g U, are then related by
Ut =Q 10" sothat g(U,U)=g(U,U)=—1.

The tensor fields above satisty the system of conformal field equations (see [6], [10])

1 -
6Qs—3VnQV”Q—/\:—ZT, (3.3)
Lo
VuVQ+ QL — 89 = 3 QT (3.4)
V54 VIQL, = 2 VIQT! L g 7 3.5
ps+ Ty T o VR (3.5)
Vo Lag = VaLyy =V, QWH 5 =2V, Ly, (3.6)
Vi W A = 207! @[V IA/A]U. (3.7)
The right hand sides are determined by the trace
T= g™ Anu =—p= -0 P (3.8)
and the trace free part
. PN, 1. 1
Th, =0 UnUM—i—ZgW =Qp UnUu"’ZgW , (3.9)

of the energy momentum tensor (2.6) and the physical Schouten tensor ZALW, which takes
with our energy momentum tensor, the field equations, and the rescaled fields the form

. 1 1, ~ - 1
LHV:_(A"")\)QMU"F_ AUHUIJ:_

. 1 1

D
[\
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Taking into account the transformation law of the connection coefficients under con-
formal rescaling this gives

2 @[VLMW = @[,j[) UM UU +

Vih Gxn + 6 (VpUx Uy + UV Uy)

Wl =

1
=0 (p (V[U U)\] U, + U[)\ VU] Un) + V[,,p U)\] U, + 3 V[Up g)\]n>

+0 (Vi gapy + 2V Q Uy Uy + Uy gayn 97° V2QUs)
Finally, the geodesic equation (27)) translates into

1
VuU" = 5 (~g(U.U) g o + U U,) V7. (3.11)

while equation (2.8)) for the density p gives

Vup+pV,UF =0. (3.12)

We express the equations in terms of a frame field e = e* Opu, k = 0,1,2,3, which
has a time-like vector field given by
€y = U7

and which is orthonormal, so that g;x = g(e;, ex) = njx = diag(—1,1,1,1). The space-like
frame fields are given by the e,, where a,b,c = 1,2, 3 denote spatial indices to which the
summation convention applies. The metric is given by

where 7 denotes the field of 1-forms dual to ex so that their coefficients in the coordinates
x# satisfy o7 ety = 67 .
The connection coefficients, defined by V er = Ve, e, =T'; by e, satisfy D = —Tjm

with T'j;, =T & gii, because Vigjr = 0. The covariant derivative of a tensor field X* ,,
given in the frame by X* ;, takes the form

VX' =X pet e+ T X, Ty 5 X
For the covariant version of U, i.e. U; = —4° ;, equation (BII) implies the form
ViU =T Ol =40 k 0! (VlQ + U; Vg Q) + 6% 5° 1 Xab- (3.13)

If U is hypersurface orthogonal and if S were chosen to be orthogonal to U so that the
vector fields e, define an orthonormal frame on S , the field x4 would represent the second
fundamental form induced by g on the slice S whence Xab = X(ab)- In general hypersurface
orthogonality will not be assumed here. We shall write g% xap = Xa %
The metric coefficients and the connection coefficients satisfy the first structural equa-
tions
e“iy,,e”j—e“jyl,e”i:(iji—Fikj)e“k, (314)

9



which ensures the connection to be torsion free, and the second structural equations
et e =Tk’ j et 1+ 20 P Ty — 20 P g Tyt (3.15)

=QW' i +2{g" n Li; + L' g5}

which relates the coefficients (and thus the metric g,,) to the unknowns in the conformal
field equations. The conformal field equations read now

695—3V¢QViQ—)\:iﬂsp, (3.16)

1 1
V; Vil + Qij—sgjk:§Q2p(UjUk+Zgjk>, (3.17)

. 1 . 1 1 1
Vis+V'QL;y = §valﬂ (UiUk + Zgik) + ngka—i- ﬂfkap, (3.18)

Vi Lij — Vi Ly — ViQ Wi (3.19)
=0 (p (Vi UygUj + Uy VigUj) + Ve Uy U + % Vikp gz]j>
+0 (Vi gy + 2 VeQ Uy Uj + U gy 97 VpQUy)
Vi W = (3.20)

1 1
p (Vi UyU; +Up Vi Us) + Ve Uy Uj + 3 Vikp g5 + a’ Zjl

with
Lkl = V[kﬂ gy +2 V[kﬂ Ul] U; + U[k 915 gPIvV,QU,.

The matter equations are given by

1 .
VyU* = Q (g% + URU;) ViQ, (3.21)
Vup+pxa® =0. (3.22)

Equations (3.14) to (3:22)) establish a system of differential equations for the unknowns
e“k; Fijk7 Qv S, ij; Wijklv Ukv Ps (323)

which is (apart from subtleties which may arise in cases of low differentiability) equivalent

to the system (ZI)), (Z6]), (7)), (Z8) in domains where £ > 0.

If the system is to be used to solve Cauchy problems with data given on a space-
like hypersurface S, one has to restrict the available gauge freedom. We shall follow the
procedure of [6] and [I0], where the conformal freedom is removed be considering the Ricci

10



scalar R = R]g] in a suitable neighborhood of S as a prescribed function of the space-time
coordinates and by prescribing suitable initial data for 2 and V,;{2 on S. The coordinates
7 =2° and 2 are chosen near S so that 7 = 7, on S and < Uydx® >=0, <U,dr >=1,
whence

Ut =ety=6"y nearS.

Apart from a parameter transformation ¢ = ¢(7) these coordinates coincide with the ones
considered in ([ZI2)). Precise conditions on the vector fields e, orthogonal to U will be
stated later.

Our main interest is the question whether there exist solutions to the system above
on the domain where > 0 which admit a meaningful (i.e. sufficiently smooth) limit to
a boundary where Q — 0. In that case we write {1 = 0} = J T, and refer to this set
as the future conformal boundary of the solution. By equation (3.I6) the limit of V' Q
will then define a time-like normal to the set J T so that the latter will define a space-like
hypersurface. It represents (future) time-like and null infinity for the ‘physical’ space-time
on which Q > 0.

There arises an obvious problem with the differential system above. The right hand
sides of equations [B20) and(@21]) are formally singular where 0 — 0. This problem will
be analyzed in the next section. Here we just point out its geometric nature.

If the fields entering equation ([B.21I]) have limits as 2 — 0 the term in brackets on the
right hand side of [3:21]) defines a projection operator with kernel generated by the unit
vector U. The right hand side of (8:21]) can only admit a limit as  — 0 if the gradient of
Q is in the kernel of that operator and thus proportional to U, whence

The solutions can only admit a reasonably smooth conformal boundary
JT if the geodesics generated by U approach J+ orthogonally.

Remarkably, the singularity of equation ([B20) is of a similar geometric nature. If we
want to keep the freedom to have non-vanishing conformal densities p on J 7, the right
hand side of (320) can only assume a limit if Z;;; — 0 at J*. Since this implies that
Ul Zjp = =V Uy — 0, which implies in turn that Zj5 — 0, the conclusion above
follows again.

4 The regularizing relation

A conformal geodesic in a given space-time (M, §) is a curve /(o) together with a 1-form
field b, (o) which satisfy the system of conformal geodesic equations

Vv VE 4 Sb)nH,VAVP =0,
N 1 R
Vyb, — 3 b S(O)x ", V> — Ly, V* =0,

where S(b)x* , = 07" b,+6," bx—Grp §" by, and VH# (o) = % denotes the tangent vector
of the curve. Sometimes it will be convenient to write these equations in the form

VvV +2<bV>V—-gV,V)b=0, (4.1)

11



A 1 ~
Vb= <b,V>bt 5§00V - L(V..) =0, (4.2)

where the index position should be clear from the above.

For a conformal geodesic the initial data at a given point consist of its tangent vector
and its 1-form at that point. On a given space-time there exist thus more conformal
geodesics than metric geodesics. Moreover, there exists in general no particular relation
between conformal and metric geodesics. The problem of interest here is, however, very
special in this respect.

Lemma 4.1 Let (M, §) be a solution to the Einstein-dust system (2.1)), (2.0)), (2.7), (2.9).
Then the geodesics tangential to the vector field U coincide after a reparameterization with
the curves underlying certain conformal geodesics.
Proof: Suppose z#(t) is a %—geodesic with % = Ur(z(t)) and (2#(0), by, (0)) a conformal
geodesics with V# (o) = ‘flig. Then there exists a parameter transformation ¢t = t(o) so
that 4£ > 0 and 2#(0) = z#(t(0)) if and only if
—1 = : o dt . -2
V(o) =w(o)  UM(Z(t(o))) with w™ = i 0, GV, V)= —w™=. (4.3)
o

For x#(o) to be up to a reparametrization a geodesic we need to have a relation
by =V, (4.4)
with some function o = a(o) so that [{@I]) reads
VyVE +ag(V,V) Ve =0. (4.5)
It follows then that 2w™3 Vy w = Vy (§(V, V) = —2aw™*, whence
a=-wVyw. (4.6)
Basic for our result is that relations (3.I0) and (£.3) give along z* (o)

VY Ly, = é A=2p)V,, with p=p@"(t(0))).

Inserting this and (@) into ([@2) and observing (L)), (48] gives the equation

which provides with the relation
dt

do
a system of ODE’s for w = w(o) and t = (o) along z*(c) = Z"(t(0))). Prescribing
arbitrary initial data t|,, = t., w|,., and 2|, with w, > 0 at the point z(0,) = Z#(t.))
it can be solved. A straight forward calculation then shows that

. é (A7)

V(o) = %U”(f(t(d)% bu(o) = ——— U (z(t(o)),

12



do indeed satisfy equations (A1) and (£.2). O

It will later be important to note that the freedom to prescribe the initial data for w gives
the freedom to prescribe « arbitrarily at a given point.

Conformal geodesics are of interest in the present context because the curves un-
derlying conformal geodesics are conformal invariants of a given conformal structure: If
G = Q% g, where Q is a conformal factor as considered above and (o), bx(c) satisfy
the conformal geodesic equations with respect to g, , then z* (o), f, (o) with

fV(U) = bU(U) - Q_lvVQ|m(cr)u (48)
satisfy the conformal geodesics equations

VoVA42<fV>V—g(V,V)f=0, (4.9)

va—<f,V>f+%g(f,f)V—L(V,.):0, (4.10)

with respect to g,.,, where V and L denote the Levi-Civita connection and the Schouten
tensor of g, (for this and further properties of conformal geodesics we refer to [7], [9]). If
g(V,V) = -2 with 6 > 0 at a given point, equation [{3J) gives

Vyb=0<V,f>,

which shows that @ will stay positive and z# (o) will be time-like as long as V and f remain
sufficiently smooth. Equations [@3), [EI0) do not see the relation g, = Q% §,,. Thus,

if (M ,§) admits a smooth conformal boundary J 7, one can arrange time-like conformal
geodesics to extend smoothly to J+ with finite and non-vanishing tangent vector.

In the following we shall assume V' to be a conformal geodesic vector field which is
related, as in (£3)), to the g-geodesic vector field U by

Vi =w U (4.11)
With the notation above we have then
OVH =UH =Q L UH,

and thus
w

925, Vol =0<U,f>. (4.12)

Since 6 stays smooth and positive if U crosses the conformal boundary this has the re-

markable consequence, used already in [7], that w goes to zero precisely where ) does.
In terms of U equation (£9) takes the form

VoU+ < U, f>U—g(UU)f=0. (4.13)

Replacing in ([@I0) the field V by U = 6V renders that equation in the form

VUf—<U,f>f+%g(f,f)U—L(U,.)=O. (4.14)
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This version of the conformal geodesic equations will be assumed from now on. The only
effect of the transition is a reparametrization of z# (o) — z*(7), f,(c) — f,(7) where o
is replaced by a function o(7) so that

dr 1
— = 4.15
do  0(z(0)) (4.15)
In the following the parameter 7 will be used.
With ([@I2)) and the relations obtained in the proof of Lemma 1] we get
fu=0b,—Q'V,0=—-wVyw §, V' -0 'V,Q
=—(0Q)0 ' Vy(0Q)Q 2?9, 07U -QV,Q
=—0'Vpo+Q Ve U, - Q1 V,.Q,
=—(<Uf>+Q 'V U, -Q'V,0,
and thus the regqularising relation
Vu=—-(VuQ+Q<Uf>U,—Qfu. (4.16)

This relation will play a critical role. It will be used later to obtain a hyperbolic system
of evolution equations which extends in a regular way to the set {2 = 0} and it will be
used to set up a subsidiary system to show that constraints and gauge conditions are
preserved by the evolution system. Here it is used to remove the singularities in equations
B320) and B2I). In fact, replacing in Z,j; the term V;Q by the right hand side of (£.10)),
we get (320) in the form

. 1
ViW i = Viep Uy Uj + 3 Viep gu (4.17)
+0 (Vi UnU; + Up Vi Us = fie g5 — 2 foe Uy U = Uppe gy U* i)
Using (£10) to replace Vi on the right hand side of (3.21)), the equation takes the form
VoU" + fF+ U U, f1 =0, (4.18)
which is just (II3)) again. Equation (8I3) is then replaced by the formally regular version
ViU =T3% = (6% fo + 6"k Xab) 6" 1- (4.19)
Finally we note that given sufficient asymptotic smoothness and an arrangement such
that Q(z(7)) — 0 for some finite value of 7, the relation

dt 1
dr — Q(z(r))’ (420)

which follows from (@), (£12), @I5) implies with B3] that t — oo as Q(z(7)) — 0.
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5 The hyperbolic reduced equations

To extract from our equations a hyperbolic system we need to complete the gauge con-
ditions for the g-orthonormal frame field ey satisfying eg = U. The reduction procedure
of the Einstein-dust system in [8] employs a frame that is g-parallely transported in the
direction of U. Since the field U is not geodesic with respect to g this cannot be done
here. We use instead a frame whose vector fields X satisfy the Fermi transport law

0=FyX =VyX —g(X,VyU)U + g(X,U) VU,

which has the properties: FyU = 0 and if Fy X = 0, FyY = 0 then Vy(g(X,Y)) = 0.

On a given space-like hypersurface transverse to the flow line of U we thus choose
smooth fields ey with e = U such that g;x = g(ej,ex) = n;x and extend the e, away
from the hypersurface by the requirement that Fye, = 0. The smooth orthonormal frame
field so obtained is then closely related to the frame considered in [§]. In fact, if é is a
g-orthonormal frame such that ég = U and @Oék =0, then e, = Q7 16, is a Juv = 0?2 Juv-
orthonormal frame with eg = U and Fye, = 0.

As a consequence of relation Frrep, = 0 the connection coefficients satisfy

To%, =0. (5.1)

The transport equation for the flow field U is given by [@I3). The coefficients U¥ = et =
O o have been fixed by our choice of coordinates, however, and equation (£.I8)) reduces to
the relation

To%o=—f"=—g"f, resp. Io°,=—fa, (5.2)

between the connection coefficients and the acceleration of U. The remaining not neces-
sarily vanishing connection coeflicients are then given by

r,’. and I',°, =V,U, = 9(Ve,eo,ep) = Xap resp. [y b0 =Xa? = Xac 9. (5.3)

In the case in which U resp. U is hypersurface orthogonal, the field y,; is symmetric and
represents the second fundamental form while the T', ® . are the connection coefficients of
the intrinsic connection induced on the hypersurfaces orthogonal to U in the frame e,.

We shall now derive the reduced equations for the remaining frame and connection
coefficients. With our gauge conditions and the connection coefficients above the first
structural equations ([BI4]) induce the evolution equations

e#a,OZ_fa&uO_Xabe#ba (54)

for the fields e* .
The second structural equations [315) induce the evolution equations

e 0="F "%b— X fo = X Ta®p + QW 400 — 9% Lop + L 0 geb, (5.5)

Xab,0 + Dafo = fa fo — Xa  Xeb — Q2 Wovoa + Lab — Loo Jabs (5.6)

for I'. *y and xg4p, where we set

Dafb - fb,,ue'ua_rlacbfc-
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No equation is implied for I'g?, = —f, by 8I5). Such an equation is provided, however,
by @I14), which takes in our gauge the explicit form

fo.o= =3 Ji £ + Loo, (57)

fa,0 = Loa- (5.8)

At this stage arises a problem. We are aiming for a system that is symmetric hyper-
bolic. The principal part of the coupled system

Xab,O"’Dafb:---, fay():...,

does not satisfy the required symmetry condition. One might think of proceeding as
follows. The structural equations (B15) imply after a contraction an analogue of Codacci’s
equation, which takes with the convention D¢ Xap = Xap,p€” c — e d. Xdb — e d, Xad the
form

DaXab _Db(Xaa) = ey

(where the index position in the first term has to be respected because X is not necessarily
symmetric). By adding a suitable multiple of this equation to the second of the equations
above one could hope to obtain a symmetric system. A careful analysis shows, however,
that this does not work. We skip the details.

Help is again provided by (@I6]). By this relation the field

Ne=ViQQ+ (VuQ+Q < U, f>)U+Q f,
vanishes in our gauge. While Ny = N, U¥ = 0 identically, the equation N, = 0 with
No =Q fa + Val,
has non-trivial content. The relation
ViN,=V;ViQ+V;(VuQ+Q<Uf> U
+HVu+Q < U, f>) VU +V; Q fi + QV; fi,

implies in our gauge
VaNoe = No fy =Va Vi Q+(VuQ+Q < U, f>)Xab — QL fa fo + QVafo
:vavbﬂ+(vUQ+Q<U7f >)Xab_Qfafb+Q(Dafb_Xabe)-
=VaV Q4+ Vuldxa — Qfa fo +QDafs,
which gives with (BIT)
1
Va Ny — Na fo = Vo xab + 5gab + Q2 (Da fo = fa fo — Lar + 3 QP Gab)- (5.9)

Solving the equation V, fi, — N, fp = 0 for D, f; and using the resulting expression to
replace that term in the evolution equation for y,;, gives the latter in the form

Xab,0 — 27 (VU Xab + 5 9ab) = —Xa © Xeb — 2 Woaos — Loo Gab- (5.10)
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With the reduced equations obtained so far and the ones that follow below this gives again
a symmetric hyperbolic system where € # 0.

Let us assume that the solution admits a smooth conformal boundary J+ = {Q = 0}.
To obtain a system which extends in a regular fashion to J ' we recall that this would
require that eg = U approaches J T orthogonally. With (3I8]) this would imply that

Vol 5 —v <0 as Q—0, where v= —%,
and thus VyQ < 0 also in a neighborhood of JT. In the discussion of the conformal
constraints on J 7T in the next section we shall see that the conformal gauge can be chosen
such that s and ., vanish at J 7. If data on a ‘physical’ initial hypersurface are evolved
in the direction of J7 it is, however, difficult to decide how the conformal gauge must be
chosen such that these fields will vanish at J. This suggests to introduce regularizing
unknowns which are derived from fields which go to zero at J 7 in any conformal gauge.
Such unknowns are suggested by the equation V, fi, — N, fp = 0. In fact, the fields

< :Xab_%gachc
ab = Q ;

satisfy for Q # 0 and VyQ # 0 by (&9)

Vi xc€+3s

; —

(5.11)

Cab = _(VUQ)_I (Da fb - fafb — Lap — % (Dcfc - foc - Lcc)gab) ’ (512)

and 3
§:_Dafa+fafa+Laa_§Qpa (513)

and can thus be expected to extend smoothly to J*. The original unknown will be
recovered from the new ones by

1 _
Xab = Qap + 3 (Vo)™ (2€ = 35) gas, (5.14)
which will certainly be well defined on neighbourhoods of J+ where Vi Q # 0. This will
suffice for our purpose because we can use equation (B.I0) where Q # 0.

The equations we have obtained so far imply equations for the unknowns (BI1) that
are regular where Vi Q # 0. Indeed, a direct calculation gives with (B.I0) the equation

G0 =~ (G G~ 5 € o gun) — 2 (V) ™ (U6~ 35) G — Wous- (5.15)
From (3I7) follows
Qoo —T0%0VaQ =VoVoQ=—-Q Lo — s+ g 02 p,
and thus with 0 = N, = Q f, + Va0

3
Q,OO:Qfafa_QLoo—S+§Q2p.
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Equation [BI8) gives with 822]) and N, =0

1 1
50=VuQLoo+Qf*Lao— ZvaUQ— ﬂpmx.

With these two equations relation (5I0) implies
-1 1 u 1
§o= (Vo)™ (26 -35) —§§+faf —Loo-i-ZpQ (5.16)

3
~VuQ Q CeaC™+3 f* Lao — 1 p V.

This completes the evolution system for the metric and the connection coefficients.
To deal with equations of first order we introduce

S = ViQ,
as an unknown and use ([BI7) to get the evolution equations

Vo2 = Xy, (5.17)

1 1
Vozk:—QLOk-I—Sgok-l—§Q2p<UQUk+ZQOk). (5.18)

From (BI8) we get

) 1 ) 1 1 1
VOS = —VlQLiO = §valﬂ (UZUO‘F Zgw) + ngVOQ‘F ﬂQ2VQp (519)

As mentioned above, the Ricci scalar R = R[g] of g, will play the role of a conformal
gauge source function and thus be prescribed as an explicit function of the coordinates
near the initial hypersurface. Because of the relation

|
~Loo+ g Loy =L;7 = G R, (5.20)

it suffices to derive an evolution system for the components Lg,, Lqp, a,b = 1,2, 3, of the
Schouten tensor. To simplify the equations we set

Kj =V QW' i (5.21)

1
+0 (p (Vi UgU; +Up Vi Us) + Ve Uy U + 3 Vikp gz]j>

+o (Ve g + 2V Q Ug Uj + Up g5 97 V2 U,),
so that BI9) takes the form

Vi Llj -V ij = Kjkl-
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It implies by contraction
1 .
Vo Lio — g% Vi Lic = 6 ViR+ K7 j.

These equations are used to define the evolution system

1 _
VOLOQ_thvaac: EvaR+KJja7 a:172737 (522)
VoLaa —VaLos = KaOau a=1,2,3, (523)
2V Lay — Vg Loy — Vi Log :KaOb+Kb0au aub: 172737a7éb' (524)

for the set of unknowns
Lo1, Lo2, Lo3, Lii, Lia, Li3, L2z, Loz, Las.

For given right hand sides the system will then be symmetric hyperbolic on a neighborhood
of an initial hypersurface on which eff = 6*( and on which e, is sufficiently small.
Moreover, we find with our gauge conditions

. 1
K7 ja = _§p(Qfa +VaQ)a

) 1 1
Kooy = ViQW" 40 + 3 Q (pra + 3 VUpgab> )

and thus the important fact that on the right hand sides of the evolution system above
only that derivative of p occurs which can be removed by using the equation (322, i.e.

Vup+px.®=0. (5.25)

This equation is assumed, of course, to be part of the reduced system.

The following extraction of an evolution system for the rescaled conformal Weyl ten-
sor from equation (fI7) is close to the procedure to obtain evolution equations for the
conformal Weyl tensor discussed in [8], [12], to which we refer for more details. Let

Wy =gl x + U Uy, V=g +2U07 Uy,

denote the projection operator which maps the tangent spaces onto their subspaces U+
orthogonal to U and the reflection operator which maps U onto —U and induces the
identity on U+t and consider the totally antisymmetric tensor densities

€ijkl = €[ijkl] with €p123 =1 and €kl = U’ €ijkl-
Further, define the U-electric part wj; and the U-magnetic part w;l of W' ji; by setting

) 1 )
wj; = Wipkg U WP ;U b, wh = 3 Wipmn €™ kg U BP ;U b4,

so that these symmetric trace free fields are given in our gauge essentially by their ‘spatial’
components wqp and w,.
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It will be convenient to write equation (£.I7) in the form Fji; = 0 with
. 1
Fiy = Vi W' j — Vip UpUj — 3 Vikp 91 (5.26)

=0 (Ve UgU;j + Up Vg Us = fie 95 — 2 fi Un U; — Upe gy U* fi).

Inserting the representation
Wijt = 2 (Lip wyy — Lip wys — U wpy, € 5 — U wjy, € w),

of the rescaled conformal Weyl tensor into the equations

1
0=Pj=—Fpqh? (U R + 3 g A g BP 5 U™ 4, (5.27)

1
0=0Q; = —5 Frpg K™ (i €5y 7, (5.28)
the latter take the explicit form

Wab, 0 + D, w;(b €a) ed = X(a ¢ Wy)ce +2 Xc (a Wh)e — 2 X “ Wap (529)
c c 1 c
_habx dwcd —2ac Wd (b €b) ¢ E P (3 X(ab) — hab Xe )7

Wiy, 0 = Dewagp €a) “ = X (a Wiy — Xe “ Wiy (5.30)

+2acwq(q ) “ 4 Xed Wef €@ &) v,

where we set, as before,
D = g -,
a Wbe = Whe, u € a a bWdc a cWhd,

ete. (The slight differences with the analogues equations in [8], [I2] result from the use
of the relation Ly wi; = wij 0 + 2 x( kwk)j for wqp and w,.) For given right hand side
equations (£.29) and (5.30) represent a symmetric hyperbolic system for wg, and w, if
it is ignored that these fields are trace free. Their trace-freeness will be taken care of by
the construction of the initial data and then be preserved by the equations. Again it is
important that no derivatives of the field p occur on the right hand sides.

If on the right hand sides the field V{2 is replaced by Xk, Vop is removed by using
BE28), xab is replaced by ([BI4]), and Lgg is removed where it occurs (also in expressions
like Vo Loy = Lop, pe” o — Ta®0 Ly — Do ¥y Lox) by using (520), then equations (5.4),
(B30) represent, irrespectively of the sign of €2, for suitably chosen initial data a quasi-
linear symmetric hyperbolic evolution system for the unknowns

euaa Fcabu fka Caba 57 Qa Eku S, L0a7 Labu P, Wab, w;bu

where Vo # 0. Where © # 0 such an evolution system can be obtained by replacing
Cap and & by xap and using directly equation (EI0). The characteristics of the systems so
obtained are time-like or null with respect to the solution metric, i.e. the metric g, that
satisfies g, e j € = njk.
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6 Asymptotic end data

In section [§ we shall discuss the natural question how initial data for the reduced field
equations are derived from solutions to the constraints (2.9, (2.10]) induced by the Einstein-
A-dust system on ‘physical’ initial hypersurfaces. The nature of the argument employed
in [§] suggests, however, to consider first asymptotic data.

For solutions to Einstein’s field equations with a positive cosmological constant which
admit a smooth conformal boundary J 7 it has been observed in the vacuum case [4], in the
case of matter models involving conformally covariant matter models with §#* T, = 0 [6],
and also in the case of a matter model with gH* T;w # 0 [I0] that the problem of providing
initial data simplifies considerably if solutions to the constraints are constructed on that
boundary. There is no need any longer to consider non-linear elliptic equations. Assuming
that the solutions admit a smooth conformal boundary J+ = {Q = 0}, it will be shown
in this section that the constraints induced on J* by the conformal equations in the
FEinstein-dust case with a positive cosmological constant lead to the same simplification.
Moreover, in the particular case where p > 0 on J* they simplify even further. The
solutions to the conformal Einstein-dust constraints can then in principle be constructed
without solving any differential equation at all.

To construct the asymptotic end data on a 3-manifold which will later acquire the
status of a smooth conformal boundary, let S be a smooth, orientable, compact (though
the latter is not really needed in the following discussion) 3-manifold. Assume that it
represents a smooth conformal boundary J T of an Einstein dust solution with cosmological
constant A > 0. The conformal constraints induced on it must then be considered with
an induced metric which is Riemannian and a conformal factor 2 which vanishes on S.
As seen earlier, the future directed conformal flow field U must be orthogonal to S. The
conformal field equations will be considered in a frame ex, £ = 0,1,2,3, on S so that
eo = U and the e,, a = 1,2, 3, represent a frame on S for the induced metric

hab = gab = g(eq, ep) = diag(1,1,1),

on S. The connection coefficients defined by g in the frame ej, are given again by Vie; =
Tr'je;. As before b/, = g; ¥ + U; U* denotes the orthogonal projector onto S. By
assumption we have > 0 in the past and < 0 in the future of S and thus e¢(€2) < 0 on
S. Because eg is orthogonal to S the field

Xab = Faob = g(veanaeb)u

represents the second fundamental form induced on S and is thus symmetric, while the
T, Y. define the connection coefficients on S in the frame e, of the Levi-Civita connection
D defined by the intrinsic metric hgp.

The electric part wj; = Wipkq UrUk he j b9y of the rescaled conformal Weyl tensor is
then represented by wa, = Woeor and w), = %WOacd €, °® represents its magnetic part
w;fl = % Wipmn €™ kq Uik h? ; h1;, where €5, and €j;; are defined as before.

With these assumptions equation ([B.I6]) reduces to the condition

Vol=-v, V'Q=v on S, where v=4/\/3>0. (6.1)
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Equation (3I7) reduces on S to V; V;Q = sg;;. The only non-trivial condition implied
by this relation is a restriction on the second fundamental form

VXab=She, on S. (6.2)
Equation (BI8) implies the constraint
Vos+vLoge=0 on S. (6.3)

Under the conformal gauge transformation ¢ — g = 6%2¢, @ — Q = 6Q with smooth
6 > 0 the function s transforms as s — 5 = 0 s+ g?° V,Q V, 0. This shows that for given
6 > 0 on S the derivative V0 can be determined on S such that 5 coincides on S with
any prescribed function. The function s could be carried along as a free function in the
following equations but for simplicity the choice that

S = 0, Xab = O, VZ VJQ = O, Loa = LaO =0 on S, (64)

will be assumed, which still leaves the freedom to rescale the metric on S. It should be
observed, however, that the gauge above may not be satisfied if a solution is evolved into
S from the domain where 2 > 0. In that case the more general relations like ([6.2]) and
([63) must be considered.

Because the conformal Weyl tensor Q W j;; vanishes on S, the curvature tensor of
g is determined there by its Schouten tensor Lj;. Because the second fundamental form
vanishes on S, the orthogonal projection of the curvature tensor of g onto S coincides by
Gauss’ theorem with the curvature tensor of h, i.e. Raped[g] = Rabed[R]. It follows that the
decomposition of Rgpeqlg] in terms gap = hqp and the components Lgp[g] of its Schouten
tensor is formally identically with the decomposition of of Rupeq[h] in terms hgp and its
Schouten tensor las[h] = Rap[h] — + R[R] hap. This implies that

Laplg] = lab[h],
which can be calculated from hgp. The component Lgg then follows from %R[g] =L, 7 as
1
Loo = ~5 Rlg] + h Ly,

once the conformal gauge source function R[g] has been prescribed.
Equation (319) induces the constraint V, Ly. — Vi Lae = —v WY .y on S. Because
the second fundamental form on .S vanishes, it can be written in the form

1
Wy =  €a “4 D Ly (6.5)

The equation says that the magnetic part of the rescaled conformal Weyl tensor is given
on S up to a factor by the (dualized) Cotton tensor of h. Equation [B.I9) induces the
further constraint V, Lyg — Vi Lao = 0 on S. This is satisfied as a consequence of (6.4)).

With Fji; given by (5.26]), the constraints induced on S by equation (£.IT7) are given
by (see [8], [12])

) 1 .
0= P, = Fj U h? U, 0= Qk =~ Fipg U7 e ™. (6.6)
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They can be written more explicitly in the form

1
Dwye = gDCp_pfca (67)

which is a genuine constraint, and
D*w}, =0, (6.8)

which is, consistent with ([@3]), the differential identity satisfied by the Cotton tensor and
imposes thus no additional restriction.

The 1-form f, characterizes the deviation of U from hypersurface orthogonality (see
the datum @ in ([ZI1)) and the following discussion of hypersurface orthogonal flows) and
can be prescribed freely on S. The value of fy only affects the gauge. It can be prescribed
freely and we assume that fo =0 on S.

The initial data for (4 and & which follow from (5I12) and (EI3) are then given on S
by

Cab :V_l <Dafb_fafb_Lab_ % (Dcfc_fcfc_LCc)gab> 5 (69)
and
§:_Dafa+fafa+Laa- (610)

The observations above can be summarized in terms of local coordinates z%, o = 1, 2, 3,
on S as follows.

Lemma 6.1 Any smooth initial data set for the reduced equations is determined on the
set S = {0 = 0} uniquely by a Riemannian metric hqg, the density p > 0, the acceleration
fo and a symmetric, h-trace free tensor field wag, which are arbitrary up to the relation

1
D%wag = 3 Dgp—pfs on S, (6.11)

where D denotes the Levi-Civita operator defined by hag.

As in the cases mentioned in the beginning there is no need to solve an analogue of
the Hamiltonian constraint. The Riemannian space (S, hqg) is not subject to any further
restriction. The situation even simplifies for the class of data with p > 0 on S. In that
case hqg, p > 0, and wag can be prescribed completely freely and fg is then determined
by reading (611 as its defining equation. It should be pointed out, however, that if f, is
required to satisfy some extra conditions, as in the hypersurface orthogonal case discussed
below, equation (6.11) must be read as a differential equation. The situation can then be
discussed by the well known splitting techniques used in the discussion of the standard
constraints [IJ.

The gauge requirement s|[;o—gy = 0 leaves the conformal gauge freedom

Q-9 =0Q, gu —>g;”,:92gu,,,
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with smooth functions 6 > 0 that are arbitrary on S. If n* denotes the future directed unit
normal to S the conformal gauge transformation above implies associated transformations

hap = s = 02 gop, N =0t =0"1tnt U UF=0"U" p—p =03p,
and, by the transformation law for the 1-forms associated with conformal geodesics,
fo = fh=fa—0"1Dub. (6.12)

If n is extended as unit vector field into M, the relation g, WH g, n" nf = 0! Gap C* ugpn” nf
makes sense and suggests on S for w,p the transformation law

Wap — w;B = 0" wap.

It follows then
W D, wl,, =072 h* Do wps,

whence 1 1
D" wiys == D p' +p/ f5 = 07 (Daw® s = < D p+p fo),

so that the constraints are preserved.

6.1 Hypersurface orthogonal flows

Obviously, the vector field [A{ # is hypersurface orthogonal where © # 0 if and only if
this is true for U* = Q7! U*. Formally this follows from the relation U,V,U, =
02 UV, Uy In our gauge the hypersurface orthogonality condition ﬁ[p @# Ul,] =0is
equivalent to

0= Vi, Uy = X[at)- (6.13)

From (5.8) we get with 045 = X(ap) along the flow lines of U* the ODE

Xfab],0 + Dia fo] = 0a  X(et] = b Xeca)-

It follows that Dy, fy = 0 if U* is hypersurface orthogonal. If the solution admited
a smooth conformal extension, so that [ = 0 on J *, we could conclude from the
equation above that x,; = 0 if we knew that D, fy) = 0. With the gauge condition
Vo Ny — N, fp = 0 equation ([B.9) gives, however, only the relation

0= 0Xjab) T 2 D[4 fo)-

But this combines with the equation above to give
(27" Xjan) o = 00 (7 Xqer)) = 06 (7 Xfea) -

It follows that x[q, = 0 along a given integral curve of U" if it vanishes at a point of it
where Q # 0. On the other hand, the relation above shows that Q! X[ab] @ssumes the
limit (VoQ)~! Dy, fyy on J T, which vanishes where the integral curves of U* meet J 7 if
and only if Dy, fy) = 0 there. Observing the discussion of the conformal gauge freedom in
the construction of data on the conformal boundary, in particular [€.12), we conclude:
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Lemma 6.2 Let be given a solution to the Einstein-dust system (2.1), (2.8), (27), (2.8)
that admits a smooth conformal boundary J+. Then the field U* is hypersurface orthog-
onal if and only if the initial data for the conformal field equations induced on J in the
gauge above are such that

D[afb] =0 on jJr.

If this condition is satisfied and the field f, can be given on JV as the differential of a
function f, then the conformal gauge can be chosen so that f, =0 on J+.

6.2 FLRW-type solutions

In the following we discuss the FLRW solutions along the lines of the previous sections.
The FLRW-type solutions to 1)), Z06), 1), @) on M = R x S with § = S?, T? or
H?2 (a suitable factor space of hyperbolic 3-space) are of the form

G =—dt* +a*k, U =0, p=pt) >0,

with a function a = a(t) > 0 and a 3-metric of constant curvature which is given in local
coordinates 2%, a, B3, ... = 1,2,3, on S by k = kag dz® dzP, so that Raps[k] = 2 €kaly kg5
where € = 1,0 or —1. Rescaling the fields with a conformal factor Q = Q()

G—g=0%5 U—-U=Q7'U, jp—-p=073)

and introducing a coordinate 2° = 7(t) so that < U,dr > = 1, the conformal version of
the metric above takes the form

g=—dr’ + 1%k,  U=0., p=p(7),

with some function ! = I(7) > 0. The non-vanishing Christoffel symbols and the second
fundamental form x.s of the slices {7 = const.} are then given by

[eY a 1 o [} [}
Xaﬁ:Faoﬁ[g]:ll/kaﬁa FO ’)’[g]:r’)’ 0[9]:71/]{: Yo Fﬁ ’Y[g]:F5 ’Y[k]a

where ' = %. The Ricci scalar and the Schouten tensor are given by

Rlg) = g (e 10" + (1)?),

1 1
Loolg] = BYE (e=211"+(I')*), Laolg] = Loalg] =0, Lagslg] = B (e+ (1)) kagp-
Choosing the conformal gauge function as R[g] = 6¢ on M, the function | must satisfy
1"+ (I")? + € (1 —1?) = 0. Using the remaining conformal gauge freedom to achieve [ = 1,
I =0 on a slice {T = const.}, it follows that [ = 1. The only non-vanishing Christoffel

symboly are then given by I's * ,[¢g] =T'3 *,[k] and
Loo==, Lao=ILoa=0, Log=-k
00—27 ad — H0a — Y, aﬂ—2 af-

25



Where © > 0 the physical field is then given by
G=0"2g=—dt> + a® du?, (6.14)
1 dt 1
t) = ——— — = 6.15
“O=aGmy & am (6.15)

The high symmetry assumptions leads to a simplification of the conformal field equa-
tions. There do not occur singularities any longer in the equations. In fact, because U is
g-geodesic and hypersurface orthogonal and Q = Q(7), the singularity in (3I1)) is gone.
Because the line element g is locally conformally flat it follows that W* ,,. = 0 and thus
@[U ﬁ)\]p = 0 by (B1). Moreover, it follows by ([B.6) that V, Ly, = 0.

It will be assumed in the following that the conformal time coordinate 7 vanishes on
a set {2 =0} and that VyQ = ' < 0 there. Equations (83]) and (B8] then imply

Q0)=-v=—-/A\/3<0.
Equation (3I2) reduces because of V, U* = x.“ =0 to p’ =0, so that
p = px = const. > 0,
equations (B.4) and.(B]ZI) imply s = ?Q - %p* Q2'7 Q’.’ + eQ — %p* 02 =0 anc.l equat'ions
Ba), BI), BI) give s = §Q — 7 p. QQ, which is satisfied by the function s given

above. The equations for s are redundant under the given assumptions. So we are left
with the initial value problems

1
Q' +eQ—p. 02=0, Q0)=0, Q0)=-v,

which clearly have a smooth solutions near {r = 0} = J*. Where Q' # 0 (thus in
particular near JT.) the ODE is equivalent to (3 Q2 +3eQ? — p, 23)’ = 0, which implies
with the boundary conditions

302 4+3e0% —p, Q3 =\ (6.16)

The decreasing solutions to this equation cover all the expanding ends of the FRW-type
solutions. With (GI5]) the usual (physical) equations (see [I4]) for a(t) are implied by

©6.16).
7 'The subsidiary system
To show that solutions to the reduced equations for data which satisfy the constraints do

indeed satisfy the complete set of conformal field equations, it has to be shown that the
zero quantities N; and

T;7 g, A'yw, A, Bj, Cj, Dj, Hj, Fi, (7.1)

vanish as a consequence of the reduced equations and the given initial data. Here
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N, =Qf; +US,U; + 3, + QU .U,

T jer=—[ese] + (T, = T;1 ) e,

A =R i — QW i — 249" x Ly; + L' s 911} (7.2)
with _ _ _ _ _
R =T1"j e e =Tk juet + 203 P Lypy — 203 P Ty 5,
i L 3
A=6Qs—-35;% _)\_ZQ 0,
BkEka—Ek
_ L e 1
Cjk:VjEk+Qij—ngk—§Q P UjUk-i-Zgjk R
D =Vips+X'L 19 EiUU+1 192 192v
= s ik~ 5 i T Y9k | T3 51 )
k k k 2 P k 4gk 3 P 2k 21 kP
Hjiy =V Lij — Vi Lij — K,
Fija =ViW' ji — M,
where

1
M =Vip UyU; + 3 Vikp 91 (7.3)

+o (Ve UgU; + Up Vg Uj = fue gy — 2 fie Ug Uy — Upe g U' i),

Kjkl = Ei Wi jkl + QMjkl- (7'4)

Some of these quantities vanish trivially because of symmetries, gauge conditions, or
the reduced equations. The latter comprise equations [@I3)), (£14), (525 and

U'T*; =0, U*A';;; =0, U'B;=0, UiC;; =0, U’D;=0, (7.5)

HJ ja — 07 HaOb + HbOa = 07 a, b= 15 27 35 PZJ = Oa Q’Lj = 07 (76)
The zero quantities not in this list correspond to constraints or gauge conditions. Con-
cerning the second of equations (Z.H) we refer to the remarks below.

In the following we shall use the covariant derivative operator V, defined by the
connection coefficients T'; 7 ;, that satisfy the gauge conditions and the reduced equations.
This operator is metric in the sense that V; g;z = 0 but, as seen from the first of conditions
[@3), it is not known a priori whether the connection is torsion free. In the following
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arguments will be needed the commutators of covariant derivatives, which are for a function
¢ and a vector field X* in the case of a general metric connection of the form

(ViV; =V;Vi)¢=-T,";Vi¢

(ViV; —=V; Vi) X*=RF;; X' - T,' v, X7

To avoid carrying along various non-illuminating terms involving components of the torsion
tensor we shall refer to such terms in an equation often in the form ...+ P(T), where
the dots indicate the equation of interest and P(T") is a generic symbol for a polynomial
in the components of the torsion tensor that satisfies P(0) = 0. The equation above will
then take the form

(ViV; —V,; Vi) XF = RF ,; X'+ P(T).

The other zero quantities in the list (Z.I) will be kept explicitly in an equation if needed
to indicate how the calculations goes, otherwise the equations will be written in the form
...+ P(Z), where the dots indicate the members of interest and P(Z) is a polynomial in
the components of the zero quantities (that may occasionally absorb a P(T)) with smooth
coefficients that satisfies P(0) = 0.

The regular system has been obtained from the original version of the conformal field
equations by using the gauge requirements N; = 0 and V,Np = 0. It needs to be shown
that they are preserved by the reduced equations to establish that the original version
of the conformal field equations is satisfied. They are needed in particular to show that
the equations for (,, and ¢ imply the equations U’A ., = 0, U'A%q;, = 0. The zero
quantity IV; plays a particular role because its vanishing follows directly from the reduced
equations and the initial conditions.

If Ni, = 0 on a hypersurface transverse to the flow lines of U* (which will, for instance, be
the case if data are prescribed on {Q = 0}), this relation is preserved along the flow lines
of U as a consequence of the reduced equations.

In fact, equations (£I3) and [@I4) imply
VuN; =UU' Cy Us + U* Cri + U B (fi + U fLU;) — Ui f* Ny,
which reduces with (ZH]) to the linear homogeneous ODE
VuN; = =U; f*Ny, (7.7)

along the flow lines of U. From this the assertion follows. Since the solution to the reduced
equations is ruled by the flow lines it follows also that V;/N; = 0 on the solution.

It can thus be assumed that N; =0, V,N; = 0 so that we have indeed U'AS i = 0 and
the equivalent equation U*A%;, = 0 as written in (7.5).

The subsequent discussion follows to some extent the derivation of subsidiary systems
in earlier work on the conformal field equations. It will be convenient to use for the
covariant derivative of a given tensor field X;; ¥ the notation

ViXi F = el(Xi F) + (0X ) ¥,
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so that X;; ¥ — (I'X);;; * denotes a purely algebraic linear operator which does not involve
derivatives.

The connection defined by the I'; 7, and the associated torsion and curvature tensor
satisfy the first Bianchi identity

Z VT = Z(Rijkl‘i‘ijleim)a
(gkl) (gk)

where > (ki) denotes the sum over the cyclic permutation of the indices jkl. Setting here
j = 0, observing that the symmetries of C? ji; = QW? j3; and Ly, imply Z(jkl) R jp =
Z( ki) A" j;; and taking into account the reduced equations, we get from this the equation

VoTi't=—=CT)ho' k+ Tk 1 +3 Y (Ao +To™ v i m) = P(Z). (7.8)
(Okl)

To obtain an equation of the desired type for A’ j;; we show that the right hand side
of the identity

v_jAz mkl + lez mjk + val mlj = 5 €njkl ePar vaz maqr-

can be written as a linear expression in the zero quantities. We write (Z2) in the form
R =A i + QW i+ G i+ B,
with

i i i i i T v . 1
G'jm=Lg nan, L=L" Eju=2{g9"wLly;+L" na;} Llj:Llj_ZLglja

and use the second Bianchi identity
Z ViR it = — Z R i TP 1, (7.9)
(sk1) (5kl)

to obtain ‘ ‘
N i At = —€" M (VQ Wikt + Q Vi Wik

+V,iGimkl + ViEimki + Rimp; Tk P 1) -

The well known facts that the left and right duals of Wi;x; and Gyji1 coincide respectively
while the left dual of E;;3; differs from its right dual by a sign then imply with the reduced

equations ‘ ‘ ‘
en Vi A it = € * (Vi QW iy + Q VW g

+ViG i — ViE ) — €n I Rimps Ti? 1
= eim ™ (V;QW i + Q (Fopt + M)
2VL gyn — 2V Ly —2V5 L (. i) — €07 Rimp; TP
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= eim ™ (V;QW i + Q (Fopt + Mui)
kit — S Wit — QMo — 2 H? i gyn) — €n ™ Rimp T P11

In the last step it has been used that K7 j1 = 0. This follows because the tensor Wijkl
has vanishing contractions and because equations (£13) and ([5.20]), which are satisfied as
members of the reduced system, imply that M7 ;; = 0. Using again the reduced equations
we finally get

VoA gt = —(TA) ok + (TA)x “ o (7.10)
1

—3 " ort {€ m* (Bp WPt + Qi — Hyg — 2 H? i i) — €0 7™ R ppo Tu P 1} = P(2).

A direct calculation gives for the quantity
- 1
A:6Qs—32i21—)\—193p, (7.11)

the relation 5
ViA=6QD; —6% Cj; + (65 — ZQZ‘p)B
On the initial slice, where the zero quantities on the right hand side vanish by the con-
struction of the initial data, this relation reduces to V;A4 = 0. This implies that A = 0
on that slice if it holds at one point of it. In the case of ‘physical’ data (i. e. 2 = 1) the
condition 4 = 0 reduces to0 =4 A = R — 4\ — 0, which will be satisfied by the construc-
tion of the physical data. Using the freedom to prescribe (2 and its time derivative on the
initial slice the condition A = 0 can also be achieved in the transition to conformal data.
We recall that the relation A = 0 served to determine the value of 3; in our discussion of
the conformal data on {Q = 0}. With the reduced equations the relation above implies
that
VuA=0.
We can thus assume that A =0 on the solution manifold.

A straightforward but lengthy calculation shows that the fields
Zjk = VB, Zju =V Cai, Zji = Vi; Dy,

can be expressed as linear (homogeneous) functions of the zero quantities with smooth
coefficients. Taking into account the reduced equation U’B; = 0, U’Cj; =0, U’D; =0
one gets

U’ V;By = 2U]Z + UV B; = 2UJZ + Vi (U'B;) — (ViU?) B; = P(2).
Similar calculations give
U’V,;By = P(2), U/ V,;Cy = P(2), U/ V,;Dy = P(2). (7.12)
The remaining subsidiary equations are obtained by analyzing the expressions

Vi H iy V7 Fj,

30



from two different points of view. As a preparation we observe the algebraic relations
My = —Mjp, Mjry =0, M7 ;= 0. (7.13)

The first of them follow immediately from the definition while, as pointed out above,
the last one follows as a consequence of the reduced equations [@I3)) and (E25]). These
relations imply

Fju = —Fju, Fljry =0, FJ 5 =0, (7.14)
and also ‘
K7 =0. (7.15)

Moreover, a straightforward though fairly lengthy calculation which makes repeatedly use
of the reduced equations, shows that

ViMju = P(2), (7.16)

and
VlKljk =V w gk + 2 leil gkt ViQ ]\4lﬂC + QVlMljk
=Cy W+ BIM' jj, — S F i + QVIM' j, = P(2).

From this follows the relation
ViH jiy = Ay Lg? — ViK' jiy + P(T) = P(Z). (7.17)

Similar calculations, which use that the left and right duals of the conformal Weyl tensor
coincide, gives

IR HP ;= ¢I% (Vi VL P — V(S W™ g + Q MP 1))
= ¢tk (AP i L™ + WP O ™ — By MP j) + PR %, F9 4
+% p Q2 ik WP UM U — 2% M9 PR — Q) MP PR
From equations (C.I3)), (Z16) follows that
€pgmn Vi MP ji, €% = P(Z).

Solving the equation N; = 0 for ¥; and inserting this into the equation above, we thus
finally get

. 1 .
qujk Val jk = 5 pQ2 qu]k we njk u" Ul
—2% M PR Qv My DR 4 p(7),
. 1 . .
¢k 7 HP ), = 5 p Q2 ik W L UM U+ 2 VpQ Uy My, P)F

+Q2(fi+ < U, f>U) M, D% — v, M©P 1 DR} 4 P(Z).
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A direct calculation shows now that
ik H ) = P(Z), PN HY 1 = P(Z), a,b=1,2,3. (7.18)

After solving the 9 reduced equations for the components Loy, Lqp, they resume their
original form if 1/6 R is replaced again by L; 7. To show that they imply for suitably given
initial data the full set H;z; = 0, it needs to be shown that

Hupe = 07 Hoqp = Oa a 7£ b.

In fact, the equation 0 = HY ja = —Hopq + QCd H_,q implies then that Hpo, = 0 and with
the identities

Hjp, = —Hj;, and Ikl Hj, =0, ie. e Hape =0 and Hogp + Hpoa + Hapo =0, a # b,
and the reduced equation H,gp + Hpoq = 0 it follows then that
0= HOab - _HbOa + HaOb - 2Ha0b a ?A b7

which exhaust the remaining cases.

We derive now the equations for the zero quantities above. The reduced equation
HY j, = 0 implies that VyH' ), = (I H);* 1, = P(Z). Observing this in equations (Z.I7)
we an equation of the form

V()H()ab — Ged VcHdab = P(Z) (719)
On the other hand we have by (TI8)
VoHaab + VoHaoa — VaHaop = 3 Vo H gjas) = P(Z)

and
VaHoab + VoHoda + VaHoba = 3 ViqH o) = P(Z)

(where indices with a modulus sign are exempt from the anti-symmetrization). Observing
the relations Hyop = —Hpog and 2 H.oq = Hocq implied be the reduced equations, one gets
from this an equation of the form

2VoHyay — VaHoa = P(2). (7.20)

Equations (.I9), (Z.20)) constitute a system of equations for the unknowns Ho,p and Hpe
which is, for given right hand sides, symmetric hyperbolic.

The properties (ZI4) imply in particular the relation F' ¢, = F'o; = 0. The field P;;
and Qy; introduced in (27 and (528)) are thus completely represented by

1
Pab = —Flqjopp), Qab = 5 “ey)ed-

To discuss the remaining content of the field Fjz; we recall the definitions

1
Pa:FOaOu Qb:_§FOCd€de7
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given in the discussion of the constraints. These fields exhaust the information in Fygo
and Fyp.. Because F,gp is trace free it remains to control its anti-symmetric part. The
relation Fjjz; = 0 gives

1
d
_chcab: §F0de€c eecab:F‘Oab:F‘aOb_F‘bOav

whence .
FaOb = _Pab - 5 €abe QC-
Because Fp. €27 = 0, the field F,.q €, °® is trace free. Contracting its anti-symmetric part
suitably twice with epsilons and using that gives F7 ;; = 0 gives
F[a cd €blcd = _Fd de €cab = _FOOC €€ ab = Pc €€ ab;

and thus 1
Fope = 5 Qadebcd - ha[ch]'

Observing now the reduced equations P, = 0 and Q4 = 0, the remaining content of Fj
is then described by the formula

Fit = 3U; Py Uy = gjix Py + Qi (U € w0 — € i Up).-

Inserting this into V7 Fjj; and projecting suitably gives his
1 . _
(VUPl)hli—I— geikj Vij =WV ijl Ukhli—l—P(Z),

1 . 1_.
(Vo Qi) bt — 3 € MV Py = B V! Fj e ¥ + P(2).

Working then out V7 Fjj; explicitly and observing (T.I6)) one finally gets equations of the
form

1
Pa70+§€abCDch:P(Z)a (721)

1
Qa,0 = 5 € Dy Po = P(Z). (7.22)
For given right hand sides this is a symmetric hyperbolic system for the fields P, and Q,.

We have seen above that solutions to the reduced equations for suitably arranged
initial data satisfy N; = 0 and A = 0. Equations (7.8), (Z.10), (7.12)), (719), (T.20), (.21,
[T22]) constitute a system of differential equations for those of the remaining components
of the zero quantities ([.T]) which do not vanish already because of gauge conditions or the
reduced equation. The system is symmetric hyperbolic and has characteristics which are
time-like or null with respect to the metric g,, that is supplied by the reduced system.

It follows that a solution to the reduced system for data that satisfy the conformal con-
straints on the initial slice satisfies on the domain of dependence of the initial slice the
gauge conditions and the complete set of conformal FEinstein-\-dust equations.
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8 Existence and strong future stability

In this section the properties of the conformal field equations derived above and standard
results about quasi-linear symmetric hyperbolic systems will be used to draw conclusions
on the global structure of solutions to the Einstein-A-dust equations. Since we are mainly
interested in C'°° solutions and not in the weakest possible smoothness assumptions on the
data we refrain from specifying Sobolev norms. We refer to [6] for details of the patching
arguments in the context of Cauchy stability and for some relevant PDE reference.

8.1 Existence of asymptotically simple solutions

To construct solutions to the Einstein-dust equations with positive cosmological constant
A that admit a smooth conformal boundary in their infinite future we consider Cauchy
problems for the reduced field equations on R x S where data are prescribed on the sub-
manifold {0} x S. We identify the latter diffeomorphically with the manifold S underlying
a given asymptotic end data set as considered in section [0l The conformal time variable 7
in the reduced field equations will correspond to the factor R above and it will be assumed
that 7 = 0 on S. The conformal gauge source function represented by the Ricci scalar R[g]
of the conformal metric g to be constructed will be required to vanish and it is assumed
that the condition R[g] = 0 is also underlying the construction of the given asymptotic
end data. A fixed gauge source function will in general only work well for some limited
time. For our purpose this will suffice, however, because it will be arranged that a finite
interval of the conformal time 7 will cover an interval of physical time of infinite extent.

Since S is compact and may have complicated topology, we use the fact that the
hyperbolicity of the reduced equation allows us to obtain a solution on a neighborhood
of S ~ {0} x S in R x S by patching together local solutions. Compactness implies that
S can be covered by a finite number of open subsets Vi, A = 1,2,...,k, of S which
carry smooth local coordinates %, a = 1,2, 3, and a smooth frame field e,, a = 1,2, 3,
that satisfies hop = h(eq,ep) = dap, where h denotes the 3-metric on S supplied by the
asymptotic end data. It can be assumed that their exist shrinkings V) with compact
closure V74 in Vy4 so that the V} still define an open covering and the boundary of V} in
V4 is smooth. Standard results on symmetric hyperbolic systems then imply the existence
of smooth solutions to the reduced field equations on open neighbourhoods D4 of V} in
R x S which imply on V), the data induced on V} by the asymptotic end data on S in the
gauge chosen on V4. It can be assumed that the solution extends smoothly to the closure
of Dy in R x S with det(e” ;) # 0 so that D4 acquires a boundary which consists of (i)
smooth hypersurfaces Hj in the future/past of D4 which are null with respect to the
solution metric g and approach V7’4 \ V}; in their past/future, (i) the intersection of D4
with hypersurfaces {7 = 71} in R x S defined by some constants 7_ < 0 < 74 (which can
be chosen to be the same for all V}), and (iii) the three 2-dimensional edges diffeomorphic
to V'4 \ V} where these hypersurfaces approach each other. It can be assumed that the
solution on D4 is globally hyperbolic with respect to metric g. The subsidiary system
then implies that the full set of conformal Einstein-A-dust equations is satisfied on D 4.

If p € V) NV}, there exists an open neighborhood V,, C V4 NV} of p so that solutions
are given in the domain of dependence D4, of V), in D4 as well as in the domain of
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dependence Dp, of V,, in Dg. On V, these two solutions can be related to each other
because the coordinate and frame transformations which relate the data induced on V,,
by the data on V) and the data on V} respectively are known explicitly. Because the
gauge inherent in the reduced equations is evolved by invariant propagation laws along the
invariantly defined flow lines of the flow field U, the coordinate and frame transformations
extend, independent of 7, and allow us to relate the solution on Dy, isometrically to the
solution on Dp ,. By extending the argument it follows that the solution induced on the
domain of dependence of V; NV} in Dy can be identified isometrically with the solution
induced on the domain of dependence of V} NV} in Dp.

By patching together the local solutions, we obtain a smooth, globally hyperbolic so-
lution to the conformal Einstein-A-dust equations on a subset of the form M = [1,, 7| X S
of R x S with constants 7. < 0 < T, so that the conformal factor obtained on M satisfies
Q>0 on M = [r.,0[xS while Q < 0 on M =0, 7] x S.

The hypersurfaces S, = {7 = 0 = const.} with 7. < 0 < 7., can be required to be
space-like. In fact, with the co-normal to {7 = const.} given by n, = —ar, the future
directed normal is given by

b — _ag#O _ njke,ujeok :5,u0_,,7abe,ua60b
/|aZ g0 77 €0 5 €0 4] 1_77ab€0a60b,
and the condition n, n* = —1 implies the expression
1
a= . (8.1)
/1 _nabeoaeob
Moreover,
1
nt=a("o—ne el = - (UF —u>" ) with u® =a?n™®e® e, (8.2)
We thus require that
¥ ey n® < const. <1 on M, (8.3)

which can be achieved with suitable choices of 7, and 7y, because ¢, = 0 on Sy. The
hypersurfaces S, will then be Cauchy hypersurfaces for (M, g,,). To simplify things, so
that we only need to consider the regularized reduced equations involving the unknowns
Cap and &, it will also be assumed that €2 , < 0 on M, which makes sense because Q , = —v
on So.

The metric g,., the conformal factor 2, the flow field U and the density function p
are then such that the ‘physical’ fields

G = g, V=070, p=0p (8.4)

define a solution to the Einstein-A-dust equations on the manifold M with p >0 on M.
Extending smoothly to S, , this solution admits an extension into the past of S, but
we are not interested here in controlling something like a maximal globally hyperbolic
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solution. What is important for us is that the set J+ = Sp = {Q = 0} defines for the
solution (M, §,..) a smooth conformal boundary at future time-like infinity.

Equations (BI4) to ([B:22)) are invariant under the transformation which implies the
map

Q= —Q Vil—= -ViQ, s——-s, Wiu—-Wu p——p Vip——Vip,

but leaves the fields e* j,, T';7 1, Ly, and U k unchanged. Tt follows that after performing
this transition on M and restricting to M gives us another solution to the Einstein-A-dust
equations on the manifold M. Tt follows, however, that then 5 < 0 on M. For this solution
the set {2 = 0} defines a smooth conformal boundary in the infinite past. In this article
we shall not be interested in this solution any further.

Two facts have been used above to obtain solutions whose conformal structures extend
smoothly across future time-like infinity so as to define there smooth conformal bound-
aries: (i) The Einstein-A-dust equations admit conformal representations which imply with
suitable gauge conditions systems of evolution equations that are hyperbolic irrespective
of the sign of the conformal factor €, (ii) some requirements needed to ensure the existence
of smooth conformal extensions are put in by hand by starting from asymptotic end data.

The case of the Nariai solution, an explicit, geodesically complete solution to the
Einstein-A-dust equations with p = 0, shows that that the property (i) is by itself not
sufficient to ensure the existence of a smooth conformal boundary (see [I1]). This raises
the question whether the use of asymptotic end data may result in the construction of a
very restricted class of solutions.

The following argument, introduced in the vacuum case in [5] and used in the presence
of conformally invariant matter fields in [6], shows that the existence of smooth asymptotic
conformal structures is in fact a fairly general feature of solutions to the Einstein-A-dust
equations. The smooth extensibility of the conformal structure across future time-like
infinity will be derived as a consequence of the property (i) of the Einstein-A-dust equations
and the existence of a given reference solution that admits a smooth asymptotic structure.

8.2 Strong future stability of the solutions

Let
A= (euka Fijku Caba 57 fka Qu viga S, iju Wijkla Uku p)7 (85)

be one of the solutions constructed above. The associated physical fields g, = 02 Juvs
Ur = QU~, p = Q2 p then induce on the Cauchy hypersurface S’ = S, with local
coordinates %, a = 1,2, 3, standard Cauchy data 6= (ﬁag, Rag, 4%, p), 1.e. a solution to
the constraints (ZJ) and (ZI0), where 4 denotes the orthogonal projection of U* onto
S’

As a first step towards showing that the asymptotic simplicity of the solution above is
preserved under sufficiently small perturbations of the data 5 , any given standard Cauchy
data set on S’ needs to be transformed into a suitable Cauchy data set for the conformal
field equations. This involves several transformations and a suitable handling of the gauge
freedom which will be discussed now by showing how the restriction of A to S” is obtained
from 6.
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Conformal data 6 = (hag, Kag, u®, p) on S’ are obtained from the standard data B)
by using the functions Q > 0 and Vi < 0 on S’ to define

hap =V hag, u*=07"a% p=077p,
and, using the transformation law of second fundamental forms under conformal rescalings,
Kap = Q (I%aﬂ + ;Laﬁ VnQ)

Here n denotes the future directed unit normal to S’ with respect to g, which is related to
the flow vector field U and its projection u onto S’ (that represents the shift vector field
on S’ see the ADM representation of g below) by the relation

1
n==(U—u) with a=4/14hesu*ub,
a

where the expression for the positive lapse function a is obtained from
—1=gU,U) =d?g(n,n) + g(u,u) = —a® + hap u® u®.

It follows that 1
V. = o (Vo — Q4 u®),

can be calculated from the data given above.

When starting from arbitrarily given standard Cauchy data § the functions Q > 0
and Vy < 0 are not given but represent part of the conformal gauge freedom. Suitable
choices will be discussed later.

As a second step it will be convenient to derive all the unknowns entering the conformal
field equations in a g-orthonormal frame c; on S’ which is adapted to S’ in the sense that
co = n. This frame, which is not needed in the final process, is introduced because it
simplifies various discussions. In a third step all the data will be expressed on S’ in terms
of the g-orthonormal frame ey, satisfying eg = U.

To remove the gauge freedom in the transition ¢y — e, we prescribe a specific field
of Lorentz transformations K*; on S’ which map the g-orthonormal frame field e, with
eo = U onto a smooth g-orthonormal frame ¢; = K* ; e; field with ¢o = n by setting

Ki o KOOu Kob o _9(00760) s 9(007617)
T\ K%, K% )~ \ n"glcoea), 8“6+ 1y 1°* 9(co,ea) glco.en) )
(8.6)
In terms of the frame coeflicients e , given by the solution A this reads

. a y —aed b
sz = ac ,0 a a? ac ,0 0 .
—an-e ¢, 5b+1+a77 € c€p
It follows that indeed

Kigei=K% eo+ K% e, = —g(co,e0) e0 + nadg(co,ed) ea = g(co, €;) n% ej = co.
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In the following considerations (81]) and (82]) will be useful. A direct calculation verifies
that Tij K" k KJ 1= Nkl -
The coefficients of the frame c¢i are given in the coordinates z* by

o= Lo, 0\ i 0
CaO; Cab _%ua, eab_i_lleauanb )

and the coefficients of the 1-forms p* that satisfy ¢ u*, = 6%, are so that

'qu _ /14007 0
v pro, pp )’

with

1o =a, Ua:(eab+1+aua60b)ﬂb0a

1
a b « a 0 b «
= + =0%3,

Pop’ = (e 1+au€b)u5 B

whence
pu o (€% + u®e’y) =0y, phau®=puo

The comparison of
g = 1F = —a®dr? + nap p® o p° 5(u® dr + dz®) (uP dr + dzP),
with the ADM representation

g =—(adr)?® + hag (u® dr + dz®) (u® dr + dzP)

hap =Nap 1 a 5, a=1/1+uub hag.

With the frame c¢; defined above we set

gives then

M- —g(eo,co) g(eo, cp)
! 1" gleo,ca)s 0%+ T=geamey 1 9(e0, ca) gleo, ) )

In terms of the frame coeflicients cf: this can be written

Mi'* MOO; Mob . a ) uotcab
TN My, Moy ) T\ ™ uac® e, 0%+ g 1% Ua ¢ cup Py

a aey
= 2 .
anaceot27 5ab+1¢iana660660b
A direct calculation shows that M?; K7, = §' and ey = M7y c;.

Because the fields c,, a = 1,2, 3 are tangential to S’ we can set

!/ !/
hab:haﬁ Caacﬁb = Tlab; Ragp = Rap Caacﬁb
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where here and in the following a prime is used to indicate when a tensor field is given in
terms of the frame ci. Directional derivatives with respect to c¢; will also indicated by a
prime, so that V| = V., etc.

When the data for the conformal field equations are to be constructed by starting
from standard Cauchy data, the frame ej is not available. Instead, the frame ¢ has to
be chosen first and ey, will then be obtained by applying M? . The field cq is uniquely
determined as the future directed unit normal to S’ but the frame ¢, tangent to S’ is only
determined up to rotations. In the stability argument given below this freedom will have
to be removed in a specific way.

Connection coefficients with respect to the frame ¢ satisfying the relation V.c, =
;7 | ¢; with respect to the Levi-Civita connection V given by g can only be defined if the
frame is defined near S’. It will be convenient to extend the frame by the requirement
Veock = 0 and to define coordinates v = 2% and 2% near S’ so that z* = z* on S’
and < ¢p,dv >=1 and < ¢, 2% >=10. The coordinates z* are then Gauss coordinates
based on S’ and the coefficients ¢ k satisfy o 0= SH o and Pt « = 0 so that ¢y = 0,.
The coordinates z# and ' satisfy

Ox0 1 1 Ox0
— =<n,dr>=—-<U—-u,dr>=—-, —— =0,
020 ar a war a’  Oz¢
ox® 1 1 ox®
- = U— da — __ g _:504/ S/
920 a < u,axr- > a u-, py o’ on o,
so that the relation e#’ e= M7, e j can be used to determine on S’
8.@'“‘ ’
T H l
e = 6:5#’ C lM k-

The connection coefficients with respect to ¢; can now be defined. They satisfy
%07 k=0, 7 =K =Kpar Va0 =ruph" valbca=Deycy on S,

where D denotes the Levi-Civita connection of the metric h on S’.
The connection coefficients in the frame ¢, are related to the connection coefficients
in the frame eg by

7, :an(M"kyl,e“/i+fyl"leiMpk)

:an(MnhO'60,1‘+Mnk,a/6a/i+”nanliMpk)'

Apart from M™ j o/, which can only be determined by taking into account the evolution
equations for the frame ey, all the other terms in the expression above can be calculated
from the data available so far. The relation e = M7 c* ; implies

eH/ ko = Mj k.0’ cul i + Mj & CM/ o
The first structural equation with respect to the frame ¢ gives

’ ’ ’ ’ ’ ’ ’
ct jyo/:(S‘u a/(sajca aﬁo/:—(w a/daj"yabocab:—(s‘u a/(Sain;ch/bCCab OHS/.
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The field eg = U = U’ ¢, given on 8’ by U = aco + u'® ¢q with v/% = p@ o u®, must
thus satisfy by ([@I3])

0=U" e U+ U Uy " j4+ < U f > U™+ f*
=aU* o +U" ou +U U 3% ;4 <U f>U*+ % on .
The fields e, = €’* , ¢, must satisfy Fye, = 0, which implies with (@13)
0=ae*. o +e*, wu® + U e i flet ut—ule fF on S

. . ’ ’ y 1 .
ese relations determine ¢/ ; o/, e” g o whence ko and ;74 uniquely from the
These relations det i o, ¥ ko whence M, o and ;7 ), uniquely from th
given data on S’ once f} is given there.

Our gauge requires that the tensorial field
N, =Vi.Q+ (VuQ+ Q< U f> U, +Qf,

vanishes on S’. The condition that its orthogonal projection N/ into S’ vanishes gives
1
= —Q{V;Q—I— (VuQ+Q<U f>)u,} onS.

If this is satisfied it follows with Uy = U/ M* ), N = N] M},
0=U"Ny =U" Ni = an’™ Ny,

and thus together N; = 0. The relation

1
fo=n"fi = —(<U,f>—u"fo),
shows that f] is determined from the data given on S’ only up to fo =< U, f >. This is
consistent with the fact remarked on earlier that the quantity fy is pure gauge and can be
chosen arbitrarily. With a suitable choice of fy (made in a specific way later) we can the
set fr, = fjl M7y,

The Einstein equations and the conformal rescaling of the density imply R[g] =4 A +
Q3p. With this the conformal transformation law of the Ricci scalar gives
2
- Q

1
60

2

1 1
vV, VFQ + 5 R[g] © V,.QVHQ+ — R[j] = q Ve Vi + 5a (4N +Q3p).

With the gauge condition R]g| = 0 we thus set

2

, 1
9 VIQVIQ+ — (4)+ Q%p).

45 =V V*kQ = v

The second equation determines 92 Q = ¢o(co ) in terms of known data because

ViVEQ = —ViVLQ + 7 VIV, Q = —co(co Q) + (D, DyQ — k!, V,Q)  on S
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Thus s and V}V; 2 are determined on S’ from known data and the scalar equation (B.16)
is satisfied there. Given s and yap = I'q 4, the fields (4, and & are then defined on S’ by
E.10).

The conformal transformation law of the Schouten tensor, the field equations, and the
conformal rescalings of the flow vector field and the density give

L

. 1
Ly = Lyw — 5 Vi Vol + 53

Y,V g,

1 _ 1 1 1 1
= 6)\9 29#U+Qp<§U#U,,+ggW> —EV#VVQ—FWVPQVPQQ#U,

and we set
1
6

1

e ViQv'iQg, onS' .

1 1 1
o -2 7 8 adi / !~/
By the way V,V{Q has been determined above it follows that ¢'** L], = %R[g] = 0.
The appropriate data on S’ for the reduced field equations are then given by Lj; =
L, M?; M.

To determine the rescaled conformal Wey tensor we observe that the Gauss and the
Codazzi equation with respect to S’ read in terms of the frame cy,

/ _ p! / / / /
abed [g] - Rabcd [h] + Kac Kbd — Fad Fbes
1k ! _ ) 1
n Rkabc[g] - Dc'kaba - Dc Kda»

where the fields on the right hand sides can be determined from the data available so far.
With L;. . as given above, the general relation

Riinlgl = 2{giy. Liy; + Lig, 9533 + Cijus
then allows us to calculate the components C”, .[g] and n’*C},, .[g] of the conformal Weyl
tensor. The conformal Weyl tensor admits the decomposition

fiia = 2 (K efyy = K efy + iy, € 3 + el €™ )

where hly = g}, +niny and Ky = g, +2nlnj and e = h;™h " Cp L n’ n't and
mpy, = by ™ hy, " Cresynd nb with Ol = 3 Climn €™" 11 denote the electric and magnetic
part of the conformal Weyl tensor with respect to n in the frame ¢y respectively. It holds
ej; =€), ej;n7 =0, e;" = 0 and similar relations hold for m/;.

It follows that

@ ji?

avea = 2 (hgpeeqp + e hap)  whence ey = h'* Cyeq,

and

m

1
1k 1 _ / / o 1k
n Ckbcd =2 (n[l mj]m € kl) whence meay = _5 n Ckbcd €p
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The tensors C};,, and W/, = Q-1 Clyx whence Wiy = W, M™ ; M™ j MPy M?; can
thus be determined from the given data and thus also U-electric and -magnetic parts w;;

and wy,; of Wi which enter the reduced conformal field equations.

The conformal field equations and their unknowns are derived from the Einstein equa-
tions by conformal rescalings, the use of various differential identities, and the use of the
frame formalism. This leaves a coordinate, frame, and conformal gauge freedom which
is controlled by suitable initial data and propagation laws for the coordinates, the frame
field, and the conformal factor (controlled here implicitly by the requirement R[g] = 0).
Following this procedure it follows from the discussion above how to derive from a given

smooth solution § = (hag, Rag, 4, p) to the constraints (2.9)) and ([2.10) and given smooth
gauge dependent fields

Q>0, V<0, fo=<U,f>, and a smooth h-orthonormal field ¢, on S’, (8.8)

the unknowns A, on S’ of the conformal field equations in the frame ¢; and also the
unknowns

AS/:(EH]C, Fljka Caba 55 fka Qv ngv S, ij7 Wijkla Uk? p)a (89)

in the frame e on S’.

Written in terms of the frame ¢, and the frame coefficients o . as defined above, the
conformal field equations allow us to derive from the data A’, a formal expansion type
solution in terms of the coordinate v so that the complete set of conformal field equations
is satisfied at all orders. The constraints are satisfied because of differential identities and
the fact that the data & satisfy the ‘physical’ constraints.

A similar formal expansion is obtained in terms of the coordinate 7 if the equations
and the data are expressed in terms of the frame ej. In this case the expansion coefficients
are seen, however, to be the coefficients of a Taylor expansion of an actual smooth solution
to the conformal field equations because the equations comprise the hyperbolic system of
reduced conformal field equations.

The life time of the solution in the given gauge depends, of course, on the data (89)
and in particular on the choice of the free fields in ([B8]). Suppose

A*(T):(e*uku I‘:Jku C;bu 5*7 fl:7 Q*u va*u 8*7 L;ku W*ijkh U*ku p*)u (810)

is one of the solutions to the conformal field equations considered in the previous sub-
section. It exists and is smooth for 7, < 7 < 7, with Q* — 0 as 7 — 0 so that Sy
represents the conformal boundary at future time-like infinity for the physical solution
associated with A*(7). Denote by A¥Y, = A*(7.) the data for the reduced equations on
S’ and by §* = (ﬁg,@, fsg, W, p*) the physical data induced by this solution on S’. Let
6 = (5, hag, Rap, 4%, p) denote a smooth solution to the constraints (Z3J) and (ZI0),
Ag: the corresponding initial data on S’ for the reduced conformal field equations as con-
sidered in (88)), and A(7), where 7 € [7y, T« + 7% with some 7* > 0, the solution to the
conformal field equations determined by these data.

To compare the life times of the solutions A*(7) and A(7) the corresponding gauge
conditions must be comparable. It will be assumed that the data Ag, have been con-
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structed such that
QZQ*, VUQ: VUQ*, fo :fg on Sl.

Let hYy = Q2h%,, and hag = Q% hag = Q2 hap denote the metric induced on S’ by
the solution A*(7) and A(7) respectively. As discussed above, the frame e} given by the
data A%, can be used to define a field of Lorentz transformation K *7, on S’ so that the
relation ¢j = K*/ 1, e} defines a frame field on S’ for which ¢f is normal to S’. The fields
ct, a=1,2,3, then define an h*-orthonormal frame field on S’. It will be assumed in the
following that the h-orthonormal field ¢, has been chosen so that ¢, = ¢} a®, with a 3 x 3
matrix o, that satisfies a' 1 > 0, %9 >0, a3 > 0, and a®, = 0 if @ < ¢. The frame ¢,
so defined is smooth and fixed uniquely so that a¢, — 0% . precisely if ¢, — ¢} .

The point of these choices is that the space-time conditions R[¢g*] = 0 and R[g] =
combine with these gauge conditions on S’ to ensure that ||d — 6*|| — 0 if and only if
[||[As: — A% ||| — 0, where the norms are meant to indicate Sobolev norms on S” which
are chosen corresponding to the differentiability order of the fields involved.

We can invoke now the Cauchy stability property which holds for hyperbolic equations
to conclude that for data é sufficiently close to 5* or, equivalently, for data Ag: sufficiently
close to A%, the solution A(7) of the conformal field equations that develops from the
data Ags also exists in the interval 7, < 7 < 7., and the conformal factor €2 supplied by
A(T) is negative on S;,, [15]. This conclusion may require repeated patchings (see [0]).

There exists then a map S 3 ¢ — 7(q) €]7w, Tus| so that Q(7(¢g),q) = 0 for ¢ € S
and Q(7,q) > 0if 7. < 7 < 7(q). Equation (3I8) then implies that on the subset
It ={(1(q),q),q € S} of R x S the gradient V() is time-like for the metric g supplied
by A(7). It follows that J* defines a smooth space-like hypersurface which represents a
conformal boundary in the infinite future of the set M = {(7,q) € R x S| 7. <7 < 7(q)}
on which the fields §,, = Q72 g, U, = Q"1 U*, i = O3 p define a smooth solution to
the Einstein-A-dust equations. The smooth asymptotic end data induced by its conformal
extension A(7) on JT ~ S belongs then to the class of conformal end data considered in
section [fl Combining the results of the last two subsection we obtain Theorem [I.1]
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