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Abstract: We consider the Einstein-dust equations with positive cosmological constant
A on manifolds with time slices diffeomorphic to an orientable, compact 3-manifold S.
It is shown that the set of standard Cauchy data for the Einstein-A-dust equations on
S contains an open (in terms of suitable Sobolev norms) subset of data which develop
into solutions that admit at future time-like infinity a space-like conformal boundary
J7 that is C* if the data are of class C* and of correspondingly lower smoothness
otherwise. The class of solutions considered here comprises non-linear perturbations of
FLRW solutions as very special cases. It can conveniently be characterized in terms of
asymptotic end data induced on J*. These data must only satisfy a linear differential
equation. If the energy density is everywhere positive they can be constructed without
solving differential equations at all.

1. Introduction

It has been known for a while that among the solutions to Einstein’s vacuum field
equations Iéw = A §,» With positive cosmological constant A on manifolds with space-
sections diffeomorphic to an orientable, compact 3-manifold S there is an open (in terms
of Sobolev norms on Cauchy data) subset of solutions which are future asymptotically
simple in the sense of R. Penrose [17]. This means that any solution (M , §uv) 1n this
subset can be embedded into a manifold M with a boundary J* diffeomorphic to S so
that after an identification we can write M = M U J* and there exist a function €2 and
a Lorentz metric g,, on M with > 0 and Suv = Q? 8uv on M and Q = 0, dQ #0
on J*. Moreover, every null geodesic of g,,, is future complete and approaches exactly
one point of J* in its infinite future. The manifold M, the fields  and guv and the

conformal boundary 77, the infinite causal future of M , will be C®° if the solutions are
C®° and of correspondingly lower smoothness otherwise (see [11] for references). This
property generalises to the Einstein-A equations coupled to conformally covariant matter
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field equations with trace free energy momentum tensor. In [6] this has been discussed
in detail for the Maxwell and the Yang-Mills equations, where a procedure has been laid
out which applies, possibly with some modifications, to other such field equations (see
[16] for an example).

Matter fields with energy momentum tensors that are not trace free were gener-
ally expected to lead to difficulties in the construction of reasonably smooth conformal
boundaries. (The emphasis here is on results about the evolution problem, we are not
talking about geometric studies near conformal boundaries which postulate properties of
energy momentum tensors convenient for their analysis). It has recently been observed
that this need not be true [10].

In the case of the Einstein-Klein-Gordon equations the conformal field equations
with suitably transformed matter field imply evolutions system which are hyperbolic,
irrespective of the sign of the conformal factor, if the mass and the cosmological constants
are related by the equation m? = % A. If this condition is imposed, a fairly direct
calculation shows that the equation for the rescaled scalar field becomes regular where
the conformal factor goes to zero. That the conformal equations for the geometric fields
become regular in this limit, however, is far from immediate and, as in the case discussed
in the following, came as a surprise after various attempts to cast the singular equations
into a form that would allow one to draw conclusions about the precise asymptotic
behaviour of the solutions in the presence of singularities.

Leaving aside the questions about the significance of this particular result, the present
article is concerned with the analysis of another matter model with non-vanishing trace
of the energy momentum tensor. We study in detail the future asymptotic behaviour of
solutions to the Einstein-A-dust equations.

O. Reula has shown that sufficiently small, non-linear perturbations of expanding
flat homogeneous cosmologies decay exponentially for a large class of perfect fluid
equations of state [19]. In a more recent article M. HadZi¢ and J. Speck have shown that
the FLRW solutions to the Einstein-A-dust equations with underlying manifolds of the
form R x T3 are future stable, i.e. slightly perturbed FLRW data on T? develop into
solutions to the Einstein-A-dust equations whose causal geodesics are future complete
[13]. The authors use the method proposed in [3] to control the evolution of a general
wave gauge in terms of its gauge source functions. As emphasized in [3], it is clear that
(under fairly weak smoothness assumptions) any coordinate system can in principle be
controlled in terms of its gauge source functions and suitable initial data. But finding
gauge source functions that are useful in a specific problem is quite a delicate matter. The
authors manage to identify gauge source functions which allow them to derive estimates
that give control on the long time evolution of their solutions (see [20] for another such
case).

It is, however, quite a different question whether the gauge so established lends
itself to analyzing the asymptotic behaviour of solutions in detail and to deciding, for
instance, whether the differentiable as well as the conformal structure of the solutions
admit simultaneously extensions of some smoothness to (future) time-like infinity as
required by asymptotic simplicity.

Expanding FLRW solutions are known to be future asymptotically simple (see
Sect. 6.2). This may be expected to be just an artifact of the high symmetry require-
ments which imply local conformal flatness and hypersurface orthogonality of the flow
field. The present study grew out of attempts to understand what may go wrong under
more general assumptions and what kind of obstruction to the asymptotic smoothness of
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the conformal structure may possibly arise from the presence of a non-vanishing energy
density /.

In the article [8] hyperbolic evolution equations have been derived from the Einstein-
dust equation in a geometric gauge based of the flow field. The following analysis may
be seen as a conformal version of this discussion. After presenting the Einstein-A-dust
equations in Sect. 2, we derive in Sect. 3 the conformal field equations and suitably
transformed matter field equations. It turns out that two equations of the system are
singular in the sense that there occur factors of the form Q! on the right hand side,
where 2 is the conformal factor which is positive on the physical solution space-time
and relates the physical metric g, there to the conformal metric g,, by g,y = Q2 &
Since things are to be arranged such that &2 — 0 at future time-like infinity, where we
want to understand the precise nature of the solutions, there arise problems. One of the
singularities, namely the one in the transformed (geodesic) flow field equation, was to be
expected. Much more serious is a singularity in the equation for the rescaled conformal
Weyl tensor W# 5, = Q-lcw viplgl, which plays a central role in the system. The
singularities carry, however, interesting geometric information. They imply that the (so
far formally given) set {2 = 0} can only define a smooth conformal boundary of the
solution space-time if the flow lines approach this set orthogonally. Thus, if one wants
to approach the problem in terms of estimates, one has to aim for sufficient control to
be able to define simultaneously a conformal boundary at time-like infinity, if admitted
by the solution at all, and correspondingly control the behaviour of the flow field.

In the present article we try to exploit the conformal properties of the system in
the most direct way. In Sect. 4, it is shown that due to the specific form of the energy
momentum tensor for dust, the geodesics tangent to the flow field can be identified after
a parameter transformation with curves underlying certain conformal geodesics. Since
conformal geodesics are invariants of the conformal structure, this opens the possibility
to define a gauge which extends regularly across the conformal boundary J* = {Q = 0}
if the latter can indeed be attached in a smooth way to the solution manifold (on which
Q > 0, of course). It turns out that this gauge implies a certain regularising relation,
which proves useful in three different contexts. Its first important merit is to render the
conformal field equations regular.

In Sect. 5, it is shown that the conformal field equations imply a hyperbolic reduced
system of evolution equations which can make sense up to and beyond the conformal
boundary at time-like infinity (if it exists). This system is not obtained immediately. The
regularizing relation leads to a system that is hyperbolic where 2 > 0 but becomes
singular where 2 — 0. A further regularization is performed to obtain a system that is
hyperbolic independent of the sign of the conformal factor.

In Sect. 7 a subsidiary system is derived which implies that solutions to the hyperbolic
evolution system for data that satisfy the constraints on a given Cauchy hypersurface
(with respect to the metric provided by the evolution system) will satisfy in fact the
complete system of conformal field equations. This closes the hyperbolic reduction
argument.

To obtain complete information on the class of future asymptotically simple solutions
to the Einstein-A-dust solutions we characterize in Lemma 6.1 the possible asymptotic
end data, which may be prescribed on the conformal boundary J* = {Q = 0} (assumed
to be 3-dimensional, orientable, compact) of a solution that admits the construction of
such a boundary with sufficient smoothness. As observed already in [4] in the vacuum
case, the constraints reduce on J* to a linear system of equations. Remarkably, there is
a case where the problem of solving the constraints simplifies even further. In the case
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where the density p is positive everywhere certain fields can be prescribed completely
freely on J and the rest follows by algebra and taking derivatives. There is no need to
solve any differential equation at all (but see the remarks following Lemma 6.1).

The reduced system of evolution equations is used in Sect. 8 to derive our main
results. Being based on hyperbolic equations, a completely detailed statement of the
results should give information about Sobolev norms. Since we only use properties of
symmetric hyperbolic systems which can be found in the literature at various places
and because we are mainly interested in solutions of class C°°, we refrain from listing
Sobolev indices. We would consider these to only be of interest if the weakest possible
smoothness assumptions were needed in the context of some concrete problems.

Theorem 1.1. Let S be a smooth, orientable, compact 3-manifold, assume ) > 0, and
denote by A s the set of standard Cauchy data on S to the Einstein-\-dust equations
with energy density p > 0. Then

(1) There is an open (with respect to suitable Sobolev norms) subset B;_s of data in A, s
which develop into solutions that admit the construction of conformal boundaries in
their infinite time-like future which are of class C* if the data are of class C* and
of correspondingly lower differentiability if the data are of lower differentiability.

(i) The solutions which develop from data in B, _s are completely parametrized by the
asymptotic end data on S (specified in Lemma 6.1) which correspond to the data
induced on the future conformal boundaries J* of the solutions.

The case of the Nariai solution, an explicit, geodesically complete solution to the
Einstein-A-dust equations with 6 = 0 that admits not even a patch of a smooth conformal
boundary (see [11]), shows that our reduced evolution system is by itself not sufficient
to ensure the existence of a smooth conformal boundary. Some extra information on the
Cauchy data is required.

Because the FLRW solutions do admit a smooth conformal future boundary one
could consider data close to FLRW data. Following instead the arguments introduced
in [5,6], a much larger class of suitable reference solutions (which includes the FLRW
solutions) will be constructed in Sect. 8 by solving a backward Cauchy problem for the
reduced equations with asymptotic end data that are given on a 3-manifold S, which in
the end will represent the future conformal boundary J+ = {Q = 0} of the physical
space-time defined on the set {2 > 0}.

In a second step we consider the ‘physical’ standard Cauchy data that are induced
by one of these solutions on a ‘physical’ Cauchy hypersurface. It is shown that under
sufficiently small perturbations of these data the resulting solutions are strongly stable
in the sense that the smooth extensibility of their conformal structures at future time-
like infinity is preserved. This makes use of the fact that a future asymptotically simple
solution admits a conformal representation that extends as a smooth solution to the
conformal Einstein-A-dust equations beyond the conformal boundary into a domain
where 2 < 0. The strong stability result follows then as a consequence of the well
known Cauchy stability property of hyperbolic equations and the fact that the equations
themselves ensure that the set of points where 2 = 0 defines a smooth space-like
hypersurface.

Though they lead in the end to the same set of solutions, it is of interest to distinguish
the two different ways of looking at the solutions. In the construction of the reference
solutions some features of asymptotic simplicity are built in from the start by using
asymptotic end data. In the stability result, however, asymptotic simplicity for the per-
turbed solution is deduced as a consequence of the conformal properties of the equations
and the reference solution.
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In contrast to the approach of [13], which concentrates on deriving suitable estimates,
in this article the emphasis is put on the analysis of the field equations and the explicit use
of their conformal properties. While the conformal equations may lead to serious diffi-
culties when the conformal structure of the solutions is intrinsically not well behaved at
time-like infinity, they give results which are sharp and complete if the conformal struc-
ture extends smoothly and only the standard energy estimates for symmetric hyperbolic
systems are needed.

Moreover, the detailed information obtained on the equations is of considerable
practical interest. The reduced evolution system provides the possibility to calculate
numerically—on a finite grid—future complete solutions to Einstein’s field equations,
including the details of their asymptotic behaviour. In the Einstein-A case this has been
successfully demonstrated by the work of Beyer (see [2] and the references given there).

Besides the one analysed in [10] this is the second example that illustrates that even
in cases in which the energy momentum tensor is not trace free the conformal field
equations with A > 0 and suitably rescaled matter fields can imply hyperbolic evolution
equations that are well defined up to and beyond the future time-like infinity of the
physical solutions. The two cases are quite different but the results suggest that the
analysis of the asymptotic conformal structure in the presence of matter fields can be
more useful than expected.

The possibility to extend solutions to the conformal field equations into a domain in
which Q < 0, where they define another solution to the original equations (see Sect. 8),
has been used here only as a technical device in the stability argument leading to Theorem
1.1. Whether it is of any significance in the context of Penrose’s proposal of conformal
cyclic cosmologies [18] is a question not discussed here.

2. The Einstein-A-Dust System

The Einstein—Euler system with cosmological constant A consists of the Einstein equa-

tions |
ﬁw—zégwungxfw, 2.1)

for a Lorentz metric g, on a four-dimensional manifold M with an energy momentum
tensor of a simple ideal fluid

Tuw =B+ P) U Uy + P g0 (2.2)

Here U* is the future directed time-like flow vector field, normalized so that U “ Ut =
—1, and p and p denote the total energy density and the pressure as measured by an
observer moving with the fluid. The equations require the relation Vi fuv = 0, which
is equivalent to the system consisting of the equations

B+ p) UV, U, + {0, UV, +V,} p =0, (2.3)
UM N, p+(p+p)V, U* =0. (2.4)
These equations must be implemented by an equation of state.

In the following we set k = 1, assume A > 0, and consider solutions on manifolds

diffeomorphic to M = R x S where S is a compact (without boundary), orientable
3-manifold which specifies the topology of the time slices. We will be interested in the
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case where p = 0 throughout, referred to as pressure free matter or, shortly, as dust. It
is supposed that ¢ does not vanish identically and satisfies

p>0 on M. (2.5)

Equation (2.3) reduces then to p or @u UY = 0. This will be satisfied without condition
on U* on sets where o = 0 and implies that the flow is geodesic where p # 0. We

require U" to be geodesic everywhere. The system to be considered consists then of
2.1,

Ty =5 U, Uy, (2.6)

U“ U’'=0, U,0*=-1, (2.7)

(p Uy =0. (2.8)

Let Sbea hypersurface in M which is space-like for g, and denote by 2* the future
directed normal of § normalized by 71, a* = —1. Let coordinates x* be glven near S
so that § = {x® = 0} and the x%, o, B8 = 1,2, 3, are local coordinates on S. Denote

by halg, kqp the first and the second fundamental form induced on § by g, and by
h uw” = gu" +n,nY the orthogonal projector onto the tangent spaces of S. Equations
(2.7), (2.8) are evolution equations for U* and 0. Equation (2.1) induces with (2.6) on
S the constraints

0 = R[A] — kap K% + (ke *)? — 22— 2k A Ty,
0=Dgiy? —Dyitg? —i* he" Ty
Setting a = —n* lA]M > 0,1, = ftu v {,, so that
Uy=ah,+i, with —1=—a’>+igi? where igi? =hP"iga,,
the constraints take the form

0 = R[A] — Rap K% + (ke ®)? =20 =25 (1 + i1y %), (2.9)

0= Dgko? —Dyicg? +p\/1+i50P il (2.10)

It has been shown in [8] how to derive from equations (2.1), (2.6), (2.7), (2.8) a symmetric
hyperbolic evolution system of equations for all unknowns in a gauge based on the flow

vector field U. Given A > 0 and a sufficiently smooth initial data set
(S, hag, Rap, 0%, P), @.11)

satisfying (2.9), (2.10) with fzalg a Riemannian metric and p > 0, the evolution system
can be used to construct a globally hyperbolic solution (M, 8uvs UH, 0) to the Einstein-
dust equations with cosmological constant A into which the initial data set is isometrically
embedded so that § represents after an identification a space-like Cauchy hypersurface

for (M, &uv)- The manifold M will then be ruled by the geodesics tangent to U*. The
ODE’s

UrV, p+p Y, U* =0,
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along the geodesics tangent to U* ensure that 0 > 0 or = 0 along a given geodesic,
depending on whether this relation is satisfied at the point where the geodesic intersects

S. Thus > 0 will hold on M.

For smooth initial data the evolution system given in [8] provides a smooth solution
in coordinates x° = ¢, x“ so that (dx*?, 0) =0, (dt, U) = 1, whence U= 0;. The
initial hypersurfac is given by S = {t = 1,} for some fixed value 7, the metric is of the
form ~

¢ = —(adt)? +hep (0% dt +dx®) (@P dt +dxP) on M, (2.12)

the future directed g-unit normal to Sis given by
1
At = —(8" — ") with shift vector field 4 so that 4% = 0, (2.13)
a

and the lapse function g satisfies —1 = (U, U) = —a’+hgp 0% 0P. If U is hypersurface
orthogonal we can assume thata = 1, u% = 0 and the coordinates define a Gauss system.
This will not necessarily be assumed in this article.

The questions to be analyzed in the following asks whether there exist a reasonably
large set of data for which the solutions can be extended to become future complete,
so that ¢ takes values in [z, co[, and whether these solutions allow us to give a sharp
and detailed description of the asymptotic behaviour of the conformal structure in the
expanding direction, where t — oo.

3. The Metric Conformal Field Equations

Let Q2 denote a positive conformal factor on M and g = Q? 8uv the rescaled metric.
We shall in the following consider the tensor fields

1 1 1 1
Q, s= Z V}LVM Q+ ﬁ QR[gl, L,uv = 5 (R,uv[g] - 8 R[g] g,uv) , (3.1

WH = Q7 C* el (3.2)

where V, denotes the Levi-Civita connection of g and the last two fields denote the
Schouten and the rescaled conformal Weyl tensor of g, respectively. Moreover, we
shall consider the conformal matter fields

Uo=QU,, p=3p
The vector fields U* = gM¥ U, and Ur = fiatd U, are then related by
U* = Q7 '0" sothat g(U,U)=3U,U)=—1.
The tensor fields above satisfy the system of conformal field equations (see [6], [10])
1~

625 —3V,QVIQ—1=—7 (3.3)
1
VuVoQ+ QLyy —Sguy = 3 Q T:v, (3.4)
" L ong 7 [
VMS+V QLW"ZEV QT’?I‘_%V”’T’ (35)
Vo Liy — Vi Loy — V2 WH 00 =2V Ligy, (3.6)

Vi W =297V Ly, (3.7
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The right hand sides are determined by the trace

T=g"Ty, =—p=-p, (3.8)
and the trace free part
N A A 1, 1
TW:,O UUUM+ZgW =Qp UnUM'*'ZgW , 3.9

of the energy momentum tensor (2.6) and the physical Schouten tensor L wv» Which takes
with our energy momentum tensor, the field equations, and the rescaled fields the form

. 1 . . 1 .~ A | 1 1
Llwzg(p+)»)g,w+— U,LUU=glguu+QP(EUqu+ggw)- (3.10)

[\

Taking into account the transformation law of the connection coefficients under con-
formal rescaling this gives

2VLiy = Vip Uy Uy + 3 Vivp &y + 0 (VpUn Uy + Up Vo Uy)
1
=Q (,0 Vp Ung Uy +Up Vi Up) + Ve Uy Uy + g Ve gA]n)
+p (V[VQ &un +2VQ Uy U, +Up g ng Vi Ua) .

Finally, the geodesic equation (2.7) translates into
1
VUU“=§(—g(U, U)gh,+U" U, VPQ. (3.11)

while equation (2.8) for the density o gives
Vup+pV, U"=0. (3.12)

We express the equations in terms of a frame field e = e* 9,1, k = 0, 1, 2, 3, which
has a time-like vector field given by

eop =U,

and which is orthonormal, so that gjx = g(ej,ex) = njx = diag(—1,1,1,1). The
space-like frame fields are given by the e, where a, b, ¢ = 1, 2, 3 denote spatial indices
to which the summation convention applies. The metric is given by

ik
g=njko’ o",

where o/ denotes the field of 1-forms dual to ¢ so that their coefficients in the coordinates
xt satisfy o/ | et = 87 k.

The connection coefficients, defined by Ve, = Ve_,. e =T ! ke, satisfy I'jp =
D with Tje =T T gli» because V;gjr = 0. The covariant derivative of a tensor
field X* ,, given in the frame by X i ;- takes the form

. . ol o
VlejZle,MeMk-'-FkllX j—FkIIle.
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For the covariant version of U, i.e. U; = — 80 j» Eq. (3.11) implies the form
ViU = Fkol = Sok Q! (VIQ+U; Vo) +8% Sbl Xab- 3.13)

If U is hypersurface orthogonal and if S were chosen to be orthogonal to U so that the
vector fields e, define an orthonormal frame on S, the field Xab Would represent the
second fundamental form induced by g on the slice S whence Xab = X(ab)- In general
hypersurface orthogonality will not be assumed here. We shall write g xu, = xa *.
The metric coefficients and the connection coefficients satisfy the first structural
equations
etive i —elt et =k =Tk ey, (3.14)

which ensures the connection to be torsion free, and the second structural equations
Tyl juex =Th'j et 1+ 2T P Ty =20 Py T
=QW ju+2{g" wLnj+L"®en;h (3.15)

which relates the coefficients (and thus the metric g, ) to the unknowns in the conformal
field equations. The conformal field equations read now

. 1
6Qs —3V,QVIQ— 1= 293,0, (3.16)
1, 1
Vi ViQ+ QLJk_ngk:EQ o) UjUk+Zgjk , (3.17)
l. 1 ; 1 1 1,
VkS+VQLik=§Q,OVQ UiUk+Zgik +§vak9+ﬁg Vi p, (3.18)
Vi Ljj — Vi Lij — V2 wi jkl

1
=Q (,0 (Vik UnU; + Uy Vi Uj) +Vike UnU; + g Vikp gllj)

+p0 (V[kQ enj +2Vv UnUj + Uy gnj gh1 VR Uq) , (3.19)
) 1 1
ViW'ji=p (Vi UgU; +UyVipUj) + Vikp UgU; + 3 Vikp gnj+ o”r Zijk
(3.20)
with
Zijr = V2 gnj + 2V Uy Uj + Uk gnj gl V,pQU,.
The matter equations are given by
1 .
VyUF = S (¢* + U UH ViQ, (3.21)
Vup+px.®=0. (3.22)

Equations (3.14) to (3.22) establish a system of differential equations for the
unknowns ' '
ek, Tid i, Q. s, Lik, Wi, U*, p, (3.23)

which is (apart from subtleties which may arise in cases of low differentiability) equiv-
alent to the system (2.1), (2.6), (2.7), (2.8) in domains where Q > 0.
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If the system is to be used to solve Cauchy problems with data given on a space-
like hypersurface S, one has to restrict the available gauge freedom. We shall follow
the procedure of [6,10], where the conformal freedom is removed by considering the
Ricci scalar R = R[g] in a suitable neighborhood of Sasa prescribed function of the
space-time coordlnates and by prescribing suitable initial data for €2 and V; 2 on S. The

coordinates T = x° and x¢ are chosen near $ so that T = = T, on S and (U,dx*) =0,
(U,dt) =1, whence

Ut =ety=86") nearS.

Apart from a parameter transformation ¢+ = 7(t) these coordinates coincide with the
ones considered in (2.12). Precise conditions on the vector fields e, orthogonal to U will
be stated later.

Our main interest is the question whether there exist solutions to the system above
on the domain where 2 > 0 which admit a meaningful (i.e. sufficiently smooth) limit
to a boundary where 2 — 0. In that case we write {Q = 0} = J*, and refer to this set
as the future conformal boundary of the solution. By equation (3.16) the limit of V/ Q
will then define a time-like normal to the set J* so that the latter will define a space-
like hypersurface. It represents (future) time-like and null infinity for the ‘physical’
space-time on which Q > 0.

There arises an obvious problem with the differential system above. The right hand
sides of equations (3.20) and (3.21) are formally singular where 2 — 0. This problem
will be analyzed in the next section. Here we just point out its geometric nature.

If the fields entering Eq. (3.21) have limits as 2 — 0 the term in brackets on the
right hand side of (3.21) defines a projection operator with kernel generated by the unit
vector U. The right hand side of (3.21) can only admit a limit as 2 — 0 if the gradient
of € is in the kernel of that operator and thus proportional to U, whence

The solutions can only admit a reasonably smooth conformal boundary
J* if the geodesics generated by U approach J* orthogonally.
Remarkably, the singularity of equation (3.20) is of a similar geometric nature. If we
want to keep the freedom to have non-vanishing conformal densities p on J ¥, the right
hand side of (3.20) can only assume a limit if Z;; — 0 at J *. Since this implies that
Vi Uy = -u/ Zj — 0, so that U* becomes in the limit proportional to vkQ,
which implies in turn that Z j; — 0, the conclusion above follows again.

4. The Regularizing Relation

A conformal geodesic in a given space-time M, g) is a curve x* (o) together with a
1-form field b, (o) which satisfy the system of conformal geodesic equations

Vy VA +Sb) *, Vi Ve =0,
~ 1 ~
Vyb, — 3 by S(b) ", V* — Ly, V=0,

where S(b),. ", =8, * by+8, " by —8ip 8" byand VH (o) = ddx—: denotes the tangent
vector of the curve. Sometimes it will be convenient to write these equations in the form

VyV +2(b, V)V —$(V, V)b =0, 4.1
~ 1 ~
Vyb — (b, V)b+§§(b, b)V —L(V,.) =0, 4.2
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where the index position should be clear from the above.

For a conformal geodesic the initial data at a given point consist of its tangent vector
and its 1-form at that point. On a given space-time there exist thus more conformal
geodesics than metric geodesics. Moreover, there exists in general no particular relation
between conformal and metric geodesics. The problem of interest here is, however, very
special in this respect.

Lemma 4.1. Let (M, 8) be a solution to the Einstein-dust system (2.1), (2.6)—(2.8). Then

the geodesics tangential to the vector field U coincide after a reparameterization with
the curves underlying certain conformal geodesics.

dx*

Proof. Suppose x"(t) is a g-geodesic with 7~ = UrE(1)) and (x*(0), by(0)) a

conformal geodesics with V* (o) = %. Then there exists a parameter transformation

t = t(o) so that j—; > 0 and x* (o) = x*(t(0)) if and only if

VH (o) = w(0) "  U*(X(1(0))) with o ! = j—t >0, 2(V,V)=—w"2 (43)
o

For x* (o) to be up to a reparametrization a geodesic we need to have a relation
by =aV,, (4.4)
with some function ¢ = «(0’) so that (4.1) reads
Vy VA +a g(V, V) V* =0. (4.5)
It follows then that 2 w3 @V w= @V @, V)= 2«a w4, whence
o=—-w @V . 4.6)

Basic for our result is that relations (3.10) and (4.3) give along x* (o)

A

1 N . A oA
VY Ly, = 8()\_2,0) Vi, with o = p(x"(t(0))).
Inserting this and (4.4) into (4.2) and observing (4.5), (4.6) gives the equation

o 1 (da)

2
1
- - _ _ e —
® 573 da) +6(>» 2p(x"((0))) =0,

which provides with the relation
dr 1 @.7)
do o’ '
a system of ODE’s for w = w(o) and t = #(0) along x* (o) = x*(t(0))). Prescribing
arbitrary initial datat|s, = ts, ®|s,,and j—’; lo, Withw, > Oatthe pointx* (o) = x*(t4))
it can be solved. A straight forward calculation then shows that

1 A do
V(o) = > Ut (x(t(0)), by(o) = —£ U'(x(t(0)),

do indeed satisfy Eqgs. (4.1) and (4.2). O
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It will later be important to note that the freedom to prescribe the initial data for w
gives the freedom to prescribe « arbitrarily at a given point.

Conformal geodesics are of interest in the present context because the curves under-
lying conformal geodesics are conformal invariants of a given conformal structure: If
uv = Q2 8uv. Where Q is a conformal factor as considered above and x* (o), by (o)
satisfy the conformal geodesic equations with respect to g,,,, then x* (o), f, (o) with

fo©@) = by(0) = 7'V Qi) (4.8)

satisfy the conformal geodesics equations
VyV+2(f, V)V —g(V,V) f =0, (4.9)
VUS —(fVIf 3R DY~ LV, =0, (.10

with respect to g,,.,, where V and L denote the Levi-Civita connection and the Schouten
tensor of g, (for this and further properties of conformal geodesics we refer to [7,9]).

If g(V, V) = —6"2 with 6 > 0 at a given point, Eq. (4.9) gives
VvO =0(V, f),

which shows that 6 will stay positive and x* (o) will be time-like as long as V and f
remain sufficiently smooth. Equations (4.9) and (4.10) do not see the relation g, =

Q2 8uv- Thus, if (M , &) admits a smooth conformal boundary J*, one can arrange
time-like conformal geodesics to extend smoothly to J* with finite and non-vanishing
tangent vector.

In the following we shall assume V' to be a conformal geodesic vector field which is

related, as in (4.3), to the g-geodesic vector field U by
V= L DM, 4.11)
With the notation above we have then
ovh=Ur=Q ' U",

and thus

0= Vub =06(U, f). (4.12)

w
Q 9
Since 6 stays smooth and positive if U crosses the conformal boundary this has the
remarkable consequence, used already in [7], that w goes to zero precisely where 2
does.

In terms of U equation (4.9) takes the form

VU + (U, f)U — gU,U) f = 0. (4.13)

Replacing in (4.10) the field V by U = 6 V renders that equation in the form

1
Vuf =W N)f+58(f, HU=LWU..) =0. (4.14)
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This version of the conformal geodesic equations will be assumed from now on. The
only effect of the transition is a reparametrization of x* (o) — x*(7), f, (o) = f,(7)
where o is replaced by a function o (7) so that

dt 1
- . (4.15)
do 6(x(0))
In the following the parameter T will be used.
With (4.12) and the relations obtained in the proof of Lemma 4.1 we get
fu=b,—Q 'V, Q=-0Vyw g, V' — Q7' V,Q
= OO VO Qg U -7 v,Q
=@ 'vpe+Q vy U, - Q7' v,Q,
= (U, H+Q ' vy U, - 'v,Q,
and thus the regularising relation
VuQ=—-(VyQ+QU, fHU, —Q fu. (4.16)

This relation will play a critical role. It will be used later to obtain a hyperbolic
system of evolution equations which extends in a regular way to the set {2 = 0} and it
will be used to set up a subsidiary system to show that constraints and gauge conditions
are preserved by the evolution system. Here it is used to remove the singularities in
equations (3.20) and (3.21). In fact, replacing in Z j;; the term V2 by the right hand
side of (4.16), we get (3.20) in the form

. 1
ViW' = Ve UnU; + 3 Vike gnj

+0 (Ve UnU; + Uy Viq U — ficgnj — 2 fix UnUj — U gy U f).
(4.17)

Using (4.16) to replace V<2 on the right hand side of (3.21), the equation takes the form
VoU + fA+ U U, f1 =0, 4.18)

which is just (4.13) again. Equation (3.13) is then replaced by the formally regular
version

ViU =Tk = (=8 £+ 8%k xan) 821 (4.19)

Finally we note that given sufficient asymptotic smoothness and an arrangement such
that Q2 (x(t)) — O for some finite value of 7, the relation

a1 420
dt ~ Qx(1)’ (520)

which follows from (4.7), (4.12), (4.15) implies with (3.3) thatt — oo as Q(x(r)) — 0.
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5. The Hyperbolic Reduced Equations

To extract from our equations a hyperbolic system we need to complete the gauge con-
ditions for the g-orthonormal frame field ey satisfying e9 = U. The reduction procedure
of the Einstein-dust system in [8] employs a frame that is g-parallely transported in the
direction of U. Since the field U is not geodesic with respect to g this cannot be done
here. We use instead a frame whose vector fields X satisfy the Fermi transport law

0=FyX=VyX—-gX,VyU)U +g(X,U)VyU,

which has the properties: FyU = 0 and if Fy X = 0, FyY = O then Vy(g(X, Y)) = 0.

On a given space-like hypersurface transverse to the flow line of U we thus choose
smooth fields e; with eg = U such that g ;i = g(e;, ex) = njx and extend the e, away
from the hypersurface by the requirement that Fye, = 0. The smooth orthonormal
frame field so obtained is then closely related to the frame considered in [8]. In fact, if
¢y is a g-orthonormal frame such that ¢y = U and @0&{ =0, then ey = Q16 is a
uv = Q2 guv-orthonormal frame with eg = U and Fye, = 0.

As a consequence of relation Fye; = 0 the connection coefficients satisfy

oy =0. (5.1

The transport equation for the flow field U is given by (4.13). The coefficients U* =
e o = 8" ¢ have been fixed by our choice of coordinates, however, and equation (4.18)
reduces to the relation

To%g=—f"=—g"f, resp. T9% =—fa, (5.2)

between the connection coefficients and the acceleration of U. The remaining not nec-
essarily vanishing connection coefficients are then given by

Iy bc and Faob =V, Up = g(Ve,,€0, ep) = Xab TESP. 1—‘abO = Xa b= Xac ng~
(5.3)
In the case in which U resp. Uis hypersurface orthogonal, the field y,; is symmetric and
represents the second fundamental form while the I', ? .. are the connection coefficients
of the intrinsic connection induced on the hypersurfaces orthogonal to U in the frame
e,.
We shall now derive the reduced equations for the remaining frame and connection
coefficients. With our gauge conditions and the connection coefficients above the first
structural equations (3.14) induce the evolution equations

et ao=—fa8"0— xa’e" s, (5.4)

for the fields e ,.
The second structural equations (3.15) induce the evolution equations

Ce%po=f"Xeb— %" fo— X Ta® s+ QW poe — g% ¢ Lop + L 0 gevs
(5.5)
Xab,0 + Dafo = fa fo — Xa € Xeb — 2 Woboa + Lab — Loo 8ab, (5.6)

for I'. ¢ 5, and x,p, Where we set

Dafb = fb,u eﬂa - Facb fc~
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No equation is implied for ry%, = — fa by (3.15). Such an equation is provided,
however, by (4.14), which takes in our gauge the explicit form
1 )
fo,o=—§ fi f7 + Loo, (5.7)
fa,O = Loq. (5.8)

At this stage arises a problem. We are aiming for a system that is symmetric hyper-
bolic. The principal part of the coupled system

Xab, 0+ Dafo =", fa0o="-+,

does not satisfy the required symmetry condition. One might think of proceeding as fol-
lows. The structural equations (3.15) imply after a contraction an analogue of Codacci’s
equation, which takes with the convention D, xa» = Xab, € ¢ —Tc 4 xab =T Xad
the form

DaXab_Db(Xaa)z"' s

(where the index position in the first term has to be respected because x,p is not nec-
essarily symmetric). By adding a suitable multiple of this equation to the second of the
equations above one could hope to obtain a symmetric system. A careful analysis shows,
however, that this does not work. We skip the details.

Help is again provided by (4.16). By this relation the field

N = Vi + (VyQ+ QU, ) Uk + 2 fi,
vanishes in our gauge. While Ny = N; U* = 0 identically, the equation N, = 0 with
Na = fa+ Va2,
has non-trivial content. The relation

ViNe =V;ViQ+V; (VyQ+QU, f) U+ (VyQ+QU, f))V; U +V; Q fi
+QV; fi,

implies in our gauge

VaNp —Ng fp =VaVp QA+ (VyQ+QU, ) Xab — QL fa fo + Q2 Va fp
=VaVp Q+ (VuQ+QU, ) xab — 2 fu fo + Q2 (Da fo — Xab f0)-
=VaVp Q+VyQ xap — R fa fo + 2Dy fo,

which gives with (3.17)

1
VaNp — No fo = VU xap +5 8ab + 2 (Dy [ — fa fb_Lab+§ngab)- (5.9)

Solving the equation V,, f, — N, f» = 0for D, f;, and using the resulting expression
to replace that term in the evolution equation for y,p, gives the latter in the form

Xab,0 — 27 (VU Xab +5 8ab) = —Xa © Xeb — 2 Woaos — Loo &ab- (5.10)

With the reduced equations obtained so far and the ones that follow below this gives
again a symmetric hyperbolic system where Q2 # 0.
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Let us assume that the solution admits a smooth conformal boundary J* = {Q = 0}.
To obtain a system which extends in a regular fashion to 7* we recall that this would
require that eg = U approaches J* orthogonally. With (3.16) this would imply that

[ A
Vo2 —- —v <0 as Q — 0, where v= —3

and thus Vi < 0 also in a neighborhood of J*. In the discussion of the conformal
constraints on 7+ in the next section we shall see that the conformal gauge can be chosen
such that s and y,p vanish at J*. If data on a ‘physical’ initial hypersurface are evolved
in the direction of J* it is, however, difficult to decide how the conformal gauge must be
chosen such that these fields will vanish at J*. This suggests to introduce regularizing
unknowns which are derived from fields which go to zero at J* in any conformal gauge.
Such unknowns are suggested by the equation V, f;, — N, fp = 0. In fact, the fields

1 c
-3 - Vu2 x:€+3

Cop = Xab 3anb Xc L E= U );; S’ (5.11)

satisfy for 2 # 0 and Vi Q2 # 0 by (5.9)

1 .
é‘abz_(vUQ)71 (Dafb_fafb_Lab_g(Dcfc_fcfc_Lcc)gab s
(5.12)
and
3

$=—Dafa+faf“+La“—§Qp, (5.13)

and can thus be expected to extend smoothly to J*. The original unknown will be
recovered from the new ones by

1 _
Xab = Q§ab+§(VUQ) '(QE —35) g, (5.14)
which will certainly be well defined on neighbourhoods of J*+ where Vi Q2 # 0. This
will suffice for our purpose because we can use Eq. (5.10) where Q # 0.

The equations we have obtained so far imply equations for the unknowns (5.11) that
are regular where Viy Q2 # 0. Indeed, a direct calculation gives with (5.10) the equation

Cab,0 = =2 (&a “ Ceb — %Cc‘i Sdc 8ab) — % (Vo)™ (QE —35) Cap — Woaop- (5.15)
From (3.17) follows
Qo0 —To%oVuQ2 = VoVoQ = —Q Loy — s + % Q2 p,
and thus with0 = N, = Q f, + V,Q
Q,oozszfaf“—QLoo—H%sz%.
Equation (3.18) gives with (3.22) and N, =0

1 1
s,oszQLowgf“Lao—Zpszvysz—ﬁpgzzx.
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With these two equations relation (5.10) implies
- 1 a 1
§0=(VyQ)™ (2§ —35) —§§+faf —Loo+4—t,0Q

3
—Vu QLeal% +3 f9 Lyo — vausz. (5.16)

This completes the evolution system for the metric and the connection coefficients.
To deal with equations of first order we introduce

S = Vi 2,
as an unknown and use (3.17) to get the evolution equations
Vo2 = X, (5.17)

1 1
V()Ek=—QLQk+Sg0k+EQZp(Uon+ZgOk)~ (5.18)

From (3.18) we get

: 1 . 1 1 1
Vos = —ViQLj = Eva’sz (Ui U0+Zgio)+§QpVQQ+ﬁQZVO,O. (5.19)

As mentioned above, the Ricci scalar R = R[g] of g,,,, will play the role of a conformal
gauge source function and thus be prescribed as an explicit function of the coordinates
near the initial hypersurface. Because of the relation

. 1
—Loo+8" Loy =L;7 = ER’ (5.20)

it suffices to derive an evolution system for the components Lo,, Lap, a, b = 1,2, 3, of
the Schouten tensor. To simplify the equations we set

Kin=ViQ W jy+Q (p (Ve UnU; + Uy Vi Uj) + Vigp UpUj + % Vikp gl]j)
+0 (Vi gnj +2VeQ UnU;j + U gy 879 V,Q Uy), (5.21)
so that (3.19) takes the form
Vi Lij — Vi Lij = K.

It implies by contraction
Vo L DYy Ly = -V, R+ K
oLio—& b lc—g | K+ jl-
These equations are used to define the evolution system

. 1 ;
Vo Log — h" Vj Lge = cVaR+K jo, a=123, (5.22)

Vo Laa — Va Lo = Kaoa, a=1,2,3, (5.23)
2VoLap — Vg Lop — Vi Loa = Kaob + Kpoa, a,b=1,2,3,a#b. (524)
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for the set of unknowns
Lo1, Lo2, Lo3, Li1, L1a, Ly3, Ly, Loz, L33.

For given right hand sides the system will then be symmetric hyperbolic on a neighbor-
hood of an initial hypersurface on which eg = 8" and on which ¢°, is sufficiently
small. Moreover, we find with our gauge conditions

; 1
K/ ja = _Ep(Qfa + Va2),

. 1 1
Kaop = ViQW' 40p + 3 Q (P Xba + 3 Vup gab) ,

and thus the important fact that on the right hand sides of the evolution system above
only that derivative of p occurs which can be removed by using the Eq. (3.22), i.e.

Vup+px.®=0. (5.25)

This equation is assumed, of course, to be part of the reduced system.

The following extraction of an evolution system for the rescaled conformal Weyl
tensor from Eq. (4.17) is close to the procedure to obtain evolution equations for the
conformal Weyl tensor discussed in [8,12], to which we refer for more details. Let

Wp=gly+U U, Uyp=gly+2U7 U,

denote the projection operator which maps the tangent spaces onto their subspaces U+
orthogonal to U and the reflection operator which maps U onto — U and induces the
identity on U~ and consider the totally antisymmetric tensor densities

€ijkl = €fijki] With €p123 =1 and € = U' €ijkl-
Further, define the U -electric part w j; and the U-magnetic part w;fl of Wi ji by setting
. 1 .
wj = Wipkq U' hpj Ukhql, w;’fl = E Wl_pmnemnkq U hpj Uk/’lql,

so that these symmetric trace free fields are given in our gauge essentially by their
‘spatial” components wyp and w, .

It will be convenient to write Eq. (4.17) in the form Fj;; = 0 with

; 1
Fixy =Vi W' ji —Vep UpU; — 3 Ve gnj (5.26)
—o (VikUnUj + Uy Vig U = fix anj =2 fix UnUj = U gnj U £).
Inserting the representation
Wijii = 2 (ige wnj — Lk wii — U wy), €7 i — U wiy, €7 1),

of the rescaled conformal Weyl tensor into the equations

1
0=Pj=—Fp,h? U R j)+ 3 i B Fppg WP U™ R, (5.27)

1

0=0ij=—=

5 Finpg ™ i €)™, (5.28)
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the latter take the explicit form

Wap, 0 + D, w:;(b €a) od = X(a ¢ Wp)e + 2 XC (a Wh)c — 2 Xe ¢ Wab (5.29)

1
— hap X Wea — 2 ac wap €p) ¢ — P (3 X(ab) — hab X ©),

why 0 — De wap €a) ! = X (@ Whye = Xe S Wy (5.30)
+2ac Wy €p) cod 4 Xed Wef € ce €)) df,
where we set, as before,
Dy wpe = wbc,ueﬂa - Fadbwdc - Fadcwbd»

etc. (The slight differences with the analogues equations in [8], [12] result from the use
of the relation Ly w;ij = w;ij 0 +2 x( k wyy; for wyp and w?,.) For given right hand
side Egs. (5.29) and (5.30) represent a symmetric hyperbolic system for wg, and w, if
it is ignored that these fields are trace free. Their trace-freeness will be taken care of by
the construction of the initial data and then be preserved by the equations. Again it is
important that no derivatives of the field p occur on the right hand sides.

If on the right hand sides the field V€2 is replaced by X, Vop is removed by using
(5.25), xap is replaced by (5.14), and L is removed where it occurs (also in expressions
like Vy Lop = Lop, pe” a—Tq koLip—Tg% Loy) by using (5.20), then equations (5.4),
(5.5), (5.7), (5.8), (5.15)—(5.19), (5.22)—(5.25), (5.29), (5.30) represent, irrespectively
of the sign of €2, for suitably chosen initial data a quasi-linear symmetric hyperbolic
evolution system for the unknowns

eﬂas FC“b? fkv ;ab» ga Qv 2/{9 S, LOa» Laba 109 wabv w:bs

where Vo # 0. Where ©2 # 0 such an evolution system can be obtained by replacing
Zap and &€ by x4p and using directly Eq. (5.10). The characteristics of the systems so
obtained are time-like or null with respect to the solution metric, i.e. the metric g, that
satisfies g, et j e" k = njk.

6. Asymptotic End Data

In Sect. 8 we shall discuss the natural question of how initial data for the reduced
field equations are derived from solutions to the constraints (2.9), (2.10) induced by the
Einstein-A-dust system on ‘physical’ initial hypersurfaces. The nature of the argument
employed in (8) suggests, however, to consider first asymptotic data.

For solutions to Einstein’s field equations with a positive cosmological constant
which admit a smooth conformal boundary 7 it has been observed in the vacuum case
[4], in the case of matter models involving conformally covariant matter models with
iatd f‘,w = 0 [6], and also in the case of a matter model with g*¥ YA"W # 0 [10] that the
problem of providing initial data simplifies considerably if solutions to the constraints
are constructed on that boundary. There is no need any longer to consider non-linear
elliptic equations. Assuming that the solutions admit a smooth conformal boundary
J* = {Q = 0}, it will be shown in this section that the constraints induced on 7" by
the conformal equations in the Einstein-dust case with a positive cosmological constant
lead to the same simplification. Moreover, in the particular case where p > 0 on J*
they simplify even further. The solutions to the conformal Einstein-dust constraints can
then in principle be constructed without solving any differential equation at all.
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To construct the asymptotic end data on a 3-manifold which will later acquire the
status of a smooth conformal boundary, let § be a smooth, orientable, compact (though
the latter is not really needed in the following discussion) 3-manifold. Assume that it
represents a smooth conformal boundary [7* of an Einstein dust solution with cosmo-
logical constant A > 0. The conformal constraints induced on it must then be considered
with an induced metric which is Riemannian and a conformal factor €2 which vanishes
on S. As seen earlier, the future directed conformal flow field U must be orthogonal to
S. The conformal field equations will be considered in a frame e, k = 0, 1,2,3,0n §
so that eg = U and the ¢, a = 1, 2, 3, represent a frame on S for the induced metric

hab - gab - g(601 eb) = dlag(lv 17 1)7

on S. The connection coefficients defined by g in the frame e, are given again by
Viej =T ! j e1. As before h k=g j kyu iU k denotes the orthogonal projector onto
S. By assumption we have 2 > 0 in the past and < 0 in the future of S and thus
eo(2) < O on S. Because ey is orthogonal to S the field

Xab = Ta®p = g(Ve,e0, €p),

represents the second fundamental form induced on S and is thus symmetric, while
the T, ? . define the connection coefficients on S in the frame e, of the Levi-Civita
connection D defined by the intrinsic metric A,p.

The electric part wj; = Wiprg U Lykpe j h? of the rescaled conformal Weyl tensor
is then represented by wga, = Woaop and w}), = % Woacd €b ¢ represents its magnetic
part w;‘f, = % Wipmn €™ kq U U P j h4 |, where €1 and € ji; are defined as before.

With these assumptions Eq. (3.16) reduces to the condition

VoQ=—-v, V'Q=v on S, where v=,//3>0. (6.1)

Equation (3.17) reduces on S to V; V;Q = s g;;. The only non-trivial condition implied
by this relation is a restriction on the second fundamental form

V Xab = S hgp on S. (6.2)
Equation (3.18) implies the constraint
Vys+vLog, =0 on S. (6.3)

Under the conformal gauge transformation g — g = 6% g, 2 — Q = 6 Q with smooth
6 > 0 the function s transforms as s — § = 65 + g”° V,Q V,,6. This shows that for
given 6 > 0 on S the derivative V0 can be determined on S such that 5 coincides on
S with any prescribed function. The function s could be carried along as a free function
in the following equations but for simplicity the choice

s=0, xap=0, V;V;Q=0, Log=Lso=0 on §, 6.4)

will be assumed, which still leaves the freedom to rescale the metric on S. It should be
observed, however, that the gauge above may not be satisfied if a solution is evolved into
S from the domain where 2 > 0. In that case the more general relations like (6.2) and
(6.3) must be considered.

Because the conformal Weyl tensor €2 wi jki vanishes on S, the curvature tensor of
g is determined there by its Schouten tensor L ;. Because the second fundamental form
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vanishes on S, the orthogonal projection of the curvature tensor of g onto S coincides
by Gauss’ theorem with the curvature tensor of 4, i.e. Rypcqalg]l = Rapcalh]. It follows
that the decomposition of R;pcq[g] in terms of g, = h,p and the components L,y [g] of
its Schouten tensor is formally identically with the decomposition of R,pcq[h] in terms
hap and its Schouten tensor [,,[h] = Raplh] — 41'1 R[h] hgp. This implies that

Lap[g] = lap[h],

which can be calculated from /. The component L then follows from % R[gl=1L; J
as

1
Loo = — Rig] +h Ly,

once the conformal gauge source function R[g] has been prescribed.
Equation (3.19) induces the constraint V, Lpe — Vp Lge = —V wo cab On S. Because
the second fundamental form on S vanishes, it can be written in the form

1
Wi, =~ €a “d D Lap. (6.5)

The equation says that the magnetic part of the rescaled conformal Weyl tensor is given
on S up to a factor by the (dualized) Cotton tensor of 4. Equation (3.19) induces the
further constraint V, Lpg — Vp L,0 = 0 on S. This is satisfied as a consequence of (6.4).

With Fj; given by (5.26), the constraints induced on S by equation (4.17) are given
by (see [8], [12])

. 1 .
0=Pc=FjuUln? U, 0= Qi =~ Fipg U’ & . (6.6)
They can be written more explicitly in the form
1
Dwge = § Dep —p fe, (6.7)

which is a genuine constraint, and
Dw}, =0, (6.8)

which is, consistent with (6.5), the differential identity satisfied by the Cotton tensor and
imposes thus no additional restriction.

The 1-form f, characterizes the deviation of U from hypersurface orthogonality (see
the datum %% in (2.11) and the following discussion of hypersurface orthogonal flows)
and can be prescribed freely on S. The value of fy only affects the gauge. It can be
prescribed freely and we assume that fo = O on S.

The initial data for ¢,; and & which follow from (5.12) and (5.13) are then given on
S by

1
Sab = v (Da Jo— fa fo — Lap — g(Dc fc = fe fc - Lcc)gab) > (6.9)

and
E=—D, f"+ f, f*+L,“. (6.10)
The observations above can be summarized in terms of local coordinates x%, o =
1,2,3,on S as follows.
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Lemma 6.1. Any smooth initial data set for the reduced equations is determined on
the set S = {Q = 0} uniquely by a Riemannian metric hyg, the density p > 0, the
acceleration f and a symmetric, h-trace free tensor field wqg, which are arbitrary up
to the relation

1
D%weg = gDﬂp—pfﬁ on S, (6.11)

where D denotes the Levi-Civita operator defined by hyg.

As in the cases mentioned in the beginning there is no need to solve an analogue of
the Hamiltonian constraint. The Riemannian space (S, 4g) is not subject to any further
restriction. The situation even simplifies for the class of data with p > 0 on S. In that
case hgpg, p > 0, and weg can be prescribed completely freely and fg is then determined
by reading (6.11) as its defining equation. It should be pointed out, however, that if
fu« 1s required to satisfy some extra conditions, as in the hypersurface orthogonal case
discussed below, Eq. (6.11) must be read as a differential equation. The situation can
then be discussed by the well known splitting techniques used in the discussion of the
standard constraints [1].

The gauge requirement s|{qo—0) = 0 leaves the conformal gauge freedom

2
Q->Q=0Q, gunw— gl’w =0 guv,
with smooth functions & > 0 that are arbitrary on S. If n* denotes the future directed
unit normal to S the conformal gauge transformation above implies associated transfor-

mations

haﬁﬁh&ﬂ=92gqﬁ, nt st =9 Iyt Ut > UM

:9_1UM, p—)p/:9_3p’
and, by the transformation law for the 1-forms associated with conformal geodesics,
fa = £, = fa— 07" Dot (6.12)

If n is extended as unit vector field into M , the relation go, WH ,g,n"n” =
Q! 8ap C* 1pp n¥ n” makes sense and suggests on S for wyg the transformation law

Wep —> w‘;ﬁ =0! Wagp-
It follows then
WP Dy w!,, =073 h* Dy wy .

whence
o0 1 AN ! gl -3 o 1
D waﬂ_gDﬁp +p fﬂze (Dgy w ﬁ—gDﬂ,0+,0fﬁ),

so that the constraints are preserved.
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6.1. Hypersurface orthogonal flows. Obviously, the vector field U* is hypersurface
orthogonal where Q # 0 if and only if this is true for U* = Q! U*. Formally this
follows from the relation 0[p %u Uy =Q2 Uip V,, Uy. In our gauge the hypersurface
orthogonality condition U 0 @M U, = 0 is equivalent to

0= V[a Ub] = Xlab]- (6.13)
From (5.6) we get with 645 = x(ap) along the flow lines of U# the ODE

Xiab),0 + Dia fo1 = 04 € Xieb] — 0b € Xfea)-

It follows that Dy, fp) = 0 if U* is hypersurface orthogonal. If the solution admitted
a smooth conformal extension, so that x[z») = 0 on J*, we could conclude from the
equation above that (45 = O if we knew that Dy, f,) = 0. With the gauge condition
V. Ny — N, fp = 0 Eq. (5.9) gives, however, only the relation

0 = Q0 X[ab] + 2 Dy fp)-

But this combines with the equation above to give

(Q_l X[ab]) )= Oa ¢ (Q_l X[cb]) —op€ (Q_l X[ca]) .

It follows that x[.,) = O along a given integral curve of U* if it vanishes at a point of
it where © # 0. On the other hand, the relation above shows that ! y45] assumes
the limit (Vo€2) ™! Dy, fpyon J*, which vanishes where the integral curves of U* meet
J* if and only if Dy, fp) = 0 there. Observing the discussion of the conformal gauge
freedom in the construction of data on the conformal boundary, in particular (6.12), we
conclude:

Lemma 6.2. Let be given a solution to the Einstein-dust system (2.1), (2.6)—(2.8) that
admits a smooth conformal boundary [J*. Then the field U" is hypersurface orthogonal
if and only if the initial data for the conformal field equations induced on J* in the
gauge introduced in the beginning of Sect. 6 are such that

Dy fp1 =0 on J*.

If this condition is satisfied and the field f, can be given on J* as the differential of a
function f, then the conformal gauge can be chosen so that f, = 0on J*.

6.2. FLRW-type solutions. In the following we discuss the FLRW solutions along the
lines of the previous sections. The FLRW-type solutions to (2.1), (2.6), (2.7), (2.8) on
M =R x Swith S =S3, T or H3 (a suitable factor space of hyperbolic 3-space) are
of the form

g=—di’+ad’*k, U=2d, p=p@) >0,

with a function a = a(z) > 0 and a 3-metric of constant curvature which is given in
local coordinates x%, o, B, ... =1,2,3,0n S by k = kypg dx® dxP, so that Ropyslk] =
2 € kq[y kpgys where € = 1,0 or —1. Rescaling the fields with a conformal factor 2 =
Q(1)
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and introducing a coordinate x9 = 7(¢) so that (U,dt) =1, the conformal version of
the metric above takes the form

g=—dt*+1’k, U=20d,;, p=p(),

with some function/ = /(7) > 0. The non-vanishing Christoffel symbols and the second
fundamental form yx,g of the slices {t = const.} are then given by

1
Xep =T ' plel =11 keg, To%,lg]l=T,%0lg] = TUK
Fﬁay[g] = Fﬁay[k]s

where ' = a%. The Ricci scalar and the Schouten tensor are given by

6 " N2
R[g]zl—2(€+ll + ()7,

1 1
Loo[g]=ﬁ(€—2””+(l/)2), Loolgl=Loalg]=0, Laﬂ[g]=5(e+(z/>2)ka,e.

Choosing the conformal gauge function as R[g] = 6 € on M, the function / must satisfy
11"+ (I')? + € (1 — I?) = 0. Using the remaining conformal gauge freedom to achieve
I =1, = 0 on aslice {t = const.}, it follows that / = 1. The only non-vanishing
Christoffel symboly are then given by I'g * ,,[g] = T'g *, [k] and

€ €
Loo =75, Lao = Loa = 0, Lag= Ekaf%
Where 2 > 0 the physical field is then given by

$=Q%g=—di’ +a’do?, (6.14)
1 dt _ 1
Q@) dr Q)

a(t) = (6.15)

The high symmetry assumptions lead to a simplification of the conformal field equa-
tions. There do not occur singularities any longer in the equations. In fact, because U
is g-geodesic and hypersurface orthogonal and Q = (), the singularity in (3.11) is
gone. Because the line element g is locally conformally flat it follows that W# ;. = 0

and thus @[v lt;h]p = 0 by (3.7). Moreover, it follows by (3.6) that V|, Lyj, = 0.
It will be assumed in the following that the conformal time coordinate t vanishes on
a set {Q2 = 0} and that ViyQ = Q' < 0 there. Equations (3.3) and (3.8) then imply

Q0)=—-v=—-/A/3<0.
Equation (3.12) reduces because of V, U"* = x.“ = 0to p’ = 0, so that
0 = ps = const. > 0,

equations (3.4) and (3.9) imply s = 5 Q—% 05 2, Q" +e Q—% px Q7 = 0and equations
(3.5),(3.8),(3.9) give s’ = 5 Q' — % ps 2 ', which is satisfied by the function s given
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above. The equations for s are redundant under the given assumptions. So we are left
with the initial value problems

/" 1 2 _ _ / —
Q+eQ— o p =0, Q0)=0, Q0 =-v,

which clearly have a smooth solutions near {t = 0} = J*. Where Q" # 0 (thus in
particular near 7*) the ODE is equivalent to (3 2 + 3¢ Q> — p, Q%) = 0, which
implies with the boundary conditions

3Q%7+3eQ%— p, QP =, (6.16)

The decreasing solutions to this equation cover all the expanding ends of the FRW-type
solutions. With (6.15) the usual (physical) equations (see [14]) for a(¢) are implied by
(6.16).

7. The Subsidiary System

To show that solutions to the reduced equations for data which satisfy the constraints do
indeed satisfy the complete set of conformal field equations, it has to be shown that the
zero quantities Nj and

Tijk, Aijkl, A, Bj, le, Dj, Hju, Fiju, (7.1)

vanish as a consequence of the reduced equations and the given initial data. Here

N;=Qf;+U'S U;+ 2, +Q UF U,
Ti*iep = —lei,ej1+ (T =Tl e, (7.2)
A i =R juu — QW' ju —2{g" w Lnj + L' x g5}

with
R =T j e s =Te' j e 1 +2T3 P Ty = 2T Py T, 5,
Azeszs—w,-z"—x—%gz%,
B = ViQ — %k

1 1
Cir=V;Zp+ Qij_ngk_Esz(UjUk"'Zgjk)v

. 1 . 1 1 1

Di=Vis+S Lig—=QpE (Ui Uk +=gix )| — = Qp =k — — Q> Vi p,

k kS zkzp(tk4gzk)8,0k24 (¥4
ijIEVkL]j—Vlij_Kjkla
Fiii =Vi W' jju — Mju,

where
1

M = Ve UgU; + 3 Ve gnj (7.3)

+p (Ve UnUj+ Uy Viq Uj — fix gnj — 2 fu UnUj — U gnj U i),
K =% wi ki + 2 M. (7.4)
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Some of these quantities vanish trivially because of symmetries, gauge conditions,
or the reduced equations. The latter comprise equations (4.13), (4.14), (5.25) and

U'nk; =0 U'A" ;=0 U/B;j=0, U/C;;=0, U/D;=0, (1.5)
H’ ju =0, Hap+Hpa =0, a,b=1,2,3, P;=0, Qi=0, (76)

The zero quantities not in this list correspond to constraints or gauge conditions. Con-
cerning the second of equations (7.5) we refer to the remarks below.

In the following we shall use the covariant derivative operator V; defined by the
connection coefficients I'; / ; that satisfy the gauge conditions and the reduced equations.
This operator is metric in the sense that V; g jx = 0but, as seen from the first of conditions
(7.5), it is not known a priori whether the connection is torsion free. In the following
arguments will be needed the commutators of covariant derivatives, which are for a
function ¢ and a vector field X’ in the case of a general metric connection of the form

ViV, =V;V)¢=-T";Vi¢
(ViV;=V; V) X" =RCy X =130 vy XU

To avoid carrying along various non-illuminating terms involving components of the
torsion tensor we shall refer to such terms in an equation often in the form ...+ P(T),
where the dots indicate the equation of interest and P(7") is a generic symbol for a
polynomial in the components of the torsion tensor that satisfies P(0) = 0. The equation
above will then take the form

(Vi V; = V; Vi) X5 = R*;; X'+ P(T).

The other zero quantities in the list (7.1) will be kept explicitly in an equation if needed
to indicate how the calculations goes, otherwise the equations will be written in the form
...+ P(Z), where the dots indicate the members of interest and P (Z) is a polynomial
in the components of the zero quantities (that may occasionally absorb a P (7)) with
smooth coefficients that satisfies P(0) = 0.

The regular system has been obtained from the original version of the conformal
field equations by using the gauge requirements N; = 0 and V,N, = 0. It needs to
be shown that they are preserved by the reduced equations to establish that the original
version of the conformal field equations is satisfied. They are needed in particular to
show that the equations for Z,; and & imply the equations U A® ,;, = 0, U' A% ¢;, = 0.
The zero quantity N; plays a particular role because its vanishing follows directly from
the reduced equations and the initial conditions.

If N = 0 on a hypersurface transverse to the flow lines of U* (which will, for instance,
be the case if data are prescribed on {Q2 = 0}), this relation is preserved along the flow
lines of U as a consequence of the reduced equations.

In fact, Egs. (4.13) and (4.14) imply

VuN; = UN U Cy U; + UX Cy + URBy (fi + U f1 U — U f5 Ny,
which reduces with (7.5) to the linear homogeneous ODE
VuNi = =U; f*Ny, (7.7)

along the flow lines of U .. From this the assertion follows. Since the solution to the reduced
equations is ruled by the flow lines it follows also that V; N; = 0 on the solution.
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It can thus be assumed that N; = 0, V4N, = 0 so that we have indeed U'A% i =0
and the equivalent equation U IA? g;p = 0 as written in (7.5).

The subsequent discussion follows to some extent the derivation of subsidiary systems
in earlier work on the conformal field equations. It will be convenient to use for the
covariant derivative of a given tensor field X;; ¥ the notation

Vi Xij o= e (Xij 5+ (T'X)iij K,

so that X;; k(X)) j k denotes a purely algebraic linear operator which does not
involve derivatives.

The connection defined by the I'; J + and the associated torsion and curvature tensor
satisfy the first Bianchi identity

DOViTili=D (R ju+T;" c Ti' ),

(kD (kD)

where Z( jkiy denotes the sum over the cyclic permutation of the indices jki. Set-
ting here j = 0, observing that the symmetries of C'ju = QW! ji and Ly imply
>k R jki = 2y A ju and taking into account the reduced equations, we get
from this the equation

VoTi'1=—CTo' x+(CTko 143 D (A o +To" x Ti' ) = P(Z).  (1.8)
(OkI)

To obtain an equation of the desired type for A’ jki we show that the right hand side
of the identity

VA it + VIA ik + Vi A i = %e,,jk, €PN, AT g
can be written as a linear expression in the zero quantities. We write (7.3) in the form
Riju=A ju+QW ju+G ju+E ju,
with
G'ju=Lg wegn, L=L" Eu
=2{¢'w Ly +L" wen;}. Ljj=Lij— %Lgu,
and use the second Bianchi identity

D ViR == Ry T, (7.9)
(jkI) (jkD)
to obtain
njkl x7 . A . __ _ njkl QW QV.W:
€ ViAime = —€ (V] Wimki + 2 VWi
+V;Gimit + VjEimki + Rimpj Te ¥ 1) -
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The well known facts that the left and right duals of W; i, and G ji; coincide respectively
while the left dual of E; j4; differs from its right dual by a sign then imply with the reduced
equations

KN i At = €im ™ (VjQ Wt + QYW
+V;G’ g — V;E’ nkl) — 0 Rippi T P
= €im (V/Q W it + Q2 (Fagt + Mokt
+2 VL gin — 2 Vix Ly — 2V, LY gl]n) — €0 M Rimpj Ti P
= ein ™ (ViQW/ i+ R (Faks + M)
kil — Si Wk — QMg — 2 HY i gl]n) — €0 M Riypj Te 7 1.
In the last step it has been used that K J j1 = 0. This follows because the tensor wi ikl
has vanishing contractions and because Eqgs. (4.13) and (5.25), which are satisfied as

members of the reduced system, imply that M/ ji = 0.Using again the reduced equations
we finally get

VoA it = —(C A ok + (TAY o (7.10)

1 .
—5 €" ont [6’ m " (B WP it + Q Foug — Hug — 2 H” p gin)

—en M R 0 Ti 71} = P(2).
A direct calculation gives for the quantity
A=6Qs—32i2i—k—%Q3p, (7.11)
the relation
ViA=6QD; — 6% Cji + (65 —%Q%)Bj.

On the initial slice, where the zero quantities on the right hand side vanish by the
construction of the initial data, this relation reduces to V;A = 0. This implies that
A = 0 on that slice if it holds at one point of it. In the case of ‘physical’ data (i. e.

= 1) the condition A = O reduces to 0 = 4 A=R—4xr— 0, which will be satisfied
by the construction of the physical data. Using the freedom to prescribe €2 and its time
derivative on the initial slice the condition A = 0 can also be achieved in the transition
to conformal data. We recall that the relation A = 0 served to determine the value of
X in our discussion of the conformal data on {2 = 0}. With the reduced equations the
relation above implies that

VyA =0.

We can thus assume that A = 0 on the solution manifold.
A straightforward but lengthy calculation shows that the fields

B D
Z% =V Ba, Z5y=VijCai, Zj =V, Da,
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can be expressed as linear (homogeneous) functions of the zero quantities with smooth
coefficients. Taking into account the reduced equation U/ B; = 0,U’/C;; =0, U’ D; =
0 one gets
U/V;By =2U’ sz +U’/ Vi Bj =2U/ ka + Vi (U/Bj) — (VyU’) B; = P(2).
Similar calculations give

U/V;By = P(Z), U/V;jCy=P(Z), U/ ViD= P(Z). (7.12)

The remaining subsidiary equations are obtained by analyzing the expressions
VuH' jiy V! Fu,
from two different points of view. As a preparation we observe the algebraic relations
My =—Mju, M =0, M/ ;=0. (7.13)

The first of them follow immediately from the definition while, as pointed out above,
the last one follows as a consequence of the reduced equations (4.13) and (5.25). These
relations imply

Fiy = —Fju, Fjuy=0, F/;;=0, (7.14)

and also .
K’ =0. (7.15)

Moreover, a straightforward though fairly lengthy calculation which makes repeatedly
use of the reduced equations, shows that

VIMju = P(2), (7.16)
and
ViK' i =iz W+ 2 viwl e viQM i+ QviM!
=Ci W o+ BM' ji — S F! o+ QViM! i = P(Z).
From this follows the relation
VuH' jiy = Al i Liy P — ViK' jig+ P(T) = P(Z). (7.17)

Similar calculations, which use that the left and right duals of the conformal Weyl tensor
coincide, gives

eIk HP 1o = llIR (Vi Vi Li P — Vi(S, WP ji+ QMP 1)
= 1K (AP L + WP 1 " — By MP i) + PR3, F4

1 ; . .
+3P QE etk WP L UM Ui—25 MY i ePTE—Q v MP i PR,
From equations (7.13), (7.16) follows that

€pgmn Vi MP i €49% = P (7).
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Solving the equation N; = 0 for X; and inserting this into the equation above, we thus
finally get

ik HP ) = %,0 Q* etk wr U U,
—2%, MY PR QMW PR+ P(Z).
ek HP 4 = %,0 QP etlik WP UM Uy +2 Yy Uy MY gy Pk
+Q2(fi +(U, /YUY MY Pk — vy MP 1 eDVK) 4 P(Z).
A direct calculation shows now that
Ok, gO it = P(2), ik 7, P jk=PZ), a,b=1,273. (7.18)

After solving the 9 reduced equations for the components Lo, Lqp, they resume their
original form if 1/6 R is replaced again by L ; /. To show that they imply for suitably
given initial data the full set H; = 0, it needs to be shown that

Hupe =0, Hogp =0, a #b.

In fact, the equation 0 = H/ ja = —Hooq + g H,qq implies then that Hyp, = 0 and
with the identities

Hjy = —Hjj and ekl Hjy =0, ie. edbe H,pe
=0 and Hoap + Hpog + Hapo =0, a # b,

and the reduced equation H,g, + Hpo, = 0O it follows then that
0 = Hoap = —Hpoa + Haop = 2 Hyop a # D,

which exhaust the remaining cases.

A system of equations satisfied by the zero quantities above will be derived now. The
reduced equation H/ j, = 0 implies that Vi H |, = (I H); '}, = P(Z). Observing
this in equations (7.17) we obtain an equation of the form

VoHoab — 8cd VeHaap = P(Z). (7.19)
On the other hand we have by (7.18)
VoHaab + Vb Haoa — VaHaob = 3 VioHajap) = P(Z)
and
VaHoab + Vo Hoda + VaHoba = 3 ViaHoap) = P(Z)

(where indices with a modulus sign are exempt from the anti-symmetrization). Observing
the relations H,0p = —Hpo, and 2 H.oq = Hycq implied be the reduced equations, one
gets from this an equation of the form

2VoHiap — VaHoapr = P(Z). (7.20)

Equations (7.19), (7.20) constitute a system of equations for the unknowns Hy,; and
H_,p. which is, for given right hand sides, symmetric hyperbolic.



Sharp Asymptotics for Einstein-A-Dust Flows

The properties (7.14) imply in particular the relation F¢(, = F'¢; = 0. The field
P;j and Qyy introduced in (5.27 and (5.28) are thus completely represented by

_ __l cd
Pap = —Fujopy, Qap = 5 Fa

To discuss the remaining content of the field Fj;; we recall the definitions

€b)ced -

1 cd
Py = Foao, Qp = 5 Foca €,

given in the discussion of the constraints. These fields exhaust the information in Fy,o
and Fyp.. Because Fqp is trace free it remains to control its anti-symmetric part. The
relation Fjji = 0 gives

c 1 de _c
—Qc€ abZEFOdeec € ab = Foap = Faob — Fpoa,
whence

1 )
Faop = — ab_zeabc QC'

Because Fyp, €92¢ = 0, the field F,oq €p 9 is trace free. Contracting its anti-symmetric
part suitably twice with epsilons and using that '/ j;; = 0 gives

Fia “ €pjea = —Fa 9 €cay = — Fooe € ap = Pe €€ ap,
and thus
1 d
Fape = 5 Qad €bc © — ha[b Pc]-

Observing now the reduced equations P,; = 0 and Q,;, = 0, the remaining content of
Fjyy is then described by the formula

Fiw=3U; Pp Uy — gjik Pn+ Qi (U; €y —¢€ itk Un).
Inserting this into V/ F ki and projecting suitably gives his
1L g i k!
(VUPI)hi+§€i Vi@ =V Fju U h i+ P(Z),
1. 1 .
(Vu Q) h'i — 5 € KV P = 5V Fiue Ky P(2).

Working then out V/ F ki explicitly and observing (7.16) one finally gets equations of
the form

1

Pa.0+ 5 €a b Dy Q. = P(2), (7.21)
1 .

Qa0 = 5 € b¢ Dy, P. = P(Z). (7.22)

For given right hand sides this is a symmetric hyperbolic system for the fields P, and

Qa.
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It has been seen above that solutions to the reduced equations for suitably arranged
initial data satisfy N; = 0 and A = 0. Equations (7.8), (7.10), (7.12), (7.19), (7.20),
(7.21), (7.22) constitute a system of differential equations for those of the remaining
components of the zero quantities (7.1) which do not vanish already because of gauge
conditions or the reduced equation. The system is symmetric hyperbolic and has char-
acteristics which are time-like or null with respect to the metric g, that is supplied by
the reduced system.

It follows that a solution to the reduced system for data that satisfy the conformal
constraints on the initial slice satisfies on the domain of dependence of the initial slice
the gauge conditions and the complete set of conformal Einstein-A-dust equations.

8. Existence and Strong Future Stability

In this section the properties of the conformal field equations derived above and standard
results about quasi-linear symmetric hyperbolic systems will be used to draw conclusions
on the global structure of solutions to the Einstein-A-dust equations. Since we are mainly
interested in C* solutions and not in the weakest possible smoothness assumptions
on the data we refrain from specifying Sobolev norms. We refer to [6] for details of
the patching arguments in the context of Cauchy stability and for some relevant PDE
reference.

8.1. Existence of asymptotically simple solutions. To construct solutions to the Einstein-
dust equations with positive cosmological constant A that admit a smooth conformal
boundary in their infinite future we consider Cauchy problems for the reduced field
equations on R x § where data are prescribed on the submanifold {0} x S. We identify
the latter diffeomorphically with the manifold S underlying a given asymptotic end data
set as considered in Sect. 6. The conformal time variable t in the reduced field equations
will correspond to the factor R above and it will be assumed that T = 0 on S. The
conformal gauge source function represented by the Ricci scalar R[g] of the conformal
metric g to be constructed will be required to vanish and it is assumed that the condition
R[g] = 0 is also underlying the construction of the given asymptotic end data. A fixed
gauge source function will in general only work well for some limited time. For our
purpose this will suffice, however, because it will be arranged that a finite interval of the
conformal time t will cover an interval of physical time of infinite extent.

Since S is compact and may have complicated topology, we use the fact that the
hyperbolicity of the reduced equation allows us to obtain a solution on a neighborhood
of § ~ {0} x S in R x S by patching together local solutions. Compactness implies
that S can be covered by a finite number of open subsets V4, A = 1,2,...,k, of S
which carry smooth local coordinates x*, @ = 1,2, 3, and a smooth frame field ¢,,
a = 1,2, 3, that satisfies h,, = h(e,, ep) = 84p, Where h denotes the 3-metric on §
supplied by the asymptotic end data. It can be assumed that there exist shrinkings V

with compact closure V4 in V, so that the V', still define an open covering and the
boundary of V) in V, is smooth. Standard results on symmetric hyperbolic systems
then imply the existence of smooth solutions to the reduced field equations on open
neighbourhoods Dy of Vj in R x § which imply on V) the data induced on V) by
the asymptotic end data on S in the gauge chosen on V4. It can be assumed that the
solution extends smoothly to the closure of D4 in R x § with det(e” ;) # 0 so that Dy
acquires a boundary that consists of (i) smooth hypersurfaces Hf in the future/past of
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D, which are null with respect to the solution metric g and approach V' A\V} in their

past/future, (ii) the intersection of D4 with hypersurfaces {tr = 74} in R x § defined
by some constants 7 < 0 < 74 (which can be chosen to be the same for all VA), and

(iii) the three 2-dimensional edges diffeomorphic to V/4\V . Where these hypersurfaces
approach each other. It can be assumed that the solution on Dy is globally hyperbolic
with respect to metric g. The subsidiary system then implies that the full set of conformal
Einstein-A-dust equations is satisfied on Dy.

If p € V) NV, there exists an open neighborhood V,, C V) N V of p so that
solutions are given in the domain of dependence D4 , of V), in Dy as well as in the
domain of dependence Dg , of V), in Dp. On V), these two solutions can be related
to each other because the coordinate and frame transformations which relate the data
induced on V), by the data on V} and the data on V respectively are known explicitly.
Because the gauge inherent in the reduced equations is evolved by invariant propagation
laws along the invariantly defined flow lines of the flow field U, the coordinate and
frame transformations extend, independent of 7, and allow us to relate the solution on
D, p isometrically to the solution on Dp . By extending the argument it follows that
the solution induced on the domain of dependence of V N V in Dy can be identified
isometrically with the solution induced on the domain of dependence of V; NV in Dp.

By patching together the local solutions, we obtain a smooth, globally hyper-
bolic solution to the conformal Einstein-A-dust equations on a subset of the form
M = [Ty, Tss] X S of R x § with constants 7, < 0 < T4 so that the conformal factor
obtained on M satisfies Q > Q0 on M = [y, O[ xS while 2 < 0on M =]0, T4y] X S.

The hypersurfaces Sy = {t = 0 = const.} with 7, < 0 < 1, can be required to be
space-like. In fact, with the co-normal to {t = const.} given by n,, = —a 1, the future
directed normal is given by

k
ol — —agh’ o’ ety stg—nelt el
Vl0a? g% \/|)7jkeojeok| \/l_naheoaeob
and the condition n,, n** = —1 implies the expression
1

8.1)

a =

/T—ntbed e,

Moreover,
1
nt=a@*o—nlet %) = - (UF—u® 8" o) with u® =a’n e ,e%,. (8.2)

We thus require that
e’y < const. <1 on M, (8.3)

which can be achieved with suitable choices of 7, and 7., because &0 a = 0on Sy. The
hypersurfaces S, will then be Cauchy hypersurfaces for (M, g,,,). To simplify things, so
that we only need to consider the regularized reduced equations involving the unknowns
Zqp and &, it will also be assumed that 2 ; < 0 on M, which makes sense because
Q= —vondSp.

The metric g, the conformal factor €2, the flow field U and the density function p
are then such that the ‘physical’ fields

g’;wzgizgu.v, Up_zgilU ) ,5=Q3)0 (8.4)
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define a solution to the Einstein-A-dust equations on the manifold M with o > 0on
M. Extending smoothly to Sz,, this solution admits an extension into the past of Sz, but
we are not interested here in controlling something like a maximal globally hyperbolic
solution. What is important for us is that the set J* = Sy = {Q = 0} defines for the
solution (M, 8uv) a smooth conformal boundary at future time-like infinity.

Equations (3.14)—(3.22) are invariant under the transformation which implies the map

QL—> —-Q, ViQ— -V, Q, s5s—> —s, Wi ki —> —W! jkls P —> —p,
Vip = —Vip,

but leaves the fields e ;, ;7 ¢, L jk»and U k unchanged. It follows that after performing
this transition on M and restricting to M gives us another solution to the Einstein-\-
dust equations on the manifold M. Tt follows, however, that then 6 < 0 on M. For this
solution the set {2 = 0} defines a smooth conformal boundary in the infinite past. In
this article we shall not be interested in this solution any further.

Two facts have been used above to obtain solutions whose conformal structures
extend smoothly across future time-like infinity so as to define there smooth conformal
boundaries: (i) The Einstein-A-dust equations admit conformal representations which
imply with suitable gauge conditions systems of evolution equations that are hyperbolic
irrespective of the sign of the conformal factor €2, (ii) some requirements needed to
ensure the existence of smooth conformal extensions are put in by hand by starting from
asymptotic end data.

The case of the Nariai solution, an explicit, geodesically complete solution to the
Einstein-A-dust equations with o = 0, shows that the property (i) is by itself not sufficient
to ensure the existence of a smooth conformal boundary (see [11]). This raises the
question whether the use of asymptotic end data may result in the construction of a very
restricted class of solutions.

The following argument, introduced in the vacuum case in [5] and used in the pres-
ence of conformally invariant matter fields in [6], shows that the existence of smooth
asymptotic conformal structures is in fact a fairly general feature of solutions to the
Einstein-A-dust equations. The smooth extensibility of the conformal structure across
future time-like infinity will be derived as a consequence of the property (i) of the
Einstein-A-dust equations and the existence of a given reference solution that admits a
smooth asymptotic structure.

8.2. Strong future stability of the solutions.

Let
A= (", Tide, Cabr & foo 2 Vi s, Lix, Wi, UX, p), (8.5)

be one of the solutions constructed above. The associated physical fields g,,, = Q2 8uvs
Ut = QU*, p = 2% p then induce on the Cauchy hypersurface S’ = S;, with local
coordinates x*, o = 1, 2, 3, standard Cauchy datad = (fzaﬂ, Ko, 4%, p),i.e.asolution
to the constraints (2.9) and (2.10), where 2% denotes the orthogonal projection of Ur
onto §’.

As a first step towards showing that the asymptotic simplicity of the solution above
is preserved under sufficiently small perturbations of the data 5, any given standard
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Cauchy data set on S’ needs to be transformed into a suitable Cauchy data set for the
conformal field equations. This involves several transformations and a suitable handling
of the gauge freedom which will be discussed now by showing how the restriction of A
to 8’ is obtained from 4. .

Conformal data § = (hgp, kag, u*, p) on S’ are obtained from the standard data §
by using the functions € > 0 and Vi Q2 < 0 on S’ to define

haﬂ =Q2ﬁ(¥ﬂa M(X:Q_l ﬁaﬂ IO:Q_3165

and, using the transformation law of second fundamental forms under conformal rescal-
ings,

Kap = Q (Rap + hap VnS).

Here n denotes the future directed unit normal to S” with respect to g, which is related
to the flow vector field U and its projection u onto S’ (that represents the shift vector
field on §’, see the ADM representation of g below) by the relation

1
n=—U—u) with a=,/1+hegu®ub,
a

where the expression for the positive lapse function a is obtained from
—1=gU,U) = azg(n, n)+gu,u) = —a’® + hog u® uf.

It follows that
1
V2 =—(Vy2 — Q,a u(x)’
a

can be calculated from the data given above.

When starting from arbitrarily given standard Cauchy data § the functions Q > 0
and Vi Q2 < 0 are not given but represent part of the conformal gauge freedom. Suitable
choices will be discussed later.

As a second step it will be convenient to derive all the unknowns entering the con-
formal field equations in a g-orthonormal frame c; on S’ which is adapted to S’ in the
sense that cg = n. This frame, which is not needed in the final process, is introduced
because it simplifies various discussions. In a third step all the data will be expressed on
S’ in terms of the g-orthonormal frame ey satisfying eg = U.

To remove the gauge freedom in the transition ¢y — ex, we prescribe a specific field
of Lorentz transformations K’ ;j on " which map the g-orthonormal frame field e; with

ep = U onto a smooth g-orthonormal frame c; = K i j e; field with ¢9 = n by setting

ki (KOO, Kob) B ( —g(co, €o), g(co, ep) )
j= = .

K, K} 0 g(co, ea)s 8 b+ Tgreozny 1 8(co, €a) §(co, en)
(8.6)
In terms of the frame coefficients e* ; given by the solution A this reads

ki a, —zaeob
J _anaceoc’ Sab"'ﬁ__anaceoceob

It follows that indeed

K'oei =K eo+ K geq = —g(co, eo) eo + n*? g(co, ea) ea = g(co, €)'’ ej = cy.
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In the following considerations (8.1) and (8.2) will be useful. A direct calculation verifies
that n;; K' ¢ K/ | = np.
The coefficients of the frame ¢y are given in the coordinates x** by

0 1
oty = (€0 3 _ @ 10 . )
c0,C b —Eu“,eo‘b+muo‘eb

and the coefficients of the 1-forms ,uk that satisfy ¢ ,uk » = M, are so that

uk o, = 1o, 0
! no, ulg )’

with

wlo=a, u*=("p+ u® %) u’ o,

l+a

C“hubﬂ=(€“b+1+auaeob)ubﬂ=5“ﬁ,

whence

1
uaeob)zgah’ Maauazﬂaﬂ
l+a

w o (€ p +
The comparison of
g =njind 1k = —a?de® + nap n o 1 p® dr +dx*) (WP dt +dxP),
with the ADM representation
g = —(adt)® +hap (u® dt +dx®) (uP dv + dxP)

gives then

hap :nahl/«aal/vbﬁ, a= 1+u°‘u/3ha,3.

With the frame c; defined above we set

M= ( —g(eo, co), 1 g(eo, cp) ) 87)

1% g(eg, ca), 8 p + =20 1% g(eo, ca) g(eo, cp)

In terms of the frame coefficients c,’j this can be written

M= MO, MO, _ a, ug c%p
I M4y, M4y ) — nacuacac’Sab"‘LnaCuacacuﬂCﬁh

1+a

a, aeob
= . 2 . .
anazce()c7 5ab+laTanaceOCeOb

A direct calculation shows that M’ j K/ =8 ande = M7, cj.
Because the fields ¢,, a = 1, 2, 3 are tangential to S’ we can set

’ /
hah = haﬁ Caacﬂb = Nabs Kgp =K‘1}3caacﬂb
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where here and in the following a prime is used to indicate when a tensor field is given
in terms of the frame ci. Directional derivatives with respect to ¢; will also indicated by
a prime, so that V, = V,, etc.

When the data for the conformal field equations are to be constructed by starting
from standard Cauchy data, the frame e, is not available. Instead, the frame c; has to
be chosen first and e will then be obtained by applying M’ ;. The field cg is uniquely
determined as the future directed unit normal to S’ but the frame ¢, tangent to S’ is only
determined up to rotations. In the stability argument given below this freedom will have
to be removed in a specific way.

Connection coefficients with respect to the frame ¢y satisfying the relation V., cx =
vilie ; with respect to the Levi-Civita connection V given by g can only be defined if
the frame is defined near S’. It will be convenient to extend the frame by the requirement
Veock = 0 and to define coordinates v = +9 and x* near S’ so that x* = x* on S’ and
(co, dv) =1 and (cy, x‘)‘/) = 0. The coordinates x*" are then Gauss coordinates based
on S’ and the coefficients c* k satisfy e 0= sH o and o « = 0 so that ¢ = 9,,. The
coordinates x* and x*’ satisfy

ax° . d7) 1<U i) 1 ax? 0
— = (n,dt) = —({U —u,dt) = —, - =0,
ax” a a  0x“

ox“ 1 1 ox“
ﬁ=—(U—u,dx“) :——ua, ﬁ:(ﬂaa/ ()nS’7
X a a X

so that the relation e#’ r= M/ e ;j can be used to determine on S’

axﬂ ’
e“kzmc“ ]Mlk.

The connection coefficients with respect to cx can now be defined. They satisfy

j 0 / / / /b d
W/ k=0, Yo b=ky =Kpg Va0=Kkp, K va®bca= De,cp onS,

where D denotes the Levi-Civita connection of the metric 4 on S’.

The connection coefficients in the frame ¢ are related to the connection coefficients
in the frame e; by

Ii’y=K’, (M”k,;/e” i+VlanliMpk)
. ; /
= K (M e M e e ML M)
Apart from M" ; ¢, which can only be determined by taking into account the evolution

equations for the frame e, all the other terms in the expression above can be calculated
from the data available so far. The relation e = M/ ; ¢/ ; implies

’ : ’ . /
e”’ k,O’ZM/k,O/Cﬂj-'-M/kCM j’()/.
The first structural equation with respect to the frame ¢, gives

’ ! ! ’ / ’ ’
=8t g8 g =—8" w8 Va0 p=—8" 89 kL W™ ), on .
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The field eg = U = U* ¢y, givenon 8’ by U = a co +u'® ¢, with u'® = pu® o u® , must
thus satisfy by (4.13)

0=U% e UT+UT U y* U, UK+
=aU* o +U* gu” +U" U7y "+ U, U+ % ons.
The fields e, = e’ , cx must satisfy Fye, = 0, which implies with (4.13)
O=ae*. y+e* c,a/u“, +U e ki et U Ul fF oS

These relations determine ¢’ ; /, e"' 4 o whence M7 ; (v and I'; / 4 uniquely from the
given data on S’ once f] is given there.
Our gauge requires that the tensorial field

N, =V, Q+ (VuQ+QU, fHU+2f,

vanishes on §’. The condition that its orthogonal projection N, into S” vanishes gives
1
fi= -3 (VIQ+ (VyQ+QU, f)u,} onS'.
If this is satisfied it follows with Uy = U] M', Ny = N/ M'y

0=U"N, =U*N] =an* N,

and thus together N, = 0. The relation

1
fo=n"*fl = — (U, ) =u 1D,

shows that f is determined from the data given on §" only up to fo = (U, f). This is
consistent with the fact remarked on earlier that the quantity fo is pure gauge and can
be chosen arbitrarily. With a suitable choice of fy (made in a specific way later) we can
the set fi = f] M/ .

The Einstein equations and the conformal rescaling of the density imply R[g] =
4 ) + Q3p. With this the conformal transformation law of the Ricci scalar gives

V,VEQ+ L RIgIQ = 2V, QVEQ+ - R[2] = 2V, QV Q4 (dr+ D)
" 6 ST g VK 6 T gk 6% p-

With the gauge condition R]g| = 0 we thus set
45 =V, V*kQ = 2vavigs L 4xr+Q%p)
k Q ! 6% ‘
The second equation determines 83 Q = cp(co 2) in terms of known data because

ViVEQ = —V[V{Q+ " V.V, Q = —co(co ) + 1°° (D, D) — K, Vu2) on S

Thus s and V} V,/( Q are determined on S’ from known data and the scalar equation (3.16)

is satisfied there. Given s and x,», = I'4 0, the fields Cap and & are then defined on S’
by (5.11).
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The conformal transformation law of the Schouten tensor, the field equations, and
the conformal rescalings of the flow vector field and the density give

R 1 1
Luy = Ly = Vi Vi@ + 55 V,2 VP Qg

1 _ 1 1 1 1
:gxsz zg,w+Q,0(§UMUV+6g,w)—QV ViQ+ 5V QVPQ g0,
and we set
/ 1 1 !yl 1 / 1 ! o/ 1 / 1 / /
LUZE)\,Q glj+QIO EUlU]-'-EgU _§VIV]Q+WV[QV le] on S’ .

By the way V|,V has been determined above it follows that g% L}, = 3 L R[g] = 0.
The appropriate data on S for the reduced field equations are then given by L j; =
L, M ;M.

To determine the rescaled conformal Weyl tensor we observe that the Gauss and the
Codazzi equation with respect to S’ read in terms of the frame cy

/ / ’o ro
Rahcd [g] = Rabcd[h] + Kae Kpa — Kad Kpes
1k p/ . ’o
n Rkabc[g] - Dcha - Dc Kdas

where the fields on the right hand sides can be determined from the data available so far.
With L/ ik as given above, the general relation

Rijulel = 2{giy Liy; + Lip &nj} + Chins

then allows us to calculate the components C’ “heqlgl and n'kc ,/C apeLg] of the conformal
Weyl tensor. The conformal Weyl tensor admits the decomposition

r_ ’ / ’ / ’ I mo_ ’o m
ikl =2 (ki[k enj — Kjpeeni +npmyy, €7 ij +ngmyy,, € kl) .

1l
where h/]k = g+ 1 n; and k;k = g;k + Zn/ n, and e}, = h;"™h" C;n anin
and mlk = h/ m h/ n C’* n/ n! with Cl/*kl = 1 Cz/]mn €™, denote the electric and
magnetic part of the conformal Weyl tensor with respect to n in the frame cy respectively.
It holds e = ]l , el] n'l = O e i =0and s1m11ar relations hold for m .. It follows that

1/ /
e,y =h a c

tk 7 / /
! bed and m’ b = 2 n Ckacd 4 The tensors Ct/kl and W ljkl =Q" Cukl

whence Wi = Wmnpq M™; M" ; MP M9, and also the U-electric and -magnetic
parts w;; and wj; of W; i, which enter the reduced conformal field equations, can thus
be determined from the given data.

The conformal field equations and their unknowns are derived from the Einstein
equations by conformal rescalings, the use of various differential identities, and the use
of the frame formalism. This leaves a coordinate, frame, and conformal gauge freedom
which is controlled by suitable initial data and propagation laws for the coordinates,
the frame field, and the conformal factor (controlled here implicitly by the requirement
R[g] = 0). Following this procedure it follows from the discussion above how to derive
from a given smooth solution §= (ﬁaﬁ, Kap, 4%, p) to the constraints (2.9) and (2.10)
and given smooth gauge dependent fields

Q>0 VyQ <0, fo= (U, f), and a smooth h-orthonormal field ¢, on S,
(8.8)
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the unknowns A’;, on §” of the conformal field equations in the frame ¢, and also the
unknowns

Ay ="k, Ti7 &y Caby &, fio @, Vi, s, Lk, Wi, UK, p), (8.9)

in the frame e on .

Weritten in terms of the frame ¢ and the frame coefficients et t as defined above,
the conformal field equations allow us to derive from the data A’S, a formal expansion
type solution in terms of the coordinate v so that the complete set of conformal field
equations is satisfied at all orders. The constraints are satisfied because of differential
identities and the fact that the data & satisfy the ‘physical’ constraints.

A similar formal expansion is obtained in terms of the coordinate 7 if the equations and
the data are expressed in terms of the frame ey. In this case the expansion coefficients are
seen, however, to be the coefficients of a Taylor expansion of an actual smooth solution
to the conformal field equations because the equations comprise the hyperbolic system
of reduced conformal field equations.

The life time of the solution in the given gauge depends, of course, on the data (8.9)
and in particular on the choice of the free fields in (8.8). Suppose

AY(T) = ("5, Tk, &y E% fF, QF, Vi, 5%, LYy, Wi, U, p),
(8.10)
is one of the solutions to the conformal field equations considered in the previous sub-
section. It exists and is smooth for 7, < T < T4, with Q* — 0 as T — 0 so that Sy
represents the conformal boundary at future time-like infinity for the physical solution
associated with A*(t). Denote by A%, = A*(z,) the data for the reduced equations on

S’ and by §* = (fz;ﬁ, Kyg. U, p*) the physical data induced by this solution on §". Let

§=(S, fzaﬂ, Ko, 4%, p) denote a smooth solution to the constraints (2.9) and (2.10),
Ay the corresponding initial data on S’ for the reduced conformal field equations as
considered in (8.8), and A(t), where T € [Ty, T4« + T*[ with some ¥ > 0, the solution
to the conformal field equations determined by these data.

To compare the life times of the solutions A*(7) and A(t) the corresponding gauge
conditions must be comparable. It will be assumed that the data Ag have been con-
structed such that

Q=" VyQ=VyQ*, fo=fF onS.

Let h;ﬁ = Q*? fz;ﬂ, and hep = Q2 fzaﬁ = Q*2 fzaﬁ denote the metric induced on S’ by
the solution A*(7) and A(t) respectively. As discussed above, the frame ¢} given by the
data Ag, can be used to define a field of Lorentz transformation K*/ ; on S’ so that the
relation ¢ = K * g e; defines a frame field on S’ for which ¢} is normal to §’. The fields
¢y, a = 1,2, 3, then define an h*-orthonormal frame field on S’. It will be assumed in
the following that the /-orthonormal field ¢, has been chosen so that ¢, = ¢} a¢, with
a3 x 3 matrix «¢ , that satisfies ! | > 0, a%, > 0, a33 >0,anda‘, =0ifa < c.
The frame ¢, so defined is smooth and fixed uniquely so that ¢, — 3§ . precisely if
Cq = Cp.

The point of these choices is that the space-time conditions R[g*] = 0 and R[g] =0
combine with these gauge conditions on S’ to ensure that ||<§ — §*|| — 0 if and only if
[[|As — A%||| — 0, where the norms are meant to indicate Sobolev norms on § " which
are chosen corresponding to the differentiability order of the fields involved.
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We can invoke now the Cauchy stability property which holds for hyperbolic equa-
tions to conclude that for data § sufficiently close to §* or, equivalently, for data Ag
sufficiently close to A, the solution A(7) of the conformal field equations that develops
from the data Ay also exists in the interval 7, < t < 7., and the conformal factor
2 supplied by A(r) is negative on Sr,, [15]. This conclusion may require repeated
patchings (see [6]).

There exists thenamap S 5 ¢ — 1(q) €]y, Tux[ s0 that 2(7(g),q) =0forg € S
and Q(7,q) > 0if 7, < t < t(g). Equation (3.16) then implies that on the subset
T ={(t(q).q).,q € S} of R x S the gradient V! Q is time-like for the metric g supplied
by A(t). It follows that [7* defines a smooth space-like hypersurface which represents
a conformal boundary in the infinite future of the set M= {(t,g) e Rx S|ty <1 <
7(g)} on which the fields g, = Q2 8uvs l}ﬂ = Q' U, p' = Q3 p define a smooth
solution to the Einstein-A-dust equations. The smooth asymptotic end data induced by
its conformal extension A(t) on J* ~ S belongs then to the class of conformal end
data considered in Sect. 6. Combining the results of the last two subsection we obtain
Theorem 1.1.
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