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Abstract

We consider the Einstein-dust equations with positive cosmologi-
cal constant λ on manifolds with time slices diffeomorphic to an ori-
entable, compact 3-manifold S. It is shown that the set of standard
Cauchy data for the Einstein-λ-dust equations on S contains an open
(in terms of suitable Sobolev norms) subset of data that develop into
solutions which admit at future time-like infinity a space-like confor-
mal boundary J+ that is C∞ if the data are of class C∞ and of
correspondingly lower smoothness otherwise. As a particular case fol-
lows a strong stability result for FLRW solutions. The solutions can
conveniently be characterized in terms of their asymptotic end data
induced on J +, only a linear equation must be solved to construct
such data. In the case where the energy density ρ̂ is everywhere pos-
itive such data can be constructed without solving any differential
equation at all.
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1 Introduction

It has been known for a while that among the solutions to Einstein’s vacuum field equa-
tions R̂µν = λ ĝµν with positive cosmological constant λ on manifolds with space-sections
diffeomorphic to an orientable, compact 3-manifold S there is an open (in terms of Sobolev
norms on Cauchy data) subset of solutions which are future asymptotically simple in the
sense of Penrose [17], i.e. the solutions admit the construction of a conformal boundary
J+ at their infinite time-like future which is C∞ if the solutions are C∞ and is of cor-
respondingly lower smoothness otherwise (see [11] for more details and references). This
property generalises to the Einstein-λ equations coupled to conformally covariant matter
field equations with trace free energy momentum tensor. In [6] this has been discussed
in detail for the Maxwell and the Yang-Mills equations, where a procedure has been laid
out which applies, possibly which some modifications in specific cases, to other such field
equations (see [16] for a recent example).

Matter fields with energy momentum tensors which are not trace free were generally
expected to lead to difficulties in the construction of reasonably smooth conformal bound-
aries. (The emphasis here is on results about the evolution problem, we are not talking
about geometric studies near conformal boundaries which postulate properties of energy
momentum tensors convenient for their analysis). It has recently been observed, however,
that this need not be the true [10].

In the case of the Einstein-Klein-Gordon equations the conformal field equations with
suitably transformed matter field imply evolutions system which are hyperbolic, irrespec-
tive of the sign of the conformal factor, if the mass and the cosmological constants are
related by the equation m2 = 2

3 λ. If this condition is imposed a fairly direct calculation
shows that the equation for the rescaled scalar field becomes regular where the confor-
mal factor goes to zero. However, that the conformal equations for the geometric fields
become regular in this limit is far from immediate and, as in the case discussed in the
following, came as a surprise after various attempts to cast the singular equations into a
form which would allow one to draw conclusions about the precise asymptotic behaviour
of the solutions in the presence of singularities.

Leaving aside the questions about the significance of this particular result, the present
article is concerned with the analysis of another matter model with non-vanishing trace
of the energy momentum tensor. We study in detail the future asymptotic behaviour of
solutions to the Einstein-λ-dust equations.

In a recent article Hadžić and Speck have shown that the FLRW solutions to the
Einstein-λ-dust equations with underlying manifolds of the form R×T

3 are future stable,
i.e. slightly perturbed FLRW data on T

3 develop into solutions to the Einstein-λ-dust
equations whose causal geodesics are future complete [13]. The authors use the method
proposed in [3] to control the evolution of a general wave gauge in terms of its gauge
source functions. As emphasized in [3], it is clear that (under fairly weak smoothness
assumptions) any coordinate system can in principle be controlled in terms of its gauge
source functions and suitable initial data. But finding gauge source functions which are
useful in a specific problem is quite a delicate matter. The authors manage to identify
gauge source functions which allow them to derive estimates that give control on the long
time evolution of their solutions (see [19] for another such case).
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It is, however, quite a different question whether the gauge so established lends itself
to analyzing the asymptotic behaviour of solutions in detail and to deciding, for instance,
whether the differentiable as well as the conformal structure of the solutions admit si-
multaneously extensions of some smoothness to (future) time-like infinity as required by
asymptotic simplicity.

FLRW solutions are known to be future asymptotically simple (see section 6.2). This
may be expected to be is just an artifact of the high symmetry requirements which imply
local conformal flatness and hypersurface orthogonality of the flow field. The present study
grew out of attempts to understand what may go wrong under more general assumptions
and what kind of obstruction to the asymptotic smoothness of the conformal structure
may possibly arise from the presence of a non-vanishing energy density ρ̂.

In the article [8] have been derived hyperbolic evolution equations from the Einstein-
dust equation in a geometric gauge based of the flow field. The following analysis may
be seen as a conformal version of this discussion. After presenting the Einstein-λ-dust
equations in section 2, we derive in section 3 the conformal field equations and suitably
transformed matter field equations. It turns out that two equations of the system are
singular in the sense that there occur factors of the form Ω−1 on the right hand side,
where Ω is the conformal factor which is positive on the physical solution space-time
and relates the physical metric ĝµν there to the conformal metric gµν by gµν = Ω2 ĝµν .
Since things are to be arranged such that Ω → 0 at future time-like infinity, where we
want to understand the precise nature of the solutions, there arise problems. One of the
singularities, namely the one in the transformed (geodesic) flow field equation, was to be
expected. Much more serious is a singularity in the equation for the rescaled conformal
Weyl tensor Wµ

νλρ = Ω−1 Cµ
νλρ[g], which plays a central role in the system. The

singularities carry, however, interesting geometric information. They imply that the (so
far formally defined) set {Ω = 0} can only define a smooth conformal boundary of the
solution space-time if the flow lines approach this set orthogonally. Thus, if one wants to
approach the problem in terms of estimates, one has to aim for sufficient control to be
able to define simultaneously a conformal boundary at time-like infinity, if admitted by
the solution at all, and correspondingly control the behaviour of the flow lines.

In the present article we try to exploit the conformal properties of the system in the
most direct way. In section 4 it is shown that due to the specific form of the energy
momentum tensor for dust the geodesics tangent to the flow field can be identified after
a parameter transformation with curves underlying certain conformal geodesics. Since
conformal geodesics are invariants of the conformal structure, this opens the possibility to
define a gauge which extends regular across the conformal boundary J+ = {Ω = 0} if the
latter can indeed be attached in a smooth way to the solution manifold (on which Ω > 0,
of course). It turns out that this gauge implies a certain regularising relation which proves
useful in three different contexts. Its first important merit is to render the conformal field
equations regular.

In section 5 it is shown that the conformal field equations imply a hyperbolic reduced
system of evolution equations which can make sense up to and beyond the conformal
boundary at time-like infinity (if it exists). This system is not obtained immediately. The
regularizing relation leads to a system which is hyperbolic where Ω > 0 but becomes
singular where Ω → 0. A further regularization is performed to obtain a system which is
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hyperbolic independent of the sign of the conformal factor.
In section 7 is derived a subsidiary system which implies that solutions to the hyper-

bolic evolution system for data that satisfy the constraints on a given Cauchy hypersurface
(with respect to the metric provided by the evolution system) will satisfy in fact the com-
plete system of conformal field equations. This closes the hyperbolic reduction argument.

To obtain complete information on the class of future asymptotically simple solutions
to the Einstein-λ-dust solutions we characterize in Lemma 6.1 the possible asymptotic end
data which may be prescribed on the conformal boundary J + = {Ω = 0} (assumed to be
3-dimensional, orientable, compact) of a solution that admits the construction of such a
boundary with sufficient smoothness. As observed already in [4] in the vacuum case, the
constraints reduce on J+ to a linear system of equations. Remarkably, there is a case
where the problem of solving the constraints simplifies even further. In the case where
the density ρ̂ is positive everywhere certain fields can be prescribed completely freely on
J+ and the rest follows by algebra and taking derivatives. There is no need to solve any
differential equation at all (but see the remarks following Lemma 6.1).

The reduced system of evolution equations is used in section 8 to derive our main
results. Being based on hyperbolic equations, a completely detailed statement of the
results should give information about Sobolev norms. Since we only use properties of
symmetric hyperbolic systems which can be found in the literature at various places and
because we are mainly interested in solutions of class C∞, we refrain from listing Sobolev
indices. We would consider these only be of interest if the weakest possible smoothness
assumptions were needed in the context of some concrete problems.

Theorem 1.1 Let S be a smooth, orientable, compact 3-manifold, assume λ > 0, and
denote by Aλ,S the set of standard Cauchy data on S to the Einstein-λ-dust equations
with energy density ρ̂ ≥ 0. Then

(i) There is an open (with respect to suitable Sobolev norms) subset Bλ,S of data in Aλ,S

which develop into solutions that admit the construction of conformal boundaries in their
infinite time-like future which are of class C∞ if the data are of class C∞ and of corre-
spondingly lower differentiability if the data are of lower differentiability.

(ii) The solutions which develop from data in Bλ,S are completely parametrized by the
asymptotic end data on S (specified in Lemma 6.1) which correspond to the data induced
on the future conformal boundaries J + of the solutions.

The case of the Nariai solution, an explicit, geodesically complete solution to the
Einstein-λ-dust equations with ρ̂ = 0 that admits not even a patch of a smooth conformal
boundary (see [11]), shows that our reduced evolution system is by itself not sufficient
to ensure the existence of a smooth conformal boundary. Some extra information on the
Cauchy data is required.

Because the FLRW solutions do admit a smooth conformal future boundary one could
consider data close to FLRW data. Following instead the arguments introduced in [5] and
[6], a much larger class of suitable reference solutions (which includes the FLRW solutions)
will be constructed in section 8 by solving a backward Cauchy problem for the reduced
equations with asymptotic end data that are given on a 3-manifold S which in the end
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will represent the future conformal boundary J+ = {Ω = 0} of the physical space-time
defined on the set {Ω > 0}.

In a second step we consider the ‘physical’ standard Cauchy data that are induced
by one of these solutions on a ‘physical’ Cauchy hypersurface. It is shown that under
sufficiently small perturbations of these data the resulting solutions are strongly stable in
the sense that the smooth extensibility of their conformal structures at future time-like
infinity is preserved. This makes use of the fact that a future asymptotically simple solution
admits a conformal representation that extends as a smooth solution to the conformal
Einstein-λ-dust equations beyond the conformal boundary into a domain where Ω < 0.
The strong stability result follows then as a consequence of the well known Cauchy stability
property of hyperbolic equations and the fact that the equation themselves ensure that
the set of points where Ω = 0 defines a smooth space-like hypersurface.

Though they lead to the same sets of solutions in the end, it is of interest to distinguish
the two different ways of looking at the solutions. In the construction of the reference solu-
tions some features of asymptotic simplicity are built in from the start by using asymptotic
end data. In the stability result, however, asymptotic simplicity for the perturbed solution
is deduced as a consequence of the conformal properties of the equations and the reference
solution.

In contrast to the approach of [13], which concentrates on deriving suitable estimates,
the emphasis is put in this article on the analysis of the field equations and the explicit
use of their conformal properties. While the conformal equations may lead to serious dif-
ficulties when the conformal structure of the solutions is intrinsically not well behaved at
time-like infinity, they give results which are sharp and complete if the conformal struc-
ture extends smoothly and only the standard energy estimates for symmetric hyperbolic
systems are needed.

Moreover, the information obtained on the equations is in that case of considerable
practical interest. The reduced evolution system provides the possibility to calculate
numerically - on a finite grid - future complete solutions to Einstein’s field equations,
including the details of their asymptotic behaviour. In the Einstein-λ case this has been
successfully demonstrated by the work of Beyer (see [2] and the references given there).

Besides the one analysed in [10] this is the second example that illustrates that even in
cases in which the energy momentum tensor is not trace free the conformal field equations
with λ > 0 and suitably rescaled matter fields can imply hyperbolic evolution equations
that are well defined up to and beyond the future time-like infinity of the physical solutions.
The two cases are quite different but the results suggest that the analysis of the asymptotic
conformal structure in the presence of matter fields can be more useful than expected.

The possibility to extend solutions to the conformal field equations into a domain in
which Ω < 0, where they define another solution to the original equations (see section 8),
has been used here only as a technical device in the stability argument leading to Theorem
1.1. Whether it is of any significance in the context of Penrose’s proposal of conformal
cyclic cosmologies [18] is a question not discussed here.

5



2 The Einstein-λ-dust system

The Einstein-Euler system with cosmological constant λ consists of the Einstein equations

R̂µν −
1

2
R̂ ĝµν + λ ĝµν = κ T̂µν , (2.1)

for a Lorentz metric ĝµν on a four-dimensional manifold M̂ with an energy momentum
tensor of a simple ideal fluid

T̂µν = (ρ̂+ p̂) Ûµ Ûν + p̂ ĝµν . (2.2)

Here Ûµ is the future directed time-like flow vector field, normalized so that Ûµ Û
µ = −1,

and ρ̂ and p̂ denote the total energy density and the pressure as measured by an observer
moving with the fluid. The equations require the relation ∇̂µ T̂µν = 0, which is equivalent
to the system consisting of the equations

(ρ̂+ p̂) Ûµ ∇̂µ Ûν + {Ûν Û
µ ∇̂µ + ∇̂ν} p̂ = 0, (2.3)

Ûµ ∇̂µ ρ̂+ (ρ̂+ p̂) ∇̂µ Û
µ = 0. (2.4)

These equations must be implemented by an equation of state.
In the following we set κ = 1, assume λ > 0, and consider solutions on manifolds

diffeomorphic to M̂ = R × S where S is a compact (without boundary), orientable 3-
manifold which specifies the topology of the time slices. We will be interested in the case
where p̂ = 0 throughout, referred to as pressure free matter or, shortly, as dust. It is
supposed that ρ̂ does not vanish identically and satisfies

ρ̂ ≥ 0 on M̂. (2.5)

Equation (2.3) reduces then to ρ̂ Ûµ ∇̂µ Û
ν = 0. This will be satisfied without condition

on Ûµ on sets where ρ̂ = 0 and implies that the flow is geodesic where ρ̂ 6= 0. We require
Ûµ to be geodesic everywhere. The system to be considered consists then of (2.1),

T̂µν = ρ̂ Ûµ Ûν , (2.6)

Ûµ ∇̂µ Û
ν = 0, Ûµ Û

µ = −1, (2.7)

∇̂µ (ρ̂ Ûµ) = 0. (2.8)

Let Ŝ be a hypersurface in M̂ which is space-like for ĝµν and denote by n̂µ the future

directed normal of Ŝ normalized by n̂µ n̂
µ = −1. Let coordinates xµ be given near Ŝ so that

Ŝ = {x0 = 0} and the xα, α, β = 1, 2, 3, are local coordinates on Ŝ. Denote by ĥαβ , κ̂αβ

the first and the second fundamental form induced on Ŝ by ĝµν and by ĥµ
ν = ĝµ

ν + n̂µ n̂
ν

the orthogonal projector onto the tangent spaces of Ŝ. Equations (2.7), (2.8) are evolution
equations for Ûµ and ρ̂. Equation (2.1) induces with (2.6) on Ŝ the constraints

0 = R[ĥ]− κ̂αβ κ̂
αβ + (κ̂α

α)2 − 2λ− 2 n̂µ n̂ν T̂µν ,
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0 = D̂β κ̂α
β − D̂α κ̂β

β − n̂µ ĥα
ν T̂µν .

Setting a = −n̂µ Ûµ > 0, ûµ = ĥµ
ν Ûν , so that

Ûµ = a n̂µ + ûµ with − 1 = −a2 + ûβ û
β where ûβ û

β = ĥβγ ûβ ûγ ,

the constraints take the form

0 = R[ĥ]− κ̂αβ κ̂
αβ + (κ̂α

α)2 − 2λ− 2 ρ̂ (1 + ûα ûα), (2.9)

0 = D̂β κ̂α
β − D̂α κ̂β

β + ρ̂
√

1 + ûβ ûβ ûα. (2.10)

It has been shown in [8] how to derive from equations (2.1), (2.6), (2.7), (2.8) a
symmetric hyperbolic evolution system of equations for all unknowns in a gauge based on
the flow vector field Û . Given λ > 0 and a sufficiently smooth initial data set

(Ŝ, ĥαβ, κ̂αβ , û
α, ρ̂), (2.11)

satisfying (2.9), (2.10) with ĥαβ a Riemannian metric and ρ̂ ≥ 0, the evolution system

can be used to construct a globally hyperbolic solution (M̂, ĝµν , Û
µ, ρ̂) to the Einstein-

dust equations with cosmological constant λ into which the initial data set is isometrically
embedded so that Ŝ represents after an identification a space-like Cauchy hypersurface for
(M̂, ĝµν). The manifold M̂ will then be ruled by the geodesics tangent to Ûµ. The ODE’s

Ûµ∇̂µ ρ̂+ ρ̂ ∇̂µ Û
µ = 0,

along the geodesics tangent to Ûµ ensure that ρ̂ > 0 or = 0 along a given geodesic,
depending on whether this relation is satisfied at the point where the geodesic intersects
Ŝ. Thus ρ̂ ≥ 0 will hold on M̂ .

For smooth initial data the evolution system given in [8] provides a smooth solution
in coordinates x0 = t, xa so that < dxa, Û >= 0, < dt, Û >= 1, whence Û = ∂t. The
initial hypersurfac is given by Ŝ = {t = t∗} for some fixed value t∗, the metric is of the
form

ĝ = −(a dt)2 + hαβ (û
α dt+ dxα) (ûβ dt+ dxβ) on M̂, (2.12)

the future directed ĝ-unit normal to Ŝ is given by

n̂µ =
1

a
(δµ − ûµ) with shift vector field ûµ so that û0 = 0, (2.13)

and the lapse function a satisfies −1 = ĝ(Û , Û) = −a2 + hαβ û
α ûβ. If Û is hypersurface

orthogonal we can assume that a = 1, ûα = 0 and the coordinates define a Gauss system.
This will not necessarily be assumed in this article.

The questions to be analyzed in the following asks whether there exist a reasonably
large set of data for which the solutions can be extended to become future complete,
so that t takes values in [t∗,∞[, and whether these solutions allow us to give a sharp
and detailed description of the asymptotic behaviour of the conformal structure in the
expanding direction, where t → ∞.
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3 The metric conformal field equations

Let Ω denote a positive conformal factor on M̂ and gµν = Ω2 ĝµν the rescaled metric. We
shall in the following consider the tensor fields

Ω, s =
1

4
∇µ∇

µ Ω +
1

24
ΩR[g], Lµν =

1

2

(

Rµν [g]−
1

6
R[g] gµν

)

, (3.1)

Wµ
ηνλ = Ω−1 Cµ

ηνλ[g], (3.2)

where ∇µ denotes the Levi-Civita connection of g and the last two fields denote the
Schouten and the rescaled conformal Weyl tensor of gµν respectively. Moreover, we shall
consider the conformal matter fields

Uµ = Ω Ûµ, ρ = Ω−3 ρ̂.

The vector fields Uµ = gµν Uν and Ûµ = ĝµν Ûν are then related by

Uµ = Ω−1Ûµ so that g(U,U) = ĝ(Û , Û) = −1.

The tensor fields above satisfy the system of conformal field equations (see [6], [10])

6 Ω s− 3∇ηΩ∇ηΩ− λ = −
1

4
T̂ , (3.3)

∇µ ∇νΩ+ ΩLµν − s gµν =
1

2
ΩT ∗

µν , (3.4)

∇µ s+∇ηΩLηµ =
1

2
∇ηΩT ∗

ηµ −
1

24Ω
∇µ T̂ , (3.5)

∇ν Lλη −∇λ Lνη −∇µΩ Wµ
ηνλ = 2 ∇̂[ν L̂λ]η, (3.6)

∇µ W
µ
ηνλ = 2Ω−1 ∇̂[ν L̂λ]η. (3.7)

The right hand sides are determined by the trace

T̂ = ĝηµ T̂ηµ = −ρ̂ = −Ω3 ρ, (3.8)

and the trace free part

T ∗
ηµ = ρ̂

(

Ûη Ûµ +
1

4
ĝηµ

)

= Ω ρ

(

Uη Uµ +
1

4
gηµ

)

, (3.9)

of the energy momentum tensor (2.6) and the physical Schouten tensor L̂µν , which takes
with our energy momentum tensor, the field equations, and the rescaled fields the form

L̂µν =
1

6
(ρ̂+ λ) ĝµν +

1

2
ρ̂ Ûµ Ûν =

1

6
λ ĝµν +Ω ρ

(

1

2
Uµ Uν +

1

6
gµν

)

. (3.10)
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Taking into account the transformation law of the connection coefficients under con-
formal rescaling this gives

2 ∇̂[νL̂λ]η = ∇̂[ν ρ̂ Ûλ] Ûη +
1

3
∇̂[ν ρ̂ ĝλ]η + ρ̂ (∇̂[νÛλ] Ûη + Û[λ ∇̂ν|Ûη)

= Ω

(

ρ (∇[ν Uλ] Uη + U[λ ∇ν] Uη) +∇[νρ Uλ] Uη +
1

3
∇[νρ gλ]η

)

+ρ
(

∇[νΩ gλ]η + 2∇[νΩ Uλ] Uη + U[ν gλ]η g
πδ ∇πΩUδ

)

.

Finally, the geodesic equation (2.7) translates into

∇UU
µ =

1

Ω
(−g(U,U) gµ ρ + Uµ Uρ)∇

ρΩ. (3.11)

while equation (2.8) for the density ρ̂ gives

∇U ρ+ ρ∇µ U
µ = 0. (3.12)

We express the equations in terms of a frame field ek = eµ k∂xµ , k = 0, 1, 2, 3, which
has a time-like vector field given by

e0 = U,

and which is orthonormal, so that gjk ≡ g(ej, ek) = ηjk = diag(−1, 1, 1, 1). The space-like
frame fields are given by the ea, where a, b, c = 1, 2, 3 denote spatial indices to which the
summation convention applies. The metric is given by

g = ηjk σ
j σk,

where σj denotes the field of 1-forms dual to ek so that their coefficients in the coordinates
xµ satisfy σj

µ e
µ
k = δj k.

The connection coefficients, defined by ∇jek ≡ ∇ej ek = Γj
l
k el, satisfy Γjlk = −Γjkl

with Γjlk = Γj
i
k gli, because ∇igjk = 0. The covariant derivative of a tensor field Xµ

ν ,
given in the frame by X i

j , takes the form

∇k X
i
j = X i

j ,µ e
µ
k + Γk

i
l X

l
j − Γk

i
l X

i
j .

For the covariant version of U , i.e. Uj = − δ0 j , equation (3.11) implies the form

∇k Ul = Γk
0
l = δ0 k Ω

−1 (∇lΩ + Ul ∇0 Ω) + δa k δ
b
l χab. (3.13)

If U is hypersurface orthogonal and if Ŝ were chosen to be orthogonal to U so that the
vector fields ea define an orthonormal frame on Ŝ, the field χab would represent the second
fundamental form induced by g on the slice Ŝ whence χab = χ(ab). In general hypersurface

orthogonality will not be assumed here. We shall write gab χab = χa
a.

The metric coefficients and the connection coefficients satisfy the first structural equa-
tions

eµ i, ν e
ν
j − eµ j, ν e

ν
i = (Γj

k
i − Γi

k
j) e

µ
k, (3.14)
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which ensures the connection to be torsion free, and the second structural equations

Γl
i
j, µ e

µ
k − Γk

i
j, µ e

µ
l + 2Γ[k

i p Γl]pj − 2 Γ[k
p
l] Γp

i
j (3.15)

= ΩW i
jkl + 2 {gi [k Ll]j + Li

[k gl]j},

which relates the coefficients (and thus the metric gµν) to the unknowns in the conformal
field equations. The conformal field equations read now

6Ω s− 3∇iΩ∇iΩ− λ =
1

4
Ω3 ρ, (3.16)

∇j ∇kΩ + ΩLjk − s gjk =
1

2
Ω2 ρ

(

Uj Uk +
1

4
gjk

)

, (3.17)

∇k s+∇iΩLik =
1

2
Ω ρ∇iΩ

(

Ui Uk +
1

4
gik

)

+
1

8
Ω ρ∇k Ω +

1

24
Ω2 ∇k ρ, (3.18)

∇k Llj −∇l Lkj −∇iΩ W i
jkl (3.19)

= Ω

(

ρ (∇[k Ul] Uj + U[l ∇k] Uj) +∇[kρ Ul] Uj +
1

3
∇[kρ gl]j

)

+ρ
(

∇[kΩ gl]j + 2∇[kΩ Ul] Uj + U[k gl]j g
pq ∇pΩUq

)

,

∇i W
i
jkl = (3.20)

ρ (∇[k Ul] Uj + U[l ∇k] Uj) +∇[kρ Ul] Uj +
1

3
∇[kρ gl]j +

1

Ω
ρ Zjkl

with
Zjkl = ∇[kΩ gl]j + 2∇[kΩ Ul] Uj + U[k gl]j g

pq ∇pΩUq.

The matter equations are given by

∇UU
k =

1

Ω
(gk i + Uk Ui)∇

iΩ, (3.21)

∇U ρ+ ρχa
a = 0. (3.22)

Equations (3.14) to (3.22) establish a system of differential equations for the unknowns

eµ k, Γi
j
k, Ω, s, Ljk, W i

jkl , Uk, ρ, (3.23)

which is (apart from subtleties which may arise in cases of low differentiability) equivalent
to the system (2.1), (2.6), (2.7), (2.8) in domains where Ω > 0.

If the system is to be used to solve Cauchy problems with data given on a space-
like hypersurface Ŝ, one has to restrict the available gauge freedom. We shall follow the
procedure of [6] and [10], where the conformal freedom is removed be considering the Ricci
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scalar R = R[g] in a suitable neighborhood of Ŝ as a prescribed function of the space-time
coordinates and by prescribing suitable initial data for Ω and ∇iΩ on Ŝ. The coordinates
τ = x0 and xa are chosen near Ŝ so that τ = τ∗ on Ŝ and < U, dxa >= 0, < U, dτ >= 1,
whence

Uµ = eµ 0 = δµ 0 near Ŝ.

Apart from a parameter transformation t = t(τ) these coordinates coincide with the ones
considered in (2.12). Precise conditions on the vector fields ea orthogonal to U will be
stated later.

Our main interest is the question whether there exist solutions to the system above
on the domain where Ω > 0 which admit a meaningful (i.e. sufficiently smooth) limit to
a boundary where Ω → 0. In that case we write {Ω = 0} = J +, and refer to this set
as the future conformal boundary of the solution. By equation (3.16) the limit of ∇i Ω
will then define a time-like normal to the set J + so that the latter will define a space-like
hypersurface. It represents (future) time-like and null infinity for the ‘physical’ space-time
on which Ω > 0.

There arises an obvious problem with the differential system above. The right hand
sides of equations (3.20) and(3.21) are formally singular where Ω → 0. This problem will
be analyzed in the next section. Here we just point out its geometric nature.

If the fields entering equation (3.21) have limits as Ω → 0 the term in brackets on the
right hand side of (3.21) defines a projection operator with kernel generated by the unit
vector U . The right hand side of (3.21) can only admit a limit as Ω → 0 if the gradient of
Ω is in the kernel of that operator and thus proportional to U , whence

The solutions can only admit a reasonably smooth conformal boundary
J + if the geodesics generated by Û approach J + orthogonally.

Remarkably, the singularity of equation (3.20) is of a similar geometric nature. If we
want to keep the freedom to have non-vanishing conformal densities ρ on J +, the right
hand side of (3.20) can only assume a limit if Zjkl → 0 at J+. Since this implies that
U j Zjkl = −∇[kΩ Ul] → 0, which implies in turn that Zjkl → 0, the conclusion above
follows again.

4 The regularizing relation

A conformal geodesic in a given space-time (M̂, ĝ) is a curve xµ(σ) together with a 1-form
field bν(σ) which satisfy the system of conformal geodesic equations

∇̂V V
µ + S(b)λ

µ
ρ V

λ V ρ = 0,

∇̂V bν −
1

2
bµ S(b)λ

µ
ν V

λ − L̂λν V
λ = 0,

where S(b)λ
µ
ρ = δλ

µ bρ+δρ
µ bλ− ĝλρ ĝ

µν bν and V µ(σ) = dxµ

dσ
denotes the tangent vector

of the curve. Sometimes it will be convenient to write these equations in the form

∇̂V V + 2 < b, V > V − ĝ(V, V ) b = 0, (4.1)
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∇̂V b− < b, V > b+
1

2
ĝ(b, b)V − L̂(V, . ) = 0, (4.2)

where the index position should be clear from the above.
For a conformal geodesic the initial data at a given point consist of its tangent vector

and its 1-form at that point. On a given space-time there exist thus more conformal
geodesics than metric geodesics. Moreover, there exists in general no particular relation
between conformal and metric geodesics. The problem of interest here is, however, very
special in this respect.

Lemma 4.1 Let (M̂, ĝ) be a solution to the Einstein-dust system (2.1), (2.6), (2.7), (2.8).
Then the geodesics tangential to the vector field Û coincide after a reparameterization with
the curves underlying certain conformal geodesics.

Proof: Suppose x̄µ(t) is a ĝ-geodesic with dx̄µ

dt
= Ûµ(x̄(t)) and (xµ(σ), bν(σ)) a conformal

geodesics with V µ(σ) = dxµ

dσ
. Then there exists a parameter transformation t = t(σ) so

that dt
dσ

> 0 and xµ(σ) = x̄µ(t(σ)) if and only if

V µ(σ) = ω(σ)−1 Ûµ(x̄(t(σ))) with ω−1 =
dt

dσ
> 0, ĝ(V, V ) = −ω−2. (4.3)

For xµ(σ) to be up to a reparametrization a geodesic we need to have a relation

bµ = αVµ, (4.4)

with some function α = α(σ) so that (4.1) reads

∇̂V V
µ + α ĝ(V, V )V µ = 0. (4.5)

It follows then that 2ω−3 ∇̂V ω = ∇̂V (ĝ(V, V )) = −2αω−4, whence

α = −ω ∇̂V ω. (4.6)

Basic for our result is that relations (3.10) and (4.3) give along xµ(σ)

V ν L̂νµ =
1

6
(λ− 2 ρ̂)Vµ, with ρ̂ = ρ̂(x̄µ(t(σ))).

Inserting this and (4.4) into (4.2) and observing (4.5), (4.6) gives the equation

ω
d2ω

dσ2
−

1

2

(

dω

dσ

)2

+
1

6
(λ − 2 ρ̂(x̄µ(t(σ)))) = 0,

which provides with the relation
dt

dσ
=

1

ω
, (4.7)

a system of ODE’s for ω = ω(σ) and t = t(σ) along xµ(σ) = x̄µ(t(σ))). Prescribing
arbitrary initial data t|σ∗

= t∗, ω|σ∗
, and dω

d σ
|σ∗

with ω∗ > 0 at the point xµ(σ∗) = x̄µ(t∗))
it can be solved. A straight forward calculation then shows that

V µ(σ) =
1

ω
Ûµ(x̄(t(σ)), bν(σ) = −

dω

dσ
Ûµ(x̄(t(σ)),

12



do indeed satisfy equations (4.1) and (4.2). �

It will later be important to note that the freedom to prescribe the initial data for ω gives
the freedom to prescribe α arbitrarily at a given point.

Conformal geodesics are of interest in the present context because the curves un-
derlying conformal geodesics are conformal invariants of a given conformal structure: If
gµν = Ω2 ĝµν , where Ω is a conformal factor as considered above and xµ(σ), bλ(σ) satisfy
the conformal geodesic equations with respect to ĝµν , then xµ(σ), fν(σ) with

fν(σ) = bν(σ)− Ω−1∇νΩ|x(σ), (4.8)

satisfy the conformal geodesics equations

∇V V + 2 < f, V > V − g(V, V ) f = 0, (4.9)

∇V f − < f, V > f +
1

2
g(f, f)V − L(V, . ) = 0, (4.10)

with respect to gµν , where ∇ and L denote the Levi-Civita connection and the Schouten
tensor of gµν (for this and further properties of conformal geodesics we refer to [7], [9]). If
g(V, V ) = −θ−2 with θ > 0 at a given point, equation (4.9) gives

∇V θ = θ < V, f >,

which shows that θ will stay positive and xµ(σ) will be time-like as long as V and f remain
sufficiently smooth. Equations (4.9), (4.10) do not see the relation gµν = Ω2 ĝµν . Thus,

if (M̂, ĝ) admits a smooth conformal boundary J+, one can arrange time-like conformal
geodesics to extend smoothly to J + with finite and non-vanishing tangent vector.

In the following we shall assume V to be a conformal geodesic vector field which is
related, as in (4.3), to the ĝ-geodesic vector field Û by

V µ = ω−1 Ûµ. (4.11)

With the notation above we have then

θ V µ = Uµ = Ω−1 Ûµ,

and thus
θ =

ω

Ω
, ∇Uθ = θ < U, f > . (4.12)

Since θ stays smooth and positive if U crosses the conformal boundary this has the re-
markable consequence, used already in [7], that ω goes to zero precisely where Ω does.

In terms of U equation (4.9) takes the form

∇UU+ < U, f > U − g(U,U) f = 0. (4.13)

Replacing in (4.10) the field V by U = θ V renders that equation in the form

∇Uf− < U, f > f +
1

2
g(f, f)U − L(U, . ) = 0. (4.14)
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This version of the conformal geodesic equations will be assumed from now on. The only
effect of the transition is a reparametrization of xµ(σ) → xµ(τ), fν(σ) → fν(τ) where σ
is replaced by a function σ(τ) so that

dτ

dσ
=

1

θ(x(σ))
. (4.15)

In the following the parameter τ will be used.
With (4.12) and the relations obtained in the proof of Lemma 4.1 we get

fµ = bµ − Ω−1 ∇µΩ = −ω∇V ω ĝµν V
ν − Ω−1 ∇µΩ

= −(θΩ) θ−1 ∇U (θΩ)Ω
−2 gµν θ

−1 Uν − Ω−1 ∇µΩ

= −(θ−1 ∇Uθ +Ω−1 ∇UΩ)Uµ − Ω−1 ∇µΩ,

= −(< U, f > +Ω−1 ∇UΩ)Uµ − Ω−1 ∇µΩ,

and thus the regularising relation

∇µΩ = −(∇UΩ+ Ω < U, f >)Uµ − Ω fµ. (4.16)

This relation will play a critical role. It will be used later to obtain a hyperbolic system
of evolution equations which extends in a regular way to the set {Ω = 0} and it will be
used to set up a subsidiary system to show that constraints and gauge conditions are
preserved by the evolution system. Here it is used to remove the singularities in equations
(3.20) and (3.21). In fact, replacing in Zjkl the term ∇kΩ by the right hand side of (4.16),
we get (3.20) in the form

∇i W
i
jkl = ∇[kρ Ul] Uj +

1

3
∇[kρ gl]j (4.17)

+ρ (∇[k Ul] Uj + U[l ∇k] Uj − f[k gl]j − 2 f[k Ul] Uj − U[k gl]j U
i fi).

Using (4.16) to replace ∇kΩ on the right hand side of (3.21), the equation takes the form

∇0U
k + fk + Uk Ui f

i = 0, (4.18)

which is just (4.13) again. Equation (3.13) is then replaced by the formally regular version

∇k Ul = Γk
0
l = (−δ0 k fb + δa k χab) δ

b
l. (4.19)

Finally we note that given sufficient asymptotic smoothness and an arrangement such
that Ω(x(τ)) → 0 for some finite value of τ , the relation

dt

dτ
=

1

Ω(x(τ))
, (4.20)

which follows from (4.7), (4.12), (4.15) implies with (3.3) that t → ∞ as Ω(x(τ)) → 0.
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5 The hyperbolic reduced equations

To extract from our equations a hyperbolic system we need to complete the gauge con-
ditions for the g-orthonormal frame field ek satisfying e0 = U . The reduction procedure
of the Einstein-dust system in [8] employs a frame that is ĝ-parallely transported in the
direction of Û . Since the field U is not geodesic with respect to g this cannot be done
here. We use instead a frame whose vector fields X satisfy the Fermi transport law

0 = FUX ≡ ∇UX − g(X,∇UU)U + g(X,U)∇UU,

which has the properties: FUU = 0 and if FUX = 0, FUY = 0 then ∇U (g(X,Y )) = 0.
On a given space-like hypersurface transverse to the flow line of U we thus choose

smooth fields ek with e0 = U such that gjk = g(ej, ek) = ηjk and extend the ea away
from the hypersurface by the requirement that FUea = 0. The smooth orthonormal frame
field so obtained is then closely related to the frame considered in [8]. In fact, if êk is a
ĝ-orthonormal frame such that ê0 = Û and ∇̂

Û
êk = 0, then ek = Ω−1êk is a gµν = Ω2 ĝµν-

orthonormal frame with e0 = U and FUea = 0.
As a consequence of relation FUek = 0 the connection coefficients satisfy

Γ0
a
b = 0. (5.1)

The transport equation for the flow field U is given by (4.13). The coefficients Uµ = eµ 0 =
δµ 0 have been fixed by our choice of coordinates, however, and equation (4.18) reduces to
the relation

Γ0
a
0 = −fa = −gab fb resp. Γ0

0
a = −fa, (5.2)

between the connection coefficients and the acceleration of U . The remaining not neces-
sarily vanishing connection coefficients are then given by

Γa
b
c and Γa

0
b = ∇a Ub = g(∇eae0, eb) ≡ χab resp. Γa

b
0 = χa

b = χac g
cb. (5.3)

In the case in which U resp. Û is hypersurface orthogonal, the field χab is symmetric and
represents the second fundamental form while the Γa

b
c are the connection coefficients of

the intrinsic connection induced on the hypersurfaces orthogonal to U in the frame ea.
We shall now derive the reduced equations for the remaining frame and connection

coefficients. With our gauge conditions and the connection coefficients above the first
structural equations (3.14) induce the evolution equations

eµ a, 0 = −fa δ
µ
0 − χa

b eµ b, (5.4)

for the fields eµ a.
The second structural equations (3.15) induce the evolution equations

Γc
a
b, 0 = fa χcb − χc

a fb − χc
d Γd

a
b +ΩW a

b0c − ga c L0b + La
0 gcb, (5.5)

χab, 0 +Dafb = fa fb − χa
c χcb − ΩW0b0a + Lab − L00 gab, (5.6)

for Γc
a
b and χab, where we set

Dafb = fb ,µ e
µ
a − Γa

c
b fc.
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No equation is implied for Γ0
0
a = −fa by (3.15). Such an equation is provided, however,

by (4.14), which takes in our gauge the explicit form

f0, 0 = −
1

2
fj f

j + L00, (5.7)

fa, 0 = L0a. (5.8)

At this stage arises a problem. We are aiming for a system that is symmetric hyper-
bolic. The principal part of the coupled system

χab, 0 +Dafb = . . . , fa, 0 = . . . ,

does not satisfy the required symmetry condition. One might think of proceeding as
follows. The structural equations (3.15) imply after a contraction an analogue of Codacci’s
equation, which takes with the convention Dc χab ≡ χab ,µ e

µ
c − Γc

d
a χdb − Γc

d
b χad the

form
Da χab −Db(χa

a) = . . . ,

(where the index position in the first term has to be respected because χab is not necessarily
symmetric). By adding a suitable multiple of this equation to the second of the equations
above one could hope to obtain a symmetric system. A careful analysis shows, however,
that this does not work. We skip the details.

Help is again provided by (4.16). By this relation the field

Nk = ∇kΩ+ (∇UΩ+ Ω < U, f >)Uk +Ω fk,

vanishes in our gauge. While N0 = Nk U
k = 0 identically, the equation Na = 0 with

Na = Ω fa +∇aΩ,

has non-trivial content. The relation

∇j Nk = ∇j ∇kΩ +∇j (∇UΩ+ Ω < U, f >)Uk

+(∇UΩ+ Ω < U, f >)∇j Uk +∇j Ω fk +Ω∇j fk,

implies in our gauge

∇a Nb −Na fb = ∇a ∇b Ω+ (∇UΩ + Ω < U, f >)χab − Ω fa fb +Ω∇afb

= ∇a ∇b Ω+ (∇UΩ + Ω < U, f >)χab − Ω fa fb +Ω(Dafb − χab f0).

= ∇a ∇b Ω+∇UΩχab − Ω fa fb +ΩDafb,

which gives with (3.17)

∇a Nb −Na fb = ∇UΩχab + s gab +Ω(Da fb − fa fb − Lab +
1

8
Ω ρ gab). (5.9)

Solving the equation ∇a fb −Na fb = 0 for Dafb and using the resulting expression to
replace that term in the evolution equation for χab, gives the latter in the form

χab, 0 − Ω−1 (∇UΩ χab + s gab) = −χa
c χcb − ΩW0a0b − L00 gab. (5.10)
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With the reduced equations obtained so far and the ones that follow below this gives again
a symmetric hyperbolic system where Ω 6= 0.

Let us assume that the solution admits a smooth conformal boundary J + = {Ω = 0}.
To obtain a system which extends in a regular fashion to J+ we recall that this would
require that e0 = U approaches J+ orthogonally. With (3.16) this would imply that

∇UΩ → −ν < 0 as Ω → 0, where ν ≡

√

−
λ

3
,

and thus ∇UΩ < 0 also in a neighborhood of J+. In the discussion of the conformal
constraints on J + in the next section we shall see that the conformal gauge can be chosen
such that s and χab vanish at J +. If data on a ‘physical’ initial hypersurface are evolved
in the direction of J + it is, however, difficult to decide how the conformal gauge must be
chosen such that these fields will vanish at J +. This suggests to introduce regularizing
unknowns which are derived from fields which go to zero at J + in any conformal gauge.
Such unknowns are suggested by the equation ∇a fb −Na fb = 0. In fact, the fields

ζab ≡
χab −

1
3 gab χc

c

Ω
, ξ ≡

∇UΩ χc
c + 3 s

Ω
, (5.11)

satisfy for Ω 6= 0 and ∇UΩ 6= 0 by (5.9)

ζab = −(∇U Ω)−1

(

Da fb − fa fb − Lab −
1

3
(Dc f

c − fc f
c − Lc

c) gab

)

, (5.12)

and

ξ = −Da f
a + fa f

a + La
a −

3

8
Ω ρ, (5.13)

and can thus be expected to extend smoothly to J+. The original unknown will be
recovered from the new ones by

χab = Ω ζab +
1

3
(∇UΩ)

−1 (Ω ξ − 3 s) gab, (5.14)

which will certainly be well defined on neighbourhoods of J + where ∇UΩ 6= 0. This will
suffice for our purpose because we can use equation (5.10) where Ω 6= 0.

The equations we have obtained so far imply equations for the unknowns (5.11) that
are regular where ∇UΩ 6= 0. Indeed, a direct calculation gives with (5.10) the equation

ζab ,0 = −Ω (ζa
c ζcb −

1

3
ζcd ζdc gab)−

2

3
(∇UΩ)

−1 (Ω ξ − 3 s) ζab −W0a0b. (5.15)

From (3.17) follows

Ω,00 − Γ0
a
0∇aΩ = ∇0∇0Ω = −ΩL00 − s+

3

8
Ω2 ρ,

and thus with 0 = Na = Ω fa +∇aΩ

Ω,00 = Ω fa f
a − ΩL00 − s+

3

8
Ω2 ρ.
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Equation (3.18) gives with (3.22) and Na = 0

s,0 = ∇UΩL00 +Ω fa La0 −
1

4
ρΩ∇UΩ−

1

24
ρΩ2 χ.

With these two equations relation (5.10) implies

ξ,0 = (∇UΩ)
−1 (Ω ξ − 3 s)

(

−
1

3
ξ + fa f

a − L00 +
1

4
ρΩ

)

(5.16)

−∇UΩ Ω ζcd ζ
dc + 3 fa La0 −

3

4
ρ∇UΩ.

This completes the evolution system for the metric and the connection coefficients.
To deal with equations of first order we introduce

Σk = ∇kΩ,

as an unknown and use (3.17) to get the evolution equations

∇0Ω = Σ0, (5.17)

∇0 Σk = −ΩL0k + s g0k +
1

2
Ω2 ρ

(

U0 Uk +
1

4
g0k

)

. (5.18)

From (3.18) we get

∇0 s = −∇iΩLi0 =
1

2
Ω ρ∇iΩ

(

Ui U0 +
1

4
gi0

)

+
1

8
Ω ρ∇0 Ω+

1

24
Ω2 ∇0 ρ. (5.19)

As mentioned above, the Ricci scalar R = R[g] of gµν will play the role of a conformal
gauge source function and thus be prescribed as an explicit function of the coordinates
near the initial hypersurface. Because of the relation

− L00 + gab Lab = Lj
j =

1

6
R, (5.20)

it suffices to derive an evolution system for the components L0a, Lab, a, b = 1, 2, 3, of the
Schouten tensor. To simplify the equations we set

Kjkl = ∇iΩ W i
jkl (5.21)

+Ω

(

ρ (∇[k Ul] Uj + U[l ∇k] Uj) +∇[kρ Ul] Uj +
1

3
∇[kρ gl]j

)

+ρ (∇[kΩ gl]j + 2∇[kΩ Ul] Uj + U[k gl]j g
pq ∇pΩUq),

so that (3.19) takes the form

∇k Llj −∇l Lkj = Kjkl.
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It implies by contraction

∇0 Ll0 − gbc ∇b Llc =
1

6
∇l R+Kj

jl.

These equations are used to define the evolution system

∇0 L0a − hbc∇b Lac =
1

6
∇a R+Kj

ja, a = 1, 2, 3, (5.22)

∇0 Laa −∇a L0a = Ka0a, a = 1, 2, 3, (5.23)

2∇0Lab −∇a L0b −∇b L0a = Ka0b +Kb0a, a, b = 1, 2, 3, a 6= b. (5.24)

for the set of unknowns

L01, L02, L03, L11, L12, L13, L22, L23, L33.

For given right hand sides the system will then be symmetric hyperbolic on a neighborhood
of an initial hypersurface on which eµ0 = δµ 0 and on which e0 a is sufficiently small.
Moreover, we find with our gauge conditions

Kj
ja = −

1

2
ρ (Ω fa +∇aΩ),

Ka0b = ∇iΩW i
a0b +

1

2
Ω

(

ρχba +
1

3
∇Uρ gab

)

,

and thus the important fact that on the right hand sides of the evolution system above
only that derivative of ρ occurs which can be removed by using the equation (3.22), i.e.

∇U ρ+ ρχa
a = 0. (5.25)

This equation is assumed, of course, to be part of the reduced system.
The following extraction of an evolution system for the rescaled conformal Weyl ten-

sor from equation (4.17) is close to the procedure to obtain evolution equations for the
conformal Weyl tensor discussed in [8], [12], to which we refer for more details. Let

hj
k = gj k + U j Uk, lj k = gj k + 2U j Uk,

denote the projection operator which maps the tangent spaces onto their subspaces U⊥

orthogonal to U and the reflection operator which maps U onto −U and induces the
identity on U⊥ and consider the totally antisymmetric tensor densities

ǫijkl = ǫ[ijkl] with ǫ0123 = 1 and ǫjkl = U i ǫijkl.

Further, define the U -electric part wjl and the U -magnetic part w∗
jl of W

i
jkl by setting

wjl = Wipkq U
i hp

j U
k hq

l, w∗
jl =

1

2
Wipmn ǫmn

kq U
i hp

j U
k hq

l,

so that these symmetric trace free fields are given in our gauge essentially by their ‘spatial’
components wab and w∗

ab.

19



It will be convenient to write equation (4.17) in the form Fjkl = 0 with

Fjkl = ∇iW
i
jkl −∇[kρ Ul] Uj −

1

3
∇[kρ gl]j (5.26)

−ρ (∇[k Ul] Uj + U[l ∇k] Uj − f[k gl]j − 2 f[k Ul] Uj − U[k gl]j U
i fi).

Inserting the representation

Wijkl = 2 (li[k wl]j − lj[k wl]i − U[k w
∗
l]p ǫ

p
ij − U[iw

∗
j]p ǫ

p
kl),

of the rescaled conformal Weyl tensor into the equations

0 = Pij ≡ −Fpkq h
p
(i U

k hq
j) +

1

3
hij h

kl Fpmq h
p
k U

m hq
l, (5.27)

0 = Qij ≡ −
1

2
Fmpq h

m
(i ǫj)

pq, (5.28)

the latter take the explicit form

wab, 0 +Dcw
∗
d(b ǫa)

cd = χ(a
c wb)c + 2χc

(a wb)c − 2χc
c wab (5.29)

−hab χ
cd wcd − 2 acwd(b ǫb)

cd −
1

6
ρ (3χ(ab) − hab χc

c),

w∗
ab, 0 −Dcwd(b ǫa)

cd = χc
(a w

∗
b)c − χc

c w∗
ab (5.30)

+2 acwd(a ǫb)
cd + χcd wef ǫ(i

ce ǫj)
df ,

where we set, as before,

Da wbc = wbc, µ e
µ
a − Γa

d
b wdc − Γa

d
c wbd,

etc. (The slight differences with the analogues equations in [8], [12] result from the use
of the relation LU wij = wij, 0 + 2χ(i

k wk)j for wab and w∗
ab.) For given right hand side

equations (5.29) and (5.30) represent a symmetric hyperbolic system for wab and w∗
ab if

it is ignored that these fields are trace free. Their trace-freeness will be taken care of by
the construction of the initial data and then be preserved by the equations. Again it is
important that no derivatives of the field ρ occur on the right hand sides.

If on the right hand sides the field ∇kΩ is replaced by Σk, ∇0ρ is removed by using
(5.25), χab is replaced by (5.14), and L00 is removed where it occurs (also in expressions
like ∇a L0b = L0b, µ e

µ
a − Γa

k
0 Lkb − Γa

k
b L0k) by using (5.20), then equations (5.4),

(5.5), (5.7), (5.8), (5.15), (5.16), (5.17), (5.18), (5.19), (5.22), (5.23), (5.24), (5.25), (5.29),
(5.30) represent, irrespectively of the sign of Ω, for suitably chosen initial data a quasi-
linear symmetric hyperbolic evolution system for the unknowns

eµ a, Γc
a
b, fk, ζab, ξ, Ω, Σk, s, L0a, Lab, ρ, wab, w∗

ab,

where ∇0Ω 6= 0. Where Ω 6= 0 such an evolution system can be obtained by replacing
ζab and ξ by χab and using directly equation (5.10). The characteristics of the systems so
obtained are time-like or null with respect to the solution metric, i.e. the metric gµν that
satisfies gµν e

µ
j e

ν
k = ηjk.
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6 Asymptotic end data

In section 8 we shall discuss the natural question how initial data for the reduced field
equations are derived from solutions to the constraints (2.9, (2.10) induced by the Einstein-
λ-dust system on ‘physical’ initial hypersurfaces. The nature of the argument employed
in 8 suggests, however, to consider first asymptotic data.

For solutions to Einstein’s field equations with a positive cosmological constant which
admit a smooth conformal boundary J + it has been observed in the vacuum case [4], in the
case of matter models involving conformally covariant matter models with ĝµν T̂µν = 0 [6],

and also in the case of a matter model with ĝµν T̂µν 6= 0 [10] that the problem of providing
initial data simplifies considerably if solutions to the constraints are constructed on that
boundary. There is no need any longer to consider non-linear elliptic equations. Assuming
that the solutions admit a smooth conformal boundary J+ = {Ω = 0}, it will be shown
in this section that the constraints induced on J+ by the conformal equations in the
Einstein-dust case with a positive cosmological constant lead to the same simplification.
Moreover, in the particular case where ρ > 0 on J + they simplify even further. The
solutions to the conformal Einstein-dust constraints can then in principle be constructed
without solving any differential equation at all.

To construct the asymptotic end data on a 3-manifold which will later acquire the
status of a smooth conformal boundary, let S be a smooth, orientable, compact (though
the latter is not really needed in the following discussion) 3-manifold. Assume that it
represents a smooth conformal boundary J + of an Einstein dust solution with cosmological
constant λ > 0. The conformal constraints induced on it must then be considered with
an induced metric which is Riemannian and a conformal factor Ω which vanishes on S.
As seen earlier, the future directed conformal flow field U must be orthogonal to S. The
conformal field equations will be considered in a frame ek, k = 0, 1, 2, 3, on S so that
e0 = U and the ea, a = 1, 2, 3, represent a frame on S for the induced metric

hab = gab = g(ea, eb) = diag(1, 1, 1),

on S. The connection coefficients defined by g in the frame ek are given again by ∇kej =
Γk

l
j el. As before hj

k = gj
k + Uj U

k denotes the orthogonal projector onto S. By
assumption we have Ω > 0 in the past and < 0 in the future of S and thus e0(Ω) < 0 on
S. Because e0 is orthogonal to S the field

χab = Γa
0
b = g(∇eae0, eb),

represents the second fundamental form induced on S and is thus symmetric, while the
Γa

b
c define the connection coefficients on S in the frame ea of the Levi-Civita connection

D defined by the intrinsic metric hab.
The electric part wjl = Wipkq U

i Uk hp
j h

q
l of the rescaled conformal Weyl tensor is

then represented by wab = W0a0b and w∗
ab = 1

2 W0acd ǫb
cd represents its magnetic part

w∗
jl =

1
2 Wipmn ǫmn

kq U
i Uk hp

j h
q
l, where ǫijkl and ǫjkl are defined as before.

With these assumptions equation (3.16) reduces to the condition

∇0Ω = −ν, ∇0Ω = ν on S, where ν =
√

λ/3 > 0. (6.1)
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Equation (3.17) reduces on S to ∇i ∇jΩ = s gij. The only non-trivial condition implied
by this relation is a restriction on the second fundamental form

ν χab = s hab on S. (6.2)

Equation (3.18) implies the constraint

∇a s+ ν L0a = 0 on S. (6.3)

Under the conformal gauge transformation g → ḡ = θ2 g, Ω → Ω̄ = θΩ with smooth
θ > 0 the function s transforms as s → s̄ = θ s+ gρδ ∇ρΩ∇νθ. This shows that for given
θ > 0 on S the derivative ∇µθ can be determined on S such that s̄ coincides on S with
any prescribed function. The function s could be carried along as a free function in the
following equations but for simplicity the choice that

s = 0, χab = 0, ∇i ∇jΩ = 0, L0a = La0 = 0 on S, (6.4)

will be assumed, which still leaves the freedom to rescale the metric on S. It should be
observed, however, that the gauge above may not be satisfied if a solution is evolved into
S from the domain where Ω > 0. In that case the more general relations like (6.2) and
(6.3) must be considered.

Because the conformal Weyl tensor ΩW i
jkl vanishes on S, the curvature tensor of

g is determined there by its Schouten tensor Ljk. Because the second fundamental form
vanishes on S, the orthogonal projection of the curvature tensor of g onto S coincides by
Gauss’ theorem with the curvature tensor of h, i.e. Rabcd[g] = Rabcd[h]. It follows that the
decomposition of Rabcd[g] in terms gab = hab and the components Lab[g] of its Schouten
tensor is formally identically with the decomposition of of Rabcd[h] in terms hab and its
Schouten tensor lab[h] = Rab[h]−

1
4 R[h]hab. This implies that

Lab[g] = lab[h],

which can be calculated from hab. The component L00 then follows from 1
6 R[g] = Lj

j as

L00 = −
1

6
R[g] + hab Lab,

once the conformal gauge source function R[g] has been prescribed.
Equation (3.19) induces the constraint ∇a Lbc − ∇b Lac = −ν W 0

cab on S. Because
the second fundamental form on S vanishes, it can be written in the form

w∗
ab =

1

ν
ǫa

cdDc ldb. (6.5)

The equation says that the magnetic part of the rescaled conformal Weyl tensor is given
on S up to a factor by the (dualized) Cotton tensor of h. Equation (3.19) induces the
further constraint ∇a Lb0 −∇b La0 = 0 on S. This is satisfied as a consequence of (6.4).

With Fjkl given by (5.26), the constraints induced on S by equation (4.17) are given
by (see [8], [12])

0 = Pk ≡ Fjpl U
j hp

k U
l, 0 = Qk ≡ −

1

2
Fjpq U

j ǫk
pq. (6.6)
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They can be written more explicitly in the form

Dawac =
1

3
Dcρ− ρ fc, (6.7)

which is a genuine constraint, and

Da w∗
ab = 0, (6.8)

which is, consistent with (6.5), the differential identity satisfied by the Cotton tensor and
imposes thus no additional restriction.

The 1-form fa characterizes the deviation of U from hypersurface orthogonality (see
the datum ûα in (2.11) and the following discussion of hypersurface orthogonal flows) and
can be prescribed freely on S. The value of f0 only affects the gauge. It can be prescribed
freely and we assume that f0 = 0 on S.

The initial data for ζab and ξ which follow from (5.12) and (5.13) are then given on S
by

ζab = ν−1

(

Da fb − fa fb − Lab −
1

3
(Dc f

c − fc f
c − Lc

c) gab

)

, (6.9)

and
ξ = −Da f

a + fa f
a + La

a. (6.10)

The observations above can be summarized in terms of local coordinates xα, α = 1, 2, 3,
on S as follows.

Lemma 6.1 Any smooth initial data set for the reduced equations is determined on the
set S = {Ω = 0} uniquely by a Riemannian metric hαβ, the density ρ ≥ 0, the acceleration
fα and a symmetric, h-trace free tensor field wαβ , which are arbitrary up to the relation

Dαwαβ =
1

3
Dβρ− ρ fβ on S, (6.11)

where D denotes the Levi-Civita operator defined by hαβ.

As in the cases mentioned in the beginning there is no need to solve an analogue of
the Hamiltonian constraint. The Riemannian space (S, hαβ) is not subject to any further
restriction. The situation even simplifies for the class of data with ρ > 0 on S. In that
case hαβ , ρ > 0, and wαβ can be prescribed completely freely and fβ is then determined
by reading (6.11) as its defining equation. It should be pointed out, however, that if fα is
required to satisfy some extra conditions, as in the hypersurface orthogonal case discussed
below, equation (6.11) must be read as a differential equation. The situation can then be
discussed by the well known splitting techniques used in the discussion of the standard
constraints [1].

The gauge requirement s|{Ω=0} = 0 leaves the conformal gauge freedom

Ω → Ω′ = θΩ, gµν → g′µν = θ2 gµν ,
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with smooth functions θ > 0 that are arbitrary on S. If nµ denotes the future directed unit
normal to S the conformal gauge transformation above implies associated transformations

hαβ → h′
αβ = θ2 gαβ, nµ → n′µ = θ−1 nµ, Uµ → U ′µ = θ−1 Uµ, ρ → ρ′ = θ−3 ρ,

and, by the transformation law for the 1-forms associated with conformal geodesics,

fα → f ′
α = fα − θ−1 Dαθ. (6.12)

If n is extended as unit vector field into M̂ , the relation gαµ W
µ
νβρ n

ν nρ = Ω−1 gαµ C
µ

νβρ n
ν nρ

makes sense and suggests on S for wαβ the transformation law

wαβ → w′
αβ = θ−1 wαβ .

It follows then
h′αβ D′

α w′
ργ = θ−3 hαβ Dα wργ ,

whence

D′α w′
αβ −

1

3
D′

β ρ
′ + ρ′ f ′

β = θ−3 (Dα wα
β −

1

3
Dβ ρ+ ρ fβ),

so that the constraints are preserved.

6.1 Hypersurface orthogonal flows

Obviously, the vector field Ûµ is hypersurface orthogonal where Ω 6= 0 if and only if
this is true for Uµ = Ω−1 Ûµ. Formally this follows from the relation Û[ρ ∇̂µ Ûν] =

Ω−2 U[ρ∇µ Uν]. In our gauge the hypersurface orthogonality condition Û[ρ ∇̂µ Ûν] = 0 is
equivalent to

0 = ∇[a Ub] = χ[ab]. (6.13)

From (5.6) we get with σab = χ(ab) along the flow lines of Uµ the ODE

χ[ab], 0 +D[a fb] = σa
c χ[cb] − σb

c χ[ca].

It follows that D[a fb] = 0 if Uµ is hypersurface orthogonal. If the solution admited
a smooth conformal extension, so that χ[ab] = 0 on J +, we could conclude from the
equation above that χ[ab] = 0 if we knew that D[a fb] = 0. With the gauge condition
∇a Nb −Na fb = 0 equation (5.9) gives, however, only the relation

0 = Ω, 0 χ[ab] +ΩD[a fb].

But this combines with the equation above to give
(

Ω−1 χ[ab]

)

,0
= σa

c
(

Ω−1 χ[cb]

)

− σb
c
(

Ω−1 χ[ca]

)

.

It follows that χ[ab] = 0 along a given integral curve of Uµ if it vanishes at a point of it
where Ω 6= 0. On the other hand, the relation above shows that Ω−1 χ[ab] assumes the
limit (∇0Ω)

−1 D[a fb] on J +, which vanishes where the integral curves of Uµ meet J + if
and only if D[a fb] = 0 there. Observing the discussion of the conformal gauge freedom in
the construction of data on the conformal boundary, in particular (6.12), we conclude:

24



Lemma 6.2 Let be given a solution to the Einstein-dust system (2.1), (2.6), (2.7), (2.8)
that admits a smooth conformal boundary J+. Then the field Uµ is hypersurface orthog-
onal if and only if the initial data for the conformal field equations induced on J + in the
gauge above are such that

D[a fb] = 0 on J+.

If this condition is satisfied and the field fa can be given on J + as the differential of a
function f , then the conformal gauge can be chosen so that fa = 0 on J+.

6.2 FLRW-type solutions

In the following we discuss the FLRW solutions along the lines of the previous sections.
The FLRW-type solutions to (2.1), (2.6), (2.7), (2.8) on M̂ = R × S with S = S

3, T3 or
H

3
∗ (a suitable factor space of hyperbolic 3-space) are of the form

ĝ = −dt2 + a2 k, Û = ∂t, ρ̂ = ρ̂(t) ≥ 0,

with a function a = a(t) > 0 and a 3-metric of constant curvature which is given in local
coordinates xα, α, β, . . . = 1, 2, 3, on S by k = kαβ dx

α dxβ , so that Rαβγδ[k] = 2 ǫ kα[γ kβ]δ
where ǫ = 1, 0 or −1. Rescaling the fields with a conformal factor Ω = Ω(t)

ĝ → g = Ω2 ĝ, Û → U = Ω−1 Û , ρ̂ → ρ = Ω−3 ρ̂,

and introducing a coordinate x0 = τ(t) so that < U, dτ > = 1, the conformal version of
the metric above takes the form

g = −dτ2 + l2 k, U = ∂τ , ρ = ρ(τ),

with some function l = l(τ) > 0. The non-vanishing Christoffel symbols and the second
fundamental form χαβ of the slices {τ = const.} are then given by

χαβ = Γα
0
β [g] = l l′ kαβ , Γ0

α
γ [g] = Γγ

α
0[g] =

1

l
l′ kα γ , Γβ

α
γ [g] = Γβ

α
γ [k],

where ′ = d
dτ
. The Ricci scalar and the Schouten tensor are given by

R[g] =
6

l2
(ǫ+ l l′′ + (l′)2),

L00[g] =
1

2 l2
(ǫ − 2 l l′′ + (l′)2), Lα0[g] = L0α[g] = 0, Lαβ[g] =

1

2
(ǫ+ (l′)2) kαβ .

Choosing the conformal gauge function as R[g] = 6 ǫ on M̂ , the function l must satisfy
l l′′ +(l′)2 + ǫ (1− l2) = 0. Using the remaining conformal gauge freedom to achieve l = 1,
l′ = 0 on a slice {τ = const.}, it follows that l = 1. The only non-vanishing Christoffel
symboly are then given by Γβ

α
γ [g] = Γβ

α
γ [k] and

L00 =
ǫ

2
, Lα0 = L0α = 0, Lαβ =

ǫ

2
kαβ .
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Where Ω > 0 the physical field is then given by

ĝ = Ω−2 g = −dt2 + a2 dω2, (6.14)

a(t) =
1

Ω(τ(t))
,

dt

dτ
=

1

Ω(τ)
. (6.15)

The high symmetry assumptions leads to a simplification of the conformal field equa-
tions. There do not occur singularities any longer in the equations. In fact, because U is
g-geodesic and hypersurface orthogonal and Ω = Ω(τ), the singularity in (3.11) is gone.
Because the line element g is locally conformally flat it follows that Wµ

νρκ = 0 and thus

∇̂[ν L̂λ]ρ = 0 by (3.7). Moreover, it follows by (3.6) that ∇[ν Lλ]ρ = 0.
It will be assumed in the following that the conformal time coordinate τ vanishes on

a set {Ω = 0} and that ∇UΩ = Ω′ < 0 there. Equations (3.3) and (3.8) then imply

Ω′(0) = −ν = −
√

λ/3 < 0.

Equation (3.12) reduces because of ∇µ U
µ = χc

c = 0 to ρ′ = 0, so that

ρ = ρ∗ = const. > 0,

equations (3.4) and (3.9) imply s = ǫ
2 Ω − 1

8 ρ∗ Ω
2, Ω′′ + ǫΩ− 1

2 ρ∗ Ω
2 = 0 and equations

(3.5), (3.8), (3.9) give s′ = ǫ
2 Ω

′ − 1
4 ρ∗ ΩΩ′, which is satisfied by the function s given

above. The equations for s are redundant under the given assumptions. So we are left
with the initial value problems

Ω′′ + ǫΩ−
1

2
ρ∗ Ω

2 = 0, Ω(0) = 0, Ω′(0) = −ν,

which clearly have a smooth solutions near {τ = 0} = J +. Where Ω′ 6= 0 (thus in
particular near J +.) the ODE is equivalent to (3Ω′2 +3 ǫΩ2 − ρ∗ Ω

3)′ = 0, which implies
with the boundary conditions

3Ω′2 + 3 ǫΩ2 − ρ∗ Ω
3 = λ. (6.16)

The decreasing solutions to this equation cover all the expanding ends of the FRW-type
solutions. With (6.15) the usual (physical) equations (see [14]) for a(t) are implied by
(6.16).

7 The subsidiary system

To show that solutions to the reduced equations for data which satisfy the constraints do
indeed satisfy the complete set of conformal field equations, it has to be shown that the
zero quantities Nj and

Ti
j
k, ∆i

jkl, A, Bj , Cjl, Dj, Hjkl, Fjkl , (7.1)

vanish as a consequence of the reduced equations and the given initial data. Here
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Nj ≡ Ω fj + UkΣk Uj +Σj +Ω Ukfk Uj ,

Ti
k
j ek ≡ −[ei, ej] + (Γi

l
j − Γj

l
i) el,

∆i
jkl ≡ Ri

jkl − ΩW i
jkl − 2 {gi [k Ll]j + Li

[k gl]j}, (7.2)

with
Ri

jkl = Γl
i
j, µ e

µ
k − Γk

i
j, µ e

µ
l + 2Γ[k

i p Γl]pj − 2 Γ[k
p
l] Γp

i
j ,

A ≡ 6Ω s− 3ΣiΣ
i − λ−

1

4
Ω3 ρ,

Bk ≡ ∇kΩ− Σk

Cjk ≡ ∇j Σk + ΩLjk − s gjk −
1

2
Ω2 ρ

(

Uj Uk +
1

4
gjk

)

,

Dk ≡ ∇k s+Σi Lik −
1

2
Ω ρΣi

(

Ui Uk +
1

4
gik

)

−
1

8
Ω ρΣk −

1

24
Ω2 ∇k ρ,

Hjkl ≡ ∇k Llj −∇l Lkj −Kjkl,

Fjkl ≡ ∇iW
i
jkl −Mjkl,

where

Mjkl = ∇[kρ Ul] Uj +
1

3
∇[kρ gl]j (7.3)

+ρ (∇[k Ul] Uj + U[l ∇k] Uj − f[k gl]j − 2 f[k Ul] Uj − U[k gl]j U
i fi),

Kjkl = ΣiW
i
jkl +ΩMjkl. (7.4)

Some of these quantities vanish trivially because of symmetries, gauge conditions, or
the reduced equations. The latter comprise equations (4.13), (4.14), (5.25) and

U i Ti
k
j = 0, Uk∆i

jkl = 0, U jBj = 0, U jCjl = 0, U jDj = 0, (7.5)

Hj
ja = 0, Ha0b +Hb0a = 0, a, b = 1, 2, 3, Pij = 0, Qij = 0, (7.6)

The zero quantities not in this list correspond to constraints or gauge conditions. Con-
cerning the second of equations (7.5) we refer to the remarks below.

In the following we shall use the covariant derivative operator ∇j defined by the
connection coefficients Γi

j
k that satisfy the gauge conditions and the reduced equations.

This operator is metric in the sense that ∇i gjk = 0 but, as seen from the first of conditions
(7.5), it is not known a priori whether the connection is torsion free. In the following
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arguments will be needed the commutators of covariant derivatives, which are for a function
φ and a vector field X i in the case of a general metric connection of the form

(∇i∇j −∇j ∇i)φ = −Ti
l
j ∇l φ

(∇i ∇j −∇j ∇i)X
k = Rk

lij X
l − Ti

l
j ∇l X

j.

To avoid carrying along various non-illuminating terms involving components of the torsion
tensor we shall refer to such terms in an equation often in the form . . . + P (T ), where
the dots indicate the equation of interest and P (T ) is a generic symbol for a polynomial
in the components of the torsion tensor that satisfies P (0) = 0. The equation above will
then take the form

(∇i ∇j −∇j ∇i)X
k = Rk

lij X
l + P (T ).

The other zero quantities in the list (7.1) will be kept explicitly in an equation if needed
to indicate how the calculations goes, otherwise the equations will be written in the form
. . .+ P (Z), where the dots indicate the members of interest and P (Z) is a polynomial in
the components of the zero quantities (that may occasionally absorb a P (T )) with smooth
coefficients that satisfies P (0) = 0.

The regular system has been obtained from the original version of the conformal field
equations by using the gauge requirements Nj = 0 and ∇aNb = 0. It needs to be shown
that they are preserved by the reduced equations to establish that the original version
of the conformal field equations is satisfied. They are needed in particular to show that
the equations for ζab and ξ imply the equations U i∆0

aib = 0, U i∆a
0ib = 0. The zero

quantity Nj plays a particular role because its vanishing follows directly from the reduced
equations and the initial conditions.

If Nk = 0 on a hypersurface transverse to the flow lines of Uk (which will, for instance, be
the case if data are prescribed on {Ω = 0}), this relation is preserved along the flow lines
of U as a consequence of the reduced equations.

In fact, equations (4.13) and (4.14) imply

∇UNi = Uk U l Ckl Ui + Uk Cki + UkBk (fi + U lfl Ui)− Ui f
kNk,

which reduces with (7.5) to the linear homogeneous ODE

∇UNi = −Ui f
kNk, (7.7)

along the flow lines of U . From this the assertion follows. Since the solution to the reduced
equations is ruled by the flow lines it follows also that ∇iNj = 0 on the solution.

It can thus be assumed that Nj = 0, ∇aNb = 0 so that we have indeed U i∆0
aib = 0 and

the equivalent equation U i∆a
0ib = 0 as written in (7.5).

The subsequent discussion follows to some extent the derivation of subsidiary systems
in earlier work on the conformal field equations. It will be convenient to use for the
covariant derivative of a given tensor field Xij

k the notation

∇lXij
k = el(Xij

k) + (ΓX)lij
k,
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so that Xij
k → (ΓX)lij

k denotes a purely algebraic linear operator which does not involve
derivatives.

The connection defined by the Γi
j
k and the associated torsion and curvature tensor

satisfy the first Bianchi identity

∑

(jkl)

∇j Tk
i
l =

∑

(jkl)

(Ri
jkl + Tj

m
k Tl

i
m),

where
∑

(jkl) denotes the sum over the cyclic permutation of the indices jkl. Setting here

j = 0, observing that the symmetries of Ci
jkl = ΩW i

jkl and Lkl imply
∑

(jkl) R
i
jkl =

∑

(jkl) ∆
i
jkl and taking into account the reduced equations, we get from this the equation

∇0 Tk
i
l = −(ΓT )l0

i
k + (ΓT )k0

i
l + 3

∑

(0kl)

(∆i
0kl + T0

m
k Tl

i
m) = P (Z). (7.8)

To obtain an equation of the desired type for ∆i
jkl we show that the right hand side

of the identity

∇j∆
i
mkl +∇l∆

i
mjk +∇k∆

i
mlj =

1

2
ǫnjkl ǫ

npqr ∇p∆
i
mqr .

can be written as a linear expression in the zero quantities. We write (7.2) in the form

Ri
jkl = ∆i

jkl +ΩW i
jkl +Gi

jkl + Ei
jkl,

with

Gi
jkl = L gi [k gl]j , L = Li

i, Ei
jkl = 2 {gi [k L

∗
l]j + L∗i

[k gl]j}, L∗
lj = Llj −

1

4
L glj,

and use the second Bianchi identity

∑

(jkl)

∇j R
i
mkl = −

∑

(jkl)

Ri
mpj Tk

p
l, (7.9)

to obtain
ǫnjkl ∇j∆imkl = −ǫnjkl (∇jΩWimkl +Ω∇jWimkl

+∇jGimkl +∇jEimkl +Rimpj Tk
p
l) .

The well known facts that the left and right duals of Wijkl and Gijkl coincide respectively
while the left dual of Eijkl differs from its right dual by a sign then imply with the reduced
equations

ǫn
jkl ∇j∆imkl = ǫim

kl
(

∇jΩW j
nkl +Ω∇jW

j
nkl

+∇jG
j
nkl −∇jE

j
nkl

)

− ǫn
jkl Rimpj Tk

p
l

= ǫim
kl

(

∇jΩW j
nkl +Ω(Fnkl +Mnkl)

2∇[kL gl]n − 2∇[k Ll]n − 2∇j L
j
[k gl]n

)

− ǫn
jkl Rimpj Tk

p
l

29



= ǫim
kl

(

∇jΩW j
nkl +Ω(Fnkl +Mnkl)

−Hnkl − Σi W
i
nkl − ΩMnkl − 2Hj

j[k gl]n
)

− ǫn
jkl Rimpj Tk

p
l.

In the last step it has been used that Kj
jl = 0. This follows because the tensor W i

jkl

has vanishing contractions and because equations (4.13) and (5.25), which are satisfied as
members of the reduced system, imply that M j

jl = 0. Using again the reduced equations
we finally get

∇0∆
i
mkl = −(Γ∆)l

i
m0k + (Γ∆)k

i
m0l (7.10)

−
1

2
ǫn 0kl

{

ǫi m
kl (Bp W

p
nkl +ΩFnkl −Hnkl − 2Hp

pk gln)− ǫn
jkl Ri

mp0 Tk
p
l

}

= P (Z).

A direct calculation gives for the quantity

A = 6Ω s− 3ΣiΣ
i − λ−

1

4
Ω3 ρ, (7.11)

the relation

∇jA = 6ΩDj − 6ΣiCji + (6 s−
3

4
Ω2 ρ)Bj .

On the initial slice, where the zero quantities on the right hand side vanish by the con-
struction of the initial data, this relation reduces to ∇jA = 0. This implies that A = 0
on that slice if it holds at one point of it. In the case of ‘physical’ data (i. e. Ω = 1) the
condition A = 0 reduces to 0 = 4 Â = R̂− 4λ− ρ̂, which will be satisfied by the construc-
tion of the physical data. Using the freedom to prescribe Ω and its time derivative on the
initial slice the condition A = 0 can also be achieved in the transition to conformal data.
We recall that the relation A = 0 served to determine the value of Σj in our discussion of
the conformal data on {Ω = 0}. With the reduced equations the relation above implies
that

∇UA = 0.

We can thus assume that A = 0 on the solution manifold.

A straightforward but lengthy calculation shows that the fields

ZB
jk = ∇[j Bk], ZC

jkl = ∇[j Ck]l, ZD
jk = ∇[j Dk],

can be expressed as linear (homogeneous) functions of the zero quantities with smooth
coefficients. Taking into account the reduced equation U jBj = 0, U jCjl = 0, U jDj = 0
one gets

U j ∇jBk = 2U j ZB
jk + U j ∇k Bj = 2U j ZB

jk +∇k (U
jBj)− (∇kU

j)Bj = P (Z).

Similar calculations give

U j ∇jBk = P (Z), U j ∇jCkl = P (Z), U j ∇jDk = P (Z). (7.12)

The remaining subsidiary equations are obtained by analyzing the expressions

∇[l H
i
jk] ∇j Fjkl,
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from two different points of view. As a preparation we observe the algebraic relations

Mjkl = −Mjkl, M[jkl] = 0, M j
jl = 0. (7.13)

The first of them follow immediately from the definition while, as pointed out above,
the last one follows as a consequence of the reduced equations (4.13) and (5.25). These
relations imply

Fjkl = −Fjkl, F[jkl] = 0, F j
jl = 0, (7.14)

and also
Kj

jl = 0. (7.15)

Moreover, a straightforward though fairly lengthy calculation which makes repeatedly use
of the reduced equations, shows that

∇jMjkl = P (Z), (7.16)

and
∇lK

l
jk = ∇lΣiW

il
jk +Σi ∇lW

il
jk +∇lΩM l

jk +Ω∇lM
l
jk

= Cli W
il

jk +BlM
l
jk − ΣlF

l
jk +Ω∇lM

l
jk = P (Z).

From this follows the relation

∇[lH
l
jk] = ∆l

p[lj Lk]
p −∇[lK

l
jk] + P (T ) = P (Z). (7.17)

Similar calculations, which use that the left and right duals of the conformal Weyl tensor
coincide, gives

ǫqljk ∇lH
p
jk = ǫqljk (∇l∇jLk

p −∇l(Σn W
np

jk +ΩMp
jk))

= ǫqljk (∆p
nlj Lk

n +W p
nlj Ck

n −Bl M
p
jk) + ǫnpik Σn F

q
jk

+
1

2
ρΩ2 ǫqljk W p

njk U
n Ul − 2Σl M

(q
jk ǫ

p)ljk − Ω∇l M
p
jk ǫ

pljk.

From equations (7.13), (7.16) follows that

ǫpqmn ∇l M
p
jk ǫ

qljk = P (Z).

Solving the equation Nl = 0 for Σl and inserting this into the equation above, we thus
finally get

ǫqljk ∇lH
p
jk =

1

2
ρΩ2 ǫqljk W p

njk U
nUl

−2ΣlM
(q

jk ǫ
p)ljk − Ω∇l M

(p
jk ǫ

q)ljk + P (Z).

ǫqljk ∇lH
p
jk =

1

2
ρΩ2 ǫqljk W p

njk U
n Ul + 2 ∇UΩ Ul M

(q
jk ǫ

p)ljk

+Ω {2 (fl+ < U, f > Ul)M
(q

jk ǫ
p)ljk −∇l M

(p
jk ǫ

q)ljk}+ P (Z).
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A direct calculation shows now that

ǫ0ljk ∇lH
0
jk = P (Z), ǫaljk ∇lH

b
jk = P (Z), a, b = 1, 2, 3. (7.18)

After solving the 9 reduced equations for the components L0a, Lab, they resume their
original form if 1/6R is replaced again by Lj

j . To show that they imply for suitably given
initial data the full set Hjkl = 0, it needs to be shown that

Habc = 0, H0ab = 0, a 6= b.

In fact, the equation 0 = Hj
ja = −H00a + gcdHcad implies then that H00a = 0 and with

the identities

Hjkl = −Hjlk and ǫijkl Hjkl = 0, i.e. ǫabc Habc = 0 and H0ab+Hb0a+Hab0 = 0, a 6= b,

and the reduced equation Ha0b +Hb0a = 0 it follows then that

0 = H0ab = −Hb0a +Ha0b = 2Ha0b a 6= b,

which exhaust the remaining cases.

We derive now the equations for the zero quantities above. The reduced equation
Hj

ja = 0 implies that ∇kH
l
la = (ΓH)k

i
la = P (Z). Observing this in equations (7.17)

we an equation of the form

∇0H0ab − gcd∇cHdab = P (Z). (7.19)

On the other hand we have by (7.18)

∇0Hdab +∇bHd0a −∇aHd0b = 3∇[0H|d|ab] = P (Z)

and
∇dH0ab +∇bH0da +∇aH0bd = 3∇[dH|0|ab] = P (Z)

(where indices with a modulus sign are exempt from the anti-symmetrization). Observing
the relations Ha0b = −Hb0a and 2Hc0d = H0cd implied be the reduced equations, one gets
from this an equation of the form

2∇0Hdab −∇dH0ab = P (Z). (7.20)

Equations (7.19), (7.20) constitute a system of equations for the unknowns H0ab and Habc

which is, for given right hand sides, symmetric hyperbolic.

The properties (7.14) imply in particular the relation F a
0a = F i

0i = 0. The field Pij

and Qkl introduced in (5.27 and (5.28) are thus completely represented by

Pab = −F(a|0|b), Qab = −
1

2
F(a

cd ǫb)cd.

To discuss the remaining content of the field Fjkl we recall the definitions

Pa = F0a0, Qb = −
1

2
F0cd ǫb

cd,
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given in the discussion of the constraints. These fields exhaust the information in F0a0

and F0bc. Because Fa0b is trace free it remains to control its anti-symmetric part. The
relation F[jkl] = 0 gives

−Qc ǫ
c
ab =

1

2
F0de ǫc

de ǫc ab = F0ab = Fa0b − Fb0a,

whence

Fa0b = −Pab −
1

2
ǫabc Q

c.

Because Fabc ǫ
abc = 0, the field Facd ǫb

cd is trace free. Contracting its anti-symmetric part
suitably twice with epsilons and using that gives F j

jl = 0 gives

F[a
cd ǫb]cd = −Fd

dc ǫcab = −F00c ǫ
c
ab = Pc ǫ

c
ab,

and thus

Fabc =
1

2
Qad ǫbc

d − ha[b Pc].

Observing now the reduced equations Pab = 0 and Qab = 0, the remaining content of Fjkl

is then described by the formula

Fjkl = 3Uj P[k Ul] − gj[k Pl] +Qi (Uj ǫ
i
kl − ǫi j[k Ul]).

Inserting this into ∇j Fjkl and projecting suitably gives his

(∇U Pl)h
l
i +

1

2
ǫi

kj ∇k Qj = ∇j Fjkl U
k hl

i + P (Z),

(∇U Ql)h
l
i −

1

2
ǫi

kj ∇k Pj =
1

2
∇j Fjkl ǫi

kl + P (Z).

Working then out ∇j Fjkl explicitly and observing (7.16) one finally gets equations of the
form

Pa, 0 +
1

2
ǫa

bc Db Qc = P (Z), (7.21)

Qa, 0 −
1

2
ǫa

bc Db Pc = P (Z). (7.22)

For given right hand sides this is a symmetric hyperbolic system for the fields Pa and Qa.

We have seen above that solutions to the reduced equations for suitably arranged
initial data satisfy Nj = 0 and A = 0. Equations (7.8), (7.10), (7.12), (7.19), (7.20), (7.21),
(7.22) constitute a system of differential equations for those of the remaining components
of the zero quantities (7.1) which do not vanish already because of gauge conditions or the
reduced equation. The system is symmetric hyperbolic and has characteristics which are
time-like or null with respect to the metric gµν that is supplied by the reduced system.

It follows that a solution to the reduced system for data that satisfy the conformal con-
straints on the initial slice satisfies on the domain of dependence of the initial slice the
gauge conditions and the complete set of conformal Einstein-λ-dust equations.
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8 Existence and strong future stability

In this section the properties of the conformal field equations derived above and standard
results about quasi-linear symmetric hyperbolic systems will be used to draw conclusions
on the global structure of solutions to the Einstein-λ-dust equations. Since we are mainly
interested in C∞ solutions and not in the weakest possible smoothness assumptions on the
data we refrain from specifying Sobolev norms. We refer to [6] for details of the patching
arguments in the context of Cauchy stability and for some relevant PDE reference.

8.1 Existence of asymptotically simple solutions

To construct solutions to the Einstein-dust equations with positive cosmological constant
λ that admit a smooth conformal boundary in their infinite future we consider Cauchy
problems for the reduced field equations on R× S where data are prescribed on the sub-
manifold {0}×S. We identify the latter diffeomorphically with the manifold S underlying
a given asymptotic end data set as considered in section 6. The conformal time variable τ
in the reduced field equations will correspond to the factor R above and it will be assumed
that τ = 0 on S. The conformal gauge source function represented by the Ricci scalar R[g]
of the conformal metric g to be constructed will be required to vanish and it is assumed
that the condition R[g] = 0 is also underlying the construction of the given asymptotic
end data. A fixed gauge source function will in general only work well for some limited
time. For our purpose this will suffice, however, because it will be arranged that a finite
interval of the conformal time τ will cover an interval of physical time of infinite extent.

Since S is compact and may have complicated topology, we use the fact that the
hyperbolicity of the reduced equation allows us to obtain a solution on a neighborhood
of S ∼ {0} × S in R × S by patching together local solutions. Compactness implies that
S can be covered by a finite number of open subsets VA, A = 1, 2, . . . , k, of S which
carry smooth local coordinates xα, α = 1, 2, 3, and a smooth frame field ea, a = 1, 2, 3,
that satisfies hab ≡ h(ea, eb) = δab, where h denotes the 3-metric on S supplied by the
asymptotic end data. It can be assumed that their exist shrinkings V ′

A with compact
closure V ′

A in VA so that the V ′
A still define an open covering and the boundary of V ′

A in
VA is smooth. Standard results on symmetric hyperbolic systems then imply the existence
of smooth solutions to the reduced field equations on open neighbourhoods DA of V ′

A in
R×S which imply on V ′

A the data induced on V ′
A by the asymptotic end data on S in the

gauge chosen on VA. It can be assumed that the solution extends smoothly to the closure
of DA in R × S with det(eµ k) 6= 0 so that DA acquires a boundary which consists of (i)
smooth hypersurfaces H±

A in the future/past of DA which are null with respect to the
solution metric g and approach V ′

A \ V ′
A in their past/future, (ii) the intersection of DA

with hypersurfaces {τ = τ±} in R× S defined by some constants τ− < 0 < τ+ (which can
be chosen to be the same for all V ′

A), and (iii) the three 2-dimensional edges diffeomorphic
to V ′

A \ V ′
A where these hypersurfaces approach each other. It can be assumed that the

solution on DA is globally hyperbolic with respect to metric g. The subsidiary system
then implies that the full set of conformal Einstein-λ-dust equations is satisfied on DA.

If p ∈ V ′
A ∩V ′

B , there exists an open neighborhood Vp ⊂ V ′
A ∩V ′

B of p so that solutions
are given in the domain of dependence DA,p of Vp in DA as well as in the domain of
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dependence DB,p of Vp in DB. On Vp these two solutions can be related to each other
because the coordinate and frame transformations which relate the data induced on Vp

by the data on V ′
A and the data on V ′

B respectively are known explicitly. Because the
gauge inherent in the reduced equations is evolved by invariant propagation laws along the
invariantly defined flow lines of the flow field U , the coordinate and frame transformations
extend, independent of τ , and allow us to relate the solution on DA,p isometrically to the
solution on DB,p. By extending the argument it follows that the solution induced on the
domain of dependence of V ′

A ∩ V ′
B in DA can be identified isometrically with the solution

induced on the domain of dependence of V ′
A ∩ V ′

B in DB .
By patching together the local solutions, we obtain a smooth, globally hyperbolic so-

lution to the conformal Einstein-λ-dust equations on a subset of the form M = [τ∗, τ∗∗]×S
of R×S with constants τ∗ < 0 < τ∗∗ so that the conformal factor obtained on M satisfies
Ω > 0 on M̂ = [τ∗, 0[×S while Ω < 0 on M̌ =]0, τ∗∗]× S.

The hypersurfaces Sσ = {τ = σ = const.} with τ∗ ≤ σ ≤ τ∗∗ can be required to be
space-like. In fact, with the co-normal to {τ = const.} given by nµ = −a τ,µ the future
directed normal is given by

nµ =
−a gµ0

√

|a2 g00|
= −

ηjk eµ j e
0
k

√

|ηjk e0 j e0 k|
=

δµ 0 − ηab eµ a e0 b
√

1− ηab e0 a e0 b

,

and the condition nµ n
µ = −1 implies the expression

a =
1

√

1− ηab e0 a e0 b

. (8.1)

Moreover,

nµ = a (δµ 0 − ηab eµ a e
0
b) =

1

a
(Uµ − uα δµ α) with uα = a2 ηab eα a e

0
b. (8.2)

We thus require that
e0 a e

0
b η

ab ≤ const. < 1 on M, (8.3)

which can be achieved with suitable choices of τ∗ and τ∗∗ because e0 a = 0 on S0. The
hypersurfaces Sσ will then be Cauchy hypersurfaces for (M, gµν). To simplify things, so
that we only need to consider the regularized reduced equations involving the unknowns
ζab and ξ, it will also be assumed that Ω,τ < 0 on M , which makes sense because Ω,τ = −ν
on S0.

The metric gµν , the conformal factor Ω, the flow field U and the density function ρ
are then such that the ‘physical’ fields

ĝµν = Ω−2 gµν , Ûµ = Ω−1 Uµ, ρ̂ = Ω3 ρ (8.4)

define a solution to the Einstein-λ-dust equations on the manifold M̂ with ρ̂ ≥ 0 on M̂ .
Extending smoothly to Sτ∗ , this solution admits an extension into the past of Sτ∗ but
we are not interested here in controlling something like a maximal globally hyperbolic
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solution. What is important for us is that the set J + ≡ S0 = {Ω = 0} defines for the
solution (M̂, ĝµν) a smooth conformal boundary at future time-like infinity.

Equations (3.14) to (3.22) are invariant under the transformation which implies the
map

Ω → −Ω, ∇kΩ → −∇kΩ, s → −s, W i
jkl → −W i

jkl, ρ → −ρ, ∇kρ → −∇kρ,

but leaves the fields eµ k, Γi
j
k, Ljk, and Uk unchanged. It follows that after performing

this transition on M and restricting to M̌ gives us another solution to the Einstein-λ-dust
equations on the manifold M̌ . It follows, however, that then ρ̂ ≤ 0 on M̌ . For this solution
the set {Ω = 0} defines a smooth conformal boundary in the infinite past. In this article
we shall not be interested in this solution any further.

Two facts have been used above to obtain solutions whose conformal structures extend
smoothly across future time-like infinity so as to define there smooth conformal bound-
aries: (i) The Einstein-λ-dust equations admit conformal representations which imply with
suitable gauge conditions systems of evolution equations that are hyperbolic irrespective
of the sign of the conformal factor Ω, (ii) some requirements needed to ensure the existence
of smooth conformal extensions are put in by hand by starting from asymptotic end data.

The case of the Nariai solution, an explicit, geodesically complete solution to the
Einstein-λ-dust equations with ρ̂ = 0, shows that that the property (i) is by itself not
sufficient to ensure the existence of a smooth conformal boundary (see [11]). This raises
the question whether the use of asymptotic end data may result in the construction of a
very restricted class of solutions.

The following argument, introduced in the vacuum case in [5] and used in the presence
of conformally invariant matter fields in [6], shows that the existence of smooth asymptotic
conformal structures is in fact a fairly general feature of solutions to the Einstein-λ-dust
equations. The smooth extensibility of the conformal structure across future time-like
infinity will be derived as a consequence of the property (i) of the Einstein-λ-dust equations
and the existence of a given reference solution that admits a smooth asymptotic structure.

8.2 Strong future stability of the solutions

Let
∆ = (eµ k, Γi

j
k, ζab, ξ, fk, Ω, ∇iΩ, s, Ljk, W i

jkl, Uk, ρ), (8.5)

be one of the solutions constructed above. The associated physical fields ĝµν = Ω−2 gµν ,

Ûµ = ΩUµ, ρ̂ = Ω3 ρ then induce on the Cauchy hypersurface S′ ≡ Sτ∗ with local

coordinates xα, α = 1, 2, 3, standard Cauchy data δ̂ = (ĥαβ , κ̂αβ , û
α, ρ̂), i.e. a solution to

the constraints (2.9) and (2.10), where ûα denotes the orthogonal projection of Ûµ onto
S′.

As a first step towards showing that the asymptotic simplicity of the solution above is
preserved under sufficiently small perturbations of the data δ̂, any given standard Cauchy
data set on S′ needs to be transformed into a suitable Cauchy data set for the conformal
field equations. This involves several transformations and a suitable handling of the gauge
freedom which will be discussed now by showing how the restriction of ∆ to S′ is obtained
from δ̂.
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Conformal data δ = (hαβ , καβ , u
α, ρ) on S′ are obtained from the standard data δ̂

by using the functions Ω > 0 and ∇UΩ < 0 on S′ to define

hαβ = Ω2 ĥαβ , uα = Ω−1 ûα, ρ = Ω−3 ρ̂,

and, using the transformation law of second fundamental forms under conformal rescalings,

καβ = Ω(κ̂αβ + ĥαβ ∇nΩ).

Here n denotes the future directed unit normal to S′ with respect to g, which is related to
the flow vector field U and its projection u onto S′ (that represents the shift vector field
on S′, see the ADM representation of g below) by the relation

n =
1

a
(U − u) with a =

√

1 + hαβ uα uβ,

where the expression for the positive lapse function a is obtained from

−1 = g(U,U) = a2 g(n, n) + g(u, u) = −a2 + hαβ u
α uβ.

It follows that

∇nΩ =
1

a
(∇UΩ− Ω,α uα),

can be calculated from the data given above.

When starting from arbitrarily given standard Cauchy data δ̂ the functions Ω > 0
and ∇UΩ < 0 are not given but represent part of the conformal gauge freedom. Suitable
choices will be discussed later.

As a second step it will be convenient to derive all the unknowns entering the conformal
field equations in a g-orthonormal frame ck on S′ which is adapted to S′ in the sense that
c0 = n. This frame, which is not needed in the final process, is introduced because it
simplifies various discussions. In a third step all the data will be expressed on S′ in terms
of the g-orthonormal frame ek satisfying e0 = U .

To remove the gauge freedom in the transition ck → ek, we prescribe a specific field
of Lorentz transformations Ki

j on S′ which map the g-orthonormal frame field ek with
e0 = U onto a smooth g-orthonormal frame cj = Ki

j ei field with c0 = n by setting

Ki
j =

(

K0
0, K0

b

Ka
0, Ka

b

)

=

(

−g(c0, e0) , g(c0, eb)
ηad g(c0, ed), δa b +

1
1−g(c0,e0)

ηad g(c0, ed) g(c0, eb)

)

.

(8.6)
In terms of the frame coefficients eµ k given by the solution ∆ this reads

Ki
j =

(

a , −a e0 b

−a ηac e0 c , δa b +
a2

1+a
ηac e0 c e

0
b

)

.

It follows that indeed

Ki
0 ei = K0

0 e0 +Ka
0 ea = −g(c0, e0) e0 + ηad g(c0, ed) ea = g(c0, ei) η

ij ej = c0.
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In the following considerations (8.1) and (8.2) will be useful. A direct calculation verifies
that ηij K

i
k K

j
l = ηkl.

The coefficients of the frame ck are given in the coordinates xµ by

cµ k =

(

c0 0 , 0
cα 0 , cα b

)

=

(

1
a

, 0
− 1

a
uα , eα b +

1
1+a

uα e0 b

)

,

and the coefficients of the 1-forms µk that satisfy cµ k µ
k
ν = δµ ν are so that

µk
ν =

(

µ0
0 , 0

µa
0 , µa

β

)

,

with

µ0
0 = a, uα = (eα b +

1

1 + a
uα e0 b)µ

b
0,

cα b µ
b
β = (eα b +

1

1 + a
uα e0 b)µ

b
β = δα β ,

whence

µa
α (eα b +

1

1 + a
uα e0 b) = δa b, µa

α uα = µa
0.

The comparison of

g = ηjk µ
j µk = −a2 dτ2 + ηab µ

a
α µb

β(u
α dτ + dxα) (uβ dτ + dxβ),

with the ADM representation

g = −(a dτ)2 + hαβ (u
α dτ + dxα) (uβ dτ + dxβ)

gives then

hαβ = ηab µ
a
α µb

β , a =
√

1 + uα uβ hαβ .

With the frame cj defined above we set

M i
j =

(

−g(e0, c0) , g(e0, cb)
ηad g(e0, cd), δa b +

1
1−g(e0,c0)

ηad g(e0, cd) g(e0, cb)

)

. (8.7)

In terms of the frame coefficients cµk this can be written

M i
j =

(

M0
0, M0

b

Ma
0, Ma

b

)

=

(

a , uα cα b

ηac uα cα c , δa b +
1

1+a
ηac uα cα c uβ c

β
b

)

=

(

a , a e0 b

a ηac e0 c , δa b +
a2

1+a
ηac e0 c e

0
b

)

.

A direct calculation shows that M i
j K

j
k = δi k and ek = M j

k cj .

Because the fields ca, a = 1, 2, 3 are tangential to S′ we can set

h′
ab = hαβ c

α
a c

β
b = ηab, κ′

ab = καβ c
α

a c
β

b
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where here and in the following a prime is used to indicate when a tensor field is given in
terms of the frame ck. Directional derivatives with respect to ck will also indicated by a
prime, so that ∇′

k = ∇ck etc.

When the data for the conformal field equations are to be constructed by starting
from standard Cauchy data, the frame ek is not available. Instead, the frame ck has to
be chosen first and ek will then be obtained by applying M i

k. The field c0 is uniquely
determined as the future directed unit normal to S′ but the frame ca tangent to S′ is only
determined up to rotations. In the stability argument given below this freedom will have
to be removed in a specific way.

Connection coefficients with respect to the frame ck satisfying the relation ∇cick =
γi

j
k cj with respect to the Levi-Civita connection ∇ given by g can only be defined if the

frame is defined near S′. It will be convenient to extend the frame by the requirement
∇c0ck = 0 and to define coordinates υ = x0′ and xα′

near S′ so that xµ′

= xµ on S′

and < c0, dυ >= 1 and < c0, x
α′

>= 0. The coordinates xµ′

are then Gauss coordinates
based on S′ and the coefficients cµ

′

k satisfy cµ
′

0 = δµ
′

0 and c0
′

a = 0 so that c0 = ∂υ .
The coordinates xµ and xµ′

satisfy

∂x0

∂x0′
=< n, dτ >=

1

a
< U − u, dτ >=

1

a
,

∂x0

∂xα′
= 0,

∂xα

∂x0′
=

1

a
< U − u, dxα >= −

1

a
uα,

∂xα

∂xα′
= δα α′ on S′,

so that the relation eµ
′

k = M j
k c

µ′

j can be used to determine on S′

eµ k =
∂xµ

∂xµ′
cµ

′

l M
l
k.

The connection coefficients with respect to ck can now be defined. They satisfy

γ0
j
k = 0, γa

0
b = κ′

ab = κ′
ba, γa

c
0 = κ′

ab h
′bc, γa

d
b cd = Dcacb on S′,

where D denotes the Levi-Civita connection of the metric h on S′.
The connection coefficients in the frame ck are related to the connection coefficients

in the frame ek by

Γi
j
k = Kj

n

(

Mn
k, µ′ eµ

′

i + γl
n

p M
l
iM

p
k

)

= Kj
n

(

Mn
k, 0′ e

0′
i +Mn

k, α′ eα
′

i + γl
n

p M
l
iM

p
k

)

.

Apart from Mn
k, 0′ , which can only be determined by taking into account the evolution

equations for the frame ek, all the other terms in the expression above can be calculated
from the data available so far. The relation eµ

′

k = M j
k c

µ′

j implies

eµ
′

k, 0′ = M j
k, 0′ c

µ′

j +M j
k c

µ′

j, 0′ .

The first structural equation with respect to the frame ck gives

cµ
′

j, 0′ = δµ
′

α′ δa j c
α′

a, 0′ = −δµ
′

α′ δa j γa
b
0 c

α′

b = −δµ
′

α′ δa j κ
′
ac h

′bc cα
′

b on S′.
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The field e0 = U = U ′k ck, given on S′ by U = a c0 + u′a ca with u′a = µa
α′ uα′

, must
thus satisfy by (4.13)

0 = U ′k
, µ′ cµ

′

l U
′l + U ′l U ′j γl

k
j+ < U, f > U ′k + f ′k

= aU ′k
, 0′ + U ′k

, α′ uα′

+ U ′l U ′j γl
k
j+ < U, f > U ′k + f ′k on S′.

The fields ea = e′k a ck must satisfy FUea = 0, which implies with (4.13)

0 = a e′k c, 0′ + e′k c, α′uα′

+ U ′i e′j cγi
k
j + f ′

l e
′l
c U

′k − U ′
l e

′l
c f

′k on S′.

These relations determine cµ
′

j, 0′ , e
µ′

k, 0′ whence M j
k, 0′ and Γi

j
k uniquely from the

given data on S′ once f ′
k is given there.

Our gauge requires that the tensorial field

N ′
k = ∇′

kΩ+ (∇UΩ+ Ω < U, f >)U ′
k +Ω f ′

k,

vanishes on S′. The condition that its orthogonal projection N ′
a into S′ vanishes gives

f ′
a = −

1

Ω
{∇′

aΩ+ (∇UΩ + Ω < U, f >)u′
a} on S′.

If this is satisfied it follows with Uk = U ′
i M i

k, Nk = N ′
i M i

k

0 = Uk Nk = U ′k N ′
k = a n′k N ′

k,

and thus together N ′
k = 0. The relation

f ′
0 = n′k f ′

k =
1

a
(< U, f > −u′a f ′

a),

shows that f ′
k is determined from the data given on S′ only up to f0 =< U, f >. This is

consistent with the fact remarked on earlier that the quantity f0 is pure gauge and can be
chosen arbitrarily. With a suitable choice of f0 (made in a specific way later) we can the
set fk = f ′

j M j
k.

The Einstein equations and the conformal rescaling of the density imply R[ĝ] = 4λ+
Ω3ρ. With this the conformal transformation law of the Ricci scalar gives

∇µ∇
µΩ +

1

6
R[g] Ω =

2

Ω
∇µΩ∇µΩ+

1

6Ω
R[ĝ] =

2

Ω
∇µΩ∇µΩ +

1

6Ω
(4λ+Ω3ρ).

With the gauge condition R]g| = 0 we thus set

4 s = ∇′
k∇

′kΩ =
2

Ω
∇′

iΩ∇′iΩ+
1

6Ω
(4λ+Ω3ρ).

The second equation determines ∂2
υ Ω = c0(c0 Ω) in terms of known data because

∇′
k∇

′kΩ = −∇′
0∇

′
0Ω + ηab ∇′

a∇
′
bΩ = −c0(c0 Ω) + ηab(D′

aD
′
bΩ− κ′

ab ∇nΩ) on S′.
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Thus s and ∇′
j∇

′
kΩ are determined on S′ from known data and the scalar equation (3.16)

is satisfied there. Given s and χab = Γa
0
b, the fields ζab and ξ are then defined on S′ by

(5.11).

The conformal transformation law of the Schouten tensor, the field equations, and the
conformal rescalings of the flow vector field and the density give

Lµν = L̂µν −
1

Ω
∇µ ∇νΩ+

1

2Ω2
∇ρΩ∇ρΩ gµν

=
1

6
λΩ−2 gµν +Ω ρ

(

1

2
Uµ Uν +

1

6
gµν

)

−
1

Ω
∇µ ∇νΩ+

1

2Ω2
∇ρΩ∇ρΩ gµν ,

and we set

L′
ij =

1

6
λΩ−2 g′ij +Ω ρ

(

1

2
U ′
i U

′
j +

1

6
g′ij

)

−
1

Ω
∇′

i∇
′
jΩ +

1

2Ω2
∇′

lΩ∇′lΩ g′ij on S′ .

By the way ∇′
0∇

′
0Ω has been determined above it follows that g′ik L′

ik = 1
6 R[g] = 0.

The appropriate data on S′ for the reduced field equations are then given by Ljk =
L′
il M

i
j M

l
k.

To determine the rescaled conformal Wey tensor we observe that the Gauss and the
Codazzi equation with respect to S′ read in terms of the frame ck

R′
abcd[g] = R′

abcd[h] + κ′
ac κ

′
bd − κ′

ad κ
′
bc,

n′kR′
kabc[g] = D′

cκ
′
ba −D′

c κ
′
da,

where the fields on the right hand sides can be determined from the data available so far.
With L′

jk as given above, the general relation

R′
ijkl [g] = 2 {g′i[k L

′
l]j + L′

i[k g
′
l]j}+ C′

ijkl ,

then allows us to calculate the components C′
abcd[g] and n′kC′

kabc[g] of the conformal Weyl
tensor. The conformal Weyl tensor admits the decomposition

C′
ijkl = 2

(

k′i[k e
′
l]j − k′j[k e

′
l]i + n′

[k m
′
l]m ǫ′m ij + n′

[im
′
j]m ǫ′m kl

)

.

where h′
jk = g′jk + n′

j n
′
k and k′jk = g′jk + 2n′

j n
′
k and e′ik = h′

i
m h′

k
n C′

mjnl n
′j n′l and

m′
ik = h′

i
m h′

k
n C′∗

mjnl n
j nl with C′∗

ijkl =
1
2 C

′
ijmn ǫ′mn

kl denote the electric and magnetic
part of the conformal Weyl tensor with respect to n in the frame ck respectively. It holds
e′ij = e′ji, e

′
ij n

′j = 0, e′i
i = 0 and similar relations hold for m′

ij .
It follows that

C′
abcd = 2 (h′

a[c e
′
d]b + e′a[c h

′
d]b) whence e′bd = h′acC′

abcd,

and

n′kC′
kbcd = 2 (n′

[im
′
j]m ǫ′m kl) whence m′

ab = −
1

2
n′k C′

kbcd ǫ
′
b
cd.
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The tensors C′
ijkl and W ′

ijkl = Ω−1 C′
ijkl whence Wijkl = W ′

mnpq M
m

iM
n

j M
p
k M

q
l can

thus be determined from the given data and thus also U -electric and -magnetic parts wij

and w∗
kl of Wijkl which enter the reduced conformal field equations.

The conformal field equations and their unknowns are derived from the Einstein equa-
tions by conformal rescalings, the use of various differential identities, and the use of the
frame formalism. This leaves a coordinate, frame, and conformal gauge freedom which
is controlled by suitable initial data and propagation laws for the coordinates, the frame
field, and the conformal factor (controlled here implicitly by the requirement R[g] = 0).
Following this procedure it follows from the discussion above how to derive from a given
smooth solution δ̂ = (ĥαβ , κ̂αβ , û

α, ρ̂) to the constraints (2.9) and (2.10) and given smooth
gauge dependent fields

Ω > 0, ∇UΩ < 0, f0 =< U, f >, and a smooth h-orthonormal field ca on S′, (8.8)

the unknowns ∆′
S′ on S′ of the conformal field equations in the frame ck and also the

unknowns

∆S′ = (eµ k, Γi
j
k, ζab, ξ, fk, Ω, ∇jΩ, s, Ljk, W i

jkl, Uk, ρ), (8.9)

in the frame ek on S′.
Written in terms of the frame ck and the frame coefficients cµ

′

k as defined above, the
conformal field equations allow us to derive from the data ∆′

S′ a formal expansion type
solution in terms of the coordinate υ so that the complete set of conformal field equations
is satisfied at all orders. The constraints are satisfied because of differential identities and
the fact that the data δ̂ satisfy the ‘physical’ constraints.

A similar formal expansion is obtained in terms of the coordinate τ if the equations
and the data are expressed in terms of the frame ek. In this case the expansion coefficients
are seen, however, to be the coefficients of a Taylor expansion of an actual smooth solution
to the conformal field equations because the equations comprise the hyperbolic system of
reduced conformal field equations.

The life time of the solution in the given gauge depends, of course, on the data (8.9)
and in particular on the choice of the free fields in (8.8). Suppose

∆⋆(τ) = (e⋆µ
k, Γ⋆

i
j
k, ζ⋆ab, ξ⋆, f⋆

k , Ω⋆, ∇jΩ
⋆, s⋆, L⋆

jk, W ⋆i
jkl, U⋆k, ρ⋆), (8.10)

is one of the solutions to the conformal field equations considered in the previous sub-
section. It exists and is smooth for τ∗ ≤ τ ≤ τ∗∗ with Ω⋆ → 0 as τ → 0 so that S0

represents the conformal boundary at future time-like infinity for the physical solution
associated with ∆⋆(τ). Denote by ∆⋆

S′ = ∆⋆(τ∗) the data for the reduced equations on

S′ and by δ̂⋆ = (ĥ⋆
αβ , κ̂

⋆
αβ , û

⋆α, ρ̂⋆) the physical data induced by this solution on S′. Let

δ̂ = (S′, ĥαβ , κ̂αβ , û
α, ρ̂) denote a smooth solution to the constraints (2.9) and (2.10),

∆S′ the corresponding initial data on S′ for the reduced conformal field equations as con-
sidered in (8.8), and ∆(τ), where τ ∈ [τ∗, τ∗ + τ∗[ with some τ∗ > 0, the solution to the
conformal field equations determined by these data.

To compare the life times of the solutions ∆⋆(τ) and ∆(τ) the corresponding gauge
conditions must be comparable. It will be assumed that the data ∆S′ have been con-
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structed such that

Ω = Ω⋆, ∇UΩ = ∇UΩ
⋆, f0 = f⋆

0 on S′.

Let h⋆
αβ = Ω⋆2 ĥ⋆

αβ , and hαβ = Ω2 ĥαβ = Ω⋆2 ĥαβ denote the metric induced on S′ by
the solution ∆⋆(τ) and ∆(τ) respectively. As discussed above, the frame e⋆k given by the
data ∆⋆

S′ can be used to define a field of Lorentz transformation K⋆j
l on S′ so that the

relation c⋆k = K⋆j
k e

⋆
j defines a frame field on S′ for which c⋆0 is normal to S′. The fields

c⋆a, a = 1, 2, 3, then define an h⋆-orthonormal frame field on S′. It will be assumed in the
following that the h-orthonormal field ca has been chosen so that ca = c⋆c α

c
a with a 3× 3

matrix αc
a that satisfies α1

1 > 0, α2
2 > 0, α3

3 > 0, and αc
a = 0 if a < c. The frame ca

so defined is smooth and fixed uniquely so that αc
a → δa c precisely if ca → c⋆a.

The point of these choices is that the space-time conditions R[g⋆] = 0 and R[g] = 0

combine with these gauge conditions on S′ to ensure that ||δ̂ − δ̂⋆|| → 0 if and only if
|||∆S′ − ∆⋆

S′ ||| → 0, where the norms are meant to indicate Sobolev norms on S′ which
are chosen corresponding to the differentiability order of the fields involved.

We can invoke now the Cauchy stability property which holds for hyperbolic equations
to conclude that for data δ̂ sufficiently close to δ̂⋆ or, equivalently, for data ∆S′ sufficiently
close to ∆⋆

S′ the solution ∆(τ) of the conformal field equations that develops from the
data ∆S′ also exists in the interval τ∗ ≤ τ ≤ τ∗∗ and the conformal factor Ω supplied by
∆(τ) is negative on Sτ∗∗ [15]. This conclusion may require repeated patchings (see [6]).

There exists then a map S ∋ q → τ(q) ∈]τ∗, τ∗∗[ so that Ω(τ(q), q) = 0 for q ∈ S
and Ω(τ, q) > 0 if τ∗ ≤ τ < τ(q). Equation (3.16) then implies that on the subset
J+ = {(τ(q), q), q ∈ S} of R × S the gradient ∇iΩ is time-like for the metric g supplied
by ∆(τ). It follows that J + defines a smooth space-like hypersurface which represents a
conformal boundary in the infinite future of the set M̂ = {(τ, q) ∈ R× S | τ∗ ≤ τ < τ(q)}
on which the fields ĝµν = Ω−2 gµν , Ûµ = Ω−1 Uµ, ρ̂′ = Ω3 ρ define a smooth solution to
the Einstein-λ-dust equations. The smooth asymptotic end data induced by its conformal
extension ∆(τ) on J + ∼ S belongs then to the class of conformal end data considered in
section 6. Combining the results of the last two subsection we obtain Theorem 1.1.
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