
Journal of Alzheimer’s Disease 47 (2015) 939–954
DOI 10.3233/JAD-150334
IOS Press

939

Applying Automated MR-Based Diagnostic
Methods to the Memory Clinic:
A Prospective Study
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Abstract. Several studies have demonstrated that fully automated pattern recognition methods applied to structural magnetic
resonance imaging (MRI) aid in the diagnosis of dementia, but these conclusions are based on highly preselected samples that
significantly differ from that seen in a dementia clinic. At a single dementia clinic, we evaluated the ability of a linear support
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vector machine trained with completely unrelated data to differentiate between Alzheimer’s disease (AD), frontotemporal
dementia (FTD), Lewy body dementia, and healthy aging based on 3D-T1 weighted MRI data sets. Furthermore, we predicted
progression to AD in subjects with mild cognitive impairment (MCI) at baseline and automatically quantified white matter
hyperintensities from FLAIR-images. Separating additionally recruited healthy elderly from those with dementia was accurate
with an area under the curve (AUC) of 0.97 (according to Fig. 4). Multi-class separation of patients with either AD or FTD from
other included groups was good on the training set (AUC > 0.9) but substantially less accurate (AUC = 0.76 for AD, AUC = 0.78
for FTD) on 134 cases from the local clinic. Longitudinal data from 28 cases with MCI at baseline and appropriate follow-up
data were available. The computer tool discriminated progressive from stable MCI with AUC = 0.73, compared to AUC = 0.80
for the training set. A relatively low accuracy by clinicians (AUC = 0.81) illustrates the difficulties of predicting conversion in
this heterogeneous cohort. This first application of a MRI-based pattern recognition method to a routine sample demonstrates
feasibility, but also illustrates that automated multi-class differential diagnoses have to be the focus of future methodological
developments and application studies.

Keywords: Dementia diagnostics, machine learning, magnetic resonance imaging, prognosis, support vector machine

INTRODUCTION

An accurate diagnosis of different types of dementia
or the prediction of conversion to dementia from a state
of mild cognitive impairment (MCI) is important in
order to recruit homogeneous populations for diagnos-
tic and treatment studies, clinical trials, and eventually
also in the clinical routine. Accurate clinical diag-
nosis based on medical history, clinical assessment,
neuropsychological tests, and laboratory assessment
as originally recommended by the National Insti-
tute of Neurological and Communicative Disorders
and Stroke/Alzheimer’s Disease and Related Disor-
ders Association (NINCDS-ADRDA; [1]) and recently
further developed [2] is the gold standard for clinical
management. Cognitive testing and clinical examina-
tion necessary for differential diagnosing of dementia
is, however, labor intensive. As part of the routine
workup, imaging initially served to exclude secondary
causes such as tumor, abscess, or hydrocephalus [56],
but several studies demonstrated information gain
from structural magnetic resonance imaging (MRI),
positron emission tomography (PET), or computerized
tomography scans in the context of dementia diagnos-
tics either in combination with a neuropsychological
assessment or in isolation [3–6]. So far, diagnostic use
of imaging depends heavily on the quality and expe-
rience of the radiologist [7], which may be limited
outside specialized centers where the majority of cases
is diagnosed [8].

Compared to visual assessment, automated diag-
nostic methods based on MRI are more reproducible
and have demonstrated a high accuracy in detecting a
range of pathological conditions [9]. Automated MRI

based volumetry separates Alzheimer’s disease (AD)
or MCI from healthy aging [10–14], but also, clinically
more challenging, separates between different types of
dementia [11, 15], or between those with MCI who
convert to dementia or remain stable [16–21]. Some
studies on structural imaging already considered more
than two diagnostic options or used probabilistic rather
than categorical diagnostic labels [20, 22–24]. These
supervised machine-learning approaches run on a stan-
dard PC and rely on a set of labelled training data—for
example structural MRI and reliably established diag-
nostic label for each subject—to diagnose new cases
in the absence of expert radiologists.

Although reported performance is encouraging,
drawing conclusions on the usefulness of these auto-
mated methods in routine application is difficult
for several reasons: i) previous studies such as the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
[25] recruited a sample representative of the popula-
tion for clinical trials rather than clinical routine [26].
They excluded patients with comorbidities associated
with structural brain changes (e.g., stroke, Parkinson’s
disease, atrophy caused by alcohol abuse) or cognitive
impairment unrelated to dementia (e.g., depression);
ii) MRI scans with lower data quality were often
excluded. While clinicians can read through some
image artifacts [27], the effect on automated meth-
ods is largely unexplored; iii) With few exceptions [11,
28], studies have either reported cross-validation accu-
racy or have taken test and training data from the same
source. For maximum usefulness, classification meth-
ods need to perform well even when training cases
differ in characteristics such as co-morbidity, age, or
scan-parameters from the clinical set to which the
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scanner is applied; iv) Finally, studies on automated
diagnosing have not considered the presence of mul-
tiple pathologies in the same individual despite their
high frequency. White matter hyperintensities (WMH)
most often related to vascular pathology, co-occur in
a range of neurodegenerative dementias [29]. WMH
extent and location affect clinical phenotype [30], but
the occurrence of multiple neurodegenerative patholo-
gies is also frequently observed [31, 32].

To overcome these limitations and assess a realis-
tic clinical scenario, we implemented a prospective
study in a single memory clinic with liberal inclu-
sion criteria. We applied automatic tools to determine
to what extent gold standard clinical diagnosis could
be reflected by automated MRI based classification.
High level multidisciplinary diagnosis is available in
expert centers, such as a dedicated memory clinic,
but not part of routine care. Therefore, an automated
method that can serve to assign patients to clinical
categories with similar accuracy than clinical gold
standard diagnosis would be a major step forward in
clinical care of dementia. To this end, we extracted
volumetric information from 3D-T1 weighted data
sets to separate different neurodegenerative conditions.
WMH were quantified on Fluid Attenuated Inver-
sion Recovery (FLAIR) images [33–36]. In addition
to computing receiver-operator characteristics (ROC)
curves, we examined positive (PPV) and negative pre-
dictive values (NPV) and therewith the ability to reach
a diagnostic decision with high reliability in a sub-
stantial fraction of patients or the ability to rule out
some possible diagnoses in a reliable manner to reduce
the further diagnostic process compared to the current
work up. We separately recruited a small number of
healthy controls (HC) to evaluate the performance of
the classifier more completely.

MATERIAL AND METHODS

All referrals to the Freiburg dementia clinic with
reported progressive decline of cognitive functioning
and age above 40 were screened between June 2011
and June 2014 (total 1,303 cases). Inclusion criteria
were kept liberal for a good representation of the typ-
ical population of a memory clinic. Therefore, the
presence of disorders affecting brain structure (e.g.,
stroke, past alcohol-abuse, depression, and trauma)
did not lead to exclusion unless deemed the exclusive
cause for present cognitive symptoms. Routine clini-
cal workup did not change for the study and included
clinical evaluation (neurological examination, medical

history, etc.) with input from relatives when available,
a neuropsychological assessment and structural imag-
ing, sometimes complemented by laboratory tests,
such as blood tests. PET, single photon emission com-
puted tomography imaging, and cerebrospinal fluid
(CSF) analyses were arranged as part of the rou-
tine when diagnostic confidence remained low after
assessing medical history, clinical examination, neu-
ropsychological testing, and MRI. Keeping the routine
workup unchanged also meant that subjects without
cognitive impairment or referrals with a previous CT
or MRT examination did not enter the study as no
additional MRI was required. Cognitive performance
was assessed using the CERAD battery [37], some-
times extended by trail-making tests A and B [38] as
well as tests of aphasia. The clinical dementia rating
scale (CDR) was used to evaluate severity of impair-
ment [39]. All MCI patients had a CDR score of
0.5 and no impairment in activities of daily living
(ADL). For patients with dementia, we focused on
mild to moderate dementia stages including those with
impairment in ADL and a CDR of ≥0.5 and ≤2 as sep-
arating different types of dementia becomes difficult
in late stages. 18 HC were recruited through adver-
tisements and received the same clinical assessment
and imaging protocol. Normal cognitive performance
was confirmed using the sensitive Montreal Cognitive
Assessment (MOCA) [40]. Informed written consent
was obtained from all participants and the study was
approved by local ethics committee and internationally
registered (ID: DRKS00003199).

Gold standard diagnosis

Gold standard for differential diagnosis of demen-
tia, in case of dementia at baseline, was established
based on the baseline assessment in a panel decision
and according to established diagnostic criteria includ-
ing a standard visual evaluation of MRI images and all
other available data [2, 41, 42].

For subjects fulfilling criteria for MCI at baseline
[43], follow-up clinical assessment was considered
the diagnostic gold standard: Prediction of conversion
from MCI to dementia based on data from baseline was
expected to be easier the earlier after baseline the con-
version happened, i.e., the closer to onset the patient
was at baseline. On the other hand, the reliability of a
diagnosis of a subject with stable MCI based on data
from the baseline was assumed to increase with the
follow-up interval. To make use of the available follow-
up data, we defined a minimal follow-up period of 12
months but used longer follow-up data for the grouping
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when available: MCI to dementia converters fulfilled
criteria of dementia within two years of the baseline
visit. Subjects that converted later than twelve months
were excluded. Subjects classified as stable MCI had
to remain stable over their full observation period of
at least 12 months. Consequently, subjects that were
observed over a period of less than twelve months and
remained stable during this period were excluded.

Questionnaire (pre- and post clinical scoring)

To obtain further insights in the diagnosis process
and the potential added value of MRI and thereof
derived automated method, the clinicians were asked
to complete a questionnaire for each participant. When
dementia was determined clinically at baseline, the
specific type had to be indicated. For those with
MCI at baseline, clinicians had to indicate if they

expected conversion to dementia within 12 months.
A three-point scale allowed clinicians to rate their
diagnostic confidence (i.e., low: <70%, intermedi-
ate: 70–90%, high: >90%). Such a coarse discrete
rating was preferred over a continuous rating of
certainties as a continuous scale would be pseudo-
accurate and because a categorization is clinically
useful. To compare the automated method to clini-
cians in their accuracy of prediction of conversion,
we used a six-point scale predicting 12-months con-
version with confidence levels ranging from <10%
(stability expected with high confidence), 10–30%,
30–50%, 50–70%, 70–90%, up to >90% (conversion
expected with high confidence). Clinicians completed
the questionnaire twice, first after clinical interview
and neuropsychological testing (i.e., pre-MRI clinical
scoring), and second after they had access to the MRI
scan and the report from an expert neuroradiologist
(i.e., post-MRI clinical scoring).

Table 1
Included subjects in training or test set. Please note: Provided references may refer to slightly different samples. ∗Mini-Mental State Examination
(MMSE) scores were not available for all subjects. Last rows includes relative volumes of white matter hyper intensities (WMH) for the frontal

lobe, the temporal lobe, and the whole brain

HC AD FTD LBD MCI stable MCI converter

ADNI [25]
Age 74.7 ± 5.8 75.2 ± 7.8 73.4 ± 7.8 74.5 ± 7.0
f/m 185/177 129/149 104/170 51/65
MMSE 29.0 ± 1.2 23.1 ± 2.0 27.7 ± 1.8 26.6 ± 1.9

AIBL [44]
Age 74.5 ± 7.5 72.6 ± 7.9
f/m 81/60 18/13
MMSE N.A. N.A.

Train3 [24]
Age 55.7 ± 9.2 61.6 ± 6.4 58.6 ± 6.4
f/m 8/15 11/9 5/5
MMSE 29.0 ± 1.3 22.8 ± 3.8 24.2 ± 4.0

Train4 [64]
Age 72.7 ± 7.1 64.9 ± 8.9
f/m 5/1 8/9
MMSE 23.8 ± 1.5 24.5 ± 3.8

Train5 [65]
Age 73.4 ± 4.6
f/m 6/10
MMSE 21.7 ± 4.5

Train6 [66]
Age 67.9 ± 7.6 70.4 ± 8.3 62.4 ± 5.4 74.4 ± 4.4
f/m 25/35 15/11 6/6 1/6
MMSE∗ 27.6 ± 6.2 21.8 ± 4.1 24.9 ± 4.6 25.1 ± 1.7

Test
Age 70.3 ± 8.3 76.1 ± 7.1 66.0 ± 6.3 72.9 ± 3.3 72.8 ± 6.9 74.3 ± 6.7
f/m 9/9 76/46 7/5 1/3 8/8 6/6
MMSE 29.0 ± 1.7 20.4 ± 4.1 21.8 ± 3.5 21.0 ± 3.6 26.1 ± 2.9 23.5 ± 2.4
FLAIR available (n = 12, 66%) (n = 70, 57%) (n = 3, 25%) (n = 1, 25%) (n = 7, 43%) (n = 6, 50%)
temporal 5.0 ± 2.3 5.9 ± 2.5 5.6 ± 4.7 4.9 ± N.A. 5.8 ± 3.0 5.2 ± 1.7
frontal 6.4 ± 2.1 8.2 ± 4.1 4.3 ± 2.9 6.7 ± N.A. 9.0 ± 6.2 6.2 ± 2.2
#total WM 6.3 ± 1.8 7.3 ± 2.8 4.7 ± 3.3 5.8 ± N.A. 7.4 ± 3.5 6.1 ± 1.8
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Table 2
Scanning parameters of training data. TR, repetition time; TE, echo time, FA, flip angle; RES, resolution of volume in pixels; VX, voxel size in

mm; FS, magnetic field strength in Tesla

Dataset Sequence # scanners TR [ms] TE [ms] FA RES [ms] VX FS

ADNI MP-RAGE >50 2,400/2,300 ∼3 8◦/9◦ 192 × 192 × 160 2400/2300 1.5/3.0
(typical) (typical) (typical)

AIBL MP-RAGE 2 2,300 2.98 9◦ 240 × 256 × 160 1 × 1 × 1.2 mm 3.0T
Train 3 MDEFT or 2 1,300 3.93 n.a. 256 × 256 × 128 1 × 1 × 1.5 mm 3.0T

MP-RAGE
Train 4 MP-RAGE 1 2,200 2.15 12◦ 1 × 1 × 1 mm 3.0 T
Train 5 MP-RAGE 1 1,100 4.3 256 × 256 × 160 1 × 1 × 1 mm 1.5 T
Train 6 MP-RAGE 1 2,500 4.82 7◦ 256 × 256 × 192 1 × 1 × 1 mm 3.0

MRI training and testing data

We combined training data from multiple sources
to train the predictive computer models. This resulted
in a fairly large training sample of more than 1,600
instances, and we assumed that combining data from
multiple centers would help to learn models that are
more robust to systematic inter-scanner effects. As
indicated in Table 1, there was a large imbalance in the
number of training instances per class. Subjects with
AD and elderly controls were most abundant, while
other types of dementia were scarcer. While elderly
controls and AD patients were acquired on many scan-
ners, cases diagnosed with non-AD dementia were
acquired on very few scanners. The strong correlation
of some diagnosis with acquisition scanner/sequence
implied potential decrease in classification accuracy
as the classifier could learn to separate scanners rather
than disease [44].

The largest number of publicly available scans was
from the ADNI-study (http://www.adni-info.org). The
ADNI was launched in 2003 by the National Institute
on Aging (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and
Drug Administration (FDA), private pharmaceutical
companies and non-profit organizations, as a $60 mil-
lion, 5-year public- private partnership. The public data
base provides extended longitudinal data including
neuropsychological tests, genetic data, imaging, and
CSF data. The second publicly available data set was
obtained from the Australian Imaging, Biomarker and
Lifestyle Flagship Study of Ageing (AIBL) [45]. The
AIBL MRI data was acquired at only two sites, with
a similar protocol as the ADNI. Further, we included
data from four memory clinics to study the ability of
separation of different types of dementia as detailed
in Tables 1 and 2. We included AD, frontotemporal
dementia (FTD, without distinguishing subtypes) and
Lewy body dementia (LBD) as well as healthy elderly.

Of note, diagnoses in the training set typically relied
on clinical criteria with biomarker confirmation (e.g.,
PET, CSF) only in a subset.

Training data for the predicting of conversion from
MCI was derived from ADNI only. The respective sub-
jects were classified with MCI at baseline and were
sub-divided into two groups of patients. As with the test
data from the local clinic, we considered the available
follow-up intervals which were longer than those from
the local set: one group was formed by subjects who
remained MCI in all follow-ups and their last follow-
up was at least 360 days after the baseline check, and
the other converting to AD within 720 days after the
baseline examination. Individuals whose disease sta-
tus changed more than once or fell in neither category
were excluded from the training set.

Prospective test data were acquired locally on
a 3T Siemens system using a 32-channel head
coil. 3D-FLAIR and T1-weighted images were
acquired with a 1 mm isotropic resolution. Parame-
ters for the MPRAGE sequence included: TR 1440 ms
and TE = 2.15 ms with a parallel imaging protocol
(<4 min). FLAIR was performed in just under 8 min
with TR = 5000 ms and TE = 388 ms. Scan quality in
the test set was graded as good quality (no artifacts),
intermediate quality (some movement artifacts and/or
reduced contrast without affecting visual assessment of
scans) and low quality (substantial artifacts reducing
visual interpretability of scans). None of the training
data were acquired on the same scanner as the test data.

Image pre-processing and adjustment for
covariates

The same images that were inspected by the neu-
roradiologists were used for the automated diagnosis
pipeline. To this end, all images were pre-processed
as detailed below in order to obtain data suitable for
the automated algorithm. We employed pre-processing

http://www.adni-info.org


944 S. Klöppel et al. / Automated Diagnostic Methods in the Memory Clinic

as in previous work [46] as it performed among the
best in terms of area under the curve [28]. Effects
of age, gender, and total intracranial volume were
removed. Instead of adjusting for covariates by kernel
linear regression, we adjusted using Gaussian process
regression with a non-linear covariance function as in
previous work [44].

T1-weighted images of all data sets were pre-
processed using the VBM8 Toolbox (http://dbm.neuro.
uni-Jena.de/vbm/). This essentially performs tissue
segmentation into gray matter (GM), white matter, and
CSF, and a subsequent normalization to a standard
stereotactic Montreal Neurological Institute (MNI)
space formed by 550 healthy subjects. Modulation was
applied after affine spatial transformation in order to
correct local volume changes by the non-linear spatial
transformation procedure and to preserve the amount
of GM. This processing step computed a map of GM
tissue probability for every subject that was spatially
aligned across subjects. Based on these maps, we
computed three dot-product matrices that captured the
similarities between pairs of GM maps. The first was
computed from the raw modulated GM maps, the sec-
ond from the smoothed (8 mm FWHM) modulated GM
maps, and the third of the region-wise weighted aver-
ages of the modulated GM maps. The weight for the last
dot-product matrix were taken from the LONI proba-
bilistic brain atlas [47], as the latter was reported to
perform best in prediction of the conversion from MCI
to AD compared to two other atlases [48]. To reduce
confounding effects of total intracranial volume, age,
and gender, we adjusted each dot-product kernel using
Gaussian process regression as in previous work [44].
The methodological details are outlined in the Supple-
mentary Methods section. For the classification, the
three dot-product kernels were normalized such that
the mean of each diagonal was one and then the ker-
nels were summed up. Data from the local memory
clinic (i.e., the test data), from which the performance
is reported, neither entered the estimation of regression
parameters nor the training of the SVM.

Quantification of white matter changes

We rated total volume of WMH in temporal and
frontal lobe using FLAIR images from scans of the
local memory clinic. WMH lesions load in these two
lobes has been shown to affect cognitive speed and
memory [49]. To meet the requirements of the clini-
cal setting for fast and automated detection of WMH,
we used a simpler version of our previously proposed
processing pipeline [36] and applied a threshold to the

standardized FLAIR image [50]. We first generated a
native space white matter mask using the unified seg-
mentation algorithm [51] as implemented in SPM8.
Second, FLAIR images were normalized to identical
interquartile ranges. Voxel with values >0.5 in white
matter mask and FLAIR image were considered as
WMH in a binary image. This step identified bright
regions in the FLAIR image but reduced the number
of false positives by a restriction to voxels with an at
least 50% probability of belonging to the white mat-
ter segment. We co-registered the Talairach Daemon
Lobe atlas [52] to each subjects structural images (i.e.,
T1 and FLAIR) and computed the relative amount of
detected WMH with respect to the total size of temporal
and frontal lobe, respectively. As a plausibility check,
WMH were correlated with age across all prospec-
tive subjects of the local memory clinic with available
FLAIR image as a strong positive correlation could be
expected from the literature [53].

SVM-based predicting and results reporting

For all analyses, the same adjusted kernel was used
for a soft-margin C-Support Vector Machine (SVM)
[54] classification. All models were trained using lib-
svm ([55], http://www.csie.ntu.edu.tw/∼cjlin/libsvm/;
version 3.18). For all learning tasks, the cost param-
eter C was selected among the candidates C =
{exp(−4), exp(−2), . . . , exp(2)} such that the cross-
validation performance on the training set was highest.

SVMs are supervised binary classifiers, meaning
that they learn a decision function based on training
examples that belong to two classes. The grouping is
based on a decision value, which codes the distance to
a separating plane. Values close to zero indicate uncer-
tain decisions. Binary classification is appropriate for
the classification of stable MCI versus progressive MCI
and, e.g., the classification of AD versus FTD. In con-
trast, a four class SVM (i.e., HC; AD; FTD; LBD) was
used for the differential diagnosis of dementia. The
multi-class SVM implementation in libsvm employs
a one-versus-one classification as the algorithm inter-
nally computes (m*(m−1)/2), where m is the number
of classes. In case of four classes, this results in six
decision values. To simplify the performance analyses,
these six values were combined into (pseudo-) proba-
bilities according to [56]. This results in one probability
value per class. For example, a subject could get 78%
AD, 8% FTD, 10% HC, and 4% LBD, in which case
the probability for AD was highest and picked as dis-
crete prediction. Note, that the probabilities add up
to 100%. Posterior probabilities for the four possible

http://dbm.neuro.uni-Jena.de/vbm/
http://dbm.neuro.uni-Jena.de/vbm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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diagnostic labels predicted by the multi-class classifier
were used for the ROC curves (Fig. 4) to plot the index
class against the combination of all other classes and
radar plots to illustrate the distribution of class spe-
cific probabilities. Thus, although the ROC analysis is
intrinsically binary, the data presented in Fig. 4 were
obtained from the outputs from a multi-class classi-
fier. The proportion of WMH relative to the volume
of frontal or temporal lobe formed two extra axes in
the radar plot with the case with the maximum volume
of WMH in the whole sample scaled to the maximum
of the axis. Following discussions with clinicians we
choose to use radar plots to display the probability
profile for each individual visually. These plots pro-
vide visual patterns for the typical cases although the
ordering of diagnostic entities could misleadingly indi-
cate that some diagnosis would be more similar to
each other. In addition, as probabilities sum to one
(i.e., 100%), the presence of two pathologies would
lead to relatively low probabilities for both while high
probabilities for both would be more straightforward
to interpret. The analysis of the differential diagno-
sis using a multi-class classifier is complemented by
a binary distinction between AD and FTD, as the dis-
tinction between different types of dementia is often
difficult and because relatively many cases per group
were available in the test set. For that classifier, we
report separate ROC when excluding cases with low
scan quality (n = 24) or coexisting cerebral pathology
(n = 34).

Diagnostic usefulness and comparison to
clinicians

We were interested in the ability of the classifier to
assign a significant fraction of the population with a
sufficiently large confidence to the correct class. To
rate the usefulness of the computer tool, we aimed to
identify the cut point for the probability output which

results in a PPV above 0.9 or in a NPV above 0.95.
For computing PPV and NPV, we used the observed
prevalence in the test data sets. Based on internal a pri-
ori panel discussions, we regarded the computer tool
as clinical useful, if at least one of the potential diag-
noses could be given above the PPV threshold for 15%
of all patients. Alternatively, the tool was deemed use-
ful if at least one of the four possible diagnoses could
be excluded for 25% of patients. To assess the use-
fulness, we plotted NPV and PPV as function of the
probabilistic classifier output.

To assess the necessity for an additional diagnos-
tic tool, we report the proportion of cases for which
clinicians rated their own diagnostic certainty as low
(i.e., <70%) at pre- and post-MRI clinical scoring. We
compared the performance achieved by clinicians at
post-MRI to the predictions of the SVM in respect
to the clinical gold standard defined by follow-up
examinations. In addition, we computed ROC and
the area under the ROC curve (AUC) for the cor-
rect identification of MCI converters by comparing
the probabilistic outcome of the SVM [57] against the
diagnostic certainty of clinicians on the six-point scale.
No comparisons between clinicians and the computer
tool was attempted for differential diagnosis of demen-
tia as clinician’s rating at post-MRI was no longer
independent from the gold standard diagnoses while a
comparison with pre-MRI clinical scoring was deemed
uninformative as both decisions would be based on
completely different information.

RESULTS

Screening

A total of 1,303 were screened for this study over
an interval of three years. 961 cases did not enter this
study because clinical interview and neuropsycholog-

Fig. 1. Distribution of patients entering the memory clinic and their inclusion in the differential diagnosing of dementia (left panel) and predicting
of MCI conversion (right panel). LBD, Lewy body dementia; FTD, frontotemporal dementia; AD, Alzheimer’s disease; HC, healthy controls;
VaD, vascular dementia; MCI, mild cognitive impairment.
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ical testing indicated no need for MRI and in 10 cases,
no image was taken (e.g., patient did not show up).
Imaging was deemed unnecessary when it had already
been done recently, when subjects were cognitively
normal, or when impairment could be fully attributed
to a non-neurodegenerative cause (e.g., stroke, severe
depression). Cases with very typical medical history
and cognitive profile tended to receive a CT rather
than MRI scan and were thus unavailable to this study.
In line with the German guidelines for diagnostics in
MCI and dementia [58], individuals with MCI did not
always receive imaging. Three hundred and forty-two
(26.8% of 1303) subjects were referred to the Freiburg
dementia clinic with reported progressive decline of
cognitive function, age above 40 and the request for
MRI. Of those, 327 entered one of the two arms of the
study (Fig. 1). Therefore, fifteen were excluded from
the study after being referred to the dementia clinic.
Ten subjects were scheduled for a scan but were not
scanned (e.g., subjects did not show up, or could not be
scanned because of a metallic implant), and five sub-
jects were not assigned to one of the study arms because
of other reasons (e.g., depression). Visual inspection
indicated an accurate detection of WMH. Across all
included subjects who also had a usable FLAIR image,
the percentage of WMH in the frontal lobe (p < 0.001)
and temporal lobe (p = 0.019) was positively correlated
with age. On average, approximately 5% of the voxels
of the temporal and frontal lobe volumes were clas-
sified as hyperintense (see Table 1, bottom row, for
statistics grouped by diagnosis).

Prediction of conversion to dementia

Of all 132 scans that entered the MCI study branch,
a total of 28 cases (16 stable) with 12-months follow-up
gold standard diagnosis were available for final analy-
ses (Table 1 and Fig. 1, lower panel). A large proportion
of individuals had to be excluded because insufficient
follow-up data were available (n = 76). Two cases con-
verted after 720 days, 8 cases converted within less
than 90 days, and four cases had incompatible diag-
nosis, such as dementia of unknown origin or normal
pressurehydrocephalus.Thirteencasesremainedstable
but were observed for less than 360 days and there-
fore excluded. Of note, one subject converted from
MCI to FTD and was not included in order to focus
on conversion from MCI to dementia due to AD. In
only 10% of the cases, clinicians were very certain
(>90% certainty) at pre-MRI clinical scoring whether
a subject would progress to dementia or remain stable.
That figure rose to 29% of cases after MRI (Fig. 2).

Fig. 2. Histograms showing increased levels of diagnostic con-
fidence for the prediction of conversion from MCI (x-axis) by
clinicians after learning about the MRI-results. In addition, a separa-
tion into cases correctly (green) or incorrectly (red) predicted by the
SVM indicates no association between the diagnostic confidence of
clinicians and the accuracy of the SVM.

Figure2 indicates that therewasnoassociationbetween
theconfidenceratingofcliniciansand thecorrectnessof
theSVM.Thepredictiveratingsbycliniciansweremost
accurate when they rated their diagnostic confidence as
high irrespective of pre- or post-MRI clinical scoring.
The AUC was highest for the clinicians (0.81), followed
by 0.80 for the training set using SVM. The AUC of the
test set based on the SVM decision value was 0.73. If the
default threshold from the SVM was taken to perform a
classification, sensitivity of detecting progressive MCI
was 0.25 and specificity was 0.93. ROC-curves as well
as plots of PPV and NPV for the SVM are depicted in
Fig. 3. PPV and NPV were constantly below 90% and
95% respectively and thus did not indicate a clinically
useful performance.

Differential diagnostics of dementia

A total of 195 subjects entered the study branch
dementia (Fig. 1, upper panel). Thirty-two subjects
were excluded because no or no compatible gold
standard diagnosis was available (e.g., dementia of
unknown origin, primary progressive aphasia without
further differentiation, progressive supranuclear palsy,
Balint-Holmes-Syndrom in posterior cortical atrophy).
A demographic and clinical evaluation of test sub-
jects with dementia is reported in Table 1. Clinicians
were certain with their diagnosing in 42% of cases
at pre-MRI clinical scoring. The figure rose to 80%
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Fig. 3. Separating stable (MCIs) from those converting to dementia (MCIc). Left: ROC curve for different levels of diagnostic confidence
(clinicians) and decision values (SVM). The cross-validated SVM performance on train set (dashed black line), test set (solid blue line) and
performance by clinicians at post-MRI (dotted light blue) is shown. FPR, false positive rate; TPR, true positive rate. Right: True positive (TPR)
and negative rate (TNR) together with positive (PPV) and negative predictive value (NPV). Markers on the x-axis indicate individual cases: green
circles: MCIs; red crosses: MCIc. p(MCIs) and p(MCIc) indicate the fraction of stable and progressive MCI subjects in the sample, respectively.

Fig. 4. Performance of multiclass differential diagnosis of dementia. The top row displays the ROC curve of each class versus the rest. Dotted
black line and solid blue line indicate cross-validated training using cross-validation and test performance respectively. The bottom row shows
several performance measure such as positive predictive value (PPV), negative predictive value (NPV), true positive rate (TPR), and true negative
rate (TNR). See main text for AUCs of the training set.

at post-MRI clinical scoring. Performance of differ-
ential diagnosis is shown in Figs. 4–6. Separation
of controls from rest was achieved with high accuracy

(AUC = 0.97). Classification of AD and FTD against
all other entities were above chance level (AUC = 0.76
for AD and AUC = 0.78 for FTD; Fig. 4) when using
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Fig. 5. Performance of differential diagnosis of FTD versus AD. Left: ROC curve, where the dashed black line indicates the cross-validated
result from the training data and the solid blue line the test result. Red and green dashed lines illustrate the performance when cases are restricted
to those with high quality (HQ) or cases without comorbid brain disorders (no comorb). Right: Indication of usefulness in terms of PPV and
NPV. Markers on the x-axis indicate FTD (green circles) and AD (red crosses).

Fig. 6. Radar plot illustrating the posterior probability for each diagnostic class and the proportion of white matter hyperintensities (WMH).
Center hexagon indicates minimum diagnostic probability or WMH load. Each line represents one case. All cases with dementia are shown in
each subplot but with intransparent lines for a different class to aid visualization. Lines representing cases without available FLAIR imaging do
not show values for the WMH. pHC, probability of healthy controls; pFTD, probability of FTD; pAD, probability of AD; pLBD, probability of
LBD; WMH temporal, proportion of WMH in temporal lobe; WMH frontal, proportion of WMH in frontal lobe.
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the posterior probability for AD and FTD, respectively.
Performances on the training sets were all >0.9. Specif-
ically AUCs were 0.96, 0.97, 0.97, and 0.92 for AD,
FTD, HC, and LBD versus REST, respectively. As an
example, a binary classifier separating AD from FTD
(Fig. 5) revealed PPV constantly above 90% due to the
highly unbalanced groups. Of note, the PPV increased
with the decision value indicating additional diagnostic
certainty from the classifier output. In contrast, NPV
was always low. Excluding cases with low scan quality,
additional CNS pathology did not substantially alter
the results. Only four cases with LBD were included
in the study, which challenges a meaningful interpre-
tation of the classifiers ability to separate LBD from
other types of dementia.

Radar plots (Fig. 6) show the combination of
diagnostic probabilities for each alternative diagnosis
together with the volume of WMH. Cases with AD
frequently showed a high probability for AD and low
probabilities for the other groups. Volumes of WMH
were often relatively high. A subset of AD cases
showed high probabilities for FTD and another for
LBD. Of note, as the sum of probability values
for each case always adds to one, a high probability for
AD automatically means a low probability for the other
groups. The majority of HC were correctly assigned.

DISCUSSION

We set out to explore the clinical usefulness of auto-
mated diagnosing in a university based memory clinic
with liberal inclusion criteria and when either MCI
converters or the type of current dementia had to be
identified.

Clinicians and SVM achieved a similar perfor-
mance for the detection of MCI converters (Fig. 3).
Encouragingly, performance of the SVM did not dif-
fer substantially between test and train set arguing
against severe overfitting. Overall, the achieved pre-
diction accuracy of 65% on the test set was low but a
balanced accuracy of 77% (AUC = 0.8) on the train set
was comparable to existing studies typically reporting
values close to or above 80% [59–61]. On the test set
PPV and NPV were never above the predefined thresh-
olds (PPV >0.9; NPV >0.95). As detailed below, it is
likely that the MCI cases recruited into the study were
particularly difficult to diagnose which may explain
this relatively low performance on the test set.

In the multi-class differential-diagnosis model,
HC were well separated from all neurodegenerative
diseases. The multi-class classifier achieved AUCs

between 0.92 and 0.97 on the training set when sepa-
rating one class from the rest, despite combining data
from different sources and not explicitly modeling the
systematic variance between the sites. This confirms
the validity of the concept of using computer-aided
diagnosis tools. However, this result was expected,
since all MRI data sets were known to contain sig-
nificant and detectable differences between diagnostic
groups. Interestingly, performance separating HC from
cases with neurodegeneration was equally good for
training and test set which underlines the robustness
of this separation. On the other hand, separating AD
from all other groups was relatively inaccurate and this
was true even for the binary separation between AD
and FTD (Fig. 5). Fig. 5 also indicates that eliminat-
ing cases with low image quality or with additional
structural brain changes did not further increase clas-
sification accuracy. At first sight, the observed drop
between train and test set could indicate overfitting.
While this possibility cannot be fully excluded, we
consider it relatively unlikely given the heterogeneity
of the training data. Systematic differences between
training and test set in terms of recruitment strategy or
the use of parallel imaging sequences for the test data
only are likely explanations. We did not use WMH
lesion load to define a separate diagnostic category
(i.e., vascular dementia) but quantified it in addition
to atrophy for each case. Visual inspection revealed
good detection accuracy with around 5% of the vol-
ume of temporal and frontal lobe identified to contain
WMH. A direct comparison to existing studies is dif-
ficult as those typically report WMH load across the
whole brain. For that, Burton and colleagues suggested
to define a percentage over 4.5% as an indication of
severe lesion load [49].

Rader plots (Fig. 6) indicate that among cases with
AD, subsets showed a high likelihood of belonging
to the group of FTD or LBD cases. Relatively high
probabilities for both could indicate the presence of
two different pathologies in the same individual or
alternatively, a misdiagnosing. We have no means of
separating both possibilities with certainty. The co-
occurrence of FTD and AD in the same individual
is relatively rare except for the logopenic subtype but
high for AD and LBD [31, 62].

Besides reporting ROC curves and radar plots, we
also aimed to evaluate the need for an additional diag-
nostic method and its ability to make decisions with a
sufficient NPV and PPV. Confidence ratings by clin-
icians indicated the need for a further diagnostic tool
primarily for the detection of MCI converters (Fig. 2)
in line with previous work [4]. This need is likely
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to be higher outside dementia centers where clini-
cians and radiologists typically have less experience
with dementia diagnostics and where less detailed neu-
ropsychological test results are available.

As an additional aspect of clinical usefulness, we
examined PPV and NPV. For the binary separation
of AD from FTD (Fig. 5), PPV was constantly above
90%. This is most likely due to the highly imbalanced
groups (AD: n = 122, 91%; FTD: n = 12, 9%) but a fur-
ther improvement of the PPV with the SVM- based
decision value indicates some added value. Looking
at the multi-class classification, rare conditions such
as FTD and LBD showed the expected high NPV. On
the other hand NPV and PPV for the separation of HC
from all other groups were high but are clinically less
difficult.

As we did not change routine clinical work in
the memory clinic, the final sample consisted of less
than 30% of cases that were initially referred. Most
importantly, subjects could enter the study only when
clinicians deemed the acquisition of an MRI scan as
clinically warranted. Therefore, and in line with the
German guidelines for diagnostics in MCI [58], imag-
ing was not done routinely for subjects with MCI.
Finally, cases with already manifest dementia and a
very typical medical history and neuropsychological
profile tended to receive a CT rather than MRI as this
is available during the same visit. These factors made
it more likely, that the cases finally recruited into the
study were in fact more difficult to diagnose than the
full sample initially referred to the clinic.

In this study, training and test data were strictly
separated and differed in several characteristics which
likely reduced diagnostic accuracy: Training data were
acquired for research studies, typically applying sub-
stantially more exclusion and sometimes different
inclusion criteria. In addition, accelerated imaging pro-
tocols which can systematically influence volumetry
[63] were used for the test set only. Training data from
the different diagnostic groupings were not equally
balanced across scanners and differed substantially
in number for each entity. Methods we recently pre-
sented to adjust for between scanner differences [44]
for binary classification problems could not be applied
to the current data as they require data from HC from
all scanners. Using the set of HC in the test set would
have challenged the interpretation of the classifier per-
formance on HC. Another limitation of the training set
is the low number of cases with FTD and particularly
LBD which contributed to relatively low classifica-
tion accuracy of LBD already for the training set.
Applying feature selection might further improve the

performance. However, these issues are not straight-
forward to implement in a multi-class setting.

A further limitation concerns the definition of the
gold standard. Cases used for the training and test set
had clinical diagnoses, only sometimes supported by
biomarker evidence. As a consequence, the level of
diagnostic certainty was limited. Ideally, all training
cases should have clear clinical signs and/or corre-
sponding biomarker changes. For the test set, several
scenarios would be interesting. For example, a clin-
ical diagnosis could be based only on data available
from routine clinical workup and biomarker evidence
could be added for validation. While we relied on clin-
ical diagnoses which currently represent the basis of
clinical management, in an alternative setting, MRI
could be left out completely from the definition of the
gold standard and thereby avoid any circularity. Lim-
ited access, particularly to cases with FTD and LBD
with a high diagnostic certainty, made such approaches
infeasible. Restricting our analyses only to cases with
PET validation did not change AUCs (Supplemen-
tary Figure 2), most likely because of the sometimes
inaccurate diagnoses of the training cases. We neither
attempted to define subtypes such as posterior cortical
atrophy in AD or the language or behavioral subtypes
in FTD nor did our gold standard definition consider the
presence of more than one neurodegenerative disease.
We considered three different types of neurodegenera-
tive dementias in addition to an evaluation of vascular
pathology. Although they may cover 90% of dementia
cases it is far from complete. In the MCI study arm,
stable MCI was defined by stability over 12 months
which is comparable short. On the other hand, longer
follow-up intervals were available for the majority of
subjects. Our study included imaging to reach diag-
nostic decisions and used this to validate an imaging
based method. The two approaches are therefore not
fully independent, but this should primarily affect cases
with a very clear and highly localized atrophy pat-
tern. When considering the clinical routine outside a
specialized memory clinic, expert radiologists are
often unavailable and an automated method that can
extract the same information as an expert radiologist
would have substantial clinical value.

In summary, we report the application of automated
classification methods to a routine sample from a
memory clinic and thereby present a potential routine
application of these methods. We found that reported
performances from clean research data—usually cross-
validated and regarded as good estimates of the
potential performance in practice—could not be con-
sistently achieved on a test set acquired in the clinical
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routine. Nevertheless, the presented design could be
extended to multicenter studies and applied by radiolo-
gists outside specialized memory clinics where the full
benefit of the automated method can be played out. In
addition, future studies should systematically evaluate
the effect of the SVM classification on the diagnostic
process in respect of diagnostic accuracy as well as
perceived diagnostic confidence if made available to
clinicians. At the same time, such studies should eval-
uate, if clinicians consider radar plots a helpful way of
presenting results.
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S. Klöppel et al. / Automated Diagnostic Methods in the Memory Clinic 953

[35] Lao Z, Shen D, Liu D, Jawad AF, Melhem ER, Launer LJ,
Bryan RN, Davatzikos C (2008) Computer-assisted segmen-
tation of white matter lesions in 3D MR images using support
vector machine. Acad Radiol 15, 300-313.

[36] Klöppel S, Abdulkadir A, Hadjidemetriou S, Issleib S, Frings
L, Thanh TN, Mader I, Teipel SJ, Hüll M, Ronneberger O
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