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Abstract

Mesoscale modeling of organic semiconductors relies on solving an appropriately parametrized

master equation. Essential ingredients of the parametrization are site energies, or driving

forces, which enter the charge transfer rate between pairs of neighboring molecules. Site

energies are often Gaussian-distributed and are spatially correlated. Here we propose an algo-

rithm which generates these energies with a given Gaussian distribution andspatial correlation

function. The method is tested on an amorphous organic semiconductor, DPBIC, illustrating

that the accurate description of correlations is essential for the quantitative modeling of charge

transport in amorphous mesophases.

today

1 Introduction

Early models of charge transport in organic semiconductors, such as the Gaussian disorder model

(GDM), employed simple lattices in order to describe material morphology, postulated a Gaussian
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distribution of uncorrelated site energies driving chargetransfer reactions, and used the thermally-

activated tunneling (Miller-Abrahams)1 rate expression to compute charge transfer rates.2 Material

properties were thus represented by a small number of essential parameters: the width of the

density of states, the lattice spacing, and the hopping attempt frequency. In spite of its simplicity,

the GDM could already explain the non-trivial dependenciesof the charge carrier mobility on the

external electric field, temperature, and the charge carrier density.2–5

The GDM has been gradually refined in order to improve the agreement with experiment.

First, it has been shown that the long-range electrostatic interactions of a charge with molecular

dipoles6,7 as well as a local alignment of conjugated segments in polymeric systems8,9 can lead

to spatial correlations of site energies. By accounting for these correlations, the (extended) cor-

related Gaussian disorder models (ECDM, CDM),3,6 could explain the experimentally observed

Poole-Frenkel dependence, lnµ ∝
√

F , also for small external fields.6,10 Second, a more direct

link to the underlying chemical composition of the materialcould be established by combining

quantum-chemical and classical force-field-based methods, which have been used to predict ma-

terial morphologies and evaluate charge transfer rates.11–14,14,15The atomic-scale modeling also

stimulated the development of off-lattice stochastic models.16,17 In these models, molecular posi-

tions and rates are generated according to the distributionfunctions evaluated in a small atomistic

morphology. Stochastic models allow to simulate charge transport in micrometer-thick layers while

at the same time retaining the link to the chemical composition.

Both stochastic and atomistic models have helped to pinpointdrawbacks of GDM and CDM.

In particular, the CDM assumes a charge interacting with randomly oriented, constant magnitude

dipoles of surrounding molecules,7,18 which leads to an energy correlation function of the form

c(d)∼ 1/d. The underlying assumption is, however, not well justified:Figure Figure 1 shows that

the distribution of magnitudes of molecular dipole momentsin an amorphous mesophase can be

rather broad. A similar situation has been observed in othersystems, e.g., typical dye molecules

used as donors in organic solar cells.19 As a consequence, the spatial correlations of site energies

can have decays of the correlation function different from 1/d dependence.12,19
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For accurate parametrizations of stochastic models it is therefore desirable to have an algorithm

which can generate site energies with a predefined correlation function. The goal of this work is to

devise such an algorithm and to test it on a typical amorphoussemiconductor, DPBIC, the chemical

structure of which is shown in the inset of Figure Figure 1.

2 Atomistic simulations

To evaluate the reference spatial correlation function, wefirst use atomistic molecular dynamics

to generate an amorphous morphology of 4000 DPBIC molecules.We then employ quantum-

chemical calculations and polarizable force-fields to evaluate electronic couplings, site and reor-

ganization energies. To validate the algorithm and to illustrate the vital role of correlations, we

finally study charge dynamics by solving the master equationwith the help of the kinetic Monte

Carlo algorithm. Charge hopping rates entering the master equation are evaluated within the high-

temperature limit of the non-adiabatic charge transfer theory.

For morphology simulations we use an OPLS-based22,23force-field with missing bonded inter-

actions parametrized using the potential energy surface scans obtained using the density functional

theory (B3LYP functional and 6-311g(d,p) basis set), as described elsewhere.17 Partial charges are

fitted using the Merz-Kollman scheme.24,25To obtain the amorphous morphology, the box of 4000

molecules is first simulated at 700 K, which is above the glasstransition temperature, and then

quenched to 300 K. The size of the final box is about 16 nm. All calculations are performed in the

NPT ensemble with the Berendsen barostat and thermostat.26

The hole site energies are evaluated using a perturbative approach, in which electrostatic and

induction energies are added to the gas-phase ionization potential of a moleculeA, i.e.,EA = EA
int+

EA
el+EA

pol, whereEA
int is the ionization potential in vacuum,EA

el is the electrostatic interaction energy

of partial charges, andEA
pol is the polarization contribution. Since rates depend only on site energy

differences,1,27,28 the ionization potential does not affect rates or the spatial correlation function

of a mono-component system. The electrostatic contribution to the site energies,EA
el, is calculated
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Figure 1: Distribution of molecular dipoles in an atomisticmorphology of 4000 DPBIC molecules.
The inset shows the chemical structure of DPBIC (Tris[(3-phenyl-1H-benzimidazol-1-yl-2(3H)-
ylidene)-1,2-phenylene]Ir), which is used as a hole-conducting and an electron-blocking layer in
modern OLEDs.20,21
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Figure 2: Site energy distribution evaluated in the atomistic morphology and the fit to a Gaussian
distribution withσ = 0.176eV.
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Figure 3: Spatial site energy correlation evaluated in an atomistic morphology (symbols) and its
reconstruction using the numerical scheme described in thetext (dashed line). Thin dotted lines
show correlation functions of the ECDM model for two different lattice spacings.
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using the Ewald summation technique adapted for charged systems.29,30 All induction effects are

incorporated in this scheme using the Thole model31,32 with a cutoff of 3 nm. Details of this

approach are described elsewhere.33 The distribution of site energies, shown in Figure Figure 2,

is, to a good accuracy, Gaussian with a standard deviation ofσ = 0.176eV.

The spatial correlation function,c(d), which describes the correlation of site energies of molecules

at a (center-of-mass) separationd is calculated as

c(d) = E

[

EAEB
]

/σ2 , (1)

whereEA andEB are energies of moleculesA andB separated by distanced andE[·] is the ex-

pectation value. The spatial correlationcref(d), evaluated in the atomistic system, is shown in

Figure Figure 3 (symbols).

Since we are dealing with amorphous materials, we assume thermally-activated type of trans-

port and use the semi-classical charge transfer rate expression27,28

ωAB =
2π
h̄

J2
AB√

4πλkBT
exp

[

−
(

∆EAB −λ
)2

4λkBT

]

. (2)

Here the reorganization energy,λ , reflects the effect of molecular rearrangement in responseto

the change of the charge state.JAB describes the strength of the electronic coupling between

two localized (diabatic) states, and∆EAB = EA − EB is the aforementioned driving force. For

DPBIC the calculated (B3LYP, 6-311g(d,p)) internal reorganization energy for hole transport is

λ = 0.13eV.

Electronic coupling elements,JAB, between the initial and the final states of a molecular dimer

are evaluated by approximating its diabatic sates with the highest occupied molecular orbitals of

monomers (frozen core approximation) and using a projection method.34–36

To model charge dynamics, we solve the corresponding masterequation using the kinetic
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Monte Carlo (KMC) algorithm.37,38The mobility is calculated from the KMC trajectory as17

µ =
1
N

N

∑
i=1

〈

~vi ·~F
〉

F2 , (3)

where~vi is the velocity of thei-th carrier,〈· · · 〉 denotes the average over the simulation time, and

the sum is performed overN carriers.

3 The algorithm
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Figure 4: Mixing-in of site energies: the site energy correlation of two moleculesA and B is
determined by the (weighted) number of molecules,ℓAB

j (red), within the overlap of spheres of
radii r j centered atA andB.

Given the spatial correlation function,cref(d), and the variance,σ2, of the Gaussian site energy

distribution in the atomistic system, our goal is to generate site energies for a large stochastic

morphology, with the same distribution and spatial correlation. The idea is to add to a site energy

of a moleculeA appropriately weighted energies of neighboring sites.

To do this, we first assignN + 1 independent random numbers,XA
j (0 ≤ j ≤ N), to every

molecule (site)A. These random numbers are Gaussian-distributed with mean 0and variance 1,

XA
j ∼ N (0,1). A nonzero mean value ofm can be achieved by replacingEA by EA +m.

8



We now express the site energy of a moleculeA as

EA =
√

aXA
0 +

N

∑
j=1

√

b j

ℓA
j

∑
B∈S (r j,A)

XB
j . (4)

HereS (r j,A) is a sphere of radiusr j centered at a moleculeA, the sum runs over the sitesB 6= A

located within this sphere,ℓA
j =

4
3πr3

j ρ is the number of sites (molecules) in this sphere, andρ is

the site number density (molecules per volume), which we assume to be constant. This is shown

schematically in Figure Figure 4. The first term in Equation (Eq. (4)) is used to adjust the width of

the final distribution (σ ), while the second term, which mixes in the energies of the neighbors, is

used to adjust the decay of the correlation function.

The choice of energies in the form provided by Equation (Eq. (4)) allows to obtain a simple

analytic expression for the correlation function and the variance of the resulting Gaussian distribu-

tion. Following the definition of site energies, Equation (Eq. (4)), we can rewrite the expectation

value as

E

[

EAEB
]

=
N

∑
i=1

N

∑
j=1

√

bib j

ℓA
i ℓ

B
i

∑
C∈S (ri,A)

∑
D∈S (r j,B)

δCDδi j

=
N

∑
i=1

bi
√

ℓA
i ℓ

B
i

∑
C∈S (ri,A)∩S (ri,B)

1

=
N

∑
i=1

bi
ℓAB

i
√

ℓA
i ℓ

B
i

=
N

∑
i=1

ξ
(

d
2ri

)

bi. (5)

Here we used the fact that the random numbersXA
i are independent, henceE[XA

i XB
j ] = δi jδAB.

ℓAB
i = ρV AB is the number of molecules in the intersection of two spheresat a separationd,

S (ri,A)∩S (ri,B), V AB is the volume of this intersection,V AB = 1
12π (4ri +d)(2ri −d)2 for

d ≤ 2ri and zero otherwise (see Figure Figure 4).
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The standard deviation ofXA can be evaluated in a similar fashion, yielding

σ2 = E

[

(

EA
)2
]

−E

[

EA
]2

= a+
N

∑
i=1

bi. (6)

Inserting these expressions into the definition of the correlation function, Equation (Eq. (1)), we

obtain the spatial correlation function for moleculesA andB at separationd

c(d) =
1

σ2

N

∑
j=1

ξ
(

d
2r j

)

b j, (7)

whereξ (x) is a finite-support function,

ξ (x) =















1− 3
2x+ 1

2x3, x ≤ 1

0, x > 1,

(8)

andσ2 is the variance of site energies,

σ2 = a+
N

∑
j=1

b j. (9)

An intuitive geometric interpretation of Equation (Eq. (7)) is thatξ (d/2r) provides a (normal-

ized) overlap of two spheres of radiir, with their centers separated by a distanced. This overlap

determines the spatial correlation function, since sites belonging to the overlap contribute equally

to site energies of two molecules located in the centers of the spheres (see Figure Figure 4).

By providing the reference correlation function inN points,cref
i = cref(di), i = 1,2, . . . ,N, we

obtainN linear equations

cref
i =

1
σ2

N

∑
j=1

ξi jb j, (10)

whereξi j = ξ (di/2r j). The solution of Equation (Eq. (10)) provides the weightingcoefficients

b j and thus a unique interpolation of the reference correlation function in terms of finite support
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functionsξ , i.e, piecewise-defined cubic polynomials. Once the coefficientsbi are known,a can

be determined from Equation (Eq. (9)). In practice, however, some coefficientsbi can be negative,

leading to imaginary values of
√

bi in Equation (Eq. (4)) and thus unphysical energies. In this case

a recursive scheme, which provides an approximate solutionto Equation (Eq. (10)), becomes more

practical.

To devise the recursive scheme, we note that there is still a certain degree of flexibility in

choosing the grid pointsdi andr j. We now choose the second grid such thatri = di+1/2, wheredi

are the points in which the reference function is evaluated,i = 1. . .N −1, andrN = (dN +∆)/2,

with ∆ = dN − dN−1. Note that the generated correlation function will be zero in the last point,

c(2rN) = 0. Given this choice of grid points,ξi j = 0 for i < j, i.e.,ξi j becomes a triangular matrix.

Equation (Eq. (10)) then simplifies to

σ2cref
i = biξii +

N

∑
j=i+1

ξi jb j, (11)

and can now be solved forbi recursively, starting frombN . The final recursive algorithm reads

1. EvaluatebN = σ2

ξNN
cref

N .

2. Starting fromN −1 evaluate recursively forN −1≥ i ≥ 1

bi =
1
ξii

(

σ2cref
i −

N

∑
j=i+1

ξi jb j

)

(12)

If bi becomes negative, rescalebi+1 by a factor 0< η < 1 and recalculatebi. If bi+1 < δ , set

it to zero.

3. Evaluatea according to Equation (Eq. (9)).

4. ForM sites andN values of the reference functioncref
i generateM × (N +1) random vari-

ablesXA
i ∼ N (0,1), 1≤ A ≤ M, 0≤ i ≤ N.

5. Evaluate site energies of all molecules according to Equation (Eq. (4)).
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Note that the second step includes anad hoc way of enforcing allbi coefficients to be positive.

4 Validation
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Figure 5: Poole-Frenkel plot for charge transport simulated in a box with identical positions and
distributions of site energies but different spatial correlations. A lattice constant of 1.06 nm has
been used in the ECDM.

We now apply the developed scheme and study hole transport inan amorphous morphology of

DPBIC. The reference spatial correlation function has been evaluated in the atomistic system of

4000 molecules as described in sec. Section 2. To improve thenumerical stability of the algorithm,
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we first smoothen the reference data which is evaluated inN = 24 points and fit a stretched ex-

ponential,α exp(−βdγ), to the atomistic correlation (α = 2.83,β =−1.73, γ = 0.56). The fitted

function is then used as an input for the algorithm.

Figure Figure 3 shows an excellent agreement between correlations functions evaluated in the

atomistic reference and in the generated stochastic systemof 40000 sites. We have used the value

of δ = 10−5 and the scaling factorη in the range between 0.8 and 0.99, which yields sufficient

accuracy and fast convergence of the recursive algorithm. For comparison we also show the corre-

lation function of the ECDM,cECDM(d) = 0.74a/d, for two different values of the lattice constant

a. The lattice constant of 1.06 nm corresponds to the average intermolecular distance of the nearest

neighbors and leads to a significant overestimation of the correlation. a = 0.44nm is obtained by

fitting the charge mobility of an atomistic reference to the analytical expression provided by the

ECDM.17 The rationale behind a much smaller fitted lattice constant is now apparent: the only

adjustable parameter of the ECDM which enters the correlation function is the lattice spacinga.

Since the field dependence of the charge carrier mobility is very sensitive to spatial correlations

of site energies, the ECDM tries to provide the best approximation to the atomistic correlation

function – by reducing the lattice spacing to an unphysical value. equation Finally, we shall ask

ourselves whether an accurate reproduction of the spatial correlations is important. To answer this

question we have performed charge transport simulations insystems of 40000 sites, with the posi-

tions of molecules obtained using the iterative Boltzmann inversion method, which reproduces the

radial distribution function of the atomistic reference.17,39 To this end, we have simulated charge

transport in three systems, all with Gaussian-distributed(σ = 0.176eV) site energies. The site en-

ergies were (i) uncorrelated (ii) correlated with the correlation function of the atomistic reference

(iii) correlated with the ECDM correlation function and lattice constanta = 1.06nm. Since the

EGDM site energy correlation is very long-ranged, the (non-uniform) grid in the algorithm was

extended to 15 nm. Charge transport simulations were performed at a concentration of 10−4 carri-

ers per site (four charges), which leads to finite size effects smaller than 0.5%.40 The Poole-Frenkel

plots, i.e., the logarithm of the mobility versus the squareroot of the external field, are shown in
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Figure Figure 5 for all three cases. It can be seen that wrong spatial correlations result in ca. two

orders of magnitude difference in the mobility values. Furthermore, the slopes also differ, which

can be rationalized in terms of the “effective” energetic disorder, i.e., the energy variation of those

sites which are most frequently occupied by charge carriers.41 We conclude that the spatial corre-

lation of site energies should be reproduced as accurate as possible in order to achieve quantitative

modeling of transport in amorphous organic materials.

5 Discussion and conclusions

To summarize, the proposed algorithm allows to generate charge transport networks with millions

of molecules, which helps to reduce finite-size effects and to study systems of small (but physically

relevant) charge densities. One can, therefore, simulate current-voltage characteristics of realistic

devices by first tabulating mobility values as a function of temperature, charge density and external

electric field and then solving continuous drift–diffusionequations. This approach yields results

which are in an excellent agreement with experimental measurements.42

It is also possible to extend the scheme to two or more molecule types. In this case one has

to take into account not only the autocorrelation function but also the correlation between two

different types of molecules and add an additional index forthe molecule type to theb coefficients

and random numbers.

The described algorithm also improves the moving-average scheme proposed earlier.16 It can

reproduce arbitrary correlation functions, is easy to automatize, and does not need iterative gener-

ation of site energies for trial correlation functions.

To conclude, we have developed a method which can generate Gaussian-distributed energies

with a predefined spatial correlation function. We have illustrated that the correlated and extended

correlated Gaussian disorder models are unable to reproduce spatial correlations of atomistic sys-

tems, or use effective (and unphysical) values of the lattice constant to do this. The developed

method can be used to either refine the family of Gaussian disorder models or to construct accurate
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stochastic off-lattice models.
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