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Abstract

Mesoscale modeling of organic semiconductors relies on solving an aggiebpparametrized
master equation. Essential ingredients of the parametrization are site snenguriving
forces, which enter the charge transfer rate between pairs of neighbmoolecules. Site
energies are often Gaussian-distributed and are spatially correlatetiwdgropose an algo-
rithm which generates these energies with a given Gaussian distributiepatial correlation
function. The method is tested on an amorphous organic semiconductolCDiRiBstrating
that the accurate description of correlations is essential for the quamstitatideling of charge

transport in amorphous mesophases.

today

1 Introduction

Early models of charge transport in organic semicondugcsarsh as the Gaussian disorder model

(GDM), employed simple lattices in order to describe materiorphology, postulated a Gaussian
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distribution of uncorrelated site energies driving chargesfer reactions, and used the thermally-
activated tunneling (Miller-Abraham$Jyate expression to compute charge transfer raddaterial
properties were thus represented by a small number of ésispatameters: the width of the
density of states, the lattice spacing, and the hoppingnatt&requency. In spite of its simplicity,
the GDM could already explain the non-trivial dependenoiethe charge carrier mobility on the
external electric field, temperature, and the charge catersity?—>

The GDM has been gradually refined in order to improve the eagemt with experiment.
First, it has been shown that the long-range electrostatigzactions of a charge with molecular
dipole” as well as a local alignment of conjugated segments in pafgnsgstem$° can lead
to spatial correlations of site energies. By accounting liese correlations, the (extended) cor-
related Gaussian disorder models (ECDM, CDM)¢could explain the experimentally observed
Poole-Frenkel dependence,uril +/F, also for small external field$1° Second, a more direct
link to the underlying chemical composition of the mategalld be established by combining
guantum-chemical and classical force-field-based methekich have been used to predict ma-
terial morphologies and evaluate charge transfer reté$:1415The atomic-scale modeling also
stimulated the development of off-lattice stochastic nied®!’In these models, molecular posi-
tions and rates are generated according to the distribfuroetions evaluated in a small atomistic
morphology. Stochastic models allow to simulate chargespart in micrometer-thick layers while
at the same time retaining the link to the chemical compmwsiti

Both stochastic and atomistic models have helped to pinglbawbacks of GDM and CDM.
In particular, the CDM assumes a charge interacting with@amy oriented, constant magnitude
dipoles of surrounding moleculés:® which leads to an energy correlation function of the form
c(d) ~ 1/d. The underlying assumption is, however, not well justifiEgdjure Figure 1 shows that
the distribution of magnitudes of molecular dipole momentan amorphous mesophase can be
rather broad. A similar situation has been observed in aipstems, e.g., typical dye molecules
used as donors in organic solar céifsAs a consequence, the spatial correlations of site energies

can have decays of the correlation function different frofd dependencé?1°



For accurate parametrizations of stochastic models ieietbre desirable to have an algorithm
which can generate site energies with a predefined cowrlainction. The goal of this work is to
devise such an algorithm and to test it on a typical amorpkensconductor, DPBIC, the chemical

structure of which is shown in the inset of Figure Figure 1.

2 Atomistic smulations

To evaluate the reference spatial correlation functionfivee use atomistic molecular dynamics
to generate an amorphous morphology of 4000 DPBIC molecllés.then employ quantum-
chemical calculations and polarizable force-fields to ws#d electronic couplings, site and reor-
ganization energies. To validate the algorithm and totilaie the vital role of correlations, we
finally study charge dynamics by solving the master equatibin the help of the kinetic Monte
Carlo algorithm. Charge hopping rates entering the masteateuare evaluated within the high-
temperature limit of the non-adiabatic charge transfeoitye

For morphology simulations we use an OPLS-b&$&dforce-field with missing bonded inter-
actions parametrized using the potential energy surfagssabtained using the density functional
theory (B3LYP functional and 6-311g(d,p) basis set), asrilesd elsewheré! Partial charges are
fitted using the Merz-Kollman schenté:25To obtain the amorphous morphology, the box of 4000
molecules is first simulated at 700 K, which is above the gtemssition temperature, and then
guenched to 300 K. The size of the final box is about 16 nm. Atlidations are performed in the
NPT ensemble with the Berendsen barostat and therm&btat.

The hole site energies are evaluated using a perturbatp®agh, in which electrostatic and
induction energies are added to the gas-phase ionizatientia of a moleculé, i.e.,EA = Eiﬁt+
E&+Epu, WhereEp, is the ionization potential in vacuurBy) is the electrostatic interaction energy

of partial charges, anﬂlﬁoI is the polarization contribution. Since rates depend onlgite energy

differences!-2728the ionization potential does not affect rates or the spatigelation function

of a mono-component system. The electrostatic contribubdhe site energieEQ, is calculated
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Figure 1: Distribution of molecular dipoles in an atomistiorphology of 4000 DPBIC molecules.
The inset shows the chemical structure of DPBIC (Tris[(3rythéH-benzimidazol-1-yl-2(3H)-
ylidene)-1,2-phenylenel]ir), which is used as a hole-catidg and an electron-blocking layer in
modern OLEDg02!
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Figure 2: Site energy distribution evaluated in the atomistorphology and the fit to a Gaussian
distribution witho = 0.176eV.
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Figure 3: Spatial site energy correlation evaluated in amadtic morphology (symbols) and its

reconstruction using the numerical scheme described itetligdashed line). Thin dotted lines
show correlation functions of the ECDM model for two diffetdattice spacings.



using the Ewald summation technique adapted for chargedrag$®30 All induction effects are
incorporated in this scheme using the Thole m&t&t with a cutoff of 3nm. Details of this
approach are described elsewh&td@.he distribution of site energies, shown in Figure Figure 2,
is, to a good accuracy, Gaussian with a standard deviation=00.176eV.

The spatial correlation function(d), which describes the correlation of site energies of mdéscu

at a (center-of-mass) separatibrs calculated as
c(d) =E [EAEB} /02, (1)

whereE” andEB are energies of moleculgsandB separated by distanckandE[-] is the ex-
pectation value. The spatial correlatiof§’(d), evaluated in the atomistic system, is shown in
Figure Figure 3 (symbols).

Since we are dealing with amorphous materials, we assummalig-activated type of trans-

port and use the semi-classical charge transfer rate esipnds22

2 AB _ x)?2
WpB = 2_7-[\]"‘;8 exp _M (2)
h /4mAksT AAKg T

Here the reorganization energy, reflects the effect of molecular rearrangement in resptmse
the change of the charge statdag describes the strength of the electronic coupling between
two localized (diabatic) states, aldE”B = EA — EB is the aforementioned driving force. For
DPBIC the calculated (B3LYP, 6-311g(d,p)) internal reorgation energy for hole transport is
A =0.13eV.

Electronic coupling element3,g, between the initial and the final states of a molecular dimer
are evaluated by approximating its diabatic sates with tkdst occupied molecular orbitals of
monomers (frozen core approximation) and using a projectiethod>*-36

To model charge dynamics, we solve the corresponding masgation using the kinetic



Monte Carlo (KMC) algorithm?®”-3 The mobility is calculated from the KMC trajectory’ds

s

wherey; is the velocity of tha-th carrier,(---) denotes the average over the simulation time, and

the sum is performed ovét carriers.

3 Thealgorithm

Figure 4: Mixing-in of site energies: the site energy catiein of two moleculeA andB is
determined by the (weighted) number of moleculéss, (red), within the overlap of spheres of
radiirj centered af andB.

Given the spatial correlation functiod®'(d), and the varianceg?, of the Gaussian site energy
distribution in the atomistic system, our goal is to gerersite energies for a large stochastic
morphology, with the same distribution and spatial cotrefa The idea is to add to a site energy
of a moleculeA appropriately weighted energies of neighboring sites.

To do this, we first assigiN + 1 independent random numbers}(jA (0 < j <N, to every
molecule (site)A. These random numbers are Gaussian-distributed with meawa @ariance 1,

X]-A ~ #(0,1). A nonzero mean value of can be achieved by replacid by EA +m.



We now express the site energy of a molecdhkes

b
= Vax§ +Jz @ Wz( )ij. (4)

Here.”(rj,A) is a sphere of radiug centered at a moleculs, the sum runs over the sit&s# A
located within this spheré,jA = %mfp is the number of sites (molecules) in this sphere, amnsl
the site number density (molecules per volume), which warassto be constant. This is shown
schematically in Figure Figure 4. The first term in EquatiBg.((4)) is used to adjust the width of
the final distribution ¢), while the second term, which mixes in the energies of thghi®rs, is
used to adjust the decay of the correlation function.
The choice of energies in the form provided by Equation (B9§). &llows to obtain a simple

analytic expression for the correlation function and thearece of the resulting Gaussian distribu-
tion. Following the definition of site energies, Equatiomj(E4)), we can rewrite the expectation

value as

E[EAEB}:;Z W > ,Z cndij

— 1
Z\ \ /éIAEIB ces r.,Az)rwS/’ (ri,B)

EAB

:Zb,\/M Zf(zr)b' (5)

Here we used the fact that the random numbéfsare independent, hencmxiAXjB] = &Ong-

("B = pVAB is the number of molecules in the intersection of two sphatea separatiom,
Z(ri,A) N.7(ri,B), VA8 is the volume of this intersection/*® = L rt(4r; +d) (2r; — d)? for

d < 2rj and zero otherwise (see Figure Figure 4).



The standard deviation &” can be evaluated in a similar fashion, yielding

02—FE [(EA>2] _E [EAr:a—kiibi. (6)

Inserting these expressions into the definition of the ¢aticn function, Equation (Eq. (1)), we

obtain the spatial correlation function for molecukeandB at separatioiwl

ctd) = 325 & (5 )b ¢
£ = i ©

o?=a+ 3 by ©

An intuitive geometric interpretation of Equation (Eq.)X®thaté (d/2r) provides a (normal-
ized) overlap of two spheres of radii with their centers separated by a distadcé his overlap
determines the spatial correlation function, since sitderiging to the overlap contribute equally
to site energies of two molecules located in the centerseo$ptheres (see Figure Figure 4).

By providing the reference correlation functionNhpoints,c®” = ¢®(d;), i = 1,2,...,N, we

obtainN linear equations
ref 1 A
G =3 le §ijbj, (10)

whereéjj = £(di/2rj). The solution of Equation (Eq. (10)) provides the weightaugfficients

bj and thus a unique interpolation of the reference correidtimction in terms of finite support
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functionsé, i.e, piecewise-defined cubic polynomials. Once the caefftsb; are known,a can
be determined from Equation (Eq. (9)). In practice, howeseme coefficientl; can be negative,
leading to imaginary values qfb; in Equation (Eq. (4)) and thus unphysical energies. In thgec
a recursive scheme, which provides an approximate soltdgi&guation (Eq. (10)), becomes more
practical.

To devise the recursive scheme, we note that there is stidlri@io degree of flexibility in
choosing the grid pointd; andr;. We now choose the second grid such that di1/2, whered;
are the points in which the reference function is evaluatedl...N —1, andry = (dy +4)/2,
with A = dy — dy_1. Note that the generated correlation function will be zerohie last point,
c(2rn) = 0. Given this choice of grid pointgj; = 0 fori < j, i.e.,j; becomes a triangular matrix.

Equation (Eg. (10)) then simplifies to

N
o’ =b&i+ Y &by, (11)
j=1+1

and can now be solved faw recursively, starting fronby. The final recursive algorithm reads
_ a2 ref
1. Bvaluateby = £ -C\'-

2. Starting fromN — 1 evaluate recursively fad —1>i>1

1 2 ref N
bi:a oGt — > &by (12)

j=1+1

If bj becomes negative, rescéie 1 by a factor 0< n < 1 and recalculatb;. If bj; 1 < J, set

it to zero.
3. Evaluatea according to Equation (Eg. (9)).

4. ForM sites andN values of the reference functiaf’ generateM x (N + 1) random vari-

ablesX” ~ .#(0,1), 1< A<M, 0<i<N.
5. Evaluate site energies of all molecules according to &ougEq. (4)).

11



Note that the second step includesaaihoc way of enforcing alb; coefficients to be positive.

4 Validation
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Figure 5: Poole-Frenkel plot for charge transport simualatea box with identical positions and
distributions of site energies but different spatial clatiens. A lattice constant of 1.06 nm has

been used in the ECDM.

We now apply the developed scheme and study hole transpantamorphous morphology of

DPBIC. The reference spatial correlation function has beatuated in the atomistic system of

4000 molecules as described in sec. Section 2. To improveuimerical stability of the algorithm,
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we first smoothen the reference data which is evaluatdd 124 points and fit a stretched ex-
ponential,a exp(—BdY), to the atomistic correlatioro(= 2.83, 3 = —1.73, y = 0.56). The fitted
function is then used as an input for the algorithm.

Figure Figure 3 shows an excellent agreement between atored functions evaluated in the
atomistic reference and in the generated stochastic sy#td0000 sites. We have used the value
of & = 102 and the scaling factan in the range between® and 099, which yields sufficient
accuracy and fast convergence of the recursive algoritlemcédmparison we also show the corre-
lation function of the ECDM¢E“PM(d) = 0.74a/d, for two different values of the lattice constant
a. The lattice constant of 1.06 nm corresponds to the averagemolecular distance of the nearest
neighbors and leads to a significant overestimation of tmeetadion. a = 0.44nm is obtained by
fitting the charge mobility of an atomistic reference to timalgtical expression provided by the
ECDM.Y" The rationale behind a much smaller fitted lattice constsumow apparent: the only
adjustable parameter of the ECDM which enters the correldtiaction is the lattice spacing
Since the field dependence of the charge carrier mobilityery gensitive to spatial correlations
of site energies, the ECDM tries to provide the best approanao the atomistic correlation
function — by reducing the lattice spacing to an unphysiedli®. equation Finally, we shall ask
ourselves whether an accurate reproduction of the spatiedlations is important. To answer this
guestion we have performed charge transport simulatioagstems of 40000 sites, with the posi-
tions of molecules obtained using the iterative Boltzmanerision method, which reproduces the
radial distribution function of the atomistic referente3® To this end, we have simulated charge
transport in three systems, all with Gaussian-distrib(ted 0.176 eV) site energies. The site en-
ergies were (i) uncorrelated (ii) correlated with the clatien function of the atomistic reference
(iii) correlated with the ECDM correlation function and la# constana = 1.06 nm. Since the
EGDM site energy correlation is very long-ranged, the (norferm) grid in the algorithm was
extended to 15 nm. Charge transport simulations were peefaha concentration of 10 carri-
ers per site (four charges), which leads to finite size effectaller than 0.5%° The Poole-Frenkel

plots, i.e., the logarithm of the mobility versus the squarat of the external field, are shown in
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Figure Figure 5 for all three cases. It can be seen that wrpatyad correlations result in ca. two

orders of magnitude difference in the mobility values. Rerimore, the slopes also differ, which
can be rationalized in terms of the “effective” energetmodder, i.e., the energy variation of those
sites which are most frequently occupied by charge carffevile conclude that the spatial corre-
lation of site energies should be reproduced as accuraiesagfe in order to achieve quantitative

modeling of transport in amorphous organic materials.

5 Discussion and conclusions

To summarize, the proposed algorithm allows to generateyeheansport networks with millions
of molecules, which helps to reduce finite-size effects argdudy systems of small (but physically
relevant) charge densities. One can, therefore, simulatert-voltage characteristics of realistic
devices by first tabulating mobility values as a functioneshperature, charge density and external
electric field and then solving continuous drift—diffusiequations. This approach yields results
which are in an excellent agreement with experimental nreasents*

It is also possible to extend the scheme to two or more matetyyples. In this case one has
to take into account not only the autocorrelation function &lso the correlation between two
different types of molecules and add an additional indextfermolecule type to thie coefficients
and random numbers.

The described algorithm also improves the moving-averaberae proposed earliéf.It can
reproduce arbitrary correlation functions, is easy to enattive, and does not need iterative gener-
ation of site energies for trial correlation functions.

To conclude, we have developed a method which can generatgs@a-distributed energies
with a predefined spatial correlation function. We havesiilated that the correlated and extended
correlated Gaussian disorder models are unable to repeahatial correlations of atomistic sys-
tems, or use effective (and unphysical) values of the mttionstant to do this. The developed

method can be used to either refine the family of Gaussiamd#isonodels or to construct accurate
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stochastic off-lattice models.
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