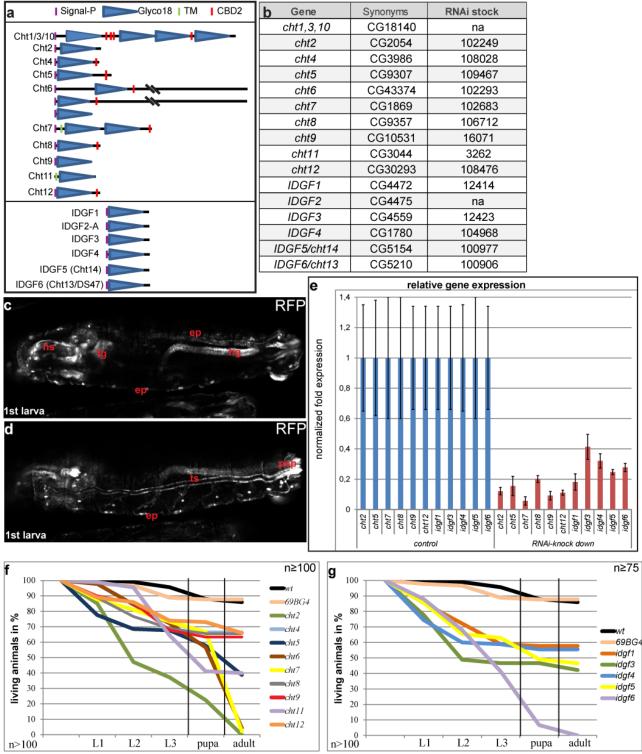
Supplementary Information

Chitinases and Imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects

Yanina-Yasmin Pesch^{a,b}, Dietmar Riedel^c, Kapil R Patil^b, Gerrit Loch^b, and Matthias Behr^{a,b}*

^aInstitute for Biology and Translational Center for Regenerative Medicine (TRM), University of Leipzig, 04103 Leipzig, Germany

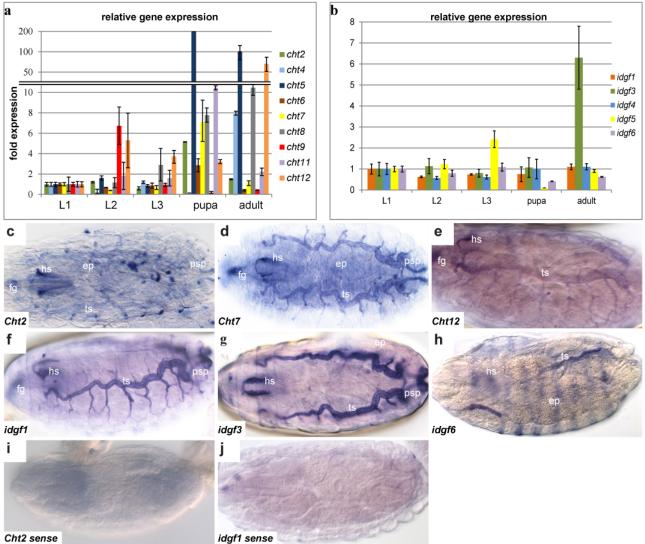

^bLife & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany

^cMax Planck Institute for Biophysical Chemistry, Electron microscopy group, 37077 Göttingen, Germany

*Correspondence to: <u>matthias.behr@uni-leipzig.de</u>

Supplementary Figures and Legends

Supplementary Fig. S1



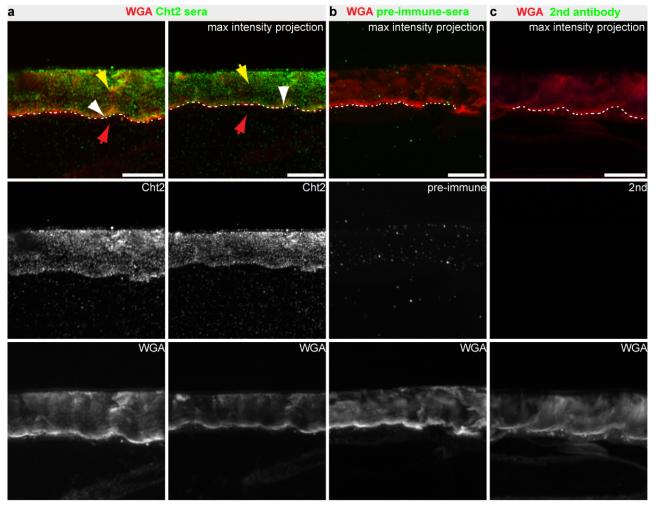
The Drosophila family18 members, used RNAi stocks and knockdown expression effects.

(a) Schematic drawings of the glycosylhydrolase *family18* indicate the Glyco18 domains (blue), N-terminal Signal-Peptides (Signal-P, purple), transmembrane domains (TM, green) and chitinbinding domains (CBD2, red). The *Drosophila family18* contains ten genes encoding the Chitinase (Cht) and six genes encoding the Imaginal disks growth factor (Idgf) proteins. The diagram illustrates that Chts contain individual and Idgfs common domain arrangements. Cht1, 3 and 10 are

encoded by a single gene. For Cht6 different protein variants were predicted. Domains were annotated with the SMART (EMBL) database and the CBS Server (CBS: http://www.cbs.dtu.dk/) (SignalP 4.1). (b) The table summarizes the Drosophila family18 cht and idgf genes. The FlyBase gene accession numbers and used Vienna RNAi stocks are provided. With the exception of *Cht1/3/10* gene and the *idgf2* gene, RNAi knockdown lines were used for all other genes. However both genes were investigated previously in Tribolium castaneum. In particular the Cht1/3/10 gene showed severe cuticle molting defects throughout development¹. These data supplement our knockdown screen. It is of note that the knockdown strategy with Vienna RNAi stocks resulted in efficient reduction of transcript levels. (c,d) The 69B-Gal4 drives embryonic and larval RFP expression in cuticle forming epithelia such as the epidermis (ep), head skeleton (hs), parts of the digestive system (foregut, fg; hindgut, hg), posterior spiracles (psp) and tracheal system (ts). (e) The quantitative RT-PCR analysis compares relative expression levels of Chts between wt and knockdown first instar larvae. Progeny of crosses from individual UAS-RNAi lines with 69B-Gal4 which showed severe epidermal cuticle defects (Figures 1,2) and reduction of expression levels upon Cht2, Cht5, Cht7, Cht9 and Cht12 as well as idgf1, idgf3, idgf4, idgf5, idgf6 knockdown. Standard deviation bars are indicated. The analysis shows fold expression levels normalized to wt (1 = 100%). (f,g) Lethality of animals upon UAS-RNAi-mediated knockdown of Cht (f) and idgf (g) genes using the 69B-Gal4 driver line. Individual knockdown animals ($n\geq 100$) were monitored for twelve days after egg laying, which is an adequate time period to analyze embryogenesis, larval stages, pupal development and early adulthood. In summary, this assay showed lethality during larval and pupal stages for individual knockdown of all tested Drosophila Chts/idgfs, with variability in the phenotypical severity, while wt and 69B-Gal4 control animals survived until adulthood. The highest lethality was caused by the Cht2 and idgf6 knockdowns during larval stages.

Spatial-temporal gene expression profiles of *Cht* and *idgf* genes.

(a, b) Transcription levels of *chitinase* (a) and *idgf* (b) genes relative to first instar larvae. Most *Cht* genes are constantly expressed throughout larval stages. The Cht9 gene is up-regulated at second instar, which matches its specific requirement for molting into third instar. The Cht12 gene is more strongly expressed during larval stages and mutants showed only larval molting defects. The Cht2,5,6,7 genes show strong up-regulation during pupal stages reflecting their involvement in pupal molting. Note that Cht5 expression was > 323 fold upregulated in pupae. It is of note that Cht8 and Cht11 gene expressions are enriched during pupal development, but pupal molting defects were not observed. The Cht11 gene product was discussed to be associated with mitochondrial functions for identification of critical infections². The function of *Cht8* remains unknown. Chts5,8,12 and idgf3 are specifically enriched in adult flies, and may take over their enzymatic function later on after development. (c-j) Stage 17 whole mount embryos were stained by *in situ* hybridization as previously described ³ with DIG-labeled RNA antisense (c-h) and sense (i,j) probes. The Cht2, Cht7, Cht12, idgf1, idgf3, idgf6 genes show mRNA expression in the cuticle producing organs, the mouth hooks (mh), the epidermis (ep), the tracheal system (ts) and the posterior spiracles (psp). Little expression is also detected in the foregut (fg). In contrast, the negative controls, the sense probes, did not detect expression.


Supplementary Fig. S3

Epidermal cuticle formation in second and third instar larvae.

Ultrastructure analysis of epidermal cuticle in third instar larvae. (a,b) In *wt* epidermis the cuticle contains pore-canal-like structures (arrows). The second instar (a) shows canal-like structures running across the procuticle. The third instar (b) shows pore-canal-like structures only in the epicuticle and the outermost two chitin-lamellae of the procuticle. (c) In *Cht2* knockdown larvae, pore-canal-like structures appeared in the procuticle but did not cross the lamellae. (d) In the *idgf6* knockdown epidermis, pore-canal-like structures (dashes) are distributed throughout the degraded procuticle. (e) Negative control for WGA labeling shown in Fig. 5f-f'. Second instar larvae after immunogold-labeling but without using WGA. Scale bars represent 5 μ m in B and 1 μ m in a,c,d,e.

Supplementary Fig. S4

Cht2 is localized within the larval cuticle.

Immunofluorescent detection of Cht2 in the cuticle of wt third instar larvae by using Cht2 antibody serum and an anti-rabbit Cy-3 secondary antibody. The chitin-matrix and the apical surfaces were visualized by WGA (red). (a,b) Co-labeling studies (n=7 larvae) were performed with the Cht2 antibody serum (rabbit, green) shown as single image (a) or as confocal Z-stack projection (b). (c.d) As negative controls (n=7 each) the pre-immune serum (c) and the Cy-3 secondary antibody alone were used (d). Our preliminary data show representative Cht2 staining (a,b) within the cuticle (yellow arrow) and at the apical cell surface where the assembly zone is expected (white arrows). The epidermal cells underneath are indicated by the red arrows. The negative controls reveal no or very little signal in the cuticle (c, d). For comparison, all confocal settings were adjusted to similar settings (laser power, available gain functions, off set, pinhole size). Anti-Cht2 antibody was generated in rabbits (Pineda, Germany) against the peptide WDPQTSQVLAKSERN (amino acid 335 to 349). The peptide sequence is specific to all predicted Cht2 protein variants (see FlyBase) and did not show any cross-reactivity to other Drosophila proteins as tested by FlyBase and NCBI Blast search engines with stringent and less stringent matrices. For stainings the unpurified Cht2 antibody serum was used in a 1:1000 dilution. Contrast and brightness of images of original data were not changed afterwards. White dashes mark the apical cell surface. Scale bars indicate 10 µm.

Supplementary Fig. S5

edes ae		(4a)	racanhila mala	nogartas (n	m)			Ander another	(Aa) Drosophila melanogaster (Dm)
		HDKVVVCYVSTWAVYRPEQGA	rosophila mela			HODT VE		Aedes aegypti Dmldgf6 7	(Aa) Drosophila melanogaster (Dm) AIVSLCLASIQASKVGAPQLPKKHLVCYYDSASFVKEGLGKLVIDELEPALQFCDYLVYG 6
			++++NFDPNLCT				50	Dimagio /	A+++CL + + G Q K ++CYYD A+F+ EGLGK+ + ++E AL FC +LVYG
ht2		H TVVVCITSTWAVIR GT					C 7	AaIdgf6 7	AVTAICLLGVLLAPTGYSQSTAK-VLCYYDGANFLIEGLGKVSLTDIEAALPFCTHLVYG 65
ht2	8	HGRVVVCTISSWAVIRSGAGS	FSLKNFDPNLCT.	HVVHAYAGL	DVERNTIKSLDR	WQDLKD	67	Addgio /	AVIAICEDSVERAFISISQSIAR-VIGIIESAAFEIESESAVSEIDIEAAEFFCIIEVIS
ht2	9.9	EYGKGGYEKMTGLKRSHPHL	KUSLATCOWNED	SANASTINA	INT.L.DCDFVKOU	SSETDEN	158	DmIdgf6 67	YAGIERDSHKAVSLNQQLDLDLGKGLYRTVTRLKRKYPNVKILLSVGGDKDIELDKDAKE 1
JIICL			+ +++GGWNEGS			+FIR+Y	100		YA ++ DS+KAVS N LDLD GKG YR VT LKRK+P +K+LL +GG +
Cht2	68	NYGLGGYEKLVNL					119	AaIdgf6 66	YAAVDPDSNKAVSRNANLDLDTGKGNYRQVTGLKRKFPGLKVLLGIGGYRFSA 1
								_	
Cht2	159	NFDGLDLDWEYPTORKGKPA	DRENFVLLTKEL	REEFDENGL	LLTSAIGASKKV	IDEAYDV	218	DmIdgf6 127	LPNKYLELLESPTGRTRFVNTVYSLVKTYGFDGLDVAWQFPKNKPKKVHSGIGSLWKGFK 1
ION OL	205	FDGLDLDWEYPTQR G+P D							KYLELLES R F+N+VYS+VK Y FDG+D+AWQFP+NKPKKV S G LW GFK
Cht2	120	GFDGLDLDWEYPTQRGGEPN					179	AaIdgf6 119	ASPKYLELLESGAARITFINSVYSIVKAYDFDGIDLAWQFPQNKPKKVRSSPGKLWHGFK 1
								-	
Ch+2	219	RQISRYLDYLHIMCYDYHGS	WODDVCYNADLT	a pannot.sv	FSTDVI.LKLGA	DDEKT.MM	278	DmIdgf6 187	KVFSGDSIVDEKSEEHKEQFTALLRDVKNAFRPDNLLLSTTVLPNVNSSLFYDIPAVVNY 2
		+++YLD LH+ CYDY G W-					2.70		KVF+GDS++DEK++EH+E+FTALLR++KNAFR D L TVL +VN+S+F DIPA+VNY
aCht2	180	ENLTKYLDLLHVKCYDYRGI					237	AaIdgf6 179	KVFTGDSVLDEKADEHREEFTALLREMKNAFRSDGYQLGITVLSHVNASMFMDIPAIVNY 2
ion or				obb minter.			207		
nCht2	279	GLPFYGRTFKTLASGFLN	DVSEGVGEKGPY	TREDGELGY	VELCOTLSNOTS	GWTREWD	336	DmIdgf6 247	LDFVNLGTFDFFTPQRNPEVADYAAPIYELSERNPEFNVAAQVKYWLRNNCPASKINVGV 3
			+E F GPYT						LDFVN+ +D TP+RN + AD+ APIYELSER P NV VK WL ++ PASK+ V +
aCht2		GLPFHGRTFIADSIFYTRIG					296	Aaldgf6 239	LDFVNIAAYDMQTPERNKKEADFYAPIYELSERIPGNNVDGLVKVWLNSHAPASKLIVSI 2
ion or	200		brind forborr	101201101		i ninginin 2	250		
Cht-2	337	POTSOVLAKSERNVFTOEIN	VVTYDSSDSTAM	KATEWeko	LAGVMVWSVDTD	DFLGNCK	396	DmIdgf6 307	ATYGRPWKLTDDSGDTGVPPVKDVKDEA-PVGGNTQVPGIYSWPEVCALLPNQNNAYLKG 3
			+ YDS+RSIA K						T+GR WK+T+DSG TGVPP+ V D A P G Q G YSW E CA LPN +N LKG
Cht?		PEASEVIARMQDGSKTK					353	Aaldgf6 299	PTHGRGWKMTEDSGITGVPPLVADGASPAGTQLQQEGFYSWAETCAKLPNPSNTALKG 3
	231	- THE A LEWISDON IK	.IVIDDIKDIAA			SE HONGN			
"Ch+2	297	LDEDTYEDFQKVTAAPKRSS(ONVELLETINES	TMLAUDET	426			DmIdgf6 366	ANAPLIKVQDPAKRFGSYAYRAADKKGDNGIWVSFEDPDTAADKAGYVRTENLGGVALFD 4
	331	+E+T+ DF P	+ LLRTIN A						A+ PL KV DP KRFGSYA+R D G++G+WV++EDPD+A +KA YV+ + LGG+A+ D
Ch+2	354	+E+T+ DF P AEEETFVDFDNKLRTPPPIQ			393			Aaldgf6 357	ADGPLRKVGDPTKRFGSYAFRLPDSSGEHGMWVTYEDPDSAGNKAAYVKAKGLGGIAIND 4
Junt	224			- mailer					
1. 1	,	· (n/) •						DmIdgf6 426	LSYDDFRGLCTNEKYPILRAIKYRL 450
		nanus corporis (Ph) D ARTGPLHDKVVVCYVSTWAV							L++DDFRG C EKYPILRA KYRL
nCht2	33		-		-		92		
	-	R P+HDK VVCY+ TW+1						Anopheles ga	nbiae (Ag) Drosophila melanogaster (Dm)
Cht2	5	TRLKPIHDKHVVCYIGTWS	VYRPGKGSFKIE	NIDGNLCTH	IVYAFVGLNATT	NTLRSIDP	64	DmIdgf6 1	MIIKALAIVSLCLASIQASKVGAPQLPKKHLVCYYDSASFVKEGLGKLVIDELEPALQFC 6
_								•	M K A L L + S+ Q P K ++CYYD+A+F+ EGLGK+ + +++ AL FC
nCht2	93	WQDLKEEYGKGGYEKMTGLK					152	AgBRP2 1	MWCKQFAGALLLLVATSQYVQSQQPSK-VLCYYDAANFLIEGLGKVSLADIDAALPFC 5
		+ DL+E YGKG ++KMT LI				+F+ V			
Cht2	65	YYDLEENYGKGSFKKMTQL	KLKYPNLKVTLA	VGGWNEGSA	NYSNMALVPENR	RKFINSVM	124	DmIdgf6 61	DYLVYGYAGIERDSHKAVSLNOOLDLDLGKGLYRTVTRLKRKYPNVKILLSVGGDKDIEL 1
									+LVYGYAGI+ +++KAVS LDLD GKG YRTVT+LK KYP++K+LL +GG K
								AgBRP2 58	THLVYGYAGIDVETNKAVSRQPNLDLDTGKGNYRTVTQLKSKYPSLKVLLGLGGYK 1
mCht2	153	SFIRKYNFDGLDLDWEYPTQ	RKGKPADRENFV	VLLTKELREE	FDEHGLLLTSA	IGASKKVI	212	-	
		++ KYNFDG DLDWE+P I						DmIdgf6 121	DKDAKELPNKYLELLESPTGRTRFVNTVYSLVKTYGFDGLDVAWQFPKNKPKKVHSGIGS 1
Cht2	125	EYVTKYNFDGFDLDWEFPA	ARGGRPEDKONF	ALLVKELKO	ELGKKNLILTAA	LGAAINTI	184		E KYL LLES R F+N+VYSL+KTYGFDG+D+ WQFP NKPKKV S +G
								AgBRP2 114	FSEPSIKYLTLLESGAARITFINSVYSLLKTYGFDGVDLEWQFPMNKPKKVRSTLGG 1
nCht2	213	DEAYDVRQISRYLDYLHIMC	YDYHGSWDRRVG	GYNAPLTAPA	DDPLSVKFSID	YLLKLGAP	272	0	
		+ AYDV +IS++LD LH M	CYDYHG WD+ V	G NAPLT	+ D L ++ SI	+LL+LGAP		DmIdgf6 181	LWKGFKKVFSGDSIVDEKSEEHKEQFTALLRDVKNAFRPDNLLLSTTVLPNVNSSLFYDI 2
nCht2	185	NTAYDVPEISKHLDLLHFM	CYDYHGPWDKTV	GANAPLT	SKDSLDLESSIT	HLLQLGAP	242		+W GFKKVFSGDS++DEK+EEH+E+FTALLR++KNAFR D L TVL +VNSS+F DI
								AgBRP2 171	VWHGFKKVFSGDSVLDEKAEEHREEFTALLRELKNAFRSDGYQLGITVLSHVNSSVFMDI 2
nCht2	273	PEKLVMGLPFYGRTFKTL	ASGFLNDVSEGV	VGFKGPYTRE	DGFLGYNEICQ	TLSNOTSG	330		
		P KLV+G+P YG TF K	+ + + G	G +G +T+	+ GF GYNEIC	L		DmIdgf6 241	PAVVNYLDFVNLGTFDFFTPQRNPEVADYAAPIYELSERNPEFNVAAQVKYWLRNNCPAS 3
Cht2	243	PHKLVVGIPAYGHTFLTKN	VINPKMGIPIIG	PGPEGVFTK	QGFQGYNEICT	ELLKDDEK	302	Dimagio 241	PAVVNILDEVNLGIFDEFIFQRMPEVADIAAPIIELSERMPEFMVAAQVKIWLKNNCPAS 3 PA++NYLDEVN+ +D TP RN + AD+AAP+YELS+R P NV QV+ WL NN PAS
								AgBRP2 231	PAIHNILDEVNH +D IP RN + AD+AAP+IELS+R P NV QV+ WL NN PAS PAIINYLDEVNIAAYDQQTPTRNKKEADHAAPLYELSDRVPGNNVDGQVRLWLTNNAPAS 2
nCht2	331	WTREWDPQTSQVLAKSERNV	FTQEINVVTYDS	SSRSIANKVI	FAMSKRLAGVM	WSVDTDD	390	11giona # 201	TITETTET ATTRACTORY AND AND AND A A A A A A A A A A A A A A
		W++ WD ++S A +		+SI KV				DmIdgf6 301	KINVGVATYGRPWKLTDDSGDTGVPPVKDVKDEAPVGGNTQVPGIYSWPEVCALLPNQNN 3
Cht2	303						355	Dimagio 301	KINVGVALIGRPWALIDDSGDIGVPPVADVADLAEVGGNIQVPGLISWPEVCALLPNQNN S K+ V + T+GR WK+ DSG TGVPP+ P G TQ G YSW EVCA+LPN +N
	200							Arppp1 act	
Cht2	391	FLGNCKLDEDTYEDFQKVTA	APKRSSON	YPLLETINES	TMLAUDELAUDI	EPOPDDSF	447	AgBRP2 291	KLIVSIPTFGRGWKMNGDSGITGVPPLPADGPSNP-GPQTQTEGFYSWAEVCAMLPNPSN 3
	0.71	F G+C K			A A+ + +	nn		D-II C of	
Cht2	356					00000	297	DmIdgf6 361	AYLKGANAPLIKVQDPAKRFGSYAYRAADKKGDNGIWVSFEDPDTAADKAGYVRTENLGG 4
CII CZ	356	ENGDCDKERI	DRVKESAUDKYT.	стык	AVAIAIQQIKL-		351		LKGA+APL KV DP KRFGSYA+R D G++G+WVS+EDPDTA +KAGYV+ +NLGG
- Cb + 2	440			47.6				AgBRP2 350	TALKGADAPLRKVGDPTKRFGSYAFRLPDSNGEHGVWVSYEDPDTAGNKAGYVKAKNLGG 4
icht2	448	NEIPHGSIADRKNAGASMV-							
a			S +TA F					DmIdgf6 421	VALFDLSYDDFRGLCTNEKYPILRAIKYRL 450
Cht2	398	NDIPEVGTNDIDDPKENNV	VPSFQSSITANF	VVI 431					+A+ DLSYDDFRG C EK+PILRA KYRL
								AgBRP2 410	IAINDLSYDDFRGSCAGEKFPILRAAKYRL 439
Cht2	2	(AAF47562.1; see also	flybase: http:/	/flybase.or	g/reports/FBgr	0022702.1	<u>html)</u>		
	1 n	tlrsrlsge apqlwllll	l astasslwa	as vaarto	plhd kvvvc	yvstw av	vyrpeqgay	Dm Idgf6, (N	2_477081.1; see also flybase: http://flybase.org/reports/FBgn0013763.html
	61 a	ienfdpnlc thvvyafag	l ditgaaik:	sl dpwqdl	keey gkggy	ekmtg 1k	rshphlkv		iikalaivs lclasiqask vgapqlpkkh lvcyydsasf vkeglgklvi delepalqfc
		laiggwneg sanystlva							ylvygyagi erdshkavsl ngqldldlgk glyrtvtrlk rkypnvkill svggdkdiel
		nfvlltkel reefdehgl							kdakelpnk ylellesptg rtrfvntvys lvktygfdgl dvawqfpknk pkkvhsgigs
		rvgynaplt apaddplsv							wkgfkkvfs gdsivdekse ehkeqftall rdvknafrpd nlllsttvlp nvnsslfydi
		vgfkgpytr edgflgyne	-						avvnyldfv nlgtfdfftp grnpevadya apiyelsern pefnvaaqvk ywlrnncpas
		ssrsiankv lfamskrla							invgvatyg rpwkltddsg dtgvppvkdv kdeapvggnt qvpgiyswpe vcallpngnn
	421 J 481 1	lrtineatm lavdelavp	e papaasene	er pngsla	urkn agasm	vardt dø	Cavimiin		ylkganapl ikvqdpakrf gsyayraadk kgdngiwysf edpdtaadka gyvrtenlgg
		DAG						421 V	alfdlsydd frglctneky pilraikyrl tn

Cht2 and Idgf6 amino acid sequence analysis shows non-conserved regions.

(a) The Cht2 C-terminal (a) and the Idgf6 N-terminal (b) amino acid sequences are not conserved in insects. Alignments compare amino acid sequences of *Drosophila*, mosquitos and other harmful insects. The amino acids marked in red are less conserved. Non conserved sequences are potential candidate target regions for a species specific insecticide. *Drosophila melanogaster* Cht2 (AAF47562.1); *Pediculus humanis corporis* (body louse, ectoparasite and transmitter of epidemic typhus; XP_002423089.1); *Aedes aegypti* (Cht2, XP_001657537.1; Idgf6, XP_001660748.1) and *Anopheles gambiae* (bacteria responsive protein2 (BRP2; AAS80138.1)). Blast search and alignments by NCBI database.

Supplementary Table 1

Gene	Primer	sequence	efficiency	splice var., #no.
rp49	for	GCTAAGCTGTCGCACAAATG	100%	
rp49	rev	GTTCGATCCGTAACCGATGT		
Cht2	for	ACGAGAAAATGACGGGTCTG	98%	detects all, #6
Cht2	rev	TGAAACTGGACACCTGCTTG		
Cht4	for	ATGACAATCCCGAAAGCATC	105%	
Cht4	rev	ACAGACCACGGAAATCATCC		
Cht5	for	CAACAACCACCACAACAACC	94%	detects all, #2
Cht5	rev	ATCTCGTTGGGATCGAACTG		
Cht6	for	ATGCCCAGTTTGTCCAAGAG	99%	detects all, #14
Cht6	rev	AACTTGGGCACATCGTAACC		
Cht7	for	TTACGAGGCCATCGACTTTC	91%	detects all, #2
Cht7	rev	CCACTCGCAATTCCTTTAGC		
Cht8	for	TCTGGGCAAGTTCGGTATG	70%	detects all, #2
Cht8	rev	GCGTCCACTATTCTCCTCAAG		
Cht9	for	TCGTGCCAACTTTGTGACTC	90%	detects all, #2
Cht9	rev	CGATTTCGTAGGATGCACTG		
Cht11	for	CTGCAAGGCGAACTATGTGA	93%	
Cht11	rev	TGGGTTAGCGGAAATACAGG		
Cht12	for	TCGGACTTTATCCACCTGATG	75%	detects all, #2
				red= intron
Cht12	rev	CTCCTCCATTTCGTTTCCAG		

The table 1 summarizes used primer sequences and their efficiencies for Chts. The Cht12 forward primer recognizes exon (black) and intron (red) sequences. The table further shows the gene splicing variants and if they are detected by the primer pairs.

Supplementary Table 2

Gene	Primer	sequence	efficiency	splice var., #no.
idgf1	for	CAGCTCCGATTTTCTTCCAG	97%	detects all, #2
idgf1	rev	TCCATGCTCTGCCATAACTG		
idgf3	for	TGGAACACTGGTTGCTTCAG	97%	detects all, #8
idgf3	rev	CCGAATCCTTGCTCATCTTC		
idgf4	for	GAAATTGGACCTGGATCTGG	99%	red, detects all,
				#6
idgf4	rev	CAGCAGGGTCAGATACTTGTTG		
idgf5	for	ACCAGACATCCGAAATCAGTG	94%	detects all, #2
idgf5	rev	TCGGGTCATATTCCAAGCTC		
idgf6	for	AGCGCAAGTATCCCAATGTC	88%	detects all, #4
idgf6	rev	CGGTATTCACGAAACGAGTG		

The table 2 summarizes used primer sequences and their efficiencies for idgfs. The idgf4 forward primer sequences marked in red detects all predicted splicing variants. The black labeled part detects only 5 variants. The table further indicates the gene splicing variants and if they are recognized by the primer pairs.

Supplementary Table 3

Gene	web link for FlyBase gene card
Cht2	http://flybase.org/reports/FBgn0022702.html
Cht4	http://flybase.org/reports/FBgn0022700.html
Cht5	http://flybase.org/reports/FBgn0038180.html
Cht6	http://flybase.org/reports/FBgn0263132.html
Cht7	http://flybase.org/reports/FBgn0035398.html
Cht8	http://flybase.org/reports/FBgn0034580.html
Cht9	http://flybase.org/reports/FBgn0034582.html
Cht11	http://flybase.org/reports/FBgn0029913.html
Cht12	http://flybase.org/reports/FBgn0050293.html
idgf1	http://flybase.org/reports/FBgn0020416.html
idgf3	http://flybase.org/reports/FBgn0020414.html
idgf4	http://flybase.org/reports/FBgn0026415.html
idgf5	http://flybase.org/reports/FBgn0064237.html
idgf6	http://flybase.org/reports/FBgn0013763.html

Table 3 provides the direct link to FlyBase

Supplementary References

- Zhu, Q. Arakane, Y. Beeman, R. W. Kramer, K. J. & Muthukrishnan, S. Functional specialization among insect chitinase family genes revealed by RNA interference, *Proceedings* of the National Academy of Sciences 105, 6650–6655 (2008).
- Ohlen, T. von, Luce-Fedrow, A. Ortega, M. T. Ganta, R. R. & Chapes, S. K. Identification of Critical Host Mitochondrion-Associated Genes during Ehrlichia chaffeensis Infections, *Infection and Immunity* 80, 3576–3586 (2012).
- 3. Wingen, C. Stümpges, B. & Hoch, M and Behr, M. Expression and localization of clathrin heavy chain in Drosophila melanogaster, *Gene Expr. Patterns* **9**, 549–554 (2009).