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a b s t r a c t

We use a physically-based crystal plasticity model to predict the yield strength of body-
centered cubic (bcc) tungsten single crystals subjected to uniaxial loading. Our model
captures the thermally-activated character of screw dislocation motion and full non-
Schmid effects, both of which are known to play critical roles in bcc plasticity. The
model uses atomistic calculations as the sole source of constitutive information, with no
parameter fitting of any kind to experimental data. Our results are in excellent agreement
with experimental measurements of the yield stress as a function of temperature for a
number of loading orientations. The validated methodology is employed to calculate the
temperature and strain-rate dependence of the yield strength for 231 crystallographic
orientations within the standard stereographic triangle. We extract the strain-rate sensi-
tivity of W crystals at different temperatures, and finish with the calculation of yield
surfaces under biaxial loading conditions that can be used to define effective yield criteria
for engineering design models.

© 2015 Elsevier Ltd. All rights reserved.
1. Background and motivation

The plastic behavior of body-centered cubic (bcc) single crystals at low to medium homologous temperatures is governed
by the motion of ½〈111〉 screw dislocations on close-packed crystallographic planes. There are two particularities that make
bcc metals unique in relation to their deformation characteristics. The first one is the thermally-activated nature of screw
dislocation glide, a consequence of the compact (non-planar) structure of the dislocation core at the atomistic level (Vitek,
2004; Wurster et al., 2010; Li et al., 2012; Samolyuk et al., 2013). This feature is also responsible for the high intrinsic fric-
tion stresses reported in the literature for bcc metals and their alloys (Romaner et al., 2010; Samolyuk et al., 2013). The second
is the breakdown of the standard geometric projection rule of the resolved shear stress (RSS) from the total stress tensor
known as Schmid law (Schmid and Boas, 1935). This is owed to both specific crystallographic properties of the bcc lattice
structure as well as to the coupling between the dislocation core and non-glide components of the stress tensor, which eto
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the best of our understandinge is unique to bcc crystals (Bulatov et al., 1999; Brinckmann et al., 2008; Woodward and Rao,
2001; Chaussidon et al., 2006; Gr€oger and Vitek, 2005). These anomalies have been the subject of much research and dis-
cussion going back to the 1960's (Takeuchi et al., 1967; Hull et al., 1967; Duesbery, 1969; Duesbery and Foxall, 1969), both
experimentally and emore recentlye using computational atomistic models.

In regards to the first point above, at low stresses slip proceeds via the thermally activated nucleation of steps on the
dislocation line, known as kink pairs, and their subsequent sideward relaxation. For a constant strain rate, this gives rise to the
characteristic temperature dependence of the flow stress in bcc single crystals, which has been observed for all refractory
metals and is considered to be a principal signature of their plastic response (Seeger, 1981; Ackermann et al., 1983; Taylor,
1992; Gordon et al., 2010; Chaussidon et al., 2006; Yang et al., 2001). The flow stress is considered to be composed of ther-
mal and athermal contributions, with the latter depending on temperature only as the elastic moduli. Dislocation glide is
thought to occur on {110}, {112}, and even {123} planes, depending on temperature and stress, over a periodic energy
landscape known as the Peierls potential UP. The connection between the experimentally measured flow stress and this pe-
riodic energy potential is via the critical stress for which UP vanishes at zero temperature, known as the Peierls stress sP.
Theoretically then, the flow stress at very low temperatures (�25 K) is thought to represent the macroscopic equivalent of sP
as the temperature approaches 0 K. sP can thus be unequivocally defined and has been the object of considerable numerical
work since the first atomistic models were devised by Vitek and co-workers starting in the 1970s (Vitek and Yamaguchi,1973).

For their part, non-Schmid effects were detected in tests done in the 1930's by Taylor in the wake of his seminal works on
plastic flow and strain hardening (Taylor, 1928, 1934a, 1934b). Subsequent observations and measurements (�Sest�ak and
Z�arubov�a, 1965; Sherwood et al., 1967; Zwiesele and Diehl, 1979; Christian, 1983; Pichl, 2002; Escaig, 1968, 1974), and a
rigorous theoretical formulation of the problem (Duesbery and Vitek, 1998; Ito and Vitek, 2001; Woodward and Rao, 2001;
Gr€oger and Vitek, 2005; Chaussidon et al., 2006; Gr€oger et al., 2008a,b; Soare, 2014) have established non-Schmid behavior as
a principal tenet of bcc plasticity that must be accounted for in order to understand bcc plastic flow. In terms of phenom-
enology, the two essential aspects to bear in mind are (i) that the resolved shear stress is not independent of the sign of the
stress in glide planes of the 〈111〉 zone (the so-called twinning/anti-twinning asymmetry), and (ii) that non-glide components
of the stress tensor ei.e. those which are perpendicular to the Burgers vectore play a role on the magnitude and sign of the
RSS on the glide plane of interest.

Areas where we do not have a complete understanding of bcc plastic picture include the value of the flow stress at near
zero absolute temperatures, the meaning of the so-called knee temperature, and the onset of athermal flow. In the last two
decades, computer simulation has unquestionably emerged as discipline capable of shedding light on these processes on a
similar footing with experiments, providing physically-substantiated explanations across a range of temporal and spatial
scales. These include the use and application of density-functional theory methods (Ventelon and Willaime, 2007; Ventelon
et al., 2013; Weinberger et al., 2013; Dezerald et al., 2014, 2015), semi empirical atomistic calculations and molecular dy-
namics calculations (Gilbert et al., 2011; Queyreau et al., 2011; Chang et al., 2001; Komanduri et al., 2001), kinetic Monte Carlo
(Lin and Chrzan, 1999; Cai et al., 2002; Deo and Srolovitz, 2002; Scarle et al., 2004; Stukowski et al., 2015), and crystal
plasticity (CP) (Qin and Bassani, 1992; Dao and Asaro, 1993; Brünig, 1997), to name but a few. In general, while there is no
doubt that the intricacies associated with ½〈111〉 screw dislocation glide eincluding its thermally activated nature and de-
viations from Schmid lawe cannot but be resolved usingmethods capable of atomistic resolution, one must recognize that, at
the same time, flow is a phenomenon potentially involving statistically-significant amounts of dislocations and eas suche
cannot be captured resorting to atomistic calculations only.

Modeling thermally-activated flow and non-Schmid effects in bcc systems has been the subject of much work, starting in
the 1980s and, particularly, in recent times. Different authors have considered different subsets of the {110}, {112}, and {123}
families of glide planes, without (Raphanel and Van Houtte, 1985; H€olscher et al., 1991, 1994; Raabe et al., 1994; Raabe,
1995a,b; Peeters et al., 2000; Stainier et al., 2002; Erieau and Rey, 2004; Ma et al., 2007; Hamelin et al., 2011; Kitayama
et al., 2013) and with non-Schmid effects (Lee et al., 1999; Kuchnicki et al., 2008; Koester et al., 2012; Weinberger et al.,
2012; Alankar et al., 2014; Lim et al., 2013; Narayanan et al., 2014; Patra et al., 2014; Knezevic et al., 2014; Lim et al.,
2015a,b). Of particular interest are some recent simulations where the flow rule is directly formulated on the basis of
screw dislocation properties in Fe (Yalcinkaya et al., 2008; Koester et al., 2012; Alankar et al., 2014; Narayanan et al., 2014;
Patra et al., 2014; Lim et al., 2015b), Ta (Kuchnicki et al., 2008; Lim et al., 2013; Knezevic et al., 2014; Lim et al., 2015a), Mo
(Yalcinkaya et al., 2008;Weinberger et al., 2012; Lim et al., 2013, 2015a), W (Lee et al., 1999;Weinberger et al., 2012; Lim et al.,
2013; Knezevic et al., 2014; Lim et al., 2015a), and Nb (Yalcinkaya et al., 2008; Lim et al., 2015a). These works also include non-
Schmid effects following the model proposed by Vitek and Bassani (Duesbery and Vitek, 1998; Qin and Bassani, 1992; Gr€oger
et al., 2008a,b). However, albeit very useful for certain applications, all these works resort to (i) a partial consideration of non-
Schmid effects, and/or (ii) some kind or another of parameter fitting with experimental data, which prevents their use in
regions of the parameter space outside the range of fitting and does not link the effective (macroscopic) response to exclu-
sively fundamental material properties and features.

In this work, we provide a unified computational methodology consisting of rate-dependent crystal plasticity calculations
parameterized entirely and exclusively to atomistic calculations. We show that a full description of non-Schmid effects,
together with the state of the art in terms of our understanding of thermally-activated screw dislocation motion, suffices to
capture the experimentallymeasured temperature dependence of theflowstress in tungsten. This is achieved in a fully classical
framework, without the need for quantum effects recently invoked to explain the long standing discrepancy observed between
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the experimentally-measured flow stress below 25 K and calculated values of the Peierls stress (Proville et al., 2012). Our
methodologyalso captures the athermal limit ofW towithin 5%of the experimental value.We emphasize that this agreement is
reached without fitting to any experimental data, all the parameterization is done from first principles atomistic calculations.

Our paper is organized as follows. After this introduction, we provide an overview of the CP method in Section 2.2. This is
followed by Sections 2.3.1 and 2.3.2, where the formulation of the dislocation mobility law and the implementation of non-
Schmid effects are presented, including a detailed description of the parameterization procedure employed. The results are
given in Section 3, which includes: (i) the validation exercise, with special focus on uniaxial tests as a function of temperature
for several loading orientations; (ii) the calculation of temperature and strain rate dependence of the yield strength for
uniaxial tensile tests as a function of orientation; and (iii) yield surfaces under biaxial loading conditions as a function of
temperature. We finalize in Section 4 with a brief discussion and the conclusions.

2. Computational methods

2.1. Flow kinematics

Roters et al. (2010) have presented a detailed review of the kinematic and constitutive aspects of crystal plasticity and here
we simply provide a brief overview of the fundamental theory. The kinematics for elasto-plastic behavior is defined within
the finite deformation framework. Thematerial deformation involves both a reversible lattice response to externally imposed
loads or displacements (elastic), and a permanent deformation (irreversible shape change) that remains after all external
constraints cease to be applied (plastic). Consequently, crystal plasticity formulations rely on the definition of three reference
systems: (i) a fixed coordinate system that represents a laboratory (undeformed) frame of reference, (ii) a current (also known
as spatial) frame of reference that represents the global (deformed) shape of the material, and (iii) a lattice coordinate system
that represents distortions of the underlying crystal structure of the deformed body. Although reference system (i) is used for
mathematical convenience, the distinction between (ii) and (iii) is necessary to calculate internal stresses, which arise from
distortions defined with respect to a crystallographic frame of reference, as global shape changes may not necessarily have a
one-to-one correspondence to internal lattice distortions (Lubliner, 2008; Roters et al., 2010).

Mathematically, each point X in the reference configuration may be mapped to its image in the current configuration x by
means of a linear transformation represented by the deformation gradient tensor F, defined as:

F ¼ vx
vX

(1)
In general, F is not a symmetric tensor. However, invariance requirements make it more desirable to work with symmetric
measures of strain. One such measure is the so-called Lagrangian strain:

E ¼ 1
2
ðC � IÞ ¼ 1

2

�
FTF � I

�
(2)

which refers the deformation of the solid to the reference configuration (I is the identity tensor). In the above equation, C is
the so-called right Cauchy-Green tensor.

Following Lee (1969), the total deformation gradient F can be multiplicatively decomposed into an elastic, Fe, and a plastic,
Fp, part,1 i.e.:

F ¼ FeFp (3)

whence
Fe ¼ FF�1
p ⇔ Fp ¼ F�1

e F
This is schematically shown in Fig. 1, where the relationship between the reference, intermediate, and current configu-
rations is provided. To close the CP model, we take the time rate in Eq. (1), which results in:

L ¼ _FF�1 ¼ _FeF�1
e þ Fe

�
_FpF�1

p

�
F�1
e ¼ Le þ FeLpF�1

e (4)

where Lp is the plastic velocity gradient, which is evaluated in the intermediate configuration and must therefore be mapped
into the current configuration by Fe. Constitutive information enters the CP model via Lp, which is described in the following
section.

The above finite-deformation kinematic framework is implemented into the Düsseldorf Advanced Materials Simulation Kit
(DAMASK), which is the tool employed in this work to carry out of the calculations. DAMASK is a flexible and hierarchically
1 It must be noted that other decompositions are also admissible (Fish and Shek, 2000). The reader is referred to the work by Reina and Conti (2014) for a
discussion on the uniqueness and validity of the multiplicative decomposition.



Fig. 1. Multiplicative decomposition of the deformation gradient F.
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structuredmodel of material point behavior for the solution of elastoplastic boundary value problems along with damage and
thermal physics (Roters et al., 2012).

2.2. Solution procedure and constitutive model

A Hookean constitutive response is assumed such that the stress depends linearly on the elastic strain via the anisotropic
elastic stiffness tensor C. Both the stress and strain measures that are used internally are formulated in terms of material
coordinates. For the stress, we use the second Piola-Kirchhoff stress measure S, defined as:

S ¼ C : Ee ¼ C

2

�
FT
eFe � I

�
(5)

where Ee is the (elastic) GreeneLagrange strain tensor. S and Ee are both symmetric material tensors, and thus Cj is itself
symmetric such that a general 3 � 3 � 3 � 3 tensor can be written as a 6 � 6 matrix. For cubic lattices, Cj can be reduced by
symmetry to only the three independent elastic constants C11, C12, and C44.

The stress S acts as the driving force for the plastic velocity gradient Lp. Lp depends on the underlying microstructure via a
set of state variables x defined by the plasticity model employed:

Lp ¼ f ðS; x;…Þ (6)
Lp controls the evolution of the plastic deformation gradient:

_Fp ¼ LpFp (7)
The set of nonlinear Eqs. (3) and (5) to (7) must be solved iteratively, which in DAMASK is done by using an integration
algorithm based on the implicit scheme originally proposed by Kalidindi et al. (1992). The linear system is solved iteratively
using the Newton-Raphson technique and, once convergence is achieved, the plastic deformation gradient is obtained using
the Euler backward update. In this integration scheme described above, the primary variable to solve for is the plastic velocity
gradient. However, one may devise schemes where the primary variables are the stress, the plastic or elastic deformation
gradient, the internal variables or a combination thereof. Such schemes may be chosen on the basis of computational effi-
ciency (Dumoulin et al., 2009).

Constitutive information for the plastic regime enters the CPmodel via Eq. (6), where the dependencies of the flow rule on
each of the state variables are established. It is here where the plastic deformation modes are defined, their geometric
particularities, as well as specifics associatedwith the crystal structure under study. The CPmodel must also include evolution
equations for the state variables x:

_x ¼ gðS; x;…Þ (8)

where the details again depend on the model selected. In DAMASK, various integration schemes for the state update exist

(Roters et al., 2012). Two integration schemes are performed staggered: Eqs. (3)e(7) are solved at a fixed plastic state, fol-
lowed by a state update. This procedure is iteratively repeated until a converged solution is achieved within the given tol-
erances. More details about the implementation of this technique in the code are given by Kalidindi et al. (1992). In general
then, the stress in the CP model can be considered a response function of the position r, the deformation state F, the set of
state variables x, and a set of boundary conditions, i.e.
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S ¼ f ðr; F; x;…Þ (9)

In these calculations we are interested in simulating engineering stress-strain tests, and econsequentlye it is helpful to

express the results in the reference coordinate frame. For the stress, we use the first Piola-Kirchhoff measure defined as:

P ¼ FeS
Note that, although in general P is not symmetric, for uniaxial tension tests P is a symmetric tensor on account of Fe being
symmetric. For the strain, we use the Biot tensor:

B ¼ U � I ¼
ffiffiffiffiffiffiffiffiffi
FTF

p
� I

where U is the right stretch tensor.2 The stress-strain curves shown throughout this paper are obtained by tracking the

evolution of Pzz and Bzz, where z is designated as the loading direction. For uniaxial loading simulations, _F≡ _F
T
and thus

_C ¼ _Fz _B. We refer to the deformation rate represented by _Fzz generically as _ε in the remainder of this paper.

2.3. The flow rule

In the present CP calculations it is assumed that all the plastic deformation is due to dislocation slip. Thus, the plastic
velocity gradient can be written as:

Lp ¼
X
a

Pa
S _g

a (10)

where _ga is the slip rate on slip system a, and Pa
S is a geometric projection tensor that will be defined later. The slip rate is

calculated from Orowan's equation:

_ga ¼ bravsðta; TÞ (11)

where b ¼ a0
ffiffiffi
3

p
=2 is the modulus of the Burgers vector, a0 is the lattice parameter, T the absolute temperature, ra is the

(mobile) screw dislocation density in slip system a, and vs(ta,T) is the screw dislocation velocity. The present formulation of
the flow rule belongs to the class of non-associated, rate-dependent CP models (McDowell, 2008).

The two characteristics that are particular to bcc plasticity are the thermally-activated nature of screw dislocation motion,
which becomes the rate-controlling process during plastic deformation, and the existence of non-Schmid effects, i.e. de-
viations from the geometric projection law for the resolved shear stress. Both of these physical processes have been known for
several decades, and have been carefully analyzed experimentally (cf. Section 1). If our intent is to predict the temperature
dependence of the flow stress in bcc metals, accurate physical descriptions of both of them must be incorporated into our CP
model. This is the subject of the following sections. As we shall see, non-Schmid effects establish the form of the projection
tensor Pa

tot, while the velocity vs(ta,T) captures the thermally activated character of dislocation motion.Wemake tungsten the
object of our study for a number reasons presented in previous works (Cereceda et al., 2013; Stukowski et al., 2015).3

2.3.1. Screw dislocation mobility law
Except at high homologous temperatures and strain rates, screw dislocation motion is the rate-limiting step in bcc crystal

deformation. Although recent dislocation dynamics simulations in a-Fe challenge the notion that the dislocation density is
monolithic across the entire temperature range (Monnet et al., 2009; Naamane et al., 2010; Monnet et al., 2011; Tang and
Marian, 2014), it is reasonable to assume a dominance of screw dislocations in the temperature and strain rate regimes
considered in this work (0 < T/Tm < 0.2 and _εz10�4 s�1). In the thermally activated regime, screw dislocationmotion proceeds
via the nucleation of kink-pairs and their subsequent lateral relaxation. In the regime of interest here, kink relaxation is a
significantly faster process than kink-pair nucleation, and it can thus be assumed that no newkink-pairswill be nucleatedwhile
lateral kinkmotion is underway (Stukowski et al., 2015). Such assumption leads to the following expression for the total time, tt,
required for a kink pair to form and sweep a rectilinear screw dislocation segment of length la lying on a given slip plane:

tt ¼ tn þ tk ¼ Jðta; TÞ�1 þ la �w
2vkðta; TÞ

(12)

where tn is the mean time to nucleate a kink pair, tk is the time needed for a kink to sweep half a segment length, J is the kink-

pair nucleation rate, w is the kink-pair separation, and vk is the kink velocity. The kink-pair nucleation rate follows an
Arrhenius formulation (Stukowski et al., 2015):
2 U emerges from the so-called polar decomposition: F ¼ RU, where R is a matrix the represents rigid rotation, and U is a pure stretch. Plasticity-induced
crystal rotations are very important and give rise to crystallographic texture evolution in deformed crystals. However, only yielding is of concern here, and
thus U is the component of interest.

3 W is an elastic isotropic metal, which simplifies the constitutive plastic formulation.
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Jðta; TÞ ¼ n0ðla �wÞ
b

exp
�
� DHkpðtaÞ

kT

�
(13)

where n0 is an attempt frequency, DHkp is the activation enthalpy of a kink pair at stress ta, and k is Boltzmann's constant. For

its part, the kink velocity can be expressed as (Dorn and Rajnak, 1964; Kocks et al., 1975):

vkðta; TÞ ¼
bta

BðTÞ (14)

where B is friction coefficient typically assumed to be linearly dependent on temperature. However, calculations made to

obtain the value of B for the interatomic potential employed in this work, have yielded no temperature dependence, and here B
is simply a constant (Swinburne et al., 2013). The dislocation velocity can be obtained after operatingwith Eqs. (13) and (14) as:

vs ¼ h
tt
¼ h

tn þ tk
¼

2bhtan0ðla �wÞexp
�
� DHkp

kT

�

2b2ta þ n0Bðla �wÞ2exp
�
� DHkp

kT

� (15)

where h ¼ a0
ffiffiffi
6

p
=3 is the distance between two consecutive Peierls valleys. We note that at low temperatures, or when tk≪tn,
the second term in the denominator vanishes and one recovers the standard diffusive velocity expression commonly used in
crystal plasticity and dislocation dynamics:

vs ¼ n0h
ðla �wÞ

b
exp

�
� DHkpðtaÞ

kT

�

The parameterization of Eq. (15) is a critical step that establishes a physical connection with the scales where kink-pairs
are resolved as atomistic entities. This is the first essential piece of physics required to achieve predictive capabilities. We
have devoted much effort in past works to calculate the necessary parameters from fundamental models based on
semiempirical interatomic potentials (Cereceda et al., 2013; Stukowski et al., 2015). The list of parameters employed in this
work and their associated values and units are given in Table 1. The physical meaning of some of these parameters is best
Table 1
List of parameters and functional dependences for fitting the CP model. All of these parameters have
been obtained using dedicated atomistic calculations. The parameter s represents the normalized
shear stress: s ¼ t0a

sP
(cf. Eq. (28)).

Parameter Value or function Units

a0 3.143 Å
b 2.72 Å
h a0

ffiffiffi
6

p
=3 Å

C11 523 GPa
C12 202 GPa
C44 161 GPa
n0 9.1 � 1011 s�1

sP 2.03 GPa
B 8.3 � 10�5 Pa,s
DH(s;T) DH0(1 � sp)q eV
DH0 1.63 eV
p 0.86

e

q 1.69
e

w 11 b
s
c
c t�c þ sða2sinð2cÞ þ a3sinð2cþ p=6ÞÞ

coscþ a1cosðp=3þ cÞ
GPa

a1 0.938
e

a2 0.71
e

a3 4.43
e

t�c 2.92 GPa
c 1

e

dg 2.72 Å
dedge 2.72 Å



Fig. 2. Schematic depiction of a kink pair on a screw segment of length l lying on a slip plane na (of the {110} family). The vertical axis represents the potential
energy, with the Peierls potential clearly marked. The dashed line represents the initial equilibrium line position.
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expressed in pictorial form. Fig. 2 shows a schematic diagram of the topology of a kink pair lying on the Peierls energy
substrate. The figure highlights the physical meaning of each parameter listed in the table. In addition to the references
provided earlier, a detailed description of the protocols used to calculate all the adjustable parameters in our formulation is
provided by Cereceda (2015).

At this stage, it is worth to introduce a note about the available slip systems (which establish the running indices of a.
Stukowski et al. (2015) have shown that in Wan elementary glide on a {112} plane is a composite of two elementary steps on
alternate {110} planes. Judging by these results, we conclude that glide on any given plane is achieved by way of sequential
{110} jumps, which constitutes the basis to simulate plastic yielding in the foregoing Sections. This is consistent with recent
atomistic simulations (Cereceda et al., 2013) and experiments (Caillard, 2010a,b; Marichal et al., 2013, 2014) and limits the
number of available slip systems in our study to 12 (listed in Appendix A). We note that this model of slip for W is not
necessarily suggestive of what may happen in other bcc crystals (Franciosi et al., 2015).

2.3.2. Projection tensor and non-Schmid effects
The tensor Pa

S introduced in Eq. (10) represents the Schmid (geometric) projection of the strain rate contribution from a
slip system defined by the plane normal na and slip direction ma (both unit vectors). However, as pointed out above, Pa

S does
not capture the full panoply of non-Schmid effects needed to calculate the value of the resolved shear stress on that slip
system, ta. For this, we introduce a total projection tensor Pa

tot such that:

ta ¼ Pa
tot : s ¼

�
Pa
S þ Pa

T=AT þ Pa
ng

�
: s (16)

where

Pa
S ¼ ma5na (17)

is the Schmid tensor, and

s ¼ J�1FSFT

is the Cauchy (true) stress and J ¼ det(F) the Jacobian. The tensors

Pa
T=AT ¼ a1m

a5na
1 (18)

Pa
ng ¼ a2ðna �maÞ5na þ a3

�
na
1 �ma

�
5na

1 (19)

are non-Schmid tensors representing respectively the twinning/anti-twinning asymmetry (T/AT) and the effects due to non-
glide stress components. a1, a2, and a3 are material-dependent constants that must also be calculated and added to our
parameterization database. The vector na

1 forms an angle of�60� with the reference slip plane defined by na, and changes sign
with the direction of slip on each glide plane (Koester et al., 2012).

The present non-Schmid formulationwas originally developed by Vitek and expanded by others, and has been successfully
used to propose yielding criteria adapted to finite element and crystal plasticity calculations in a number of cases (Gr€oger and
Vitek, 2008; Chen et al., 2013; Weinberger et al., 2012). The reader is referred to these works for more details but it is worth
pointing out that the methodology that these authors have proposed is not unique, and that other rigorous implementations
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of non-Schmid effects could equally be devised. For the purposes of this section, suffice it to say that the particularities of the
screw dislocation core and the bcc lattice structure result in deviations from a purely geometric projection. These deviations
originate, respectively, from a geometric asymmetry between the twinning and anti-twinning directions of the 〈111〉 zone
efrom which a1 is first calculatede, and from the effect that nonglide components (termed generically ‘s’) of the local stress
tensor have on the critical resolved shear stress, from which a2 and a3 are obtained. Atomistic calculations specifically
designed to calculate the non-Schmid critical stress t

c
c as a function of the angle c between the maximum resolved shear

stress (MRSS) plane were performed according to the geometry shown schematically in Fig. 3. The Figure shows the mapping
between the atomistic box and the crystallography of the [111] zone. Following the sign convention used in the Figure, the
stress tensor applied is:0

@�s 0 0
0 s t

0 t 0

1
A (20)

which activates axial (nonglide) stress components while maintaining zero pressure. tcc is expressed as a combination of the
contributions displayed in Fig. 3:

t
c
c ¼

t�c þ s
�
a2sinð2cÞ þ a3sin

�
2cþ p

6

��
coscþ a1cos

�
cþ p

3

� (21)

where t�c is a fitting constant that represents the Peierls stress. The details of these atomistic calculations are provided in
Appendix B. The results for tcc are shown in Fig. 4 as a function of c and s, with t�c , a1, a2, and a3 given in Table 1. It is worth
noting that the relation between t

c
c and s has been established for tensile nonglide stresses only (s > 0), for consistency with

the linear dependence used in the work of Vitek and collaborators (Gr€oger et al., 2008a,b) that has been used in other crystal
plasticity works (Koester et al., 2012). However, nothing precludes the use of nonlinear fitting functions that capture both the
tensile and compressive regimes simultaneously (cf. Appendix B). It is also worth pointing out that Gr€oger et al. (2008b)
obtained values of a1 ¼ 0, a2 ¼ 0.56, and a3 ¼ 0.75 using a bond-order potential, substantially far from our values for
those parameters.
Fig. 3. Crystallographic diagram of the [111] zone in the bcc lattice with each {110} and {112} planes clearly labeled. The picture also shows a mapping of the [111]
zone to a schematic atomistic box containing a screw dislocation subjected to shear and nonglide stresses according to Vitek's convention. This setup is used to
calculate the critical RSS using atomistic calculations (cf. Appendix B). The glide na, auxiliary na

1 and MRSS planes are labeled in each case. A ½101� glide plane
corresponds to a ¼ 2 in our CP calculations.



Fig. 4. Critical resolved shear stress as a function of the angle c between the MRSS and glide planes and the value of the nonglide stress component s with the
sign convention according to Fig. 3. The value of the Peierls stress sP ¼ 2.03 GPa is circled.
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By way of example, we next calculate the maximum projection factor M for directions in the standard stereographic
triangle using the fully parameterized projection tensor:

M ¼ ðl5lÞ : Ptot ¼ ðl5lÞ :
�
Pa
S þ Pa

T=AT þ Pa
ng

�
(22)

where l is the loading direction, which is obtained by visiting each of the nodes resulting from the discretization of the
standard triangle area into a uniform grid consisting of 231 points. The results for tension (s > 0) are shown in Fig. 5. It is clear
than non-Schmid effects eparticularly the impact of nonglide componentse are critical to calculate the RSS on a given slip
system. We find that from a maximum nominal value of M ¼ 0.5 for the standard Schmid law (Pmax

S ) there is a twofold
amplification when the twinning/anti-twinning asymmetry is considered (Pmax

S þ Pmax
T=AT), and an astonishing fourfold in-

crease when nonglide effects are also included (Pmax
S þ Pmax

T=AT þ Pmax
ng ). As we shall see in Section 3.2, this has extraordinary

importance when comparing CP calculations to experimental measurements.

2.4. Dislocation density evolution model

To close the model, one needs to provide an evolution law for the dislocation density in Orowan's Eq. (11). There are
numerous density evolution models proposed in the literature, each with a specific domain of applicability (Mecking and
Fig. 5. Projection factor according to Eq. (22) for 231 directions within the standard triangle. The contributions of each of therms in Eq. (16) are broken down for
comparison.
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Kocks, 1981; Estrin, 1996; Arsenlis and Parks, 2002; Stainier et al., 2002; Barton et al., 2011). In this work we are mainly
interested in yielding, i.e. the elastic-to-plastic transition before dislocation-based slip takes on a dominant role in the
constitutive model. We use the model presented by Roters (2011), in which the mobile dislocation density on slip system a

evolves in time according to:

_ra ¼ _ramult þ _raann (23)

The evolution model is initialized by the dislocation density at t¼ 0, ra. In Eq. (23), _ra and _ra represent the dislocation
0 mult ann
multiplication and dislocation annihilation rate terms, respectively. In this model, both _ramult and _raann are directly propor-
tional to the plastic strain rate. Dislocation multiplication is treated as being proportional to the inverse mean free path of the
dislocations, la:

_ramult ¼
j _gaj
bla

(24)

which is defined as a function of the grain size dg, the forest dislocation density raf , and a hardening constant c:
1
la

¼ 1
dg

þ
ffiffiffiffiffi
raf

q
c

(25)
Here, c and dg are set, respectively, to one and to an arbitrarily high value such that the term controlling the dislocation
mean free path is:

laz

� ffiffiffiffiffi
raf

q ��1
The forest dislocation density is calculated as (Roters et al., 2010):

raf ¼
X
b

rb
		na$mb

		 (26)

Note that, in general, the mean free path as defined in Eq. (25) need not be equal to the effective dislocation segment

length (in fact, it can be up to several orders of magnitude different (Basinski and Basinski, 1979)). However, our model is
designed with well-annealed, high-purity single W crystals in mind, with low initial dislocation densities and no impurities
or obstacles other than dislocations themselves. Under this assumption, the use Eq. (25) can be justified in this case (Stainier
et al., 2002; Monnet et al., 2011).

For its part, dislocation annihilation occurs spontaneously when dipoles approach to within a spacing of dedge:

_raann ¼ �2dedge
b

ra
				 _ga

				 (27)

Eqs. (23)e(27) form the basis of the Kocks-Mecking family of dislocation density evolution models (Mecking and Kocks,

1981). These models offer two interesting connections with the broader CP formulation employed here. First, a relation
between the dislocation density evolution model and Section 2.3.1 is established by way of the dislocation mean free path la,
which determines the available segment length in the dislocation mobility function (Eq. (15)). In this fashion, the dislocation
velocity eand, through it, the plastic strain ratee is self-consistently linked to the microstructure changes predicted by the
model. Second, by virtue of the existence of latent and self-hardening, the model provides a correction to the available RSS for
dislocation motion in Eq. (15) of the following form:

t0a ¼ ta � th ¼ Pa
tot : s� mb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
a0

xaa0ra
0

r
(28)

where th is the hardening stress and xaa0 are the coefficients of the interaction matrix, which characterizes the interaction
strength between slip systems a and a0 as a result of six possible independent interactions (Franciosi, 1983, 1985): self,
coplanar, collinear, mixed-asymmetrical junction (orthogonal), mixed-symmetrical junction (glissile) and edge junction
(sessile) (Madec and Kubin, 2004). The values of xaa0 employed here are given in Table 2, and were obtained from dislocation
dynamics simulations of isotropic elastic bcc Fe under uniaxial deformation4 (Queyreau et al., 2009). The correspondence
between each coefficient and each slip system considered in this work is given in Appendix A. t0a replaces ta in Eqs. (12)e(15),
4 Although the xaa0 coefficients were calculated for bcc Fe and not W, the results are equally applicable because Fe was treated as isotropic elastic eas is
We and the interaction matrix coefficients are non-dimensional and independent of the value of the plastic constants considered.



Table 2
Values of xaa0 for latent hardening in bcc crystals (from Queyreau et al. (2009)).

Self Coplanar Collinear Orthogonal Glissile Sessile

0.009 0.009 0.72 0.05 0.09 0.06
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although, as mentioned earlier, this pertains mainly to the plastic flow regime and eas suche is not expected to have a
significant bearing on our calculations of sy.

3. Results

In this Section we present results of uniaxial and biaxial tensile test simulations to explore the dependence of the yield
strength on loading direction, temperature and strain rate. First, however, a robust and consistent yield criterion must be
defined to extract the yield stress from the raw output data from DAMASK.

3.1. Yield criterion

In metals, where dislocation flow is not a singular event but a diffuse continuous process, it is generally accepted that the
definition of yield point5 is not unique. Perhaps as the result of these conceptual indetermination, modern usage has evolved
into that of an arbitrary rule, the 0.2% strain offset rule for obtaining the yield stress of metals. For materials having nonlinear
elastic behavior, there are not even arbitrary rules, only individual preferences and proclivities in defining yield when a given
amount of strain has been reached. It is quite apparent then that to define robust yield criteria it is necessary that they be
implemented and supported by consistent and meaningful definitions in terms of the stress-strain behavior. This is often
difficult when the transition from the elastic to the inelastic regimes is obscured in the global picture of deformation.
However, in the present calculations we effectively possess an arbitrary degree of data resolution and can define an un-
ambiguous mathematical criterion.

The preferred method for defining the elastic limit of a ductile material is to compute the second derivative of the stress-
strain curve, referred to generically as s(ε), and identify the location of the inflection point (Christensen, 2008). The yield point

then corresponds to the strain, εy, for which
				d2s
dε2

				 is maximum. Mathematically:

sy ¼ s
�
εy
�
; εy :¼ ε

				max
				d2sdε2

				 (29)
For ductile metals, the location of the maximum of the second derivative represents the point at which dislocation-
mediated flow is the major contribution to L (cf. Section 2.1). However, this condition works surprisingly well for other
materials such as glassy polymers, where flow might be caused by molecular rearrangement and damage at both the mo-
lecular and macroscopic scales (Bowden and Jukes, 1972).

To illustrate the accuracy of the second-derivative method, we plot in Fig. 6 the first and second derivative of a stresse-
strain curve corresponding to a [101] uniaxial tensile test of a W single crystal under representative initial conditions. Recall

from Section 2.2 that the stress and strain metrics of choice are P and B, and so we plot dPzz
dBzz

and d2Pzz
dB2

zz
specifically. The inflection

pointemarked by a vertical dashed line in the figuree occurs for εy¼ 0.1105%, for which a value of sy ¼ 0.452 GPa is obtained.
The figure also shows the 0.2% strain offset criterion, which eby contraste gives εy ¼ 0.3167% and sy ¼ 0.479 GPa, i.e. a three-
fold difference in strain and approximately a 6% difference in stress with respect to the stress second derivative criterion.

However, determining the first and second derivatives of the stress-strain relation can become numerically intensive,
especially when evaluating hundreds of curves as is the case in this work. An approximation to this method that works
particularly well for linear-elastic materials that display a clear elastic-to-plastic transition is to take the yield point as the first
point in the s(ε) function that satisfies:

ds
dε

< Eð1� dÞ
i.e. sy is measured as the stress for which a departure from linearity (as set by the elastic regime) larger than some small
value d is observed in the stress-strain relation. We have found that a value of d z 0.01 is sufficient to predict the value of sy
within a small error relative to the value furnished by the second-derivative method. By way of example, for the curve shown
in Fig. 6 and d ¼ 0.01, we find a values of εy ¼ 0.1055% and sy ¼ 0.435 GPa, or less than a 4% difference with the numbers
according to the second-derivative criterion. With this reasonable accuracy and the computational advantages alluded to
above, we then use the d ¼ 0.01 criterion in the remainder of this paper.
5 Also referred to as elastic limit, proportionality limit, yield stress, etc.



Fig. 6. Evolution of the stress Pzz with deformation Bzz during a CP simulation of a uniaxial tensile test with [101] loading orientation (as depicted in the standard
triangle). The first and second derivatives of the stress w.r.t. to the strain are also plotted to illustrate the method of identification of the yield point according to
this criterion. Also shown is the intercept of the curve with the 0.2% strain offset criterion line.
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3.2. Model validation and initial results

Prior to deploying our fully-parameterized CP method for numerically-intensive calculations, it is essential to undergo a
thorough exercise of validation. Experimental data from uniaxial tensile tests in single crystal W at low strain rates are scant
and sporadic, with the main sources listed below:

1. Argon and Maloof (1966) performed some early experiments at a strain rate of 10�4 s�1 and temperatures of 77, 199, 293,
373, and 450 K. These authors measured the yield strength for the three vertices of the stereographic triangle [001], [110],
and [111] with an initial dislocation density of r0 z 1010 m�2.

2. Raffo (1969) analyzed the yielding behavior of arc-melted W between 77 and 680 K at _ε ¼ 8:3� 10�4 s�1. However, the
loading orientation is not given and most of the tests were done in compression.

3. Stephens (1970) has carried out compression tests at 150, 300, and 590 K. This researcher focuses on dislocation
density evolution and dislocation substructures, however, with a value of r0 z 1.4� 1014 m�2, notably larger than in other
tests. There have been other works that have also focused mainly on compression tests (Klopp et al., 1964; Gupta and Li,
1970).

4. Brunner (2000, 2010) has performed a series of experiments more recently at temperatures between 77 and 800 K. They
employed a value of _ε ¼ 8:5� 10�4 s�1 and loaded the system uniaxially along the ½14 9� direction with a starting
dislocation density of 5.5 � 109 m�2.

As pointed out in Section 2.3.2, our CP model is parameterized for tensile tests only and so for validation we focus on the
works by Argon and Maloof (1966) and Brunner (2000, 2010). Argon and Maloof (1966) centered on multislip by considering
mainly loading orientations coincident with the vertices of the standard triangle. Consequently, we replicate their test con-
ditions in our CP model and compare the results obtained by taking into account all the different elements of the projection
tensor (16). The results are shown in Fig. 7 for the [111] and the [110] loading orientations, with the insets in both figures
showing the relative importance of considering each of the non-Schmid contribution to the projection tensor incrementally.
While our calculations are in general good agreement with the [111] test data, they deviate from the experimental results at
the two lower temperature points for the [110] orientation. Argon and Maloof (1966) point out that, at low temperatures,
deformation by twinning may play a larger role when loading along [110] relative to other orientations. This may be at the
origin of the discrepancy, as twinning is not part of the catalog of deformation mechanisms considered in this model.

Next we simulate uniaxial tensile tests under single slip conditions, i.e. along crystal orientations near the center of the
standard triangle. This corresponds to the experiments by Brunner (2000, 2010) referred to above, which were done more
recently with more advanced instrumentation. The results are shown in Fig. 8, where we also show the curves using the
different elements of Eq. (16). This time, the agreement is striking, particularly again at temperatures above 400 K. Specif-
ically, the athermal limit (z710 K) is particularly well reproduced, as is the extrapolated critical stress at 0 K (Peierls stress),
which is within 10% of the experimental values.

Although, as noted earlier, the main focus of this work is on yielding, we have applied the fully parameterized model to
study the flow stress regime for some selected cases in Appendix C. The results shown there demonstrate the performance of
the method outside the primary range of application. While the model cannot be assumed to be predictive in the post-yield
regime under general loading conditions, these are encouraging results that strengthen the notion that parameter-free CP
calculations can perform well under specific deformation scenarios.



Fig. 7. Yield strength of W single crystals at the conditions used by Argon and Maloof (1966) in tensile deformation tests under two different loading orientations.
The experimental data is shown for comparison. The inset shows the results of CP calculations with different contributions of the projection tensor activated.

Fig. 8. Yield strength of W single crystals under the conditions used by Brunner (2010) in uniaxial tensile tests. The experimental data is shown for comparison.
The inset shows the results of CP calculations with different contributions of the projection tensor activated.
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With the confidence conferred on our CP model by the validation procedure, next we proceed to calculate the yield
strength for a number of numerically-intensive scenarios. This is the object of the following sections.

3.3. Uniaxial tensile tests

In this Section, we report on the uniaxial yielding results as a function of temperature and strain rate. Our results are
organized by strain rate, such that we first provide a detailed account of all the calculations at a given strain rate followed by a
study on the dependence with _ε.

3.3.1. Results at _ε ¼ 10�3s�1

For these calculations, we have discretized the area of the standard triangle into a uniform grid consisting of 231 nodes,
each representing a crystallographic loading orientation.We beginwith calculations at a prescribed strain rate of _ε ¼ 10�3s�1.
Fig. 9 shows colored contour plots of the yield stress in the 100-600 K temperature range. Areas of high relative yield strength
can be seen to concentrate around the vertices of the standard triangle, representing multislip conditions, whereas soft
regions develop in two distinct locations of the triangle, one near the [324] zonal axis that then rotates towards [112] above
500 K, and another near [102]. Note that, to accentuate the differences between hard and soft regions, each contour plot has
its own specific numerical scale.
Fig. 9. Contour maps of the yield strength from uniaxial tensile test simulations for 231 uniformly distributed crystallographic orientations in the standard
triangle at different temperatures. Note that each map has its own distinct numerical scale to aid in the visualization of hard and soft regions.



Fig. 10. Temperature path of the softest and hardest yield directions on the standard triangle as a function of strain rate.
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We have extracted the specific location of the global extrema in the standard triangle and plot it as a function of
temperature in Fig. 10(a). The hardest direction is consistently the [101], while the softest is seen to revolve around the
vicinity of the [112] axis, first along [301841] at 100 K, then along [180 131 271] between 200 and 500 K, and finally
rotating towards [9 9 34] for T > 500 K. Next, we plot the detailed temperature dependence of the yield strength corre-
sponding to the hardest and softest directions eas given by Fig. 10(b)e for this strain rate in Fig. 11. As the calculated data
show, there is approximately a 30% difference in yield stress between the hardest and softest directions. Interestingly, this
gap appears to be fairly independent of temperature. Above 650 K, the curves begin to level off, signaling the onset of the
athermal regime.

3.3.2. Dependence on strain rate and strain rate sensitivity
In this Section we expand the analysis presented in the previous Section to strain rates of 10�4 and 10�5 s�1. To avoid

redundancies, here we show only the temperature trajectory of the softest and hardest loading orientations in Fig. 10(b) and
(c), which emanate from calculations as those presented in Fig. 9. The results are qualitatively similar to the case of
_ε ¼ 10�3 s�1, with the only appreciable deviations occurring at temperatures above 450 K. At these high temperatures, the
softest orientation rotates clearly towards the vicinity of the [113] zonal axis, without excursions near [103] as was the case for
the _ε ¼ 10�3 calculations.

As above, we add the temperature dependence of the yield stress for the hardest and softest directions at these strain
rates to Fig. 11. The data show the same qualitative trend for all strain rates, with the same approximate 30% difference
between the hard and soft orientations. However, useful information can be extracted if the strain-rate dependence of the
yield stress is plotted for selected orientations. Then, one can calculate the so-called strain rate sensitivity, characterized by
the strain rate sensitivity exponent m, of the material as a function of temperature. Strain rate sensitivity is exceedingly
important to delay the onset of inhomogeneous deformation (Hutchinson and Neale, 1977), e.g. necking, and is used as a
criterion to assess the possibility of superplastic behavior in certain kinds of materials (Hedworth and Stowell, 1971; Arieli
and Rosen, 1976). This belongs more in the realm of failure and is thus outside the scope of this paper. However, it is of
Fig. 11. (a) Stress-strain relations at three different strain rates and T ¼ 300 K for a [001] loading orientation. (b) Temperature dependence of the yield strength for
the softest and hardest directions as a function of strain rate.



Fig. 12. Dependence of yield strength with strain rate for loading along direction [101] as a function of temperature. The inset represents the dependence of the
strain rate sensitivity exponent m with temperature.
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interest to calculate the strain rate sensitivity of the yield stress and relate our findings to the larger failure picture if
possible.

This precisely what is done in Fig.12 for [101] loading tests. The figure shows the variation of the yield strength at the three
strain rates considered here, again in the range 100 < T < 600 K. The data can then be fitted to the following expression:

sy ¼ C _εm (30)

where C is a fitting constant. The strain rate sensitivity exponent is formally defined as:

m ¼ vlogsy
vlog _ε

(31)

m is plotted in the inset to Fig. 12, where it can be seen that it increases monotonically with temperature from a value of
m ¼ 0.01 at 100 K to z0.2 at 600 K. The implications of these results will be discussed in Section 4.
3.4. Biaxial loading tests and yield surfaces

For non-associated CP formulations such as the present one, yielding is not a separate and independent criterion, but a
consequence of the constitutive law of the material behavior (Bodner, 1968). Indeed, with yielding defined on the basis of
the identification criterion introduced in Section 3.1, yield surfaces are furnished as a product of the CP calculations. In this
Section we calculate the yield curves under biaxial stress conditions for selected pairs of orthogonal loading directions ly
and lz. As noted in Section 2.3.2, the present implementation of the non-Schmid stress projection law is only valid for
tensile conditions.6 Thus, our yield curves are only meaningful in the positive stress quadrant (or octant, for yield surfaces).
The procedure to calculate each point of the yield surface consists of deforming the system simultaneously along the
prescribed orientations until the material yields on either one according to criterion (29). The stresses Pzz and Pyy are then
measured along both directions and the resulting duplet is added to the curve. Plane stress conditions are adopted along
the remaining direction, i.e. Pxx ¼ 0. The calculations are done at a nominal strain rate of _ε ¼ 10�4 s�1, with slight variations
above and below this value in one of the loading directions to accumulate different levels of stress and map the entire
stress quadrant.

First we calculate the yield curve for lz ¼ [111] and ly ¼ ½112� as a function of temperature. Results are shown in Fig. 13. The
curves enclose domains that are everywhere convex, thus satisfying the Drucker-Prager criterion for stable plastic flow
materials (Prager, 1952; Drucker et al., 1952). The absolute values and the temperature sensitivity of the yield stresses for the
end cases of Pzz ¼ 0 and Pyy ¼ 0 are consistent with the results shown in Section 3.3 for the ly and lz chosen here.

The next series of calculations involves determining the entire yield surface of the [111] zone, i.e. for a set of directions
orthogonal to [111] in 10� intervals, at a fixed temperature of 300 K. Results are shown in Fig. 14. Symmetry considerations
limit the angular range to be explored to a 60� arc, which is shown in the figure. Yield surfaces such as this one are the
culmination of crystal plasticity calculations, and can be used as constitutive input into continuum models to simulate
effective mechanical behavior at the engineering scale, for component design and/or to simulate, e.g., thermo-mechanical
treatments (Sheng et al., 2004; Serenelli et al., 2010).
6 Although this is not a limitation in a strict sense as it is done simply for consistency with non-Schmid treatments published in the literature.



Fig. 13. Yield curve for loading along directions lz ¼ [111] and ly ¼ ½112� as a function of temperature.
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4. Discussion and conclusions

In this Section we consider the most important implications of our results. First, we discuss one of the most salient
characteristic of the current work. The present CP model uses a standard rate-dependent, finite-deformation, non-associated
theory of crystal plasticity. However, while the underlying kinematic formulation serves as the mathematical framework
upon which to build a physical methodology, it is via the connection to the material physics that the model is rendered truly
predictive. Our technique does so by incorporating the following three features of bcc slip:

� A complete (T/AT plus nonglide) treatment of non-Schmid effects.
� A kinematic flow rule based on a thermally-activated screw dislocation mobility.
� Using accurate interatomic potentials for computing all the free parameters in the model.

We have shown that the full model is capable of predicting the experimentally-measured temperature dependence of
yield strength in the entire temperature range for W single crystals without parameter-fitting of any kind.7 The sole source of
material (constitutive) information is a carefully selected semi-empirical interatomic potential fitted exclusively to a DFT-
generated dataset that includes the Peierls stress in its full atomistic meaning. This closes the gap seemingly separating
electronic structure calculations of fundamental dislocation core properties and real measurements of the yield stress in
uniaxial tensile tests of bcc materials.

Indeed, much effort has been devoted to the study of this long-standing experiment/simulation discrepancy, particularly
at temperatures <20 K. Explanations based on collective dislocation dynamics, such as network kinetics (Bulatov and Cai,
2002) and/or mutually interacting dislocations (Gr€oger and Vitek, 2007) can be more or less discounted in light of recent
detailed electron microscopy experiments of isolated screw dislocation motion (Caillard, 2010a,b, 2014). A more recent
description, based on quantum effects at very low temperatures, has been put forwardwith reasonable success (Proville et al.,
2012). On this basis, our first partial conclusion is that, while the present calculations do not provide sufficient grounds to
invalidate these theories, they do clearly demonstrate thatmodels based solely on classical mechanics eand without recourse to
fitting to experimental resultse can be formulated to predict the temperature dependence of the yield strength of bcc single crystals.
Evidently, we issue this conclusion with caution, as W does not constitute by itself a representative sample to convincingly
claim generality, but we believe that it constitutes a step in that direction.
7 Of course, interatomic potentials ewhich form the basis of the constitutive information employed heree are subjected to a fair amount of fitting
themselves, both to experimental data and first-principles calculations. However, potential fitting is extraneous to our work, in the sense that it was neither
performed by us nor done with this application in mind, while the parameter fitting that we refer to here is dedicated specifically to reproduce experi-
mental data of interest to the application of the model.



Fig. 14. Yield surface at 300 K for biaxial loading along directions belonging to the [111] zone. By symmetry, only the 60�-arc need be explored.
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Another important physical aspect of tensile deformation in single bcc crystals is the seemingly distinct slip mechanisms
operating in different temperature ranges. According to Seeger and collaborators, there are three clearly distinguishable
temperature regions in the flow stress-temperature curves for bcc metals (Seeger, 1981, 1995; Brunner, 2000), namely, the so-

called upper and lower bend temperatures, T�and bT , and the knee temperature.Tk8 T�, bT , and Tk delimit three different regimes
where slip may occur on {110}, as well as {112}, glide planes, and give rise to different deformation mechanisms. Although
these theories are substantiated by ample experimental data, there are recent studies that indicate that {110} slip may be
sufficient to explain the plastic behavior of W (Marichal et al., 2013; Ali et al., 2011). This is consistent with the analysis
presented here, backed by atomistic input, which suggests that only {110} slip is admissible in bcc W. Indeed the screw
dislocation mobility law employed in this work, where {112} slip is disallowed by construction (cf. Section 2.3.1), is sufficient
to quantitatively characterize the evolution of the yield stress across the entire temperature spectrum, without any ad hoc
partition of mechanisms into different temperature regimes. We emphasize once more that the screw mobility law has been
fitted exclusively to first-principles data.

In Section 3.3.2 we have provided calculations of the strain rate sensitivity defined as m ¼ vlogsy=vlog _ε. It must be

noted that our value of m ¼ 0.023 at 300 K obtained in the 10�3 > _ε>10�5 s�1 range is consistent with measurements
performed by Zurek and Gray (1991) in W compressed uniaxially at strain rates from 10�3 to 103 s�1. Notwithstanding the
differences in experimental methodology and strain rate regime, this is also encouraging agreement for a result other
than yield. m is an important parameter for calculating the kink-pair activation enthalpy and activation volume from
stress-relaxation tests. Note that some authors use an alternative definition for the strain rate sensitivity (Raffo, 1969;
Brunner, 2000), namely, l ¼ vs=vlog _ε, which is related to m via l ¼ ms. We can then conclude that the agreement ach-
ieved for a derivative quantity of the yield stress such as m is symptomatic of the performance of the method outside the
primary validation space.

The advantages of this and other CP methodologies w.r.t. more accurate techniques such as molecular dynamics,
dislocation dynamics, or phase field methods is of course their computational expediency. Backed by the encouraging
outcome of the validation exercise, this has enabled us to map the entire loading orientation space in the standard
triangle (231 directions) as a function of temperature in a experimentally-meaningful strain rate range. These results
can then be used to extract useful information, such as the strongest and softest orientations as a function of tem-
perature and strain rate, or the strain rate sensitivity of our W model system. This information can ultimately be used to
define yield criteria under a variety of conditions for more homogenized methods, with the aim put on component
design.

In this sense, the culmination of the CP simulations is the calculation of yield curves and yield surfaces in stress space. The
stress space that we have chosen for our yield surface calculations is a purely biaxial one (in plane stress) with one fixed
direction, chosen arbitrarily to be [111], and the family of orthogonal directions taken in 10� intervals. This biaxial loading
configuration is the elementary basis for pressurized cylinders, e.g. pipes, and is thus useful to design components based on
this geometry. As well, it can serve as the design premise for loaded plates under plane stress conditions. It is of interest to
note that yield surfaces can also serve as the plastic potential in the fundamental theory of plasticity (Lubliner, 2008). This
8 Tk is understood as the temperature above which the contribution of the kink-pair formation mechanism to the flow stress becomes negligibly small, i.e.
it signals the athermal limit.
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equivalence is valid when the critical resolved shear stress is not dependent on the current stress state9 (Lubliner, 2008;
Starovoitov and Naghiyev, 2012). However, this may not be applicable in the present model, where the CRSS is seen to
display a strong dependence on hydrostatic (nonglide) stress components as discussed in Section 2.3.2. This is also the case in
rock and soil plasticity (e.g. Pariseau et al. (1968)). In such cases, the normality rule is referred to the pressure-dependent yield
surface instead.

A standing limitation of our model is that we have only made use of the tensile region of the dependence of the critical
stress t

c
c with the nonglide stress s (cf. Eq. (21)). Of course, this dependence is essential to characterize the tension/

compression asymmetry customarily observed in bcc crystals, cf. Section 1. However, this is only a weak limitation, as the
present CP formulation is sufficiently flexible to admit a full (nonlinear) fit to the data shown in Fig. 4. Finally, we emphasize
that the present study focuses on plastic yielding, and consequently, we have not explored the evolution of the flow stress
much beyond a few selected orientations (cf. Appendix C). However, this does not detract from the validity of the dislocation
density evolution model presented in Section 2.4, which has been used prolifically in many CP studies (cf. Section 1), and
which is being investigated in ongoing studies.
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Appendix A. {110}〈111〉 slip systems and latent hardening matrix considered for bcc W
Table A.3
Slip systems considered in our calculations, listing the non-normalized crystallographic vectors ma, na and n1

a. Note that in DAMASK each slip system is
taken both in its positive and negative sense, which is equivalent to formulations where 24 positive slip systems are employed (Gr€oger et al., 2008b).

a Reference system ma na na
1

1 ½111� (011) ½111� [011] ½101�
2 ½1 11� (011) ½1 11� [011] ½1 10�
3 [111] ð011Þ [111] ½011� ½110�
4 ½111�ð011Þ ½111� ½011� [101]

5 ½111� (101) ½111� [101] [110]
6 ½1 11� (101) ½1 11� [101] [011]
7 [111] ð101Þ [111] ½101� ½011�
8 ½111�ð101Þ ½111� ½101� ½1 10�
9 ½111� (110) ½111� [110] ½011�
10 ½111� (110) ½111� [110] ½101�
11 [111] ð110Þ [111] ½110� ½101�
12 ½111�ð110Þ ½111� ½110� [011]

Table A.4
Interaction coefficients xaa0 for the 12 slip systems defined in Table A.3. The letter coding employed is ‘A’: self; ‘CP’: coplanar; ‘CL’: collinear; ‘O’: orthogonal;
‘G’: glissile; ‘S’: sessile. The reader is referred to Table 2 for the numerical value of each coefficient.

a 1 2 3 4 5 6 7 8 9 10 11 12

1 A
2 CP A
3 S S A
4 S S CP A
5 G O O CL A
6 O CL G O CP A
7 O G CL O S S A
8 CL O O G S S CP A
9 O G O CL CL O G O A
10 CL O G O O G O CL CP A
11 G O CL O G O CL O S S S
12 O CL O G O CL O G S S CP A

9 Particularly on non-deviatoric components.
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Appendix B. Details on the atomistic calculations of non-Schmid parameters

Critical stresses are computed by applying shear stresses incrementally to a simulation box containing a screw dislocation
lying on a glide plane forming an angle c with the MRSS plane. The system is schematically shown in Fig. 3. The box di-
mensions vary slightly with orientation, such that, for c ¼ 0, the box contains 3024 atoms and the dimensions are
21a � 24b � 1c, where a, b, and c are the moduli of the bcc lattice vectors x≡½121�, y≡½101�, and z ≡ [111], respectively. The
calculations are performed using the nudged elastic band (NEB) method (Henkelman et al., 2000) implemented in the parallel
molecular dynamics code LAMMPS (Plimpton, 1995). Periodic boundary conditions are applied along the dislocation line
direction z while non-periodic and shrink-wrapped boundary conditions are applied along the y and x directions. The
transition path selected for the NEB calculations is a linear trajectory along the reaction coordinate joining two consecutive
Peierls valleys, where the dislocation is relaxed to equilibrium.

Three different forces are applied to different groups of atoms in the simulation box in order to calculate scc. These forces
recreate the stress tensor (20) in the simulation box:

1. First, an external force fz is added to the atoms on the boundary surfaces of the simulation box perpendicular to the y-axis to

study the T-AT asymmetry. The external force per atom is fz ¼ tLxLz
Nz

, where t is the desired shear stress, Nz is the number of

atoms in each nonperiodic surface along z and LxLz is the cross-sectional area of the each of the bounding surfaces along to y.
2. To study the contribution fromnonglide stresses, anexternal force fx is added to theatomson theboundariesof the simulation

box perpendicular to the x-axis. The external force per atom is obtained as fx ¼ sLyLz
Nx

, where s is the applied nonglide stress,Nx

is the number of atoms in each surface and LyLz is the cross-sectional area of the each of the surfaces along x.
3. Further, an external force fy is added to the atoms on the surfaces along the y direction, additionally to the shear stress t. fy

is defined as fy ¼ sLxLz
Ny

, with Ny ¼ Nz and LxLz is the area of the each of the surfaces perpendicular to z.

31 intermediate replicas are used in the NEB calculations to capture the trajectory and measure the critical stress.

Appendix C. Crystal plasticity calculations of flow stress dependence with orientation and temperature

To demonstrate the performance of the model in the flow stress regime, we carry out calculations for a few selected
orientations and temperatures up to 10% strain. Fig. C.15 shows the stressestrain response at a strain rate of 10�3 s�1 as a
function of temperature for the [001] loading orientation. This is an orientation conducive to multi-slip and thus the system is
expected to harden in accordance with Eqs. (9), (10) and (28) as the deformation progresses. The figure shows results for the
full non-Schmidmodel. For general viscoplasticmaterials it is common to represent the s-ε relation as a power lawof the type:

s ¼ Kεn (C.1)
where K is a constant and n is the so-called hardening exponent. Accordingly, the hardening rate can be expressed as:

ds
dε

¼ Knεn�1 (C.2)
Fits of Eq. (C.1) to the data in Fig. C.15 yield values of n¼ 0.82, 0.86, and 0.87 for T¼ 200, 400, and 600 K, respectively. From
Eq. (C.2), these numbers result in hardening rates of ds

dεz20 MPa/% in all cases.
Fig. C.15. Stressestrain curves for uniaxial loading along the [001] orientation at a strain rate of 10�3 s�1 for three different temperatures. These curves are
representative of multi-slip conditions where Taylor-type hardening is enabled.
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Next, we compare the model against the experimental results of Argon and Maloof (1966) for [111] and [110] loading at
_ε ¼ 10�4 s�1. To avoid comparing in conditions where twinning may be operative (<200 K), which is not captured by our
model, we carry out simulations at 293 K. The results are shown in Fig. C.16, which reveals a good agreement between the full
non-Schmidmodel and the experimental data in the [111] loading case. According to Argon andMaloof (1966), yielding under
[110] loading occurs at approximately 460 MPa, which is immediately followed by an abrupt hardening stage that plateaus at
ε z 0.8 % to a value of z760 MPa. Whether or not this is the case, this initial hardening period is not captured by our model.
Under both loading conditions, however, the model is seen to reproduce the hardening rates in close agreement with the
experimental data.
Fig. C.16. Flow stress of W single crystals at the conditions used by Argon and Maloof (1966) (cf. Section 3.2) in tensile deformation tests under two different
loading orientations. The experimental data is shown for comparison. The inset shows the results of CP calculations with different contributions of the projection
tensor activated.
We emphasize that the results shown in Fig. C.16 have been obtained without fitting to experimental (or otherwise) stress-
strain curves of any kind, and so the model appears to capture the essential features of plastic flow for the selected conditions
showcased here. As noted earlier, these preliminary results do not imply that the model is suitable for calculating the flow
stress under general loading conditions.
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