
 

Experimental and 
Theoretical Studies in 

Non-Linear Optical 
Applications 

Fiber Oscillators, Regenerative Amplifiers, 
Simulations on White-Light Generation 

 

 

 

 

 

 

 

Haider Zia 
      

Fachbereich Physik 

Universität Hamburg 

 

This dissertation is submitted to the University of Hamburg for the degree of 

Doctor rerum naturalium 

 

Fakultät für Mathematik,                    July 2015 

Informatik und  

Naturwissenschaften 
 

 

 



1 
 

Dissertation review committee: 

Prof. Dr. Dwayne Miller 

Prof. Dr. Franz Kärtner 

 

Date of oral disputaton: 23.11.2015 

Oral disputaton committee: 

Prof. Dr. Michael A. Rübhausen (chair) 

Prof. Dr. Dwayne Miller 

Prof. Dr. Nils Huse 

Korrigierte Fassung  (Corrected Version)  



2 
 

 

Eidesstattliche Versicherung/Declaration on Oath 

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst verfasst und 

keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.  

I hereby declare that except where specific reference and acknowledgement is given to the work of 

others, all contents of this dissertation are original and have not been submitted in whole or in part for 

consideration for any other degree or qualification in this, or any other university. This dissertation is 

my work and contains nothing which is the outcome of work done in collaboration with others, except 

as specified in the text and acknowledgements.  

 

Haider Zia 

August 2015 

 

  



3 
 

Kurzzusammenfassung/Abstract 

Kompakte und stabile ultraschnelle Laserquellen für Elektronenbeugungsexperimente sind der erste 

Schritt um den molecular movie, das Wunschexperiment der Moleküldynamik schlechthin, zu 

erreichen. Diese Arbeit konzentriert sich auf die Entwicklung neuartiger, robuster Laserquellen mit 

frei skalierbarer Wiederholungsrate, Pulsenergie und – dauer, sowie Stabilität. Solche Quellen sind 

wichtig um hochwertige Elektronenbeugungsbilder zu erzeugen, wobei die Intensität ausreichend sein 

muss um durch Invertierung den Ortsraum zeitabhängig darstellen zu können. Das zweite Kapitel 

beschreibt die Konstruktion eines neuartigen pulsstreckenden Hochleistungsfaseroszillators mit einer 

Ausgangsleistung von 300 mW bei 31 MHz, dessen Pulse bis unterhalb 90 fs komprimiert werden 

können. Im dritten Kapitel wird die Konstruktion eines regenerativen Festkörperverstärkers 

beschrieben, der für Pulsenergien über 1 mJ entwickelt wurde, wobei bereits 0.4 mJ erreicht werden 

konnten. Neuartige Simulationstechniken wurden untersucht, um die Konstruktion des Verstärkers zu 

unterstützen. In Kapitel 4 wird eine neue, schnelle und mächtige Theorie hergeleitet, die auf 

mehrdimensionale zeitabhängige nichtlineare Schrödingergleichungen in einer verallgemeinerten 

Form angewandt wird. Die neue Methode kann komplizierte Terme innerhalb dieser Gleichungen 

modellieren, wobei sie andere Methoden in ihrer Leistungsfähigkeit bezüglich numerischen Fehlern 

und Geschwindigkeit übertrifft. Diese Vorteile werden durch die Anwendung von Fourier Methoden 

erreicht. Damit wurde ein Hilfsmittel für die Simulation von Weißlichterzeugung mit Hilfe dieser 

Numerik  erstellt. Die Simulation stimmt außerordentlich gut mit publizierten experimentellen Daten 

überein, und ist eine Verbesserung im Vergleich zur herkömmlichen Methoden. Die Verwendung des 

Hilfsmittels ermöglicht genaue Berechnungen von Kontinuums- oder Weißlichterzeugung, wie sie für 

verschiedene experimentelle Protokolle benötigt wird und als Einspeisung für die Erzeugung von 

breitbandigem kohärentem Licht dient. 

Diese Arbeit löst das Problem, innerhalb eines vorgegebenen Wellenlängenbereichs die Erzeugung 

von Kontinuumslicht vorhersagbar zu konzipieren. Diese Information wird im Gesamtzusammenhang 

der Laserentwicklung für die kohärente Kontrolle von Molekülen im Infrarotbereich benötigt, um neue 

lichtinduzierte Quellen für molekulare Dynamik zur Verfügung zu stellen. Diese werden essentiell 

sein, um chemische Reaktionsdynamik zu erforschen. 

Compact and stable ultrafast laser sources for electron diffraction experiments are the first step in 

accomplishing the dream experiment of producing a molecular movie. This thesis work focuses on 

developing new robust laser sources to enable arbitrary scaling in laser repetition rate, pulse energy, 

duration and stability as needed to provide sufficient integrated detected electrons for high quality 

diffraction patterns that can be inverted to real space movies.  In chapter 2, the construction of a novel 

stable and high power stretched pulse fiber oscillator outputting 300mW at 31 MHz and compressible 

pulses to below 90fs will be described.  Chapter 3 will describe the construction of a solid-state 

regenerative amplifier that was developed to achieve pulse energies above 1mJ with 0.40 mJ already 

achieved at 1 kHz. Novel simulation techniques were explored that aided the construction of the 

amplifier.  Chapter 4 derives a new, fast and powerful numerical theory that is implemented for 

generalized non-linear Schrodinger equations in all spatial dimensions and time. This new method can 

model complicated terms in these equations that outperforms other numerical methods with respect to 

minimizing numerical error and increased speed. These advantages are due to this method’s Fourier 

nature. A simulation tool was created, employing this numerical technique to simulate white-light 

generation in bulk media. The simulation matches extremely well with published experimental data, 

and is superior to the original simulation method used to match the experiment. The use of this tool 

enables accurate calculations  of continuum or white light generation as needed for different 

experimental protocols and serves as the primary input to generate wide bandwidth coherent light.  
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This work has solved the problem of predictably designing continuum generation within targeted 

wavelength ranges.  This information is needed as part of an overall scheme in laser source 

development to coherently control molecules in the IR region to provide a new photo trigger source 

for molecular reaction dynamics that will be essential to explore chemical reaction dynamics in 

general. 
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Chapter 1: Introduction 
 

This thesis work is dedicated to the development of novel laser sources to cover all required excitation 

conditions of matter as needed for femtosecond electron diffraction experiments geared towards 

capturing atomic motions in real time. To this objective, there are both laser excitation conditions, 

arising from the photochemistry needed to trigger the atomic motions of interest and laser conditions 

needed to obtain suitable electron sources with sufficient brightness to view these atomic motions. 

This thesis work focuses on providing a robust flexible laser platform to provide the trigger sequences 

for the so-called molecular movies.   

As further background to the significance of this objective, it needs to be appreciated that the direct 

observation of atomic motions during a chemical reaction is a dream experiment for physicists and 

chemists[1].  Significant progress has been made by time resolved electron diffraction experiments[1-

7]. The experiment at its core, analyzes the scattered pattern of electrons being launched at a sample 

undergoing a chemical change. From the changes of the scattered pattern, timescales of structural 

changes in the material can be deduced. In order to accomplish such an experiment, electron pulses are 

created from a pulsed laser source interacting with a photocathode[1,7].  Electrons are emitted if the 

incoming photons have energies above the work function of the metal. These electron bunches then 

propagate towards the sample. By delaying the arrival time of this electron bunch one can deduce the 

differences in the average atomic structure of the material over the electron pulse duration (fs) at 

different time points. This is equivalent to the delay imposed by looking at the corresponding 

differences in the diffraction pattern[7]. The electron bunch duration must be substantially shorter than 

the timescale of the chemical reaction so distinct time points in the delay period can be recorded. 

Under appropriate conditions in electron extraction and propagation to the sample, the bunch duration 

can be made to approximate the duration of the laser pulse exciting the electrons from the 

photocathode. To properly resolve interesting chemical dynamics, the electron pulses should be 

substantially less than the chemical reaction timescale being on the order of 100 fs to 1 ps [2]. The 

laser excitation pulse must be tuned to specifically trigger the processes of interest and also must be 

shorter than the time scales of interest. 

The molecule must undergo a chemical reaction at the appropriate time starting at the arrival of the 

first electron bunch at the sample. Otherwise, the delay interval may miss the chemical reaction 

entirely[7]. If a sample can be optically pumped, the sample is activated by a photo-transition by 

intensity from the same laser pulse used for the electron pulse generation, following nonlinear 

conversion to the appropriate excitation wavelength[7]. Thus, time zero of the chemical reaction in 

relation to the first electron bunch in the series can be determined with effectively zero time jitter in 

establishing the ensuing molecular dynamics. This experiment is accordingly named a pump-probe 

experiment (electron probe and optical sample pump). 

As one can see, the burden on the laser source in temporally resolved electron diffraction experiments 

is of utmost importance. In order to develop new electron diffraction sources and experiments, the 

laser system must be optimized for this particular class of experiments. Solid-state femtosecond laser 

sources such as the Ti:Sapphire laser have been used in previous experiments. However, the stability 

of such oscillators, the performance of the oscillator over time and the temporal and spatial quality of 

the outgoing laser radiation poses several disadvantages compared to new laser oscillator technologies 

such as fiber oscillators.  

The main topic of this thesis will be to develop new laser sources that are tailor made for electron 

diffraction experiments. These sources include systems that were built up (Chapter 1 and Chapter 2) 
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that have never before been used in electron diffraction experiments and new theoretical models and 

numerical tools that were derived to explore solutions of the optical sources that overcome previous 

constraints in excitation wavelengths in previous pump-probe experiments.  

In Chapter 2, a novel stretched pulse non-linear polarization mode-locked fiber laser was designed and 

shown to be a viable source for electron diffraction experiments. The importance in the design of this 

fiber oscillator for electron diffraction experiments is to minimize the phase  and amplitude noise 

present in the optical waveform so that it can be a stable source for generating electron pulses through 

photo-emission at a cathode, as well as pumping the sample. Any amplitude or repetition rate (rep. 

rate) deviations existent in the optical pulse train will be directly mapped onto the electron bunch; any 

spatial distortions in the optical pulse will map onto spatial distortions in the electron bunch and can 

influence electron bunch properties such as emittance, bunch charge, etc [1,4,7]. A stable system must 

minimize the contributions of mechanical noise present in non-optics labs since this laser must operate 

under such conditions in the presence of vacuum pumps and related mechanical movements involved 

in sample exchange. Finally, the footprint of the oscillator should be minimized as it will be in a lab 

primarily focused on electron diffraction experiments and thus, space for optics will be scarce. Since 

fiber can be rolled up or bent into space minimizing configurations fiber oscillators are ideal for 

seeking a low footprint option. Additional arguments for why fiber oscillators are more stable and 

results are found in Chapter 1. 

Chapter 3, focuses on the system that was built to amplify stable oscillator pulses to energies in the 

range of half a milijoule. The initial pulse energy from the oscillator and fiber pre-amplifier stages is 

insufficient for downstream generation of the needed laser excitation wavelengths via nonlinear 

conversion. There are minimum requirements for the electron injection process. For typical 

experiments, the number of electrons needed to resolve diffraction peaks and to be adequately over the 

noise floor of the multi-channel phosphor (MCP) detectors must be on the order of 105 to 106 

electrons/bunch[4]. Also, the quantum efficiency, meaning the number of photons needed to generate 

one electron from the photo-emitter needs to be considered and can translate to a high loss factor[8]. A 

typical 2
nd

 harmonic generation scheme in BBO carries an efficiency on the order of ~20-30%. Thus, 

two cascaded 2
nd

 harmonic generation schemes from 1.03 μm  in BBO crystals carries an overall 

efficiency roughly on the order of ~4%*. To also account for losses and different experimental 

schemes, a >300 μJ 1.03 μm source is required while 1mJ is preferred. Camera shutter speeds used in 

these electron diffraction experiments usually perform well with exposure times on the order of 10ms. 

Therefore, an overall repetition rate in the kHz range or less is adequate for the experiment. 

A solid state regenerative amplifier was built and described in this chapter. The novel combination of 

a fiber oscillator for pulse stability right from the source and a solid-state amplifier is ideal for electron 

diffraction experiments, the reasons of which will also be described in the chapter. The novelty in this 

chapter includes the simulation techniques used in the construction of the regenerative amplifier and 

the design. 

Chapter 4, changes track from the first two chapters. Instead of the building of a source, a new type of 

tool was created to aid in the design of laser sources for electron diffraction experiments. While, 

discussion in chapter 1 and 2 has centered on the laser sources needed to pump out electrons from the 

photocathode, the photo-transition dynamics of the sample have been ignored. To channel energy in a 

coherent way as to guide a chemical reaction along a pathway is a scientific dream that goes hand in 

hand with the first one described here[9-16]. For example, the prospect of specifically exciting certain 

vibrational modes to drive chemical reactions is one important application[17].  
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However, in order to do this, a wide wavelength bandwidth of light must be generated and must be 

coherently locked to each other (for example, see 13,14) . That is, each pulse of light centered at 

different wavelengths must interact with the sample at set relative time intervals. To generate such a 

coherent wide bandwidth, optical methods using so-called white-light generation in bulk must be 

explored. However, to fine tune the white-light generation, extensive simulations and theoretical 

modelling must be carried out. Chapter 4, derives a novel methodology to accurately simulate white-

light generation in bulk, over all spatial dimensions and time, with various linear and non-linear terms 

and the presence of plasma generated from the optical radiation. The general methodology to treat 

these highly nonlinear multidimensional problems is novel and is derived for the first time in this 

thesis. It is shown in Chapter 4 that results of the simulation matches almost exactly with experimental 

data. 

In addition to the above focused laser development work, there were experiments conducted that 

explicitly used the laser sources described herein.  These experiments are outside the scope of the 

thesis but are important developments in their own right.  For completeness regarding describing my 

PhD research activities, these include:  

1 The fiber source that was developed was used in an electron diffraction experiment using fiber 

terminated with a photocathode. Light was propagated in the fiber structure after the oscillator 

and was channeled to a photocathode. As well, the fiber was pulled to a 200nm tip (NSOM 

fiber). The experiment yielded thermal electron emission from this novel fiber tip source. 

More details can be found in [18].  

2 Also, the fiber source was used in generating Cherenkov radiation in photonic crystal fiber to 

generate an octave spanning supercontinuum. The supercontinuum pulse was then compressed 

to sub 11fs.  A short summary and reference can be found in chapter 2.  

The above applications highlight the utility of the laser development work conducted during the course 

of this thesis work. 

 

*Value that is experimentally obtained for an aligned setup.  
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Chapter 2: The Design of a Stretched Pulse Normal Dispersion Regime 

Fiber Ring Oscillator Utilizing Non-Linear Polarization Rotation (NPR) 

for the Mode-locking Mechanism 
 

During the course of this PhD work, two NPR fiber oscillators, duplicates of each other, were 

constructed for electron diffraction experiments. This chapter will compare fiber oscillators over other 

oscillator designs and explain why fiber oscillators were chosen. Also, the chapter will introduce the 

theory for the non-linear pulse evolution within such oscillators.The emphasis of this chapter will be 

on the experimental results for the novel oscillators developed in this work and on repeatable recipes 

used in the construction of these laser systems.  

2.0 Advantages of Fiber Oscillators and Design Criteria for Electron 

Diffraction Experiments 
 

As mentioned in the introduction, laser oscillators are fundamental to electron diffraction experiments, 

and novel technologies must be explored to improve electron diffraction setups. To begin with, laser 

oscillators are the primary source of ultrafast optical pulses and thus are the primary source of error in 

optical configurations. As the reference signal, these setups must be stable in repetition rate (rep. rate), 

amplitude and spatial profile of the pulse. In some applications the carrier-envelope phase (CEP) of 

the optical pulse must be locked together (CEP stability).  

There are two main types of oscillators that are used in the field: solid-state oscillators and fiber 

oscillators. Solid-state oscillators employ free space cavities that are essentially non-continuous 

waveguides constructed with the use of optical elements at points in the cavity. It is useful to think in 

the picture of Gaussian optical-beam propagation when analyzing these cavities and applying the 

results of the ABCD matrix formulation [1].  There is an overall ABCD matrix that governs any free 

space cavity, and there are only at most two confined Eigen modes (two in the transverse and two in 

the saggital planes) since ABCD matrices are 2X2 matrices. Due to the low number of Eigen modes 

allowed, for the design of such cavities the region of stability in the overall parameter space must be 

large to tolerate environmental external forces and noise. As the cavity elements fluctuate in space, the 

cavity Eigen modes have to be allowed to fluctuate in a continuous manner. Mechanical noise is 

mapped onto the Eigen mode spatial distributions. Issues such as pump-signal overlap in the gain 

medium must be accurately managed given environmental fluctuations. Beam deviation and pointing 

error within free space cavities due to temperature changes and mechanical noise can inhibit cavity 

lasing. Thus, without confining the beam in a continuous unchanging waveguide structure, spatial 

stability may be hard to manage. 

The effects of mechanical noise fluctuations in the context of the previous paragraph are greatly 

reduced in all-fiber oscillators or close to all-fiber oscillators because the optical pulse is guided in a 

continuous wave guided structure. If the fiber waveguide moves, the signal will still be bound within 

the fiber and there will be no free-space pointing and alignment error.  

 The pump signal in the fiber gain medium for single-mode fiber always overlaps with the signal.  In 

almost all-fiber ring oscillators, beam deviation present in the focusing optics can still be coupled into 

the fiber if the fiber NA allows this. Once coupled into the fiber, the beam is rectified and propagates 

in the same manner within the fiber (particularly for single-mode fibers), thus, any memory of beam 

deviation is lost but at the expense of power loss due to the degraded coupling efficiency. However, 
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the power loss is recuperated due to the nearly perfect and constant pump and beam alignment, so 

even this coupling error is negligible. The cavity can still maintain the pulse and the lasing as 

compared to the effect of free space pointing error in solid state lasers. Therefore, fiber oscillators 

output high-quality optical beams and can recuperate from parasitic environmentally induced strains.  

Heat management in fiber systems is superior to that of free-space oscillators. Heat is distributed along 

the length of the entire cavity, and because of the higher surface-to-volume ratio [2], local hotspots are 

diffused along the fiber length, eventually diffusing out through the increased surface area contact with 

air or cooling structures. In solid-state laser cavities, hotspots within the optical elements inherently 

change the placement of these elements and the cavity size, producing phase noise instabilities, for 

example. Thermal lensing in the gain crystal can cause spatial aberrations in the optical pulse and loss 

of cavity confinement. Fibers are much better at maintaining cavity confinement even with the 

presence of thermal lensing due to the wave-guiding nature and the thermal management.  

From single-mode fiber oscillators a steady Gaussian spatial mode can be produced [3] because it is 

the only confined mode possible and higher-order modes are not guided (see section 2.1.1). The 

confinement offers another advantage: due to the confined smaller spot-size the peak intensity of the 

signal and pump are higher. Therefore, the pumping rate is higher (offering the ability to scale to high 

rep. rates) and the absolute gain level is higher for single-pass fiber amplifiers. Thus, higher output 

efficiencies can be achieved in fiber lasers. For example, rep. rates up to 10GHz [4-7] were reported in 

fiber designs. A 3Ghz fiber oscillator was used in the creation and compression of stable large-

bandwidth supercontinuum pulses generated in photonic crystal fiber through Cherenkov radiation[8].  

Because the optical pulse is propagating in a waveguide, nonlinearities arise due to an intensity 

dependence of the refractive index, which can contribute to many parasitic or beneficial effects such as 

self-focusing[9,10], self-phase modulation[11,12],self-steepening[13] and wave-breaking[14,15].  

Self-focusing, self-steepening and wave-breaking provide limitations in fiber oscillator designs. For 

example, with self-focusing, the pulse can be focused within the fiber such that the peak intensity of 

the optical pulse exceeds the threshold for plasma formation. This causes a plasma filament to occur 

and can damage the fiber. Confinement can be lost due to the smaller spot size and higher numerical 

aperture (NA) in the fiber needed to contain the mode.  

The fiber also introduces dispersion due to the frequency dependence of the refractive index values. If 

dispersion is not managed, the confined pulse continuously broadens in time and reduces its 

amplitude. Hence, dispersion must be managed in any stable fiber oscillator, which will be discussed 

later in this chapter.  

Finally, fiber is very delicate and can break easily, especially along splice points where different fibers 

are connected. In non-controlled environments special protections must be in place for these fiber 

oscillators. The advantages and disadvantages of fiber oscillators as compared to free-space solid-state 

oscillators are given and summarized in table 1. 
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Advantage Fiber Oscillator Free-Space Cavity Oscillators 

Phase Noise Rep. Rate is stabilized because 

the influence of mechanical 

vibrations on fiber systems is 

less than that of solid-state 

systems. 

 

Amplitude Noise Fiber is at an advantage because 

of pump signal overlap in the 

gain medium and high peak 

intensities. 

 

Spatial mode stability Fiber is at an advantage because 

of continuous mode filtering 

and a confined single-mode 

within the cavity  

 

Power limitation/ Propensity for 

parasitic Non-Linearity 

 Free space cavity has an 

advantage because of reduced 

gain crystal length. Preventing 

parasitic non-linearities. 

Scaling to higher rep.rates at 

constant pump power 

Due to pump confinement a 

faster possible gain recovery, 

Scaling to higher rep-rates up to 

10 Ghz is achievable[4-7]. 

 

Extracted Efficiency Due to confined modes, and 

high peak intensities extracted 

energy efficiency is higher. 

 

Gain Recovery Gain recovery is faster (due to 

high intensity confined pump 

mode) and ASE noise is limited 

due to longer inversion 

lifetimes in fiber  

 

 Table 1: Main advantages of fiber oscillators over free space oscillators.  

The aforementioned power limitations can be managed by optical amplifying stages such as 

regenerative amplifiers[16] and large-core fiber amplifiers[17] placed after the oscillator. Extensive 

literature exists in how to design such systems and thus, solutions exist to counter the power 

limitations at the oscillator stage. The regenerative amplifier used in the laser system designed here 

will be discussed extensively in the next chapter.  

Fiber development has been significantly enhanced by the telecommunication industry. Signal 

propagation in the infrared bands is favored due to the low attenuation with current fiber fabrication 

technology[20]. Single-mode fiber operation is also easier at higher wavelengths. Thus, it would be 

prudent to design a fiber system in the telecommunication bands due to the availability of fiber 

technology already developed from industry. However, according to table 2 the O-band is the minimal 

infrared wavelength used in the telecom industry, which is too far away from 266 nm. Generating a 

UV higher harmonic, a design constraint for electron diffraction experiments, is rather difficult using 

telecom wavelengths.  
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Band Wavelength 

O 1260–1360 nm 

E 1360–1460 nm 

S 1460–1530 nm 

C 1530–1565 nm 

L 1565–1625 nm 

U 1625–1675 nm 

Table 2 Prominent telecommunication bands for fiber optic systems[21] 

However, due to the prominence of fiber amplifier technology, extensive doping techniques exist for 

the production of gain fiber from rare-earth metals such as ytterbium, erbium, neodymium and 

thulium. From, the absorption and emission cross section presented in fig. 1, it is seen that there is an 

emission peak at 1.03 μm for ytterbium doped fibers. Ytterbium doped fiber can theoretically produce 

a lasing output at 1.03 μm. The output can be converted to the 257 nm harmonic, its 4
th
 harmonic, with 

the use of 2 second harmonic generation conversion stages. This lies above the band gap energy of 

most photocathode materials used in electron diffraction experiments. This technology exists in 

abundance in industry because of the ease of generating visible radiation through harmonic up-

conversion from this wavelength and since a rare-earth doping method exists for ytterbium. Therefore, 

designing an ytterbium based fiber ring oscillator is advantageous for meeting the lab design criteria.  

In the following section, a brief theoretical overview will be presented for the various processes that 

were used in building the 1.03 μm fiber ring oscillator source. References that guided in the source 

design were [22,29, 30].   

 

Figure 1: Taken from [23]. Absorption and emission cross sections for the relevant wavelength range 

of Ytterbium-doped germanosilicate used in the cores of Yb doped fiber.  
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2.1 Theoretical Considerations 
 

This section will discuss the theoretical underpinnings for oscillator systems in general, and 

specifically fiber oscillators. In order to understand the dynamics of the oscillators that were built, it is 

first necessary to introduce the theory of pulse propagation in fiber structures, the 1-D non-linear 

Schrödinger equation and specific solutions relevant to fiber lasers. Also the concept of, dispersion, 

and mode-locked lasers with real and virtual saturable absorbers (SA) will be discussed extensively. 

Parts of this theory will be presented in more detail in subsequent chapters and thus, only a brief 

introductory treatment will be made here.  

2.1.1 Pulse Propagation in Fiber Structures 

 

The fiber used in the construction of the oscillator is a cylindrical waveguide consisting of a “core” 

and a “cladding”. The cladding encloses the core in a torus structure. The core is at a slightly higher 

refractive index than the cladding. Thus, there is a critical angle between the core-cladding interfaces 

for which any ray at the critical angle or higher in relation to the propagation axis will undergo total 

internal reflection and remain in the core. The light can be efficiently transported through the fiber. 

There are different propagation pathways possible for rays at different launch angles at the fiber input. 

Each pathway can be viewed as a confined mode of the fiber in the simple ray picture [25] (see, fig. 3). 

 

 

Figure 2: Example of a core cladding refractive index profile in the radial coordinate.  

 

Figure 3: Momentum Ray diagram indicating total internal reflection in the fiber. For paraxial 

Gaussian beams the asymptotic divergence angle of the spatial distribution corresponds to the highest 

momentum angle in the Gaussian beam momentum representation. The mode at the end of the fiber, if 
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Gaussian like (i.e., single mode) will expand out to asymptotic divergence angle limit set by the 

critical angle. 

The modal structure of propagating confined electromagnetic radiation in the fiber becomes clear once 

the corresponding Maxwell’s wave equation is derived for such a cylindrical waveguide. For the radial 

step-index profile presented in fig. 2 the following wave equation in cylindrical coordinates can be 

derived. The derivation is a summary of what is discussed in Chapter 8 of [24]: 

∂2 U

∂r2
+
1

r

 ∂U

∂r
+
1

r2
∂2 U

∂φ2
+
∂2 U

∂z2
+ n2ko

2U = 0 

 

(1) 

Where U is the electric or magnetic field, n = ncore for r < a and n = ncladding for r > a. ko is the 

free space wavenumber. 

The boundary conditions require that at r = a , Ucladding = Ucore and 
 ∂Ucladding

∂r
=

 ∂Ucore
∂r

 . 

The family of bound guided paraxial (i.e., confined to small momenta angles about the propagation, z 

axis) solutions that are relevant to most applications of fiber waveguides can be expressed as: 

U(r,φ, z) = u(r)ei𝑙φeiβz 
 

(2) 

Where, l= 0,±1,±2,… . l is the angular momentum wavenumber. β is the effective z propagation 

wavenumber, which will be discussed later in this section, and:  

 

u(r) ∝ {
J𝑙(kcor), r < a

K𝑙(kclr), r > a
} 

 

(3) 

Where, J is the first Bessel function of order l and K is the modified second Bessel function of order l.  

The effective radial wavenumbers  kco, kcl  are given in terms of β  as: 

 

kco
2 = (ncoko) 

2 − β2 
 

(4) 

 

 

kcl
2 = (nclko) 

2 − β2 
 

(5) 

Only a restricted set of  kco, kcl are possible solutions that satisfy the continuous boundary conditions 

for the electromagnetic field as introduced above. By determining this set of possible values of kco 

and by using Eq. (4) β can be fully determined. The procedure to do this is outlined below. 

From the aforementioned boundary conditions it follows: 

 

kcoa
𝐽𝑙 ± 1 

(kcoa)

𝐽𝑙 
(kcoa)

= ±kcla
𝐾𝑙 ± 1 

(kcla)

𝐾𝑙 
(kcla)

 

 

(6) 

It can be verified that: 

kco
2 + kcl

2 = (nco
2 − ncl

2)ko
2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =

V2

a2
 (7) 
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Plotting the left hand side (LHS) vs the right hand side (RHS) with respect to kco , using Eq. (5) to 

find the corresponding kcl and finding the intersections obtains a set of possible solutions for kco, kcl . 

kcl is restricted to being strictly real or otherwise, the bound condition of the solution is violated, 

leading to propagating radial waves in the cladding. kco must be real to prevent propagating waves in 

the core. Thus, the maximum value of kco = ((nco
2 − ncl

2)ko
2)0.5. The points of intersection yield 

unique values of kco which are denoted as kco𝑙𝑚 𝑚 = 1,2,3. 𝑒𝑡𝑐. It can be shown that, -l and l yield 

the same spatial mode amplitudes and values of kco. A mode can be described with the integer set l,m. 

The constant on the RHS of Eq. (7) can be described as a parameter that limits the points of 

intersection and the possible modes at a given l. This is due to the real limitation on kco 
thus creating 

the condition that kco <
√V

𝑎
. While the above Maxwell’s equation is a scalar equation, it can be 

assumed that the modes are TE modes. This is because of the fact that these modes are under the 

paraxial approximation, where the transverse components of the mode wavenumbers are small. 

Therefore, the polarization state of each momentum vector (which in bound-charge isotropic media is 

always in the plane perpendicular to each momenta vector) is roughly always perpendicular to the 

propagation direction.  

The V parameter given in Eq. (7) is important in controlling the amount of propagating modes that are 

confined in the fiber.  

The number of modes existent in the fiber can be described as : 

M
#
=
4

π2
V2 

 
(8) 

For single mode operation from Eq. (8), the following condition can be concluded: 

V =
π

2
 

 
(9) 

(nco
2 − ncl

2)
1
2 =

π

2koa
 

 
(10) 

The cladding-core refractive index difference and the core size, a, constitutes the fiber design 

constraints. Using the Taylor series expansion for small ratios between cladding and core: 

nco(nco − ncl) ≅
π

2koa
 

 
(11) 

Knowing nco and a one can solve for ncl. The incoming mode momenta into the fiber must have 

angles to the fiber propagation axis that are below the critical angle for total internal reflection to be 

considered for confinement (see, Fig. 3). Solving Snell’s law for the system, one can obtain: 

θc = arcsin (NA) 
 

(12) 

NA = (nco
2 − ncl

2)
1
2 

 
(13) 

From the given fiber numerical aperture, lensing systems can be designed, to ensure proper coupling at 

the fiber’s input.  
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While the above is valid as a powerful approximation for experimental setups, in order to calculate 

coupling efficiency between a general optical electric field distribution at the input of the fiber, an 

overlap integral will have to be performed[24].  

For single mode operation, the approximately TE mode Bessel function within the core will consist of 

the central peak (its spatial period will be greater than twice fiber core size) and will be an attenuated 

function in the cladding, see Fig. 4.  This effectively mirrors a Gaussian distribution and this will be 

denoted as a fiber single-mode Gaussian distribution.  

The above modal analysis was for the monochromatic case, the wavelength range considered for the 

oscillator is within the relatively large single-mode bandwidth of the fiber. However, it is important to 

note that the modal-frequency dispersion and modal group velocity of the fiber will be different than 

the bulk material analogue and values specific to the fiber have to be considered instead.    

 

Figure 4: Mode-Field Diameter (MFD) of the approximately Gaussian distribution in single-mode 

fiber. Image obtained from [26]. 

 

2.1.2 1-D Nonlinear Schrodinger Equation 

 

Of great importance to the study and understanding of fiber oscillators are the various linear and non-

linear effects present as the optical pulse propagates within the fiber. The non-linear wave equation of 

interest can be derived from Maxwell’s equations where the polarizability term has a non-linear 

dependence on the optical intensity of the propagating optical pulse. The derivation assumes a slow 

varying envelope approximation, meaning that the frequency bandwidth of the pulse is less than its 

central frequency[27]. In this section NLSEs that are of interest to the fiber oscillator system are 

presented. . The NLSE will be the central focus of chapter 4 and only a short description will be 

presented here. To start with, the simplified 1-D NLSE for the nonlinear propagation of a pulse 

through a medium in the one dimensional case without gain terms reads as [26]:   

∂U

∂z
= iγ|U|2U − i

β2
2

∂2U

∂τ2
 

 

(14) 

Where, only the second order dispersion is included. γ is related to the nonlinear refractive index (n2) 

and accounts for self-phase modulation (SPM) which is an effect that describes the frequency 

broadening of the pulse (intensity dependent additive phase in the time domain) because of the 

intensity dependent nature of the refractive index[28]. U is the normalized (to peak electric field 

amplitude) envelope amplitude, τ is time, defined in the travelling frame of the pulse (time window 
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travelling at the group velocity of the original optical pulse), and z is the propagation direction of the 

optical pulse.  

 

For restricted 1-D systems such as the fiber systems being considered, 

γ =
n2ωo
cAeff

 

 
(15) 

ωo is the central frequency, c is the speed of light in free space, Aeff is the effective mode area (i.e., 

the core size of the fiber).  

For fibers there are two classes of solutions to Eq. (14) that are interesting to explore; namely, the so-

called solitons and similaritons. In practice, both pulses can appear so the theory of both will be 

discussed. Solitons are pulses that maintain their amplitude profile save for an overall phase term as 

they propagate through the medium. Because of this property, solitons can be viewed as an Eigen-

mode like solution to the non-linear equation. Solitons are generated due to the competition between 

SPM and dispersion. As the pulse propagates in a normal dispersive medium (meaning the refractive 

index decreases w.r.t  wavelength) with negative n2, second order dispersion would chirp the pulse in 

such a manner that bluer frequencies would head to later times of the pulse while redder frequencies 

will gravitate towards earlier times in the pulse. However, SPM generates instantaneous frequencies as 

[32] : 

ωafterSPM = ωoriginal − γ
∂|U|2

∂τ
∆z 

 

(16) 

ω is the instantaneous frequency along the temporal profile of the pulse. Thus, at the start of the pulse 

the derivative term in Eq. (16)  is overall positive and there will be a frequency shift towards the blue, 

while the back of the pulse sees a red frequency shift. Therefore, redder components at the front of the 

pulse shifted because of dispersion undergo a frequency shift to the blue and bluer frequencies at the 

back undergo a frequency shift towards the red. Under certain conditions this results in a net 

instantaneous frequency conversion of zero[33]. 

The soliton solutions are a stability point that naturally arises even if the input pulse is far from the 

soliton form. This is because of the fact that parts of the pulse that do not meet this balancing act, 

quickly disperse away and the wave breaks into a train of dissipative pulses and the solitons[29].  

The unnormalized soliton solution has an envelope function in the form of [29]: 

Usoliton = √Posech (
τ

τo
)eiksz 

 
(17) 

And has a hyperbolic secant (sech) time profile. Po is the peak power of the soliton, τo can be found 

from Eq. (19) as the soliton pulse duration and:  

ks =
|β2|

γτo
 

 

(18) 

In analogy to the Eigen-mode solutions of linear equations there are higher order soliton solutions. The 

order of the soliton governs the relation between peak power achieved and soliton duration. The 

relation is known as the soliton area theorem given as: 
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N2 =
γPoτo

2

|β2|
 

 

(19) 

N is the soliton order. For fundamental solitons which are present in the fiber oscillator, N=1.  

A note: solitons can exist in anomalous dispersion regimes (opposite of normal dispersion) only if n2 

correspondingly becomes positive. This maintains the restriction that SPM additive phase 

contributions balances with phase from dispersion.   

It  would be beneficial to use this effect in a fiber oscillator because of the short temporal durations 

achievable with solitons, the ease of generating solitons and the inherent resistance solitons have to 

pulse broadening in a medium. Thus, steady state pulse conditions can easily be sought with soliton 

solutions and stable fiber oscillator can be achieved.  However, it will be seen that there is even a 

better class of solutions for fiber oscillators. 

To conclude with the basic NLSE it is important to note that the higher-order dispersion may have to 

be considered (for example third order dispersion or TOD). To reflect these changes Eq. (14) becomes 

[36]: 

∂U

∂z
= iγ|U|2U− i∑

βn
n!

∂nU

∂τn

∞

𝑛=2

 

 

(20) 

βn =
∂n𝑘

∂nω
|ωo 

 

(21) 

n=2 because the term describing the group velocity (the n=1 term) is already considered in the moving 

frame of reference and the overall phase term of n=0 can be neglected without any loss of generality. 

Since all pertinent effects depend on the relative phase variation in the optical envelope. This is also 

why the central frequency phase term is omitted and the envelope is only modeled.   

The above analysis will now be extended to a more complicated 1-D NLSE that can be used to closer 

model the dynamics of the pulse evolution in the fiber oscillator and factoring in additional non-linear 

effects. Due to the gain term introduced by a pumped doped fiber, the unitary (i.e. conservative) NLSE 

above is modified to a non-unitary NLSE [29]: 

∂U

∂z
= iγ|U|2U − i

β2
2

∂2U

∂τ2
+
g

2
U 

 

(22) 

The gain coefficient is a function of both time and propagation coordinate (z). It is coupled to ordinary 

differential equations that describe the gain evolution[34], with parameters described in Table 3: 

 

g = (σem 
Non − σabNo(1 − n)) 

 

(23) 

dn

dt
= (−σem 

n + σab(1 − n))No|A|
2 −

nNo
Tsp

 (24) 
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Parameter Symbol Description 

g 
gain coefficient (cm−1) 

σem 
Emission cross section (cm2) 

σab 
Absorption cross section (cm2) 

No 
Total electron density that can undergo 

inversion transition (cm−3) 

n 
Electron density in upper state manifold (cm−3) 

|A|2 
Unnormalized |U|2 in (

W

cm2) 

Tsp 
Spontaneous emission time (s) 

Table 3: Parameter explanation of Eq. (20)-(24). 

The two manifold electronic transition systems considered for the gain evolution will be described in 

chapter 3. For now it is sufficient to state that Eq. (24) describes the evolution of electrons in a ground 

manifold to an upper state excited manifold. The derivative is over the proper time coordinate and not 

in the frame of the propagating optical pulse. The absorption and emission cross section are both 

functions of optical frequency (for example, see  fig. 1) and thus, the instantaneous phase of the pulse 

in a region of time dictates what value these functions take. g and n are both functions of time and the 

propagation coordinate.  

Equations (23) and (24) are solved iteratively, where |A|2 obtained from the previous propagation slice 

of Eq. (20) is used to calculate the population inversion at the propagation slice (Eq. (24)) , which is 

used in turn to evaluate the gain Eq. (23), allowing to recalculate |A|2 using Eq. (20) and the updated 

gain value for the present propagation slice and so forth. 

However, for a single-pass amplification where the optical pulse signal is considered to be ultrafast 

(shorter than the gain relaxation time) it can be assumed that the gain coefficient is a constant in time. 

For a gain saturated system, it can also be assumed that the gain coefficient is constant in the 

propagation coordinate. This is deemed the parabolic approximation for the NLSE [29]. For small gain 

coefficients, the term can be treated as a perturbation on the NLSE. It has been demonstrated[35] that a 

class of solutions, called similariton solutions, can be obtained that propagate in a self-similar manner 

(meaning whose profile shape type remains the same in frequency and time). At z → ∞: 

A(z, τ) = Ao(z)(1 − (
τ

τo(z)
)2 )

1
2eiφ(τ)z (25) 
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For τ > τo(z),A(z, τ) = 0. 

τo(z) = 3(g)
−2
3 (
γβ2
2
)
1
3(Ep)

1
3e
gz
3  (26) 

 

Ao(z) = 0.5(gEp)
1
3(
γβ2
2
)
−1
6 e

gz
3  (27) 

 

φ(τ, z) = (
3γ

2g
Ao(z)

2 −
g

6β2
τ2) 𝑧 

 

 

 

(28) 

Ep is the inputted pulse energy. φ(τ, z) is represented in Eq. (28) without the arbitrary phase constant. 

The z varying phase is linearly chirped (i.e., linearly chirped kz wavenumber) and can be viewed as 

the propagation wavneumbers matching the instantaneous frequency. 

The z varying amplitude term arises from gain being present as the pulse traverses z. The similariton 

pulse broadens exponentially as a function of z. The phase derivative describing the instantaneous 

frequencies as a function of time is a negative linear function of time. This indicates that frequencies 

are linearly increasing over the pulse width (positive linear chirp), which is the case in normal 

dispersion material that is considered here.  

The similariton spectrum has a parabolic profile that mirrors the temporal envelope function.. The 

spectral extent corresponds to the end frequencies in the chirp described by the derivative of Eq.(28). 

Past these end frequencies there is a sharp cutoff.  

Since Similariton solutions exhibit a linear chirp, they can easily be compensated by simple dispersion 

management (i.e., a grating system). They are the predominant solution under gain perturbation at 

z → ∞ which is the case when the laser is at steady state (and the circulating intracavity pulse has 

undergone many roundtrips). These points make these solutions very important for fiber lasers as they 

are the solutions in the asymptotic limit (in the steady state dynamics).   

Because of the linear chirp that is exhibited by similariton solutions, the frequency distribution and 

time amplitude of the pulse are similar. In fact, it can be seen from the instantaneous frequency 

distribution that the time amplitude distribution is the frequency distribution at a z magnified by the 

ratio 
g

3β2
 . 

If the gain can be viewed as a weak perturbation of the cavity one would obtain a slightly perturbed 

soliton type pulse. Thus, the intracavity pulse can vary from a soliton at one end of the range to a 

similariton at the other end depending on dispersion management in normal dispersion media.  

The final topic of discussion in regards to the NLSE is the effect of Kerr dependent polarization 

rotation within the fiber medium. It is in fact this mechanism that plays a large role in obtaining pulse 

formation within the cavity from initial start-up laser conditions and is the principle intensity 

dependent effect (a virtual saturable absorber) used in mode-locking the spectrum, as discussed in the 

next section.  
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The NLSE including cross phase polarization modulation terms, under the slowly varying 

approximation (high birefringence), reads as [36]: 

∂Ux
∂z

= −
∆β1
2

∂Ux
∂τ

− i
β2
2

∂2Ux
∂τ2

+ iγ (|Ux|
2 +

2

3
|Uy|

2)Ux +
g

2
Ux 

 

(29) 

∂Uy
∂z

=
∆β1
2

∂Uy
∂τ

− i
β2
2

∂2Uy
∂τ2

+ iγ (|Uy|
2 +

2

3
|Ux|

2)Uy +
g

2
Uy 
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Ux and Uy describe the electric field along a linear polarization orthonormal basis set.  ∆β1 is the 

group velocity phase difference associated to the refractive index change between polarization axis 

(∆β1 =
∆n

c
 ). 

Without any nascent fiber birefringence [36]: 

 

∂U
+

∂z
= −i

β2
2

∂2U
+

∂τ2
+ i

2

3
γ(|U

+
|2 + 2|U

−
|2)U

+
+
g

2
U
+
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∂U
−

∂z
= −i

β2
2

∂2U
−

∂τ2
+ i

2

3
γ(|U

−
|2 + 2|U

+
|2)U

−
+
g

2
U
− 

 

 

(32) 

The above equations utilize a transform into the circularly polarized orthonormal basis given as: 

U
+
=
(Ux + iUy)

√2
 

U
−
=
(Ux − iUy)

√2
 

The first term on the right hand side of the high birefringence case (Eq.(29)), mathematically adds an 

overall delay to the optical pulse in polarization axis (one can see this by considering the frequency 

representation of the term, shown in chapter 4) and accounts for a net total delay between optical 

pulses travelling along the two orthogonal axes. The n2 intensity dependent term now contains 

intensity contributions from both polarizations. This is because the intensity dependent variation of the 

refractive index sees overall intensity regardless of, i.e., the polarizability tensor remains scalar. The 

above equations employ the slowly varying intensity approximation.    

The above is obtained by considering the two polarization states of light on the polarizability term in 

the original derivation of the NLSE [36].Due to intensity dependent coupling between polarization 

states, the amplitude electric field of one polarization state rotates such there is a component in each of 

the polarization basis vectors. This process iterates over the medium propagation coordinate.  Details 

of this derivation are extensively covered in [36]. 

It is also sufficient to state here that Soliton or Similariton solutions (dependent on the strength of the 

gain perturbative terms) exist when considering the polarization cross phase modulation in the case of 

the low birefringence NLSE[29].  

2.1.3 Mode-Locking Mechanisms of Laser Oscillators 
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The inherent goal in passively pulsed lasers systems is to lock the phases of spectral components that 

are allowed to lase within the cavity. It is prudent to briefly discuss what spectral components can 

propagate in such a laser cavity, this can be seen by the CW lasing conditions. The CW lasing 

conditions of these spectral components depends on the gain medium and the coherence of the lasing 

mode. If the phase after a roundtrip of the spectral component is not an integer multiple of 2π than 

interference with phase regions of the CW component at lower roundtrip numbers will cause an 

intensity drop in the intra-cavity power of the component and lasing will stop[1]. Thus, only spectral 

components satisfying this phase relation within the gain bandwidth of the oscillator can contribute to 

the final pulse build up in the mode-locked case.  

There is a discrete train of CW spectral components that are allowed in the cavity (since the spacing of 

these CW lasing components are small, this is assumed to be a continuum) and if the phase differences 

between these components happen to be close to zero, by the Fourier series property (or integral if a 

continuum approximation is used), an optical pulse in time is produced. Furthermore, the peak 

amplitude of the pulse would be equivalent to the summation of the peak amplitudes of the train of 

spectral components, far exceeding and individual components value. Thus, pulsed operation exhibits 

higher local intensities around its peak than the background amplified spontaneous emission 

waveform. 

If it is possible to construct a device that: 

1) Filters the optical intra-cavity intensity so that intensities past a threshold can propagate within 

the cavity and, 

2) Recovers on a fast time-scale. 

Then, a pulse exhibiting the ideal properties discussed in the past paragraph can be allowed to 

propagate while other regions of the optical waveform in the cavity not exhibiting these spectral phase 

relations will be attenuated by the device. Only a small attenuation factor is necessary due to the 

exponential amplification of the pulse (and depletion of the gain medium after the pulse). Essentially, 

by tuning the pump power, the pulse in the waveform with the highest peak intensity will deplete the 

gain medium such that for times before and after the pulse interacts with the gain medium at 

roundtrips past steady-state, the population inversion has not recovered to a level where gain equals 

absorption within the cavity and attenuation caused by power out-coupling from the cavity. 

A device that accomplishes this task is correspondingly named a real Saturable Absorber (SA). As the 

name suggests, this works on the concept that at steady state population inversion the SA material is 

close to transparent to the pumping signal (i.e., the stimulated emission rate of the SA balances with 

the absorption rate). The timescale to this steady state and thus transparency is dependent on the pump 

intensity. The SA will be rendered transparent for parts of the waveform that exhibit peak intensities 

past a threshold and absorptive/reflective for parts that do not meet this criterion. The relative 

transparency need not be great (modulation depth on the order of 1-5%[31]). 

However, in the next section, I will discuss the success of a virtual SA scheme that is the dominant 

mode-locking mechanism in the fiber oscillator that was built. This scheme does not rely on material 

population inversion dynamics as in the case of the real SA but on the non-linearities that exist in the 

fiber and that was covered in section 2.1.2. The advantage to this scheme is that the response time of 

the virtual SA is instantaneous with intensity. In the real SA the response time dictates the inversion 

recovery, for example, which adds amplitude noise in the system because the pulse sees different 

initial conditions in the SA every roundtrip. Since this is not the case in virtual SA’s noise is 

minimized.  
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Narrower subsets of pulses are allowed in virtual SA’s. This is because in real SA’s the inversion level 

saturates with pulse peak intensity; any pulse over the saturation value is allowed with negligible 

relative losses. This can cause double pulsing or pulse trains with different pulses to be outputted from 

the oscillator since the real SA cannot differentiate these pulses. However, in virtual SA’s this effect is 

not present. The virtual SA scheme does not saturate with intensity, and due to the non-linear 

dependence of intensity, intensity changes are always highly impactful and cause large changes in the 

dynamics. Self-starting of virtual SA systems are than harder to achieve; however, once mode-locking 

is achieved pulses do not fluctuate in the pulse train. Therefore, for stable applications, even if self-

starting may be hampered in virtual SA’s, they should be the preferred scheme. 
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2.1.3.1 Non-linear Polarization Rotation (NPR) Mode-Locking: A Virtual SA 

The predominant method of mode-locking similariton fiber cavities is via NPR which can be seen as 

an intensity dependent polarization rotation. 

As can be seen from Eq. (29) to (32) the electric field amplitude along a polarization of the optical 

waveform is intensity coupled to the other orthogonal polarization. By only considering the Kerr 

rotation term, [36] has derived an analytic expression for the Kerr rotation term. From his derivation it 

can be seen that a linear state will not rotate, while a circularly polarized state will remain circularly 

polarized but in the orthogonal circularly polarized state. There are thus, linear polarization Eigen 

modes of the polarization effect.  

By considering only the case of Eq. (31) and (32), the polarization rotation will add no phase offsets 

between the polarization axes and thus the overall polarization state will be rotated but still maintained 

for an elliptical polarization. In terms of the general optical waveform* born from the random 

spontaneous emission source, at first the polarization state will vary across the overall optical 

waveform in a random (depolarized) manner. However, because of the random variation the system 

can find a state where for a given region in time the electric field amplitudes are Eigen-mode type 

solutions of the cavity; meaning, that at the entrance of the fiber, the optical waveform matches the 

initial condition of the previous roundtrip. Through competition in relation to the gain population this 

region will be amplified over others; the losses in relation to the gain for other regions will increase 

and thus, will be subdued. The cavity “Eigen-mode” has to match the initial phase (up to an arbitrary 

constant), amplitude and polarization of the initial condition at the previous roundtrip for the pulse to 

be in a steady state dynamic.   

Now, it will be explained why this “Eigen-mode” will be amplified over other regions in the 

waveform. If there is a polarization based filtering within the cavity, for regions of the optical 

waveform where the polarization state and intensity do not match the initial conditions after passing 

through the polarization based filter, there can be either two outcomes: The waveform will walk in 

transformations until it will evolve into a polarization state with high out-coupling loss, due to the 

statistics over a large amount of transformations that result in that or walk in transformations until it 

reaches a repeatable state, where now walks in polarization are suppressed.  

A more in-depth analysis of the conceptual discussion above starts with the inputted pulse polarization 

state at the entrance of the fiber portion of the cavity (see Fig. 5). After the PBS the overall waveform 

is in the P-polarization. After the QWP at the entrance of the fiber the state is rotated to an elliptical 

polarization that is the same across the optical waveform (linear states will not change and thus need 

to be converted to an elliptical state for the effect to happen). Due, to the intensity dependent 

polarization rotation in the fiber, portions of the optical waveform will be rotated differently. Thus, 

regions of the waveform will be in-coupled differently into the cavity after the PBS. This effectively 

modulates the optical waveform such that the intensity distribution is localized in time.   

It can be experimentally shown that Eq. (31) and (32) ,operating under a  specific gain value and a 

short input pulse (i.e. short region in time), can rotate an elliptical input state in a manner such that the 

intensity gained at a given time is exactly in the out-coupling S polarization across the narrow region 

in time and thus, the input intensity entering the fiber will have the same intensity profile across the 

region in time as the previous roundtrip. If cavity dispersion is managed and there is no overall gain 

filtering effects (the bandwidth of the pulse is the same as the previous roundtrip at the entrance of the 

fiber), than all initial conditions are met. If cavity dispersion is not managed than the pulse is likely to 

evolve into a soliton with dissipative waves, that are called Kelly sidebands [37]. This type of 

oscillator is called a normal dispersion oscillator.  
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If the optical waveform is in the high in-coupling polarization states for many round-trips in its 

evolution, than the asymptotic limit is reached and a similariton pulse will form. Once this limit is 

reached it can be experimentally shown that Eq. (31) and (32) yields similariton solutions where the 

polarization rotation meets the initial conditions described in the previous paragraph. Once this pulse 

is formed, to insure initial conditions are met and the same pulse is being coupled out of the cavity per 

round trip, the linear chirp that accumulates per additional roundtrip after convergence to the 

asymptotic limit is compensated after out-coupling by a double pass diffraction grating (DPG) [38].    

This type of similariton oscillator is easier to achieve since the steady state solution does not rely as 

heavily on the gain effects being cancelled after out-coupling in its evolution prior to steady state, 

because of the wide plethora of input pulses that can evolve to a similariton in the asymptotic limit. In 

the case of the soliton formation, the gain memory may never result in the soliton formation or cause 

dissipative waves because of the narrow stability point that soliton formation exhibits when gain 

effects are considered.  Due to the negative stretching of the pulse after the diffraction grating, this 

fiber oscillator type is accordingly named stretched-pulse oscillator. The oscillator example with the 

DPG is called a stretched pulse NPR fiber oscillator. Note, that if the diffraction grating does not 

compensate for dispersion in the prescribed way and there is net normal dispersion, the oscillator will 

have soliton formation like a normal dispersion oscillator.  

The disadvantage for similariton solutions is that the linear chirp is only achieved in the asymptotic 

limit. Thus, the evolution of the system at the start has to still follow close to similariton evolution 

even in the presence of the now parasitic dispersion compensation. However, the chirp in the non-

asymptotic limit can be highly non-linear and a linear additive variation can be neglected as a minor 

perturbation. Though, this can contribute to system instabilities. The amplitude reduction from the 

output coupling can affect the evolution of the pulse to the similariton limit. However, [39] has shown 

that the asymptotically limited similariton solution can be achieved from a variety of pulse evolutions 

and is robust to these effects.  
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Figure 5: A descriptive picture of NPR mode locking. O.W: Optical Waveform, S.S: Steady State, RT: 

Round Trip. At P1 the optical waveform is stretched in time because of dispersion. At RT away from 

S.S, portions of the waveform will be polarization rotated such that the out-coupling loss will result in 

attenuation in the cavity. At this point the optical waveform has an intensity distribution already 

localized in small regions of time. Only a short region in time of the initial waveform will progress to 

steady state.  Because of tight constrains on the intensity-dependent rotation and because of gain 

competition. At point P2, only the P-polarization (here depicted as vertical arrows, however, in the 

plane parallel to the paper) will be in-coupled. Thus, for example, the O.W at RT N will be truncated 

around the main peak. At P3 linear dispersion is compensated by the use of a DPG. The QWP at P3 

inputs a uniform elliptical polarization across the O.W. This serves as the necessary initial condition to 

insure Kerr rotation across the entire O.W. The P polarization will not rotate and thus, this QWP is 

integral. Finally, the output pulse at S.S will be as described in the text (different to the intracavity S.S 

pulse). WDM stands for the wavelength Demultiplexor/Multiplexor and is used to the pump fiber to 

the cavity gain fiber. 

Due to laboratory conditions, external environmental forces can exert strain on the fiber system. This 

locally causes the fiber to be birefringent [40] and the effect is even used to rotate the modal 

polarization within fiber [41] in industry. Thus, at these local regions of the fiber, the system equations 

are better described by Eq. (29) and (30). There is a polarization walk off represented by the first term 

of these equations. This additional birefringence must be reduced in the design of the setup by 

reducing environmental strain on fibers. Because of the walk off, these parasitic birefringent areas of 

the fiber cause limitations on the shortest duration of pulsed operation and can lead to multiple 

pulsing. 
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In the initial condition analysis above another fact must be considered. Directly, from Eq.  (26) it can 

be seen that as the similarition propagates in the fiber, the pulse width in time increases. Since, Eq. 

(28) is never violated, this is due  to the linear chirp now over additional frequencies added in a linear 

fashion in time to the ends of the previous frequency bandwidth and in the same ordering. Thus, 

spectral filtering must happen at the start of every round trip; to maintain initial conditions. 

The added bandwidth at a certain fiber propagation length can be calculated as : 

wmin =
g

3β2

τo(zo)

2
+

g

3β2

τo(z1) − τo(zo)

2
 

 

(33) 

Where the first term is the minimal frequency at zo, which represents the end length of the first round 

trip after convergence. 

It follows that :  

wmax = −
g

3β2

τo(zo)

2
−

g

3β2

τo(z1) − τo(zo)

2
 

 

(34) 

 

Subtracting the above equations and substituting the equation Eq. (26) for τo gives: 

∆w =
g

3β2
3(g)
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3 (
γβ2
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1
3(Ep)

1
3e
gz1
3  

 

(35) 

This can be derived as the bandwidth conditions straight from Eq. (26) and the time derivative of Eq. 

(28). This verifies that calculating the bandwidth addition in the manner expressed above is correct 

and that instantaneous frequencies are appended to the ends of the previous bandwidth in a linear 

fashion and in the same ordering in time.  

The added bandwidth is assumed to be attenuated primarily by the natural gain-filtering effect of the 

gain medium [42] and by the spectral transmission function of the DPG.  

The amplitudes of the frequency components change vs propagation distance (this can be seen by the 

time shape of the pulse being maintained as new frequency components are added and by the gain 

dependence of the amplitude function). However, it is assumed that this is taken care of with the 

appropriate polarization rotation characteristics described above at steady state. Meaning the S-

polarization out-couples intensity gained. There is a sharp frequency cut off that can be seen from Eq. 

(28). There is a minimum and maximum possible frequency value obtained from the time derivative 

Eq. (28). This is because of the amplitude function going abruptly to zero past the temporal width τo. 

Thus, frequency values at |τ| > |τo| will exhibit zero amplitude to guarantee that the time amplitude 

function is zero past the temporal width. This frequency cut off in the spectrum is in contrast with 

spectra obtained from solitons. 

Table 4 lists the advantages of similariton over soliton operation, which strengthens the reason why 

dispersion compensation is needed.  
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Advantage Similariton Soliton 

Dispersive wave generation Similaritons exhibit minimal 

dispersive wave generation[30] 

Kelly sideband contributions 

exist due to dispersive wave 

contributions[30] 

Perturbative recovery  Under perturbations similaritons are 

robust with a reduced wave-breaking 

as compared to solitons. [30] 

Solitons undergo fission and 

fusion dynamics under 

perturbation.[43] 

Evolution pathways  A large number of evolution 

pathways from the original optical 

waveform tend to similariton 

formation. However, this can lead to 

double pulsing in similariton cavities 

because of the increased number of 

valid regions of the optical 

waveform. This is also why 

perturbative recovery is easier with a 

similariton 

A limited number of evolution 

pathways render soliton 

formation tougher to implement 

and also why perturbative 

recovery is lower in soliton 

pulses as compared to 

similaritons. 

Energy scaling Mismatch of amplitude in pulse 

build up does not cause 

depolarization as easily as soliton 

formation. Similariton formation is 

more robust in this regard. 

Amplitude reduction/increase 

with the additional 

gain/absorptive term may cause 

soliton wave-breaking due to 

the non-linear part of the NLSE 

contributing less than the linear 

dispersion part or vice versa. 

Dispersion is not balanced 

anymore with the non-linearity 

(SPM). However, due to the 

dispersive solitons that can be 

produced, system is still robust 

but may be unstable [30]. 

Frequency Filtering Frequency filtering may be 

necessary to counter the gain 

dynamics (non-uniform gain profile) 

of the fiber and to insure initial 

conditions.  

Due to the perturbative gain 

term the soliton will undergo 

additional SPM frequency 

broadening (due to the energy 

conservation violation of the 

NLSE and intensity gradients 

being enhanced by the intensity 

dependent gain). Thus, in order 

to maintain the soliton initial 

conditions at every round trip 

additional frequencies have to 

be filtered before entering the 

fiber.  

Table 4: Relative advantages of operating in similariton vs soliton pulse formation.   

*The starting optical waveform is a summation of incoherent spontaneous emission over many round 

trips. If the CW lasing conditions are not met, the contribution of that spectral component in this 

summation is reduced.  
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Advantages NPR mode-locking Real SA mode-locking 

Pulse duration The intensity dependent 

polarization scheme used as a 

virtual saturable absorber 

fluctuates directly with pulse 

intensity. There is no delayed 

system response.  

The Relaxation time of the 

inverted population in real SA’s 

is essentially the time the SA 

cannot be used for intensity 

filtering. Thus, noise can persist 

after the pulse formation.  

Noise  Reliant primarily on pump 

noise and thermal noise.  

 

Reliant on pump noise, thermal 

noise, population recovery 

noise in the SA, pointing 

fluctuation error, etc. As well as 

gain recovery noise (explored in 

chapter 3) 

Stability at higher repetition 

rates 

Once initial conditions per 

roundtrip match, by the fact that 

the pulse is mathematically an 

Eigen-mode like analogue to 

the system NLSE, the pulse will 

be stable. The dynamics will 

match every roundtrip. 

The SA population recovery 

noise will dominate the pulse 

dynamics at higher rep. rates. 

This is because the initial 

conditions of the ground state 

population will be different for 

every time the pulse passes 

through the SA.  

Robustness to environmental 

strains  

The out-coupling loss is 

dependent on the degree of Kerr 

polarization rotation. This is 

dependent on intensity. Thus, if 

cavity losses increase due to 

environmental effects, the 

output coupling loss decreases 

and for a given gain, the cavity 

can still be in a steady state. 

The system can adapt to 

environmental impacts through 

it being able to vary its losses 

through a feedback with the 

environmental impact. 

See above arguments. More 

reactive to environmental 

instability.  

High Rep-Rate Easily possible due to modal 

confinement as already 

discussed 

See above arguments. Less 

scalable. 

Extracted Efficiency Higher due to modal 

confinement and gain recovery 

dynamics  

 

System Response Time Virtual SA scheme used is 

instantaneous 

Output Modulated by  

population rise time and decay 

time. Saturation effects may 

decrease pulse selectivity. 

Table 5: Compares NPR over real SA’s.  
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2.1.4 Theory of Dispersion Management 

 

As the pulse travels through the fiber portions of the cavity, the temporal width of the pulse will 

broaden and a frequency chirp across the pulse will develop as shown by Eq. (26) to Eq. (28). 

Therefore, to insure initial conditions are met at the entrance of the fiber after every roundtrip, a 

scheme to manage dispersion must be in place. To design such a scheme it is first prudent to delve into 

the theory of dispersion and obtain pertinent equations for the regime the oscillator operates in.  

Optical pulses can be viewed as a summation of small bandwidth pulses at different central 

frequencies[1,25]. Each pulse centered at a specific central frequency has a corresponding group 

velocity inside the various optical elements in the cavity. Because of group velocities not being 

equivalent, the pulses at different frequencies have different time delays relative to each other as they 

propagate to a specific propagation coordinate position in the cavity.  Dispersion terms are viewed as a 

Taylor series where coefficients are given by Eq. (21). The physical meaning of each term can easily 

be seen from the frequency representation of Eq. (21) and each term approximately can be viewed as 

carrying an intuitive physical meaning: 

Zero order dispersion, arises from the first term in the Taylor series expansion of momentum w.r.t 

angular frequency about the central angular frequency (first term in Eq.(21))[1]. It is a linearly 

increasing phase offset that arises as the pulse propagates along the medium. It can be viewed as the 

constant overall kz momentum (the propagation coordinate momentum in Eq. (2)) of the fiber mode 

across all specific instantaneous angular frequency along the temporal profile of the pulse, where z is 

the propagation coordinate.  

First order dispersion, arises from the second term (i.e., second term in Eq.(21)) in the Taylor series 

expansion of momentum w.r.t angular frequency about the central angular frequency[1]. It can be 

viewed as the time delay assigned to a global group velocity applied to the entire train of different 

angular frequency centered pulses, and is a linear function of propagation coordinate. It is the average 

velocity of the envelope function of the optical field. If the original pulse can be viewed as having a 

small bandwidth first order dispersion is sufficient and all other orders are negligible. Second order 

dispersion, arises from the third term in the Taylor series expansion of momentum w.r.t angular 

frequency about the central angular frequency. It can be viewed as the additional time delays due to 

individual angular frequency centered pulses posing group velocity deviations from the global average 

velocity as they propagate to a given propagation coordinate position in the cavity. This is generally 

termed group velocity dispersion (GVD). For the fiber oscillator application this is sufficient and 

higher orders do not have to be considered. However, it is sometimes prudent to consider third order 

dispersion, which is the additional broadening of those sub-pulses centered at specific angular 

frequencies, (i.e. these sub-pulses are again decomposed into pulses centered at different sub-

frequencies). Each additional dispersion term is the next iteration in this pattern[25]. The angular 

frequency width of each sub-pulse is dependent on the variation of the refractive index function on 

frequency. For slowly-varying functions, the bandwidth of each sub-pulse is higher and truncation can 

happen after a lower dispersion order.  

For second order dispersion, the GVD parameter dictates pulse broadening and scales linearly with 

propagation length. The group velocity (Vg) is[1]:  

Vg =
dw

dk
|wo =

c

n(w) + w
dn
dw

|wo 

 

(36) 
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w is the angular frequency and k is the angular momentum wavenumber. The propagation time per 

meter is simply: 

 

TD =
1

Vg
 

 

(37) 

The timing delay change per angular frequency per length (group velocity dispersion), using the 

refractive index function of frequency is thus[1]: 

 

GVD|w = wo =
∂

∂w

1

Vg
|w = wo =

∂2K

∂w2
|w = wo =

2
dn
dw

+
d2n
d2w

w

c
|w = wo 

 

(38) 

GVD is entirely based on material refractive index variation with frequency. Thus, it is a material 

parameter, whose units are 
s2

m
.  

Where, K is the total momentum of a fiber mode (wavenumber) with frequency w. In isotropic media 

such as the core of the fiber, this is independent of momentum direction. Under the assumption that 

only up to second order dispersion is sufficient and that the GVD does not vary substantially over the 

bandwidth (constrained bandwidth approximation), GVD can be employed in the following manner 

for calculations pertaining to pulse broadening at a certain propagation coordinate in material: 

ΔT = GVD ∗ Δw ∗ L 
 

(39) 

ΔT, is the new time duration of the pulse.  Δw is the angular frequency bandwidth,  L is the length.  

The sign of GVD dictates the direction of broadening of the frequencies. For positive GVD higher 

frequencies are delayed in time (normal dispersion [44], anomalous dispersion is the opposite).  

For multiple optical components (quantity: #) that exist within the region L, labelled with the index j, 

Eq. (39) becomes, under a constant optical bandwidth: 

ΔT =∑GVDj ∗ Lj

#

j=1

∗ Δw 

 

(40) 

Eq. (40), will be used in obtaining the amount of total broadening that needs to be compensated for 

and deriving a scheme consisting of a DPG to implement this compensation per roundtrip.  

2.2 Building the Fiber Laser Oscillator 
 

2.2.1 Component Review, Alignment, CW Lasing  

 

The theory presented in section 2.1 supports the creation of an all-fiber NPR mode locked laser 

oscillator with minimal optical components. However, because of the variety of evolution pathways 

that tend to a similariton, a theory analyzing a particular solution of the NLSE will not solve the 

problem. Primarily, the system is better described in terms of evolution pathways. Whereby, a starting 
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pulse undergoes propagation governed by Eq. (31) and (32) and then after partial out-coupling, is used 

as the initial solution for the next round trip. The set of all pulses used as initial solutions until 

convergence to the asymptotic similariton limit is termed the evolution pathway. As discussed in 2.1 if 

certain conditions are met throughout the evolution pathways, it will be valid (i.e., converge to a 

similariton). Thus, the final similariton pulse can be obtained by the asymptotic convergences of many 

different pulse evolutions and pathways. This fact is why stable pulses are so easily reached in 

similariton oscillators. 

To find a particular valid pathway of the many possible ones by randomly creating an initial optical 

waveform is a statistically challenging problem. The number of outcomes that have to be explored will 

be computationally intensive. Analytic solutions can offer an alternative to the statistical approach, by 

finding an initial subset of optical waveform regions that will converge. However, this is still an 

ongoing problem.  

It is sufficient to understand that the systems NLSE equations yield these asymptotic similaritons over 

a wide parameter space. It is thus, an emergent property of the NLSE system and the onus in 

artificially inducing these pulses (for example in the design of real SA) is removed. Thus, whether the 

system is well known theoretically is of less importance since the emergent nature of the solution 

guarantees the solution over a wide range of parameters.  

Also, the exact asymptotic similariton has well defined analytic expressions in terms of the system 

parameters and lengths can be calculated merely by the one pass length of the roundtrip at this limit. 

Thus, similariton progression such as linear chirp (phase, roundtrip gain, etc.) can easily be deduced 

from these expressions and the roundtrip length. The probability that the original random waveform 

outputs a similariton type initial condition at a given region in time is high because of the extensive 

sampling of this random waveform. Thus, similariton convergence is virtually guaranteed from startup 

and therefore, the cavity is designed for rather the final steady state pulse rather than the buildup. 

Initial conditions and steady state conditions need only be designed for the final circulating 

similariton.  

Given the previous discussion, it is prudent to design the system first experimentally and to 

heuristically optimize for mode-locked spectrum, average power and stability. Emphasis is placed on 

deriving a reproducible experimental technique to build up the fiber oscillator. This technique was 

tested by reproducing the same oscillator.  

Furthermore, while the system equations shown in section 2.1 were for a continuous non-linear 

medium with gain, in practice, the system has multiple fiber segments of different types. The gain 

fiber is spliced to single mode fiber at 1.03um wavelength. This introduces boundary conditions and 

regions of validity of different NLSE equations describing each fiber. However, it is found by our 

experiments that not much in the fundamental analysis changes with this variation and one can still 

achieve similariton type operation.      

The oscillator was designed to have a repetition rate of 30 MHz, an average power of 300 mW and 

auto-correlated pulse duration of sub 100 fs. The absorption cross section of Yb-doped fiber peaks at 

976 nm as showed in fig. 1. Therefore, to pump this system efficiently it is necessary to obtain a pump 

close to the resonance peak. To minimized the required fiber length of gain fiber, we choose to pump 

with a 976 nm laser diode, which has a fiber pigtail and a fiber Bragg grating (FBG) for wavelength 

stabilization. The FBG consists of a fiber core with varying refractive index such that the overall 

transmission transfer function is narrowly peaked at the pump wavelength. Other wavelengths are 
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reflected and are not transmitted further. Appendix A1 has details of all materials used in the 

construction of the oscillators.  

To maintain the continuous fiber nature of the cavity, the gain fiber is pumped by a fiber coupled 

pump diode spliced to a wavelength division multiplexor (WDM). The WDM works on the principle 

of evanescent wave coupling, shown in figure 6, where optical fields are coupled evanescently through 

the refractive index barrier of a double well index profile. The coupled evanescent wave propagates in 

the new fiber core with the same propagation constant (and thus, direction) and beam profile (provided 

both cores have the same dimensions and material). The modal solutions in the coupling fiber are 

dependent on the boundary conditions from the evanescent region. If the separation distance changes 

to less than the 1/e value of the evanescent decay region more than 50% in-coupling (for the oscillator 

WDM <1.0dB) can be achieved [45].  

 

 

 

Figure 6: Evanescent coupling in the WDM. 

The gain fiber is spliced with the common port of the WDM. The length of the gain fiber and single 

mode fiber (Corning Hi1060, MFD @1.03µm: 6 µm) constitute the bulk of effective length the pulse 

undergoes and thus, dictates the time the pulse spends in the oscillator (and rep.rate of the system). 

Both lengths have to be optimized for: 

1) Gain recovery dynamics 

2) Increase of random mechanical strains and thermal effects as a function of fiber length 

3) Parasitic non-linear contributions such as self-focusing, self-steepening and wave breaking. 

4) Fiber Losses 

5) System dispersion and higher order dispersion contributions (parasitic) 

The advantages of having long fiber lengths and thus a low-repetition rate are that the gain medium is 

always saturated by the time the pulse enters the gain medium per roundtrip. Thus, gain recovery noise 

due to varying gain initial conditions is absent since the effects of the initial conditions are not 

impactful anymore. Because of the saturated gain the single pass amplification is higher. However, 

limiting the fiber length has more advantages. Due to environmental stress and strain within the fiber 

and thermal expansion along the length of the fiber, phase noise and amplitude noise rises with 

increasing fiber length. These random noise sources are more deleterious than gain recovery noise 

which is controllable (by varying fiber lengths and pump power). With greater fiber lengths, third 

order dispersion and even linear dispersion become highly contributing effects. Thus, the dispersion 

compensation scheme will have to become more complicated and a restricted simple linear dispersion 
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compensation scheme may not be effective. If the fiber length starts to become comparable to the non-

linear self-focusing length of the intracavity pulse, self-focusing can increase the effective NA 

necessary to contain the propagating mode and the mode is not contained in the fiber waveguide 

anymore. In essence, due to the smaller beam size, diffractive effects are higher and the spread of 

momenta angles is greater, thus violating the allowed angular spread of the fiber. Other effects that 

dominate in large fiber lengths, include the build-up of Brillouin scattered modes[48-50], the beta 

parameter (high non-linear phase), and fiber losses. However, an inherent advantage in using longer 

fiber lengths is that the asymptotic similariton solution can be achieved in one roundtrip. This 

substantially reduces the complexity of simulating the system since initial conditions are not changing 

in the initial pulse build up round trips.  

In general, the gain recovery depends on the pumping power and the remaining depleted population 

after amplification, for a given dopant percent. The fiber lifetime is 1ms [46] thus, any rep.rate above 1 

kHz sees no effects of the finite inversion lifetime. For long rep.rates due to the amplified spontaneous 

emission (ASE) noise will be present and may contribute to less pulse amplification. ASE contributes 

to lowering the saturated gain value. Competition between the CW build up and the pulse 

amplification can come into play, preventing lasing. 

However, going to extremely high-rep. rates also poses specific problems. The gain medium is now 

not pumped to saturation. Thus, initial gain conditions for when the pulse enters the gain medium per 

round trip are different. The gain value may be higher or lower at different round trip numbers 

resulting in amplitude fluctuations of the pulse. This perturbation may result in amplitude noise. At 

higher rep.rates the inversion level is lower because of the reduced pumping time interval between 

subsequent round trips. Thus, losses in the cavity may overpower gain and loss of mode-locking will 

occur. It is prudent to carefully tune the fiber length so it is in the proper range to avoid such effects. 

The possible simulation model for this is derived rigorously in chapter 3, where the discussion centers 

on regenerative amplifier dynamics but can be applied here as well. Fig. 10 demonstrates gain 

recovery noise and fig. 11 shows the effects of fiber length on gain recovery time. The exact 

experimental procedure to determine the fiber lengths necessary will be discussed later in this section. 

The ring oscillator is constructed with a free-space portion that contains the QWP, HWP, PBS, grating 

pair, isolator to insure propagation in one direction and QWP (see fig. 7). This free-space portion 

contains high NA components where point deviation is not critical. Every component in the free-space 

cavity can be replaced by a fiber analog for a true all fiber oscillator system.    

The coupling between fiber ends in the cavity is accomplished by convex fiber collimators at 8mm 

focal lengths at the fiber ends. The fiber ends are placed at the focal point of the lenses. The beam will 

remain collimated after the lens and focused back into the fiber end. Small angular offsets or parallel 

transport of the beam on a lens surface is compensated for after the lens as the lens corrects these 

deviations to pass through the focal point. Limited pointing error is compensated for in this manner. 

The Rayleigh length of these collimators, given the input beam waist exceeds the free space cavity 

length and this was verified experimentally. 

CorActive Yb doped gain fiber was spliced (appendix A1 has details of every component used in the 

cavity). The gain fiber undergoes multiphoton absorption and fluorescence in the visible blue range 

(explained in fig. 8). Thus, pump depletion can be approximated by the region of fiber that is 

fluorescent. Past this region, the population inversion can be in the net small signal absorption region 

for the 1.03 µm signal. Therefore, the fiber was cut in the fluorescent region such that at least 10% of 

the 500mW pump power was transmitted through the fiber. This corresponded to a gain fiber length of 

1.3m. At this stage in the development a 5m length of Corning 1060Hi fiber was spliced to the input 
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port of the WDM and at this point in the development the length of signal mode passive fiber can 

remain arbitrary.  

The fiber ends were connectorised with Thorlabs FC/APC connectors. The fiber connectors were 

polished manually using a three stage process. The first stage consists of polishing the connectorised 

end with a 5 µm grit roughness paper. Thus, the connectorised end would have features <5 µm in 

amplitude after this stage. The end is then polished with a 1 µm grit roughness paper, insuring at this 

stage, features <1 µm in amplitude and finally with a 0.3 µm grit roughness paper insuring features 

less than 0.3 µm in amplitude. Due to the optical wavelength being much larger than 0.3 µm, 

scattering off of these 0.3 µm features will contribute negligibly to the spatial electromagnetic 

distribution coming out of the fiber.  

After the placement of connectors on the fiber ends, Thorlabs 8mm focal length variable FC/APC fiber 

collimators where attached to the connectors. The collimators where adjusted in distance to the fiber 

end such that the fiber end is exactly at the focal point. This was done by actively checking the 

collimation of radiation (at first the pump going through the fiber), with an IR card at different points 

in space.  

The connectors with the collimators were mounted on Thorlabs KM100T mounts and then on optical 

posts. Optical posts lengths were minimized as much as possible to increase mechanical stability. The 

next step is to align the cavity such that the amount of light being coupled into C2 (refer to fig. 7) and 

into the passive fiber branch is at a maximum. There are in fact many methods that can optimize this 

alignment. 

The first method is to have the single mode fiber unattached to the WDM. Power is found by 

measuring the power being transmitted out of the bare fiber end. Alignment is maximized by the two 

degrees of freedom on both mirror mounts (azimuthal and polar angles). The cavity at this stage 

corresponds to fig. 7. Once power is maximized, the PBS is inserted and rotated such that the power 

being transmitted through the single mode fiber is preserved. In a corresponding fashion a QWP and 

HWP is inserted before the PBS. There is a small angular offset within these optical components such 

that back reflections are not back coupled into the gain fiber.  

 

Figure 7: Connected cavity. Alignment is done with M1 and C2. 

Another method that was found to be as efficient is to align the cavity using the fluorescence of the 

gain fiber (see fig. 8). This method is the favored one because if the single mode fiber is already 
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spliced with the WDM and the cavity is misaligned, one does not need to re-splice the single mode 

fiber. When the amplified spontaneous emission spectrum is coupled back into the gain fiber, the 

population inversion will be affected because of the competing decay rate (see Eq. (24)) introduced by 

the further stimulated emission from the in-coupled spontaneous emission. Then because of the 

depletion of upper state electrons further transitions to higher manifold states is suppressed, and 

fluorescent decay from these states is depleted. Since in-coupled spontaneous emission is iteratively 

amplified along the length of the gain fiber, the fluorescent suppression will be higher towards the end 

of the length and will vary in an exponential fashion. If the depletion length from the end of the gain 

fiber is maximized, by varying the alignment, the amount of in-coupled spontaneous emission 

increases and alignment is optimized (note that the spontaneous emission spatial profile is Gaussian 

due to the single-mode filtering in the fiber waveguide). If there is no isolator in the cavity at this 

stage, the gain fiber will have some in coupled power from the single mode fiber (since spontaneous 

emission travels along both directions in the gain fiber) and this effect will even be more enhanced.  

 

Figure 8: Explanation of the relevant multiphoton absorption pathway that can be used to check for 

proper alignment. Population inversion occurs at the red manifold. However, there are transitions to 

additional higher manifolds (multiphoton or singular photon absorption) at the pump wavelength. If 

the cavity is aligned, the circulating amplified spontaneous emission depletes the inverted population 

in the red manifold. This prevents additional transitions to higher manifolds due to lack of inverted 

population at the red manifold and increases pump absorption (due to an increased population in the 

ground manifold), limiting multiphoton absorption effects.  

*A third way that is mainly used for coarse alignment is to overlap the two beams from the end of the 

fibers at spatial points along the free space portion using an IR card.  

Once alignment is accomplished and an isolator is placed in the cavity, a spectrometer is placed at the 

output of the PBS. By varying the wave plates, it is possible to out couple a certain percentage of the 

dominant lasing mode of the cavity. At this point there is no Kerr rotation due to the insufficient 

intensity of the CW mode. At a certain out-coupling loss, pump power lasing conditions are matched 

and the cavity begins to CW lase at a given wavelength if alignment is optimized enough. The lasing 

wavelength can be shifted by varying the cavity length, due to the coherent superposition condition 

and this can be accomplished attaching one fiber end output to a translation stage. The lasing 

wavelength roughly corresponds to the central wavelength of the mode-locked spectrum and gain 

profile. CW lasing was verified by a spectrometer (A narrow peak on the spectrometer whose width is 

on the order of the wavelength resolution of the spectrometer was optimized for. Maximization of this 
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peak over the ASE spectrum was used as an aligning tool). The polarization of the lasing mode is 

controlled by the output coupling scheme that allows only a P polarization after the PBS in the cavity.  

Once cavity lasing is accomplished, the lasing amplitude is optimized by varying the cavity alignment 

and verified with a power meter and low pass 1 µm filter. After alignment, the length of the gain fiber 

was varied to increase the power output of the CW lasing. Because of pump depletion, the end region 

of the gain fiber can still be net absorptive to the CW signal, lowering the total gain. To verify this, the 

gain fiber is cut down until the maximum amplitude (out-coupling parameters were varied after each 

cut) of the CW lasing mode stops increasing. Thus, 10 cm cuts were done to the 1.5m gain fiber. After 

the first cut the CW lasing amplitude increased, meaning that the gain fiber was depleted near the end 

(if not one would have to add gain fiber and check). The process was continued until the amplitude 

was maximized. The gain fiber was at a length of  0.9m ± 5 cm m at the end of this process. The 

cavity round trip time is now calculated to be: 

RT =
L1

dw
dk1

|wo

+
L2

dw
dk2

|wo

+
L3
c

 

 

(41) 

Rep. Rate = RT−1 (42) 
dw

dkx
|wo =

c

nx(w) +w
dnx
dw

|wo 

 

(43) 

Where, the derivative relationship is the group velocity of a pulse centered on the CW wavelength. 

The derivative is at the corresponding lasing frequency (i.e. at wo =
c

λo
 , λo is the free space lasing 

wavelength obtained from the readout of the spectrometer).  The dispersion relation is a scalar 

(reduced from a tensor) due to the isotropy of the dispersion relationship in contained core fiber 

modes, which is the case for single-mode fiber at these lengths. L1 is the gain fiber length, L2 is the 

length of passive Corning Hi1060 single mode fiber and L3 is the free-space length of the cavity. 

Group velocity contributions through the isolator, PBS, HWP and QWP are assumed to be negligible. 

The  group velocity consideration for the DPG arrangement that will be added to the cavity will be 

assumed to be equivalent to the free-space phase velocity for the calculation.  

Fiber Type Group Velocity Group Velocity Dispersion 

CorActive SM gain fiber ~2.3 ∗ 108
m

s
 39

fs2

mm
 

Hi1060 SMF ~2.3 ∗ 108
m

s
 26

fs2

mm
 

Table 6:[47] group velocity and dispersion values for the fibers used in the cavity. 

Cavity Region Length Individual Trip Time 

Gain Fiber 0.68m (this value was the final 

gain fiber length, deviation 

from 0.90m will be explained 

later in this section) 

2.9ns 

SMF Hi1060 Corning ~6m 26ns 
Free Space Portion (with the 

inclusion of the DPG) 

0.91m 3ns 

Total RT ~32ns, (31MHz) 

Table 7: Cavity Round Trip Time Calculation 
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2.2.2 Tuning the Diffraction Gratings 

 

The next step in building the stretched-pulse oscillator is to introduce the diffraction gratings as 

described in section 2.1.3. 

From, Eq. (46) the variable total broadening introduced by the diffraction gratings could dictate the 

global pulse broadening within the pertinent bandwidth of the output pulse from the cavity. Tuning 

this delay parameter can compensate for total cavity dispersion and dispersion from previous cavity 

roundtrips. Total cavity dispersion consists of dispersion with non-fiber optical elements and fiber 

dispersion. By varying the input chirp of the pulse into the fiber, the effective total time delay of an 

instantaneous frequency per propagation increment step is lower in the fiber. While, the diffraction 

grating is a distinct element from the fiber, if a negative chirp is added by it, the effective length of 

pulse broadening past the transform limited version of the pulse is reduced. This results in a higher 

ratio of non-linear length to dispersion length. This can approximately be represented as an effective 

β2  that is lower than the nascent fiber β2. According to Eq. (26) and (27), this effectively translates to 

a lower similariton pulse duration and higher amplitude. Eq. (28), shows a positive chirp, thus, the 

grating stretcher being at a negative GVD is ideal.  

The gratings used in the oscillator are reflective gold gratings with a saw-tooth profile maximized for 

the negative first order transmission in the horizontal polarization (P). The grating transmission 

efficiency is 92% per pass in the P polarization. For the resulting four pass system this translates to a 

grating transmission efficiency of 72%. Including mirror losses in the arrangement, the overall 

efficiency is 69%. The gratings are Edmund optics 600 line/mm gratings. The corresponding GVD[51] 

of the system can be found to be: 

θ1 = arcsin (
λ

g
− sinθo) 

 

(44) 

β2|wo = −
λ

πc2
(
λ

g
)2

1

cosθ1
3
 

 

(45) 

Total group velocity delay (s2) is then: 

GVDelay = β2d 
 

(46) 

𝜆 (1.03 µm) is the free space wavelength of central frequency wo. g is the groove spacing of the 

gratings, θ1 is the first order angle, from the normal of the grating pair. θ1 is listed for the most 

efficient incoming angle operation (45 degrees). d is the normal distance between the two gratings. 

Grating Parameter (Edmund Optics) Value  

g 600 lines/mm 

|θ1| 0.785 rad 

β2 
−3.63 ∗ 10−24  

s2

m
  

Table 8: Grating parameters for the double pass diffraction grating arrangement.  

The overall β2 for this grating arrangement is −3.63 ∗ 10−24  
s2

m
 . The minimum grating spacing is 

calculated from the highest dispersive optical element other than the fiber. The GVD of the isolator is   
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178
fs2

mm
  [52]. The isolator length is 25.4mm. This yields a normal distance of  1.25mm for the 

gratings (a negligible amount).  

The grating pair is inserted into the cavity as shown in Fig. 9. The first order from the first grating is 

found using the grating first order angle calculated above. A power meter is placed after the grating 

and the power of the amplified spontaneous first order emission is optimized by rotating the first 

grating (which should ideally be at an incident angle of 45 degrees). The first orders are then 

propagated to the second grating mounted on a linear translation stage, such that its surface is normal 

to the stage translation direction. This grating should be parallel to the first grating. If this condition is 

met, the first order output from this grating consists of a set of parallel beams that do not deviate 

angularly. The angle of the second grating was tuned such that these beams are parallel. The distance 

of the mirror used for the backward pass to the second grating is irrelevant to the overall dispersion, 

since Eq. (46) scales only with the normal distance between the two gratings. Therefore, the mirror 

was placed as close as possible to the grating to avoid additional round trip time. The mirror was tuned 

such that the back reflection was slightly below the first, first order line in the second diffraction 

grating and such that the back reflected spot was directly below the incoming beam spot on the first 

diffraction grating. The back reflected spot was tuned to be as close in height to the first spot, while 

still being able to put an output mirror from the system that does not clip the first beam. A retro-

reflector need not be considered for the distance range being implemented. After insertion of the 

grating pair the system was re-aligned using the fluorescent length technique outlined above.  

 

Figure 9: The grating pair is inserted into to the cavity after the PBS. The polarization state after the 

PBS for cavity coupling is in the P polarization which is what the gratings is optimized for (92% 

reflection). 

A QWP after the isolator was placed in the system as a critical component to ensure an overall 

elliptical polarization across the optical waveform. At this stage, it is prudent to achieve mode-locking 

of the fiber oscillator. The net cavity dispersion is in the normal region and all non-negligible 

contributions now come from the fiber. To mode-lock the system a spectrometer was placed at the 

output of the cavity. The HWP and QWP were rotated in a random manner. Due to the high amount of 

evolution pathways to similaritons, mode-locking points in parameter space are dense and stable under 

small parameter adjustments. Mode-locking should occur rather quickly with this type of parameter 

adjustment. If no mode-locking was found, the QWP at the entrance of the SMF was incremented to a 

new position and the procedure was again carried out. If again the oscillator did not mode-lock easily 

under this random algorithm, the diffraction grating distance was increased by 1 cm.  
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2.3 Results Discussion 
 

Once mode-locking was found, a pulse train (with the cavity repetition rate) can be observed using an 

InGaAs fast photodiode (model number DET10A/M, Thorlabs). Peak amplitude scales linearly with 

the output power and the trace on the photodiode output gives an account of the amplitude noise 

fluctuations of the pulse. The trace on the photodiode output gives an account of the amplitude noise 

fluctuations of the pulse. At first cavity parameters such as the wave plates and DPG spacing was 

varied to minimize the noise. As will be discussed in more detail in the next section, noise originates 

either from the gain recovery of the gain fiber or by birefringence and wave breaking throughout the 

fiber length. The first noise source is reduced by varying once more the length of the gain fiber and the 

second type of noise is reduced by controlling the SMF length. Due to population depletion after a 

pulse enters the gain fiber, for subsequent round trips, after pumping in between round trips there can 

still be a portion of the gain fiber that is depleted and hence an absorptive portion. This can result in 

the overall gain oscillating as a function of round trip number (gain final conditions are different, 

therefore gain initial conditions are different for subsequent cycles), translating in amplitude 

fluctuations for the pulse (deemed amplitude bifurcation), this is demonstrated in Fig. 10. Hence, to 

ensure that the gain stays constant, this depletion region must be removed, so that the pumping time 

needed for a desired overall gain matches the rep.rate period. In sum: For a given pump time (far from 

the saturation pump time) and a constant pump signal, increasing fiber length will decrease gain 

obtained even if the saturation gain of the fiber increases (as indicated in Fig. 11). The achieved gain 

within the rep. period may be insufficient to balance absorption and out-coupling loss to maintain a net 

cavity gain of 1, so this process can even result in rep.rate fluctuations as the pulse train seizes due to 

the lasing being stopped for given time intervals. 

More information of this process can be found in [53-55]. A simple simulation tool was used for Fig. 

11 where the rate equations were solved as described by Eq. (23) and (24). References [53-55] indicate 

these effects at μs periods, while the effect is more negligible for higher rep.rates in fiber amplifiers, 

due to the intricate balance of parameters in fiber oscillators slight modulations in one system 

parameter can cause ergodic behavior in this highly non-linear system. For example, the amplitude 

modulation can violate initial conditions and result in higher out coupling losses that the gain cannot 

compensate. The pulse will decay in energy over subsequent round trips and pulsed operation may 

seize, resulting in rep.rate deviations (and amplitude fluctuations) in the pulse train. 

Thus, the gain fiber was cut and respliced at approximately 5 cm intervals to maximize the signal 

amplitude on the photodiode pulse train and also to reduce the amplitude fluctuations. Stability was 

achieved in the first oscillator at new gain length of 0.70+/-0.03m. Gain recovery, will be discussed in 

great detail in chapter 3 for the solid-state case. 
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Figure 10: Gain recovery dynamics. In case 1 steady state can be achieved in the pulse amplitude. This 

is because the gain population relaxes to the same level at the end of the pulse input and increases to 

the same level before the next pulse input. In case 2, the gain relaxation and pumping oscillates 

producing different amplitude values of the pulse each time it is inputted in the gain medium. This can 

cause bifurcation or chaotic behavior.  

 

 

Figure 11: Simulation based pumping time required to obtain a total gain level (represented by the 

colour) at different fiber lengths (ranging from 100cm to 500cm). The solid black line indicates the 

linear increase of pumping time to a given gain level (G=1.05) as fiber length is increased.  

It is now prudent to list values obtained for the first oscillator that was built. The second oscillator will 

be discussed later. Mode-locking was initially achieved at a grating distance of 8.3 cm, see Figure 13. 

In this arrangement the DPG compensates for the one pass linear chirp that accumulates. However, 

given the discussion in relation to the effective dispersion in the system NLSE, if the DPG distance is 

increased, it may be possible to achieve shorter pulse durations and higher mode-locked bandwidths as 

seen in this example. A grating compressor was placed at the output of the oscillator and the pulse was 

compressed to an autocorrelation trace of FWHM ~93.5fs, see fig. 14. This output pulse can be 
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approximated as the same as the intracavity pulse before compression, for the following analysis. The 

compressor contained the same gratings and arrangement as the intracavity DPG. The spacing between 

the compressor gratings to achieve the minimal auto correlated pulse width was ~2.8cm (see, fig. 12 

for setup). The pedestal of the autocorrelation trace indicates third order dispersion (TOD) that was 

uncompensated. Figure 13 demonstrates the spectral profile. From this a FWHM bandwidth of 40nm 

is obtained.  

 

Figure 12: Compressor setup at output of cavity. Grating distance of ~2.8 +/- 0.1cm. 

 

Figure 13: Spectral energy density obtained with an intra-cavity grating distance of 8.3cm and FWHM 

of 40nm. An average power of 300mw corresponds to this spectrum, and repetition rate of 31 MHz. 

 

 

 

 

 

 

Figure 14: Auto correlated pulse of FWHM ~93.5fs corresponding to the spectrum of Figure 13. 

Compressor grating was at a distance of 2.8cm. 
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From table 6 the highest GVD coefficient is 39
fs2

mm
. From equation Eq. (28) the instantaneous 

frequency is given as: 

𝜕𝜙

𝜕τ
= 𝑤𝑜 +

g

3β2
τ 

 

(47) 

From Eq. (46), the total temporal pulse width right before the diffraction gratings (thus, at the output 

of the cavity) can be obtained as: 

Δt = 3.63 ∗ 10−24  
s2

m
∗ (2.8cm − 0.125cm) ∗ c ∗ 2 ∗ π

40nm

1.03μm2
= 6.9ps 

 

(48) 

This corroborates nicely with the autocorrelation measurement effectuated on this oscillator output 

before compression. 

Therefore, using Eq. (48) and the highest dispersion coefficient in table 6: 

𝑤𝑚𝑎𝑥 = 𝑤𝑜 +
g

3β2

Δt

2
 

 

(49) 

g = (wmax −wo)3β2
2

Δt
= 3(39000

fs2

m
)

1

3.63 ∗ 10−24  
s2

m
∗ (2.8cm − 0.125cm)

= 1.20m−1 

 

(50) 

For this arrangement. From table 7 giving the cavity lengths, this means that the total gain in the gain 

fiber is G = 2.32. It is now useful to solve for the intracavity power in the steady state from the overall 

gain value and the output power. The following equation can be obtained at steady state: 

𝑃𝑜𝑢𝑡 + 𝑃𝑖𝑛
𝐺

= 𝑃𝑖𝑛@𝑓𝑖𝑏𝑒𝑟 = (1 − 𝛼𝑔𝑟)(1 − 𝛼𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔)𝑃𝑖𝑛 

 
(51) 

Where 𝛼𝑔𝑟 is the normalized percent loss in the grating and 𝛼𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 is the normalized percent 

losses in the coupling back into the fiber. All other losses are negligible and are omitted from the 

analysis. 𝛼𝑔𝑟~0.30, 𝛼𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔~0.20  (previously obtained from the alignment procedure). 

Rearranging for 𝑃𝑖𝑛: 

𝑃𝑖𝑛 = −
𝑃𝑜𝑢𝑡

(1 − 𝐺(1 − 𝛼𝑔𝑟)(1 − 𝛼𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔))
= 1.00 watts 

 

(52) 

The efficiency is thus 30% (average output power is 300mw). It can directly be seen from (52) that 

G >
1

(1−𝛼𝑔𝑟)(1−𝛼𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔)
. This places an upper bound for the losses given an overall gain, G. 

Necessary gain filtering to maintain similariton propagation was achieved primarily through the 

frequency transmission function of the DPG and the gain filtering effect of the gain fiber.  

It was also observed that once mode-locking was achieved the pump power could be reduced from the 

maximal current used of 850mA (corresponding to 625 mw) to 300mA (corresponding to 175mw) and 

mode-locking was still occurring. This indicates that the cavity itself recovers the pulse under a wide 

parameter space due to the intensity dependent polarization rotation that occurs. If gain is minimized, 
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the peak intensity of the pulse will be lower and non-linear polarization rotation will be minimized. 

Thus, the out-coupling loss of the cavity lowers accordingly. Therefore, if constant losses such as 

losses in the DPG and in-coupling are minimal as compared to the reduced gain, the overall cavity loss 

is reduced with lower gain and the cavity absorption does not exceed the gain. This is yet another 

advantage to NPR mode-locking as compared to other schemes where there is a constant out-coupling 

loss and therefore, cavity lasing is tightly constrained to pump power and  a specific crystal gain. 

2.3.1 Deviations from the Similariton Model 

 

It is worthy to note that referring to Fig. 15, the output spectrum does not entirely corroborate a pure 

similariton spectrum. There are four experimentally relevant reasons for this: 

1) The gain coefficient profile of the gain fiber is not constant as a function of propagation length 

but is a decaying exponential function. Thus, the system NLSE used is only approximate.  

2) The spectrum of the out coupled pulse is not that of the intracavity pulse (refer to subsection 

2.1.3 in the discussion of the polarization rotation intensity profile in the out coupling 

polarization coordinate). 

3) TOD is uncompensated for and not considered in the system NLSE. 

4)  The system does not consist of one continuous fiber block but discrete fiber sections (SMF, 

gain fiber, SMF pigtail of the WDM). Once again deviating from the system equations.  

5) Added birefringence in the fiber from mechanical strain and gain recovery noise contribute to 

deviations. 

6) Higher order non-linearities, i.e. self-steepening are not considered in the system NLSE. 

7) The DPG spacing parameter offers an extra degree of freedom that can account for some of 

these effects but does not perfectly balance with all. 

Parameters (i.e., by varying the diffraction grating inter-distance to 9cm) were varied to obtain the 

spectrum in fig. 15. This spectrum is closer to the similariton profile (parabolic around the peak). 

However, there are two additional side band peaks that deviate from the norm. Varying the DPG 

further than 9cm resulted in the loss of stability and mode-locking. 

 

Figure 15: Spectrum obtained that resembles more closely a similariton spectrum. Side-band 

generation is visible as well.  



55 
 

2.3.2 Final fiber lengths and cavity arrangement of first oscillator: 

 

Please refer to table 8 for final fiber lengths and free-space lengths. The final cavity inter-grating 

distance was 9cm. The cavity sketch and picture is presented in Fig. 16. 

a) 

 

b)  

Figure 16: a) Picture of the final setup and b) Sketch indicating fiber lengths.  
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2.3.3 Spectra and Cavity Arrangement of Second Oscillator 

A listed goal for the second oscillator that was built was to improve the spectrum of the first oscillator 

and to generate a spectrum closer to the similariton profile at the output or a Gaussian spectrum. A 

Gaussian spectrum can yield more information of the pulse duration and minimize the pedestal in the 

auto correlated pulse. In order to control this, parasitic non-linearities such as additional birefringence 

that induces different NLSE (Eq. (29) and (30)) regions in the cavity that limit the evolution of the 

similariton pulse or inhibit it were reduced. The length of the SMF was decreased. Varying the SMF 

length can be compared to the fine tuning knob of the experiment, while varying the gain length is 

akin to the coarse knob. This is because a lot more SMF has to be cut to decrease the rep.rate period 

on relevant time scales, compared to the amount of gain fiber needed to substantially change the gain 

and the gain pumping time of the system.  

This may have also reduced the effective length of higher order non-linearities such as self-steepening 

(will be discussed in chapter 4) that contributes to side band creation.  

 

 

Figure 17: Closer to Gaussian spectrum observed in OSC 2. More of an emphasis in cutting down the 

Hi1060 SM  fiber to match the gain dynamics and to limit parasitic non-linearity over large fiber 

lengths was placed.  

 

Cavity Region Length Individual Trip Time 

Gain Fiber 0.59m  2.5ns 
SMF Hi1060 Corning ~3.83m 16.6ns 
Free Space Portion (with the 

inclusion of the DPG) 

1.24m 5.4ns 

Total RT ~24.5ns, (41MHz) 

Table 9: Cavity arrangement of second oscillator.  
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Figure 18: Schematic of OSC 2 Design. 

 

 

2.3.4 Other Results 

 

A RIN evaluation[56] was obtained for Osc 1 and results are presented :  

 

Figure 19: RIN noise evaluation of Osc 1. Frequencies past 10000 Hz are substantially attenuated. 

Average stability is 0.2%. 
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Figure 20: Amplitude stability of oscillator 1 over a large time window. This photodiode trace 

corroborates well with the RIN measurement of 0.2% amplitude fluctuations. 

The wide bandwidth pulses achieved with this type of fiber oscillator, the high average power of 

300mw and the sub 90fs compressed pulse duration of the oscillator has never been achieved before in 

this combination to the best of my knowledge. The characterization of the system is also novel. The 

system self-starts in the sense that if the pump current is turned to 800mA mode locking will happen. 

The self-starting stability is a surprising result and the exact reasons why will be explored in future 

work.   

2.4 Spectrometer as a Valuable Tool for Multiple Pulsing Evaluation 
 

The spectral profile is inherently different from the spontaneous emission profile and has sharp cut-

offs due to the similariton character of the pulse. Once mode-locking was achieved, the QWP at the 

entrance of the SMF was perturbed to increase the bandwidth of the mode-locked spectrum. As well, 

all other wave-plates were varied. The HWP contributes the most to out-power coupling (due to the 

fact that it rotates the global polarization state to align with the out-coupling axis of the PBS). Under 

small perturbations, power can be out-coupled in a linearly increasing manner while maintaining the 

spectral profile of the pulse (due to the dense mod-locking points in parameter space). The QWP at the 

pump side was varied to maximize spectral bandwidth, while the HWP was varied carefully to out-

couple as much power as possible while still maintaining the spectrum. The diffraction grating spacing 

was also tuned to increase the spectral bandwidth. 

 The oscillations on the spectral energy density profile of the spectrometer indicate double pulsing 

within the cavity. The period of oscillation in this spectral domain scales inversely with the separation 

in time of the two pulses. For example, in frequency space the measurement on the spectrometer is the 

spectral energy density(J ∗ s) which would be: 

|B(w)|2 = |A1(w)|
2 + |A2(w)|

2 + A1(w)
∗A2(w) e

iτow + A2(w)
∗A1(w) e

−iτow  
 

(53) 

Where the above is obtained by taking the modulus square of: 

 (54) 
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B(w) = A1(w) + A2(w)e
iτow 

 

B is the spectral energy density of the final optical waveform describing the two pulses separated by 

τo. 

For two identical pulses of different amplitude constants the above reduces to: 

 

|B(w)|2 = |A1(w)|
2 + |A2(w)|

2 +
2

h
|A1(w)|

2cos (τow) 

 

(55) 

Where, ℎ =
A2(w)

A1(w)
 for this two identical pulse arrangement. From the triangle inequality, it can be 

shown that|B(w)|2 is never zero unless h=1. Therefore, a perturbative oscillation on the original 

spectrum will be observed in this case. 

 In lambda space (with lambda values corresponding to free-space values), the above becomes (now in 

units of (
J

nm
): 

|B(λ)|2 = [(1 + h)|A1(λ)|
2 + 2h|A1(λ)|

2 cos (τo
c

λ
)]
c

λ2
 

 
(56) 

The oscillation amplitude can determine h and the oscillation period can determine τo. Thus, the 

secondary pulse amplitude can be determined and its delay in time can be fully mapped. For more 

complicated arrangements in this double pulsing scenario Eq. (53) can determine the dynamics. The 

following analysis can easily be extended to triple pulsing, etc.  

Spectrometer property Value Timing interval that can be 

determined 

Window size 100nm 
2
λo

2

cΔλ
= 35fs 

Resolution 5nm 
2
λo

2

cΔλ
= 70ps 

Table 10: Typical values of the spectrometer that were used in the experimental set up are indicated in 

this table. From the window size obtained from when the spectrum goes to the noise level and from 

the resolution, one can obtain the minimal pulse delay that can be detected and the maximal pulse 

delay that can be detected from the spectrometer at central wavelength for both calculations assumed 

to be ~1.03 µm. Factor of 2 arises from the assumption that one could only detect the modulation if it 

goes to a max and zero. 

Therefore, pump power as well as the cavity parameters just listed were tuned to reduce these 

oscillations, i.e. by lowering pump power. If double pulsing is occurring and the variations of the 

above listed parameters do not reduce the double pulse, than wave-breaking is the most likely the 

cause. Reducing the fiber length will reduce the effective length of these higher order non-linearities 

(not reflected in the above system NLSE). 

There are several ways to know that the cavity is mode-locked without the use of a spectrometer. With 

the use of an IR viewer one can see the scattered radiation of the first order line on the second 

diffraction grating. The width of the line corresponds directly to the bandwidth of the locked pulse in 

the cavity. The intensity profile of the line corresponds to the spectral shape.  

Other aspects can be characterized such as double pulsing that occurs on the ns timescale, amplitude 

deviations that are not time-fluctuating, and rep. rate fluctuations on the ns scale (phase noise), with 
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the use of a photodiode. Double pulsing below the 35fs limit can be characterized by the use of an auto 

correlator (double pulsing would result in 3 pulses on the autocorrelation with the same time delay as 

the double pulse).   

 

2.5 After the Oscillator: Accousto-Optic Modulator (AOM), Stretcher Fiber 

and Pre-Amplifier 
 

For inputting the pulse into the regenerative amplifier (REGEN) discussed in the next section, it is 

important to down convert the repetition rate and to stretch the pulse to 500ps (the measurement was 

verified with a fast RF oscilloscope). At this stage it is important to have polarization stability, because 

of the REGEN being polarization sensitive. Amplitude fluctuations of the pulse train being inputted 

into the REGEN will result if the polarization state is not maintained. The pulse was stretched to 500ps 

by the use of a double pass stretcher fiber system (to maintain the polarization state of the pulse). After 

the stretcher fiber a polarization maintaining (PM) fiber AOM was used to down-convert the repetition 

rate to a pulse train period of 10μs (it is only necessary that the incoming rep. period is longer than the 

cavity period of the pulse inside the REGEN). Due to the losses in the stretcher/AOM system, a fiber 

pre-amplifier was used before the AOM. The system is described in Fig 21. The pulse energy after the 

stretcher+fiber pre-amplifier+AOM was 1.6nJ. Losses are summarized in Table 12. 
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Figure 21: System after the oscillator. HWP at entrance of circulator ensures proper polarization in the 

PM fiber branch.  

The double pass system of the stretcher fiber works as follows: Light goes through the circulator and 

into port 2 (which is the port for incoming light).The faraday rotator and mirror introduces a 𝜋 phase 

in the polarization state of the signal after the stretcher fiber, the pulse is then sent back into the 

stretcher fiber, canceling out the polarization effects in the stretcher fiber. On the second pass light is 

now circulating backwards. The fiber circulator then outputs light into port 3 which is the port for 

backward propagating light. The circulator directionally selects which port light is outputted to. After 

port 3 light is then passed through a gain fiber.  

The stretcher fiber is optimized for the in coupling of a higher order mode (but still single-mode) that 

carries a lower modal third order dispersion. The modal second order dispersion coefficient is such 

that given a gold compressor consisting of 1200lines/mm, and optimized at 45 degrees input angle, the 

spacing between the diffraction gratings is 1 meter.   

Losses are high because of the fiber diameter core mismatch between the Hi1060 single mode fiber 

(~6µm) and the smaller core of the stretcher fiber(2.86µm). Table 11 contains pertinent stretcher fiber 

parameters. This translates into both aperture losses and losses because of the overlap integral between 

the single mode higher order mode of the stretcher fiber and the single mode Gaussian of the corning 

fiber. Furthermore, Light is outputted and inputted from/to the fiber into Hi1060 fiber through an 

adapter and connectors, increasing the losses. As well, due to the length of the fiber, absorptive losses 

in the fiber are non-negligible. The losses in the AOM arise because of coupling losses within the 

AOM box. The AOM was ordered from Gooch&Housego and cannot be modified in the lab.  

Property of stretcher fiber Value 

Fiber length 137.4m 

GVD 18.935 ps2 

Insertion loss per end >3dB 

Table 11: Pertinent properties of the OFS custom stretcher fiber (Obtained from OFS).  

The length of the Gain fiber was optimized at saturation. Pump power was decreased to preserve 

spectrum and to minimize gain filtering effects (see fig. 22). 

 

Component % insertion Loss 

Stretcher Fiber 80% 

AOM 60% 

Overall Losses 92% 

Fiber Pre-Amplifier Overall Gain: 2 

Pulse Output 10nJ ∗ 0.2 ∗ 2 = 1.6nJ 
Table 12: Gain and Losses in fiber stretcher and AOM stages. 
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Figure 22: Normalized spectrum after the gain fiber system (at a pump power of 600mW). The target 

spectrum consists of sech^2 fit to the desired central wavelength of the amplified pulse to be fed into a 

large core fiber amplifier system. This is not pertinent for the final system consisting of the fiber 

oscillator regenerative amplifier system. Due to the relatively good fit with a sech^2 profile, any 

autocorrelation of the stretched pulse can assume a sech^2 input to calculate the pulse duration. Data 

was fitted and plotted by Damian Schimpf.    
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2.6 Summary 
 

Two NPR mode-locked stretched pulse fiber ring oscillators at 1.03 µm have been constructed. Both 

of which have average powers between 250-300mW at rep rates of 31 MHz and 44Mhz. Pulses were 

compressed to durations lower than 90fs, and amplitude fluctuations were minimized. The average 

stability of intensity fluctuations is roughly 0.2%, which surpasses the amplitude noise performance of 

Ti:Sapphire lasers (Coherent) currently being used in electron diffraction experiments. Experimental 

results match well with the theoretical description of the system both of which were extensively 

discussed in this chapter. Both the average power of the oscillators, the stability and the footprint out-

compete laboratory Ti:Sapphire systems and demonstrate that these novel fiber oscillators can be used 

for electron diffraction experiments. 

 The oscillator pulses were in-coupled to an AOM PM fiber system, a stretcher fiber and a fiber PM 

pre-amplifier. The pulse energy is 1.6 nJ at the output of this system. The next chapter will explore the 

construction of a regenerative amplifier to achieve pulse energies on the order of 0.5mJ.   

2.7 Experimental Extensions and Future Prospects 
 

The first oscillator that was described in this section was used in an experiment during my time at 

MIT. The experiment consisted of generating Cherenkov radiation [57] in a short (3.3cm) segment of 

photonic crystal fiber. The average power of the oscillator was sufficient to generate an octave 

spanning spectrum. More details of the experiment can be found in [57]. The supercontinuum pulses at 

the output of the photonic crystal fiber were compressed to sub 11fs at an average power of 7.5mW.  

The next steps for the oscillators will be to integrate fiber components for the free-space components 

to increase stability and to minimize the footprint of the oscillator even further. Fiber wave plates can 

be constructed from inducing controlled strain on the fiber and creating a corresponding birefringence, 

the gratings can be replaced with fiber engineered Bragg gratings and the PBS, isolator can be 

constructed with fiber pigtailed components.  

The coupling and mode shaping into the stretcher fiber will be accomplished by taper splicing the 

Corning fiber to the stretcher fiber. This will substantially reduce losses.  
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Chapter 3: The Design of a Regenerative Amplifier for Pulse 

Amplification 
 

In order to provide sufficient energy for down source electron diffraction and pump probe 

experiments, the pulse energy from the oscillator must be amplified to hundreds of μJ, as described in 

the introduction. This chapter will describe the design of a regenerative amplifier that achieved 400 μJ 

pulse energies, and how to scale the design to achieve ideal pulse energies >1mJ.  

Single pass fiber amplifiers hold potential as an amplification source to 1mJ pulse energies, however, 

there are extensive problems with these amplifiers such as: 

1) Peak intensities and intensity gradients of the confined mode can generate parasitic non-

linearities that introduce self-steepening effects, pulse breaking or SPM that results in 

practically incompressible optical waveforms (for example, instantaneous frequencies are not 

linearly chirped).  

2) Peak intensities generated by self-focusing mechanisms may damage the fiber (i.e., photo 

darkening effects) or plasma effects. 

3) Brillouin scattering may generate amplified optical radiation that damage optical components. 

However, there are solutions to these problems and mJ fiber sources have been developed[11]. The 

advantages of designing a solid-state regenerative amplifier (REGEN) are: that the accumulated non-

linear phase is lower (due to the larger beam size) and the length of the solid-state material (on the 

scale of mm). The extractable energy is higher, due to higher doping possible in solid-state material 

(hence-wise, why the propagation length through the crystal is small as compared to fiber) and the 

technology is safer for downstream (and upstream) components.   

The REGEN consists of a closed free-space cavity with a gain crystal. The crystal is pumped and a 

population inversion is achieved. The signal pulse is coupled into the cavity by the use of a PBS, 

Pockel Cell arrangement that actively rotates its polarization state so that the pulse is trapped in the 

cavity for a given amount of time. After multiple passes through the gain crystal, the pulse is coupled 

out of the cavity through a polarization rotation by the re-activation of the Pockel cell. 

The REGEN is inherently a laser cavity and the first stage of its construction is to get CW lasing with 

the pumping of the gain crystal. The CW lasing output is maximized through optimizing the alignment 

of the cavity and pump. As well, cavity losses are characterized at this stage. The second step is to Q-

switch the REGEN. In the Q-switched operation, the Pockel cell is further aligned to optimize the Q-

switching signal. As well, the average Q-switched power roughly corresponds to the pulse 

amplification power. In the last step, the pulse is seeded into the cavity. Again the Pockel cell 

alignment is optimized to maximize the pulse amplification.  

In the design of the REGEN the following considerations must take place to achieve a desired pulse 

energy and average power: The choice of the gain crystal, the choice of the pump source and pump 

spot size, the signal spot size and the cavity design. As well transient gain recovery noise must be 

evaluated if higher rep.rates are desired.   
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3.1 Choice of Gain Crystal 
 

The choice of the doped gain crystal at the signal wavelength has to satisfy the following conditions: 

1) Pumping efficiency must be high to avoid gain recovery noise. 

2) Overall gain must be adequate, i.e., the crystal must be capable of generating desired inversion 

populations given a pump power.  

3) Crystal length should be at a minimum to insure non-linear effects are minimized (as 

described in point 1) above). 

4) Thermal lensing should be minimized in the crystal to prevent cavity losses due to cavity 

Eigen-mode walk off.  

5) Quantum defect of the crystal (defined below) should be low to insure efficient energy 

extraction and to minimize heating effects.  

There are two choices of gain crystals that are readily available from industry and that show good 

agreement with points 1)-5), Yb:KGW and Yb:KYW. Extensive literature exists for REGEN’s 

designed in the wavelength range of 1.03-1.04 μm  using these materials[2-4].The pertinent material 

values are compared in Table 1.  

 

Property Yb:KYW Yb:KGW 

Optical Axis labels Nm, Np, Ng Nm, Np, Ng 

Max. Absorption cross-section ~1.75 ∗ 10−19cm2 along Nm 

@981nm 

~1.6 ∗ 10−19cm2 along Nm 

@981nm 

Max. Avg. Emission cross-

section 1.02-1.045 μm 
~0.25 ∗ 10−19cm2 along Nm ~0.22 ∗ 10−19cm2 along Nm 

Fluorescence Lifetime 0.3 ms 0.3 ms 

Thermo-optic coefficients dnp/dT=-13.08 x 10
-6

 K
-1

 

dnm/dT=-7.61 x 10
-6

 K
-1

 

dng/dT=-11.83 x 10
-6

 K
-
 

dnp/dT=-15.7 x 10
-6

 K
-1

 

dnm/dT=-11.8 x 10
-6

 K
-1

 

dng/dT=-17.3 x 10
-6

 K
-1

 

Table 1: Important material properties for Yb:KYW and Yb:KGW[5]. 

From Table 1 it can be deduced that Yb:KYW has lower thermo-optic coefficients and exhibits a 

lower thermal lensing effect as compared to Yb:KGW. The emission and absorption cross section of 

Yb:KYW is slightly higher than Yb:KGW. Therefore, of these two crystal choices, Yb:KYW was 

chosen as the gain crystal in the REGEN cavity.  

3.2 Determining Crystal Parameters: Crystal Length, Crystal Doping  
 

Simulations were carried out to determine the optimal crystal doping and crystal length. The average 

value of the emission cross section for the desired wavelength range shown in Table 1 was used. The 

simulation was done in two parts, rate equations based on the pump wavelength were used to 

determine the pumping time necessary to achieve a desired overall crystal gain. The pumping time 

also determines the maximal rep.rate the REGEN can output at a given pulse energy. In the second 

stage, using the overall gain derived by the rate-equations, a Franz-Nodvik simulation was carried out 

to determine the pulse energy. The maximum non-linear phase accumulated (b-integral) was 

determined within the Franz-Nodvik simulation.   
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3.2.1 Rate Equations 

 

Yb:KYW can be viewed as a quasi-2 level manifold system[5]. Meaning, that electronic transitions 

can occur to an upper state manifold, of densely packed energy levels (average spacing of energy 

levels within these manifolds are on the order of phonon energies). The ground state manifold again 

consists of densely packed energy levels with similar spacing , see fig. 8 chapter 2.There are two 

pertinent assumptions: 

1) It is assumed that if a transition occurs to a manifold, the electron quickly relaxes (in 

comparison to the signal pulse duration) into a thermal equilibrium distribution set by the 

Maxwell Boltzmann distribution within the manifold. Therefore, there is no memory of the 

original energy level in the manifold that the transition occurred to.  

2) Another assumption is that the amount of possible electron transitions to the excited manifold 

(the density of states) far exceeds the density of electrons undergoing the transition. As well, 

the density of electrons undergoing the transition is negligible in comparison with the density 

of electrons in the lower manifold.  

The first assumption is important because the backward transition of an electron to the ground 

manifold (or vice-versa) is not dependent on the original energy level of the forward transition. The 

electron is in a superposition state over many energy levels in the manifold set by the thermal 

occupancy conditions of the Maxwell Boltzmann distribution. Therefore, since transitions between 

manifolds are not dependent on the pathway of previous transitions, a singular constant transition 

probability for a specific wavelength, described by the transition cross section, can be used. The 

second assumption yields that the probability that a transition occurs, described by the transition cross 

section is not influenced by electron densities in the manifold. The electron population in the upper 

manifold negligibly influences the occupation of energy levels and the occupancy of energy levels in 

the ground manifold does not change in an impactful way. However, the transition cross section to the 

higher manifold (the absorption cross section) is different than the transition cross section to the lower 

manifold (the emission cross section) because the occupancy of energy levels in each manifold is 

different.     

Given the above assumptions, the rate equations describing this manifold system are[6]: 

 
dn2No
dt

= (−σem 
n2 + σab(1 − n2))No

I

hv
−
n2No
Tsp

 

 

(57) 

dn1No
dt

= (σem 
n2 − σab(1 − n2))No

I

hv
+
n2No
Tsp

 

 

(58) 

n1No = (1 − n2)No (59) 

 

Where, the transition cross-sections σ are functions only dependent on the wavelength. 
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Variable name Definition 

t Time(s) 

n1 Fractional population density in ground manifold 

(cm−3) normalized to No. 

n2 Fractional population density in upper manifold 

(cm−3) normalized to No. 

No Total electron density (cm−3) 

I Pump intensity (
w

cm2) 

Tsp Spontaneous emission time 

σem Emission cross section (cm2) 

σab Absorption cross section (cm2) 

hv Photon energy (J) 

Table 2: Variable definitions for rate-equation model  

Equation (59) is derived from the condition that the overall electron density is always conserved. The 

relation was substituted in Eq. (57) and (58). 

The spontaneous emission decay rate is assumed to decay into a wide range of wavelengths, with a 

negligible power contribution to the pump wavelength and can be assumed to yield no contributions to 

generating pump photons. As well, ASE is neglected at this point in the model due to the solid angle 

this radiation goes into. Therefore, the contribution that is aligned with the pump beam is negligible.  

Because of absorption and stimulated emission the pump intensity changes as a function of 

propagation coordinate in the crystal. The pump intensity propagation equation can be described as 

follows[6]: 

dI

dz
= (σem 

n2 − σab(1 − n2))NoI 

 
(60) 

 

Where, the coefficient on the LHS is accordingly named the gain coefficient (g) and carries units 

cm−1. 

3.2.2 Steady State Properties of the Yb:KYW Gain Crystal 

 

At a certain population inversion the decay rate of the spontaneous emission and stimulated emission 

exactly balances with the upward absorption rate of pump photons. The net change in electron density 

as a function of time is thus zero if the pump intensity remains constant. Steady state conditions can be 

derived by substituting zero for the derivative in Eq. (57). Due to Eq.(59), population values for all 

manifolds can be found as a function of pump intensity, yielding: 

n2 =
σab

σem+ σab +
hv
I

1
Tsp

 

 

(61) 

n1 =
σem+

hv
I
1
Tsp

σem+ σab +
hv
I

1
Tsp

 

 

(62) 
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n2No
Tsp

= (−σem 
n2 + σab(1 − n2))No

I

hv
 (63) 

 

It can be seen from the above that the steady state n2 saturates with pump intensity. If I → ∞, Eq. (61) 

approaches: 

lim
 I→∞

n2 =
σab

σem+ σab
 

For a crystal of a differential propagation slice of size Δz, the steady-state population variation with 

pump intensity can be assumed to be zero due to the negligible pump variation within this differential 

slice. Integrating Eq. (60) and using the steady state condition described in Eq. (63) yields an 

approximation: 

I(Δz) ≈ I(0) − hv
n2(I(0))No

Tsp
Δz 

 

(64) 

Where n2 is solved by using I(0) and its steady state equation (to explicitly make this apparent, n2 is 

shown in Eq. (64) as a function of I(0)). For the next slice in the propagation coordinate, I(0) → I(Δz) 

and: 

I(2Δz) = I(Δz) − hv
n2(I(Δz))No

Tsp
Δz 

 

(65) 

n2 for this propagation slice is solved by using I(Δz) and its steady state equation. 

However, the full exponential form, for example at the above step: 

I(2Δz) = I(Δz)eΔzNo(σems 
n2(I(Δz))−σabs(1−n2(I(Δz)))) 
 

(66) 

Was used in the simulation due to the exponential form being a more accurate approximation (reduces 

the effect of the slowly varying slice approximation). 

This process is done iteratively throughout the entire crystal length, yielding a pump intensity at every 

discrete slice of the crystal. Δz is made smaller until convergence in the simulation outputs (i.e., 

integrated population inversion, end slice pump intensity become independent of slice step-size). It is 

also clear, that at steady state, pump absorption in the crystal is dictated by the spontaneous emission 

decay rate. If this rate is omitted, the crystal can be viewed as totally transparent to the pump as shown 

in Eq. (64), (65) and (66).  

Obtaining the steady state inversion at each slice from the simulation allows the calculation of the 

overall steady-state gain in the crystal: 

G = eΔz∑ (σems 
n2i−σabs(1−n2i))No

i=N
i=1  

 
(67) 

σems , σabs are now the average cross sections of the signal wavelengths that need to be amplified, N 

is the maximal slice number. 

This calculation yields the following information for the following parameters in table 3: 
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Parameter Value 

Crystal Length 3mm 

Doping Concentration 5% 

Tsp 0.3ms 

No* 30.1 ∗ 1019cm−3 

σem 2.25 ∗ 10−19cm2 

σab 1.75 ∗ 10−19cm2 

σems 0.3 ∗ 10−19cm2 

σab𝑠 0.02 ∗ 10−19cm2 

Table 3: Parameters of simulation. * No is calculated from the small signal gain value of Yb:KYW 

doped at 5%, No at other concentrations can be deduced from this value by:
doping%

5%
No@5%. 

 

Figure 1: Total Gain as a function of average pump intensity. It can be seen that gain saturates past 

23
kw

cm2. 

 

Fig. 2 illustrates the dependence of the saturation gain value and crystal length at a constant pump 

intensity. Intuitively it may be deduced that shorter crystals have lower saturation gain (at a constant 

given pump intensity), however this relationship is not always followed. For long crystals, even when 

all propagation slices are saturated, the pump intensity still decays as a function of propagation 

coordinate. Therefore, at propagation slices towards the end the population inversion will not be 

adequate for net gain at the signal wavelength and thus the overall absorption from these end slices 

will effectively lower the overall gain of the crystal.  
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Figure 2: At a pump average intensity of 15
kw

cm2 (kept low to demonstrate the effect), total saturation 

gain is plotted vs crystal length. As can be seen there is an optimal crystal length given a doping 

concentration (in this case 5%), and a pump intensity.  

3.2.3 Pumping Gain Dynamics of the Yb:KYW Gain Crystal 

 

The steady state conditions derived in the previous section offer insight into the maximal possible gain 

the crystal can be pumped to given a pump power. However, the time required to pump such a crystal 

is also important to explore. Pumping time for Yb:KYW amplifiers are on the order of ms[7] and 

therefore, this imposes maximal rep.rate constraints of the REGEN before gain recovery noise starts to 

dominate or pulse energy drops.  

Following the same iterative approach of the algorithm introduced in the previous section but 

extending it for the time coordinate, for a differential propagation and time increment, Δz, Δt it can be 

assumed that the population inversion is insensitive to pump variation both in time and space. The 

pump intensity is a constant within the  Δz, Δt slice. Therefore, under constant pump intensity within 

the time-slice Eq. (57) can be integrated from the nth time interval to the n+1th time interval 

(𝑛Δt, (𝑛 + 1)Δt) to yield the following analytic expression and recursion: 

n2(nΔz, (n + 1)Δt) =
(n2(nΔz, nΔt) −

 σab ∗ I
hν

) e
(−Δt(

1
Tsp

+(
σem + σab)hν

I)

1
Tsp

+ (
σem +  σab)

hν
I

+
σab

σem+ σab +
hv
I
1
Tsp

 

 

(68) 

The intensity used in Eq. (68) is I((n − 1)Δz, nΔt) coming out of the previous z slice at the end of the 

previous time interval. 

The intensity recurrence is defined as: 

I(nΔz, (n + 1)Δt) = I((n − 1)Δz, nΔt)e(σem 
n2((n−1)Δz,nΔt)−σab(1−n2((n−1)Δz,nΔt)))NoΔz 

 

(69) 

As mentioned previously, these equations can be simulated in an iterative fashion. The initial 

condition for each time step of Eq. (68) is the n2(nΔz, nΔt) term on the RHS and the initial condition 

for each time step of Eq. (69) is the I((n − 1)Δz, nΔt) term on the RHS. It is assumed that for a 

differential interval in time n2 in Eq. (69) is equivalent to the final value of the previous time step, i.e., 
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it is slowly varying in time w.r.t the time interval. This is verified by varying the increment size of t 

and z until convergence is found.  

The boundary condition is such that at z = 0: 

I(0, t) = Io 

Io is the constant input average pump intensity. 

The initial conditions (at time t=0) is: 

n2(nΔz, 0) = 𝑐𝑛 

Where 𝑐𝑛 is a constant for each slice number n. It will be shown below that, 𝑐𝑛 is the remaining 

population density at a crystal slice after the signal pulse is amplified and coupled out of the REGEN 

cavity.  

It is also assumed that the propagation of the pump through the crystal is on a much shorter timescale 

than the timescales considered for the simulation. Therefore, while there is a small delay in time 

between crystal slices this is assumed to be negligible and at a given timestamp all propagation slices 

through the crystal is evaluated in an iterative fashion. As can be seen from the above ((Δz, Δt) are 

independent parameters). 

For the same parameters as table 3, fig.3 demonstrates the pumping time to saturation for different 

pump intensities. It can thus be deduced that the greater the pump intensity, the faster the total crystal 

gain will reach saturation, for a given crystal length.  

Thus, there are two ways to reduce pump time:  

1) Increase the pump intensity. 

2) Decrease the crystal length.  

However 2) has the disadvantage of lowering the total gain if the length is in the region where total 

pump absorption at steady state does not result in slices towards the end being absorptive.  

 

Figure 3: Indicates the dependence of total gain on pump time at different pump intensities.  
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The results obtained from this model are in good agreement with results reported in [7] for the 

corresponding pump average intensity of 23
kw

cm2 (i.e., pumping time of approximately 0.4ms).  

Therefore, from these calculations it is already apparent that if saturation gain is desired, and the signal 

pulse depletes the inversion population, the maximum rep. rate for a pump average intensity of 

roughly 15
kw

cm2 is roughly 1kHz and for a pump intensity of 25
kw

cm2 is roughly 2.5 kHz. 

The signal pulse does not deplete entirely the gain population and these upper bounds are high. True 

upper bounds of rep.rates and gain recovery dynamics will be explored in section 2.2.5. 

3.2.4 Pulse Amplification: The Franz-Nodvik Algorithm 

 

The recurrence relationship for the pulse amplification used is named the Franz-Nodvik algorithm. It 

assumes that the signal pulse is at a short timescale in comparison with the spontaneous emission rate 

of the crystal. Therefore, this rate can be omitted and Eq. (57), (58), (60) integrate analytically to the 

following relations[10], defined in terms of fluence (
J

cm2) : 

J(K + 1) = TJsln(G(k)(e
J(K)
Js − 1) + 1) 

 

(70) 

 

g(K + 1) = g(K) −
1

Js
(
J(K + 1)

T
− J(K)) 

 

(71) 

 

g is the gain coefficient. Thus, 

 

G(K + 1) = eg(K+1) 
 

(72) 

 

Js is the saturation fluence defined as: 

Js =
hv

σem+ σab
 

 

(73) 

  

K is the pass number through the crystal of the pulse, T is the single-pass transmission within the 

cavity.  

The algorithm is faster to implement than the rate-equation technique and thus, for pulse amplification 

this approach was used. 

While, it is not necessary to partition the crystal in z-slices for the Franz-Nodvik algorithm the b-

integral [11] was also calculated from an average intensity of the pulse fluence at a crystal increment 

divided by the pulse duration of 500ps. The major reason the crystal was partitioned was to obtain the 

population inversion density after the pulse amplification. These initial values for the population 
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inversion will be fed into the pumping time simulation to obtain the final gain for the next inputted 

pulse. This is necessary to analyze gain recovery transients and noise. Thus, the crystal was treated as 

a series of slabs of slice thickness Δz that were solved in series using the Franz-Nodvik equations, 

where the inputted fluence was the outgoing fluence of the previous crystal slice. This was done to the 

desired cavity pass number of the signal through the crystal.  

After pulse amplification at the desired pass number, the upper state population was found according 

to: 

n2(nΔz) =

g(K, nΔz)
NoΔz

+ σabs

σems + σabs
 

 

(74) 

By re-arrangement of Eq.(67).  

This is useful to determine the pumping initial conditions in between pulses and to evaluate any output 

pulse amplitude fluctuations or transients from the system.  

The algorithm was verified by reproducing the same figures as in [10] with their parameters.  
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3.2.5 Competition with Q-Switching  

 

The natural build-up of the ASE noise to the laser mode will be suppressed due to competition of the 

gain with the pulse amplification. This is true if the initial total energy of the pulse within the modal 

area of the cavity mode is higher than that of the ASE (calculated from the total ASE power contained 

in the modal area multiplied into the cavity roundtrip time). 

 The assumption is made that this is always the case due to the fact that ASE initially is outputted 

within a solid angle of 4π, thus the amount of power contained in the cavity mode is negligible.   

3.2.6 Putting It All Together: Final Simulation Values, Gain Recovery Dynamics, 

Determined Output Values 

 

It is now prudent to simulate the overall system-crystal pumping, pulse amplification and gain 

recovery dynamics (fig.4-7)  to obtain the pulse energy outputted from the REGEN and to obtain gain 

recovery pulse energy fluctuations. The latter will determine the maximal rep.rate the system can 

afford before gain recovery instability becomes a major effect. In all simulations the pump was 

assumed to be continuous and the pumping effect within the pulse amplification time negligible. 

Simulation parameters are found in Table 4. 

Parameter Value 

Js 6.01
J

cm2 

T 0.97 

Signal Spot Size @crystal 400μm 

Pulse duration 500ps 

J(0), initial fluence 
3.2

mJ

cm2
 

Pump Spot  400μm 

Pump Intensity 
23.9

kW

cm2
 

Crystal Length 3mm 

Crystal Doping 5% 

Crystal Axis For Amplification and Pump Nm 

Table 4: Parameter values for Franz-Nodvik simulation 
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Figure 4: Pulse energy as a function of crystal pass number (Each cavity round trip sees two passes). 

This pulse energy curve was taken at entering pulse number 9 into the multipass cavity (when gain 

transients were stabilized. 

 

 

 

Figure 5: Pulse fluence at a constant pass number (pass 14 taken from above figure). Pulses are 

separated by 0.5ms (2 kHz rep.rate). Transients settle after 9 pulses and there is no gain recovery 

bifurcation[12].  
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Figure 6: Pump time for the system after stable pulse fluence occurs (i.e. after pulse 9). At t=0, gain is 

above 1, which indicates that population inversion does not fully deplete after amplified pulse exits the 

cavity. 

It was found that transients decay and there is no bifurcation up till a rep.period of 0.1ms (10 kHz). As 

shown in fig.7. 

  

Figure 7: Pulse fluence bifurcation at 10 kHz. As can be seen when rep.rate increases pulse fluence is 

lower and bifurcation starts. 

The b-integral for the system was found to be 0.1 using the non-linear index coefficient found in [11]. 

3.2.7 Extension of the Theory: Using Franz-Nodvik for the Calculating Pump Time 

 

During the course of the design of this REGEN discussion centered on whether the Frantz-Nodvik 

equations which offer a computationally fast algorithm can be used to find the pumping time of the 

crystal, i.e., to reverse the Franz-Nodvik simulation to simulate the pumping of the gain medium rather 

than the depletion.  I have found the corresponding corrections to the algorithm that would make this 

possible for spontaneous emission timescales on the order of ms and have computationally 

implemented it. The exact issues that arise with just using the Franz-Nodvik algorithm as is (with a 

reversal of signs in Eq. (71) ) is that during the pumping cycle, which is on the order of ms, the 

ultrafast approximation does not work anymore, and spontaneous emission characteristic times must 

be considered. The algorithm was then used in the group for the evaluation and design of a 2μm 

Ho:YLF amplifier.   

Firstly, the system is partitioned in time slices, Δt and in crystal propagation slices, Δz. Partitioning the 

crystal in propagation slices is not necessary (making the algorithm computationally fast due to a 

reduction of dimensionality) but is still carried out to obtain local population inversion information 

along the crystal. The pump fluence per slice Δt is calculated (for constant intensity the fluence does 

not change at different time intervals) and the Franz-Nodvik simulation is carried out on the series of 

crystal slices. The remaining pump fluence from one crystal slice (calculated from the Franz-Nodvik 

simulation) is fed into the next crystal slice at the given time slice (the approximation that the pump 

propagation through the crystal is ultrashort compared to the pump time is used here as well). The 

population inversion from the gain calculation is as well obtained for each crystal slice at a given time 

stamp. However, at the next time stamp the population inversion is multiplied by  e
−
 Δt

Tsp. This is 

because, if the intensity terms of Eq. (57) are neglected, than the equation integrates to: 
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n2((n + 1)Δt) = n2 
(nΔt)e

−
 Δt
Tsp 

Therefore, the spontaneous emission decay rate to an approximation can be viewed as an overall 

exponential decay term on the population. To factor this loss numerically, before the next time step is 

calculated, the slice population is multiplied into this exponential decay factor. Convergence was 

obtained by varying the time step and propagation step. This procedure was compared with the rate 

equation formulation for a Ho:YLF crystal whose spontaneous emission characteristic time is on the 

order of ~15ms. Appendix B1 lists the simulation results which match.  

3.2.8 Extension of the Theory: More Efficient Pumping Process by Pump Splitting 

 

The rate equation simulation was extended to the case of pumping the crystal from both sides where 

each side would have half of the input pump intensity. Interference effects (i.e., intensity cross terms) 

from the two counter-propagating beams are omitted due to the incoherent radiation of the pump 

source. While, the overall pump intensity is the same, the gain pumping time to saturation drastically 

decreased and the gain saturation level rose.  This can be explained by the spontaneous emission decay 

rate dynamics. If the intensity is halved, than the rate contributions to the population inversion of the 

intensity as well will be halved (omitting the spontaneous emission rate term for the time being). Thus, 

the pumping time will increase by a factor of two. However, since both sides of the crystal are being 

pumped the net pumping time to a given gain will be the same. Now when the effects of the 

spontaneous emission term are considered, it can be seen that for higher pump intensities, the loss 

through spontaneous emission will be higher (since the absolute population value does not linearly 

scale with pump intensity). Thus, propagating this intensity from one slice to another if the local 

intensity is double, the pumping rate will now be less than double (due to this spontaneous emission 

loss channel). Thus, the two cases are not equivalent anymore, and the efficiency for the pump split 

arrangement is higher and the pumping time to gain saturation is lower.  

To illustrate the effect: using an overall pump intensity of 23
kW

cm2
, and the same crystal parameters, the 

following figures (fig. 8) were generated: 

a) 
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b) 

 

Figure 8: a) Total gain vs pumping time of arrangement where the pump only propagates in one 

direction) arrangement where pump is split and enters the crystal from both ends. Pumping time is 

reduced by a factor of ~7.5 and overall gain is increased by a factor of ~1.1.  

3.3 Cavity Design 
 

The cavity design parameters were taken from the parameters of the simulation. The signal spot size at 

the crystal should be <200µm, and the pump line spot-size should be 400µm. By using [2] as a 

reference cavity and by checking stock items for available mirrors the following cavity was designed, 

using the software tool, ReZonator. The reason the signal spot-size is smaller than 400µm is due to 

various experimental factors: 1) Available mirrors from stock items would not generate the desired 

spot-size at the Pockel cell (P.C) branch of the cavity, given the overall cavity length condition. 2) The 

pump beam profile at the focus was not top-hat or Gaussian but contained many structures. Therefore, 

in order to minimize aberrations in the signal beam profile, the spot size had to be reduced to avoid 

pump spot size regions with these structures.  
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Figure 9: Input cavity into reZonator, using mirror stock items found from two sources: Eksma and 

Altechna. Total cavity length is 1.434m. 

 

Figure 10: Caustic beam profile in micrometers for both the tangential and sagittal planes of the beam 

within the cavity. At crystal, beam radius is 92.8µm in both the tangential and sagittal planes. 

Thermal lensing must be considered for Yb:KYW crystals, a focal length range of 125mm to 1000mm 

was considered in the cavity design, see fig. 11 for the stability plot.  

 

 

Figure 11: Stability map of both the transverse and sagittal planes of the beam from 125mm to 

1000mm focal lengths. Within this range, stability is between 1 and -1 satisfying the stability criterion 

for the cavity.  

The pump was coupled into the cavity through M1 which is a dichroic mirror that is reflective at 1.03 

µm and transmissive at 981nm and the out-coupling optics (PBS, QWP, Pockel cell) were placed 

between M5 and M6. M6 was an out coupling end mirror without coupling transmission of 1.5%.   
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3.4 Experimental Setup 
 

Diagrams of the experimental setup are given in fig. 12. Refer to appendix B2 for complete materials 

list. 

The polarization dynamics are summarized in fig. 13. The crystal is orientated such that the intracavity 

P-Polarization is aligned with the Nm axis.  

 

Figure 12: Cavity diagram showing all measurements. Accuracy is +/-2mm. Degree accuracy is +/-2 

degrees. Second branch of the cavity is defined all cavity components after the cavity PBS on the M5 

side. The pump is collinear with the signal and coupled into the dichroic mirror, M1. The pump line 

consists of a custom designed lensing system from DPM Photonics that focuses the beam to ~400um 

at the crystal. P.C: Pockels Cell, F.R: Faraday Rotator, PBS: Polarization Beam Splitter, H/QWP: 

Half/Quarter Wave-Plate, M: Mirror.  
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a) 

 

b) 

 

c) 

 

Figure 13: a) The Pulse signal is in-coupled into the cavity. At this stage the Pockel cell (P.C)[8, for 

Pockel cell alignment, see 9] is off. The QWP is orientated in such a way that after reflection at 
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M6(which adds a 𝜋 phase shift and the second pass through the QWP, the polarization is converted to 

the P-state. The P-state is then passed through the cavity PBS and coupled into the second cavity 

branch. b) In the pulse build-up (where the pulse remains in the cavity), the P.C is turned on at the 

QWP voltage. After the double pass through the P.C and QWP the net polarization state does not 

change (2𝜋 phase with mirror M6). Therefore, the state will remain in the P-polarization and will 

propagate in the second branch of the cavity. c) At out-coupling the P.C is turned off (retrieving the 

initial arrangement). After the double pass through the P.C and QWP  there will be a net -½ 𝜋 phase 

shift and the P polarization will be converted in the S-polarization. The pulse will couple out of the 

cavity after the cavity PBS. After the HWP, the polarization state is tilted at 45 degrees, and in a 0 

phase shift relative to the signal in a) at that point. The Faraday rotator (F.R), being insensitive to 

propagation direction [8], rotates the phase along the same direction as in a) i.e., clockwise, and the 

polarization state will now be in the P-polarization (½ 𝜋). This will couple into the out-put of the 

system through the out-coupling PBS. 

According to fig. 13 , the P.C rise time and fall time must be less than the round-trip time of the 

second branch of the cavity. The total cavity length is 1.434m which translates to a round trip time of 

~9.6ns. The P.C (from Dohrer Elektrooptik) consisted of a double cell rubidium titanyl phosphate 

(RTP), with a transmittance of 98.5%, an extinction ration greater than 200:1 (at no voltage) and an 

aperture of 3.6mm. The two crystals are orientated such that extra birefringence caused by thermal 

effects is compensated for.  The P.C was switched at quarter wave voltage with a Birdman CMOS 

switching circuit that had a measured rise time and fall time (to zero) of 8.7ns. 

 

3.5 Experimental Results 
 

For the following experiments as a benchmark case the crystal that was used was not a 5% doped 

crystal but a 2%, 3mm, Yb:KYW Np cut crystal. This was to insure that at this stage, pulse build-up 

will not damage optical components. Repeated alignment was done within the cavity that could cause 

damage to these components. Once the cavity is properly aligned and studied, the crystal will be 

replaced by the 5% 2.5mm crystal.  All data presented here is for the 2%, 3mm crystal.  

3.5.1 CW Lasing 

 

CW lasing of the cavity was obtained and maintained with the placement of the PBS and Quarter 

Wave plate.  The lasing with all cavity components is given in fig.  14.  
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Figure 14:  Lasing curve of cavity with all optical components (including QWP, PBS, P.C). Output-

coupler was 2(0.5)%. The slope efficiency was found to be 18%. 

From fig. 14 the lasing threshold is found to be at a pump power of 4W. Simulations show that this 

translates to a threshold gain of 1.11. The inverse of the threshold gain is the total cavity transmission 

which then is equivalent to ~0.90. Therefore, the roundtrip losses are ~10%. The single pass loss of 

each mirror is 0.3%, the output coupler is ~2%, the dichroic in-coupling mirror is 1%, and thus, the 

remainder should be in the PBS, P.C, and QWP system.   

LP. C + PBS + QWP
= 10%− 100%(1 − (0.9976)(0.99)(0.98)) = 5.29% 

Laboratory measurements of the losses given an alignment seed signal centered at 1.03um confirm the 

above analysis. The measured insertion percent loss through the P.C+QWP is ~1.5(0.3)% and through 

the PBS, ~1 (0.3)%. This yields a double pass loss of ~5%.  

Updated simulation parameters with the exact beam radius at the crystal, the crystal used for this 

experiment and the losses yield at a pump power of 14W, a maximal pulse energy of ~440μJ.  

3.5.2 Q-switched operation 

 

Before operation in amplified pulsed mode, the cavity was operated in the Q-switched laser head. The 

Q-switched average power relating to the pump power is shown below. 
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Figure 15: Full saturation curve of the Q-switched laser head power vs pump power at a rep.rate of 1 

kHz. Saturation pump power is approximately 18.5W. Each point represents the maximal power 

extracted by varying cavity on times.  

From fig. 16, it can be seen that the optimum rep.rate of the Q-switched laser head occurs at 1kHz. For 

Higher rep.rates, the lower pulse energies can be explained by the gain recovering to a lower value due 

to the shortened pump time betweeen pulses. The lower pulse-energy that occurs at higher than 1kHz 

rep.rates is explained by thermal effects that build up in between pulses, due to a longer exposure of 

the inverted population with the pump time. Substantial bifurcation  was found at 5kHz, were the 

second pulse had ~1/4 the pulse energy as the first, see fig. 17b.   

The cavity-on time necessary to generate a Q-switched average power on the order of 0.1W -0.3W is 

in the range of  654ns-744ns (at higher pump power, the cavity build up time is reduced). This is 

illustrated in fig. 17. 

 

Figure 16: Pulse energy variation with rep.rate. Roll-over occurs at ~32500Hz.  
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a) 

 

 

 

b) 

 

Figure 17: a) Example Q-switched signal of the diode monitoring the  intracavity buildup (through the 

2% output coupler . The pulse build up is the blue curve, the P.C switching signal is the yellow curve 

and the scope trigger signal (can be ignored) is the red curve.  B) Stable bifurcation that occurs at a 

rep.rate of 5 kHz. Second pulse is ¼ the energy of the first.  
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3.5.3Amplified Pulsed operation 

 

After the cavity was optimized in the Q-switch regime, the cavity was operated in the pulse 

amplification head. The input signal coupled into the cavity was a 1 kHz signal coming from the 

stretcher AOM system. The signal pulse energy at this point was 1.3nJ, due to losses in the stretcher 

fiber in-coupling and fiber AOM losses.  The signal pulse energy coupled into the cavity was 0.8nJ.  

In the pulsed amplification  regime, the cavity on time is shorter than the Q-switched time. As well, 

the extracted energy was higher due to the higher peak intensity in pulsed operation at the last trip 

through the gain medium before extraction.  

The average amplified pulse power at a pump power of 13.5W was found to be 396 μJ, which 

corresponds well with the simulations. The pulse reaches maximum amplification in 36 roundtrips 

(see, fig. 18). The simulation parameters at an input pulse energy of 0.8nJ yields 27 round trips. The 

discrepancy arises because the signal pulse is not matched to the cavity Eigen-mode at the start. 

Therefore, the effective energy in the Eigen mode is lower due to the lower overlap integral. As well, 

the higher order modes present in the signal at the start create modulations on the beam profile in the 

crystal, influencing the amplification across the beam. Thus, while these modes are being filtered in 

the first roundtrips, the amplification process in the proper cavity Eigen mode is hampered and 

effectively creates more passes in the crystal that are needed. Due to crystal heating, at higher rep.rates 

the beam quality suffered and pulse amplification was hampered (discussed in recommendations).  

 

Figure 18: Intra-cavity build-up of signal pulse. Pulse peaks correspond to the round-trip number and 

are separated in time by the cavity roundtrip time (~10ns). 

Unfortunately, further data could not be taken due to a pump diode failure that occurred.  
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3.6 Extensions and Recommendations 
 

A pulse energy of 0.4mJ was extracted at 1 kHz. Due to the nice match with simulations, it can be 

deduced that replacing the crystal with a 5% 2.5mm Yb:KYW crystal with polarization orientated 

along the Nm axis should achieve amplification past 1mJ as simulations in the first section have 

shown.  

It was also experimentally determined that the pump beam profile from the fiber pump system (LIMO, 

refer to appendix B2) was not adequately coupled into the core of the fiber delivery system. Greater 

than 40% of the power was coupled into the cladding. Due to these higher order modes, the pump 

beam focusing optics was inadequate to focus the beam to a flat topped profile or Gaussian profile at 

the crystal. As well, power in these modes was filtered out before the crystal. Simulations show that 

the input pulse intensity only extends the pulse time in the cavity. However, the absolute maximal 

amplified pulse energy is only strongly dependent on the stored energy. If the pump beam profile can 

be made to a top hat profile and can match with the 100um signal spot the complete stored energy 

reservoir can be accessed. The experiments were done at an output coupling of 2% (single pass). As 

well, a dichroic mirror was used for the other cavity end mirror that had an insertion loss at 1.03um of 

1%. These losses contributed to high cavity losses that were found through experiment. The system 

will be updated with a low output coupler (0.5%) and a better dichroic mirror.  

 The REGEN was also un-cooled during all data acquisition. Power stability will greatly increase if the 

crystal is cooled to room temperature due to the reduction in thermal effects limiting beam quality.   

Finally, the next step is to build up the pulse compression stage. It was already experimentally shown 

that a 273fs auto correlated pulse was achieved after compression of the pulse coming from the 

stretcher fiber. Due to the small crystal length, dispersive broadening can be viewed as negligible. As 

well, due to the low non-linear phase (b-integral), uncompressible phase variations are also at a 

minimum. The compressed pulse duration should not change significantly from this figure. Gain 

narrowing effects however, may increase the compressed pulse duration.  
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Chapter 4: New Split-Step Method for Generalized Non-Linear 

Equations Applied to White-Light Generation in Bulk Material 
 

4.1 Introduction 
 

In order to develop new light sources for the coherent control of molecules it is first important to 

develop the simulation tools necessary to accomplish this goal, as stated in the thesis introduction. In 

this chapter, a novel numerical scheme was implemented to simulate the non-linear propagation of 

light in bulk material and the white-light generation that extends the spectrum.  

4.1.1 Niche of the New  General Split-Step Method 

 

Within this chapter is presented, the first methodology to my knowledge that is entirely based on the 

Strang Fourier Split Step scheme and that can model extremely complex non-linear equations in all 

three spatial dimensions and time. Amongst a wide plethora of fields, these non-linear equations 

mostly arise in physical and mathematical disciplines such as Non-Linear Optics[1-3], Plasma 

Physics[4,5], Fluid Dynamics[6,7], and General Chaotic and Dynamical Systems[8,9]. 

Split-step methods are based on modelling the non-linear equation in an iterative fashion in one 

propagation coordinate. Per propagation step, the non-linear equation is usually decomposed in a 

series of coupled equations in terms of each operator (named flows of the equation). These operators 

are defined as terms of the non-linear equation that act in modifying the solution per propagation 

increment. The operators can be applied using Fourier transforms[10], in a discretized fashion or 

Finite Difference (FD) methods[11]. The advantage of using the split-step operator method over other 

conventional methods lies in the ease of use of the method and the low computational error introduced 

by the method due to its spectral nature[12]. It is limited mainly only by the Nyquist Criterion and its 

Fourier nature makes it easy to use on a quadrature grid. Also, the well-defined Fast Fourier 

Transform algorithm (FFT) is available in most scientific computing software and is optimized for a 

reduced number of operations which makes this approach, in general, faster than other conventional 

methods [11]. The reduced operations needed for the Split-Step Fourier Method (SSFM) and the ease 

of implementation render this method the most ideal for modelling non-linear equations.  This will be 

the inherent goal in the derivation of this new SSFM. That is, to render it intuitive and well-defined for 

the user to use.  

The Split-Step Fourier Method has been extensively explored in one dimensional systems such as the 

one-dimensional cubic Non-Linear Schrodinger Equation (NLSE) that models the substantive spectral 

broadening of light (accordingly named supercontinuum generation) as it propagates in fiber. Past 

studies focused primarily on estimating step-size dependent error and deriving adaptive step-size 

algorithms for the implementation of the method[13-15]. Other studies explored the stability of the 

method under various permutations such as introducing Finite-Difference Methods (FD) in the 

implementation of the operators used in the split-step scheme[16] or around certain bound solutions of 

a NLSE such as soliton formation[17]. 

However, extensions of the method itself have not been comprehensively explored until now. For 

example, the method has not been extended into a 3-D scheme in the spatial coordinates in a 

generalized sense. Studies have explored the prospect of using Bessel discretization for certain NLSE 

equations[23]. However, these discretization schemes do not translate to easy representations in a 
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domain that can reduce the operator expression (such as derivative terms) to easy algebraically defined 

expressions in terms only of independent variables. As well, they are limited to the study of 

spherically symmetric solutions. The easiest method that accurately does this is to use a Fourier split-

step scheme and define spatial operators accordingly.  

Another problem that needs to be considered is to extend this method to beyond cubic NLSE type 

equations. Taking the previous example of optical spectral generation, cubic NLSE equations well 

model supercontinuum generation in 1-D systems but do not model all the intricate processes that 

occur in Bulk material. The added terms and effects that need to be considered while propagating light 

in Bulk material in the generation of new spectral components for White-Light Generation (WLG) 

yield far from cubic 3-D NLSE type equations.  

Other known computational methods used in the solutions of non-linear differential equations include 

the Runge-Kutta methods [19], Crank Nicholson methods [20], symplectic [21], relaxation methods 

[12,22] or combinations of such methods. Each of these methods bares a certain level of accuracy and 

stability that scales with grid step sizes, computation cost and inherent complexity. However, the 

computational time, the implementation ease, the low amount of operations and the adaptability of the 

newly derived extended SSFM offers an attractive alternate. As well, it is important to have a variety 

of methods since for some systems the stability of one method can be low, while another outperforms 

it. The advantages of this extended SSFM in relation to other methods will be briefly discussed over 

others as the derivation is carried through. 

To demonstrate the usefulness of this method to the community the chapter will be divided into two 

broad topics: The derivation of the general method and the types of non-linear partial differential 

equations it models and its specific application to a complicated Non-Linear Schrödinger equation 

(NLSE) that is integral to the physics community. The NLSE chosen for the demonstration of the 

method describes white-light generation (WLG) in bulk Kerr media.  

4.1.2 Description of the White-Light Generation Process 

 

Non-linear Optical processes in bulk materials such as white light generation (WLG) are integral to a 

variety of optical systems and optical applications. WLG is a process where the pump signal generates 

a broadband optical spectrum that can span multiple octaves and whose spectral components are 

coherently locked to each other [23]. Within the optics community, this process is used for many 

applications such as single-cycle pulse generation [24,25], seeding optical-parametric amplifiers 

(OPA) [26,27,28,29] and two dimensional spectroscopy [30].  This non-linear process relies heavily 

on a high input optical intensity gradient generated from pulses in the femtosecond to picosecond 

range and consists of the combination of several non-linear and linear processes.  

The pump pulse produces a change in the second order (non-linear) refractive index, which becomes a 

function of pump intensity. This produces both spatial lensing effects (such as self-focusing) and a 

phase variation within the envelope of the pulse creating a corresponding frequency broadening 

accordingly named self-phase modulation (SPM). SPM is the non-linear phenomena solely responsible 

for the actual generation of new frequencies in conventional systems omitting delayed effects such as 

stimulated Raman scattering[35].  Thus, WLG is inherently energy conserving and does not rely on an 

optical gain medium as in the case of a laser. To produce broader spectra and to control the WLG 

effect, one needs to control the interactions of the nonlinear and linear effects(such as dispersion and 

diffraction) that directly or indirectly influence the temporal gradient of the optical intensity through 

SPM. Of interest is additional higher order non-linear/linear effects such as space-time focusing [32], 
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plasma absorption, scattering and plasma refractive index effects that influence the intensity and the 

spectral generation.  

The corresponding NLSE describing all of these effects and the addition of plasma absorption and 

scattering was shown to be accurately described in Gaeta et al [34]. As an example to the general 

method the equation outlined in Gaeta et al. will be simulated.   

4.1.3 Organisation of Information in this Chapter 

 

In the first section of this chapter a detailed derivation of the general method as applied to an outlined 

general non-linear partial differential equation will be presented. The second section of the chapter 

will introduce the specific physical system being studied (that of WLG in bulk material). The third 

section will discuss the general method as applied to this system and the fourth section will discuss the 

relevant sampling stability conditions for both the general method and applied to the specific system. 

The final section will present the results obtained from the simulation of the specific WLG equation 

and discuss these results as they apply to the extensive literature on the subject. Appropriate 

appendices will be referenced in the text. 

4.2 Derivation of the General Method 
 

To start the derivation of the general method, first a discussion of the type of solutions that the method 

aims to find will be carried out and the general form of non-linear partial differential equations the 

method can be applied to will be presented. The method will then be derived in a manner that reviews 

the general derivation of the SSFM. 

I consider non-linear equations in which bound L-2 normed solutions are described. The general form 

of non-linear equations of which I consider in this chapter writes as: 

∂u

∂ς
= ℘u + ℚℕu 

 

(75) 

This equation is defined in a unit-less coordinate system and for unit-less quantities. Where, x,y are 

the transverse unit-less coordinates, τ is the unit-less time coordinate. ς, is the unit-less propagation 

coordinate. 

 ℘ is composed of a series over derivative operators (∇,
∂

∂τ
). ℘ can be described as functions over 

derivative operators, where the functions correspond to the series convergence if the deriviative 

operators are replaced by variables in Eq. (76).  

 

℘ =∑∑cncj∇
n ∂

j

∂jτ

∞

j=0

∞

n=0

 

 

(76) 

cn 
, cj  are complex constants. ∇n ≡

∂n

∂nx
+

∂n

∂ny
. 

It can be shown that any summation of functions that can yield the Eq. (76) series representation can 

globally be described in an Eq. (76) series representation and thus, ℘ can be described as a summation 

of these functions. The reason for why ℘ is defined as in Eq. (76) will become clear later in this 
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section.  If ℘ consists of a series of functions over derivatives it is assumed that this is a finite series 

(if not, see note in appendix C0.2).  

 

ℚ = (c1 + c2
∂

∂τ
) 

 

(77) 

 

c1, c2 are complex constants.  

ℕ = β(|u|, … , |u|j, u, u∗, 𝑣(x⊥, τ)) 
 

(78) 

β is a function whose arguments are the independent coordinate variables in space and time and 

distributions, some of which can be based on the absolute value of u to an arbitrary jth order. Where, I 

use the notation x⊥ to mark the set of unit-less transverse coordinates. 𝑣(x⊥, τ) represents a set of 

functions based on x⊥, τ. For example, 𝑣 can be spatial or temporal derivative functions of u such as 

its modulus powers. u is assumed to be an analytic function to at least the maximal derivative term 

used in an operator defined above and possesses norms up to Lj . Otherwise, Eq. (75) possesses branch 

points and discontinuities and unbound solutions which are not considered in this chapter, or further 

regions of validity may have to be imposed.  

As stated above the assumption is made that there is an integrably bound  L-2 norm[36] solution to 

Eq. (75) and thus, with the application of the operators that are about to be defined, u always remains 

integrably bound in L-2. Because, of the L-2 norm, the Fourier transform of u always exists, justifying 

the use of a Fourier method. Integrably unbound L-2 solutions are not considered due to the fact that 

these solutions are not relevant to physical applications (energy is not conserved). 

Eq.(75) will now be split into a series of operators that are applied in an iterative sense along the 

propagation coordinate in the goal of producing a solution given initial and boundary conditions which 

is u inputted into the first slice of the propagation coordinate. In order to accomplish this goal, the 

operators will first be defined, then how they are applied will be studied and finally the complexity of 

the application method will be reduced. 

To outline the method and the proof of its validity ℚℕ is split into distinct operators. ℚℕ can be 

expanded as: 

α = ℚℕ = (c1ℕ + c2(
∂ℕ

∂τ
+ ℕ

∂

∂τ
)) 

 

(79) 

α  will be split into two operators once more.  

α =  α1 + α2 
 

(80) 

Defined as: 

α1 = c1ℕ + c2(
∂ℕ

∂τ
) (81) 

and, 

α2 = c2ℕ
∂

∂τ
 (82) 
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The reasons for doing this will become clear as the methodology is defined. However, at this stage I 

have decoupled α into an operator solely defined on distributions, and an operator defined by a 

distribution and a derivative operator. This decoupling simplifies the mathematics as will be seen later 

and is a rather intuitive way to deal with this operator. 

At this point, it is clear to see which operators are linear and which operators are not. ℘ is the straight 

forward linear operator. As well, the commutation relation between all terms and combinations of 

terms in ℘ can trivially be shown to be zero using the commutation of partial derivatives of 

independent variables (see appendix C0 for proof). This means that the ordering of how each term in 

this operator is applied does not matter. Therefore, this operator carries minimal computational error 

and can be applied in one step due to the irrelevance of the ordering of its terms (its application will 

become clear later in this section). 

 α1 is a non-linear operator solely and in a function form acting on distributions and not on derivative 

operators. It follows also that each term in α1  and combinations of terms carry a commutation relation 

of zero. Thus, this operator can be applied in one step. 

 α2 is named the augmented non-linear operator.  It is defined as a series of difference operators and 

distributions acting on u. The form of α2 is a combination of the linear operator and α1 form and 

exists because of terms produced in the derivative cross products of α.  

To proceed in implementing the following operators in an effective way to model Eq. (75) it is first 

necessary to reduce the complexity of some of these operators with the use of the Fourier 

representation, as done in traditional pseudo-spectral techniques [14]. The reason why ℘  is defined as 

a series and only this type of non-linear partial differential equation is considered is because in the 

inverse Fourier space of τ and the transverse spatial coordinates, these operators become defined as 

replacing the dummy variable in the series with −𝑖w and (−𝑖kx, −𝑖ky) where w is the corresponding 

angular frequency variable of τ (also unit-less) and (kx, ky) are the corresponding spatial angular 

frequency variables of x,y (also unit-less). Therefore, these partial differential equations become easy 

to solve in a Fourier based method. This is explained in more detail below.  

Since, ℘ consists of derivative terms of independent variables and has no dependence on functions of 

u itself, in its corresponding combined inverse space (kx,ky,w), the operations in ℘ are defined by 

functions of the independent variables rather than differential operations and becomes easier to 

implement:  

To make this clear, using the series representation of  ℘ , in the Fourier domain, -𝑖w only needs to be 

substituted for 
∂

∂τ
 and −𝑖kx,−𝑖ky for ∇x

1, ∇y
1 and their powers to obtain the Fourier representation of the 

operator. This follows straight forward from the Fourier identities [37], the fact that series expansions 

w.r.t to the operator exists and of course because terms self-commute and commute with each other 

(please appendix C0 for pertinent proofs). Therefore, in the inverse space (kx,ky,w),  ℘  is applied as : 

 

℘ =∑∑cncj((−𝑖kx)
n+(−𝑖kx)n) (−𝑖w)j

∞

j=0

∞

n=0

 

 

(83) 

Which if ℘ is defined as a function over derivative variables, is equivalent to replacing the derivative 

variables of the function with the Fourier representation of the variables (above listed), obtaining a 

functional representation in the Fourier inverse domain. See appendix C0.2 for the proof and 
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convergence conditions for when it is possible to have a functional representation in the inverse 

domain. Thus, in the Fourier inverse domain the function is evaluated over these now numerical 

variables. This is of great benefit since in its Fourier space ℘ is a function over numerical variables 

instead of derivative operators and can be easily evaluated. 

In contrast to ℘, it would be of no benefit to consider α1 in any inverse space since it is of a functional 

form with no derivative operators and therefore it is considered in the original space it is written in. 

In order to avoid any FDTD errors, the derivatives of the functions in α1 are evaluated as Fourier 

operations, meaning the Fourier identity for the derivative outlined above is used and the term is 

transformed back into the time domain. Evaluating the derivative this way for a given step size and 

sampling at the appropriate Nyquist conditions (explained and derived in section 4.5, appendix C2), is 

more accurate than doing a numerical difference operation. There is no matrix truncation for one, and 

the difference operation averages the effects of the individual frequency components of the function, 

while using the Fourier identity does not. This only negligibly adds to computational time. For 

functions in α1 that are defined in terms of an additional differential equation (i.e. for functions whose 

derivatives are defined instead), the appropriate time domain integration method is used, i.e. Runge-

Kutta, etc. This does not take away much from the stability and accuracy of this simulation method 

over others for these types of nonlinear differential equations, since this step would have to be 

undertaken in those methods as well and this method still minimizes the use of these numerical 

difference techniques.  

It will later be demonstrated that the complexity of α2  can be reduced and then a suitable way to 

apply it will be found but first it is of importance to understand how ℘, α1, α2 can be applied to 

obtain the solution to Eq. (75). This lies in understanding how they are used in the following set of 

ordered differential equations that yield an approximation of u coming out of a propagation slice into 

the next slice [13]. Partial solutionsu℘, uα1, uα2 are obtained that are defined as the solution to the 

below series of differential equations involving ℘, α1, α2   applied in the shown specific order within 

the step being considered. From this, [13, Eq.8-10] has shown that the overall solution of u coming 

from the step can thus be approximated. The specific ordering, named Strang symmetrisation [12] is 

needed because each of the 3 operators have a nonzero commutation relation to the others. Therefore, 

their ordering influences the result introducing numerical error. [12] has shown that the Strang 

symmetrisation scheme significantly reducing the computational error, to one that is proportional to 

the square of the propagation step size. From [13] the equations are updated to reflect the new 3 

operator symmetric split step scheme:  

1. {

∂u℘(ς)

∂ς
= ℘u℘(ς), ∀ς ∈ [ςk, ςk+1

4
 ]

u℘(ςk) = u(ςk), u coming from previous slice

 

2.{

∂uα2(ς)

∂ς
= α2uα2(ς), ∀ς ∈ [ςk, ςk+1

2
 ]

uα2(ςk) = u℘(ςk+1
4
)

 

3.

{
 

 
∂u℘(ς)

∂ς
= ℘u℘(ς), ∀ς ∈ [ς

k+
1
4
, ς
k+
1
2
 ]

u℘(ςk+1
4
) = uα2 (ςk+1

2
) ,
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4.

{
 

 
∂uα1(ς)

∂ς
= α1uα1(ς), ∀ς ∈ [ςk, ςk+1 ]

uα1(ςk) = u℘(ςk+1
2
)

 

5.

{
 

 
∂u℘(ς)

∂ς
= ℘u℘(ς), ∀ς ∈ [ς

k+
1
2
, ς
k+
3
4
 ]

u℘(ςk+1
2
) = uα1(ςk+1),

 

6.

{
 

 
∂uα2(ς)

∂ς
= α2uα2(ς), ∀ς ∈ [ς

k+
1
2
, ςk+1]

uα2(ςk+1
2
) = u℘(ςk+3

4
)

 

7.

{
 

 
∂u℘(ς)

∂ς
= ℘u℘(ς), ∀ς ∈ [ς

k+
3
4
, ςk+1]

u℘(ςk+3
4
) = uα2(ςk+1),

 

Where the final u℘(ςk+1) calculated from the 7
th
 step becomes u entering the next slice labelled 

(ςk+1) in the propagation direction and the above 7 steps are repeated iteratively. Fig. visually 

represents the above iteration. The methodology of generating u, how the operators ℘,α1, α2   are 

applied, the ordering of how they are applied and to what they are applied to have just been shown. 

However, the above procedure can be simplified because the above differential equations can be 

solved analytically or “close to” analytically for all operators, yielding: 

For the first step: 

 

u℘(ς) = e
℘(ς−ςk)u(ςk) 

 

(84) 

Coming out of the first step than: 

 

u℘(ςk+1
4
) = e

1
4
℘∆ςu(ςk) 

(85) 

 

For the second step: 

 

uα2(ς) = e
∫ α2(ς′)dς′
ς

ςk u℘(ςk+1
4
) 

(86) 

 

The integral arises since the α2 operator contains functions based on u, where u is a function of ς. 

However, since the interval [ςk, ςk+1
2

 ] is considered to be small and u and its derivatives are 

considered to be slowly varying relative to the step size of ς, a mean value theory [37] can be 

employed. Where, the value of α2 in the exponent with u given from the end of the previous operator 

step is used. 
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 This gives a value at ς
k+

1

2

 (at the end of the step) of: 

 

uα2(ςk+1
2
 ) = e

1
2
α2(u℘(ςk+1

4
))∆ς

u℘(ςk+1
4
) 

 

(87) 

 

At the end of the third step: 

 

u℘(ςk+1
2
 ) = e

1
4
℘∆ςuα2(ςk+1

2
 ) 

 

(88) 

 

At the end of the fourth step, again employing a mean value theory and using the value of u coming 

from the previous step for all functions of u in α1 at ςk+1, the following is obtained: 

 

uα1(ςk+1 ) = e
α1(u℘(ςk+1

2
))∆ς

u℘(ςk+1
2
) 

 

(89) 

 

At the end of the fifth step the following is obtained: 

 

u℘(ςk+3
4
 ) = e

1
4
℘∆ςuα1(ςk+1 ) 

 

(90) 

 

At the end of the sixth step: 

 

uα2(ςk+1) = e

1
2
α2(u℘(ςk+3

4
 ))∆ς

u℘(ςk+3
4
 ) 

 

(91) 

 

And at the end of the final step: 

 

u℘(ςk+1) = e
1
4
℘∆ςuα2(ςk+1) 

 

(92) 

 

Where now,  
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u(ςk+1) = u℘(ςk+1) (93) 

 

The proof of the integration of these steps is discussed in appendix C0.4. An example proof for these 

steps is shown in appendix C4. 

The following scheme is then equivalent to: 

 

u(ςk+1) = e
1
4
℘∆ςe

1
2
α2∆ςe

1
4
℘∆ςeα1∆ςe

1
4
℘∆ςe

1
2
α2∆ςe

1
4
℘∆ςu(ςk) 

 

(94) 

 

Where, the non-linear operators dependent on functions of u are calculated at u outputted from the 

previous operator step. 

 

Figure 1: Graphical representation of steps 1-7. Uk-1 is calculated from the output of the slice 

numbered k-1 and is used as the initial U in slice K. The updated U from the previous iterative sub 

steps in slice K is used to calculate the operator values for the pertinent sub step. Each operator is 

applied in intervals equivalent to the slice length divided by the amount of times the operator is 

applied in the slice.   
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The above ordering can be modified to fulfill different symmetrisations. In general, terms that are fast 

varying relative to others should be the ones most extensively split in the symmetrisation, as one 

would need to “sample u interacting with these terms” more often. The symmetrisation is not a hard 

constraint and is dependent on the problem and the computational resources. For the WLG problem, 

this symmetrisation was found to be the most stable in the set of symmetrisations that was considered 

and converged rather quickly with varying the propagation coordinate step size.  

Therefore, the exponential of each operator is multiplied with u, which means the equivalent 

Maclaurin series expansion of the exponential with respect to the propagation coordinate is applied 

(which translates to substituting the argument of the exponential, which is linear w.r.t the propagation 

coordinate) into the well-known exponential Maclaurin series valid everywhere in the propagation 

coordinate domain space). Appendix C0 outlines in more detail how this procedure is done. Appendix 

C4 details the proof for why the Maclaurin series is applied. In the case where the operator is defined 

only as functions of the independent domain variables the numerical value of the exponential can be 

computed directly and then multiplied into u at the appropriate domain coordinates.  

It can be derived (see appendix C0) that the Maclaurin series expansion of the exponential of an 

operator that is equivalent to a series of derivative terms with constant coefficients, multiplied into u in 

the original space is equivalent to the inverse Fourier transform of the exponential of the 

representation of that operator in the Fourier space (i.e., frequency space) applied to the representation 

of u in the Fourier space. If the representation of the operator converges to a function in Fourier space, 

the exponential of that operator in Fourier space will be the exponential of a function over independent 

numerical domain variables and can be computed directly in this space as stated in the paragraph 

above.  

Given the above discussion, it is not prudent to evaluate the Maclaurin series expansion of the 

exponential operator of ℘  in the original space. Each term of the Maclaurin series will consist of a 

series expansion of derivative operators acting on u. therefore, numerical differentiation will have to 

be employed and both truncation in the terms of the Macluarin series and the series representation of 

each term will have to be employed. Instead, the exponential of ℘  representation in its Fourier space 

can be used. If the representation of ℘  reduces to a functional form, than the exponent can be directly 

calculated. If not, each term in the Maclaurin expansion will have to be calculated in this Fourier space 

for each domain value and both truncation in the Maclaurin series and truncation in the series 

representation of each term of the series will have to be used. However, numericial differentiation is 

avoided and this is a better approach than evaluating ℘ in its original space where its defined in terms 

of derivative operations (again, see appendix C0 for the rigorous proof and the procedure). The error 

then only depends on the numerical Fourier transform algorithm being implemented and the step size 

in the propagation direction. The Fourier error can be reduced if certain conditions of the sampling 

step sizes are maintained (i.e., the Nyquist criterion).  

In the exponential form of the α1 operator the function is applied in the original domains without need 

of a Maclaurin expansion since there are no derivative operators, and all is defined in terms of 

functions of the independent variables already (see appendix C0 for more details). 

The complication factors in, in how the α2 operator is applied. There are several ways in which this 

operator can be implemented. The operator can be implemented in the original domain and then 

truncated after some terms in the Maclaurin series expansion with respect to α2 
of the corresponding 

exponential. This yields time derivative operator terms that act on u. Less accurate finite difference 

methods would be required to evaluate the derivative terms acting on u after the expansion.  However, 

as mentioned in the previous paragraph for greater accuracy and reduced computational requirements, 
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an equivalent version of the α2 operator that has no Maclaurin series expansion required should be 

used.  

The exponential expression of α2 is simplified by first expanding the exponential operator in its 

Maclaurin series w.r.t to the propagation coordinate (where the step size 
1

2
∆ς in the constants of α2 is 

included for ease of writing):  

 

eα2 = 1 + c2ℕ
∂

∂τ
+
1

2!
(c2ℕ)

2
∂

∂τ

2

+
1

3!
(c2ℕ)

3
∂

∂τ

3

… 

 

(95) 

The above assumes the derivative commutes ℕ and can be algebraically rearranged in the product. 

However, this is not completely true and an approximation. Please see appendix C4.3 for when this 

series expansion is valid and its limitations and the fix to this problem. ℕ is calculated with the mean-

value approximation outlined in steps 1-7. 

Now, it can be seen that ( 𝑅 = c2ℕ)  : 

 

eα2(τ,…)u(τ,… ) = [1 + 𝑅(τ,… )
∂

∂τ
+
1

2!
𝑅(τ, … )2

∂

∂τ

2

+
1

3!
𝑅(τ, … )3

∂

∂τ

3

…]u 

 

(96) 

 

The left hand side of Eq. (96) is obtained by carrying out the following integral operation, where I 

define w′ as an additional independent variable, and u(w′,… ) as equivalent to the distribution given 

by the Fourier transform of u to the inverse variable domain of τ (ie, u(w′,… ) = u(w,… ) ): 

 

∫ [1 + 𝑅(τ,… )(−𝑖w′) +
1

2!
𝑅(τ, … )2(−𝑖w′)2 +

1

3!
𝑅(τ, … )3(−𝑖w′)3…]u(w′,… )e−𝑖w′τdw

∞

−∞

= [1 + 𝑅(τ,… )
∂

∂τ
+
1

2!
𝑅(τ, … )2

∂

∂τ

2

+
1

3!
𝑅(τ, … )3

∂

∂τ

3

…]u

= eα2(τ,…)u(τ,… ) 
 

(97) 

 

Therefore,  

 

eα2(τ,…)u(τ,… ) = ∫ [1 + 𝑅(τ,… )(−𝑖w′) +
1

2!
𝑅(τ, … )2(−𝑖w′)2

∞

−∞

+
1

3!
𝑅(τ, … )3(−𝑖w′)3…]u(w′, … )e−𝑖w′τdw′ 

 

(98) 

Where, 𝑅 is unaffected by the Fourier integral since the integral is only over the independent variable 

𝑤′. As well, since u is L2-normed each term in the Fourier integral is bound with the assumption that 

there is an integrably bound solution in L-2 to Eq.(75) with the initial input u, the overall summation 

of Fourier integrals in the right hand side of Eq. (98) yields an integrably bound solution in L-2. 
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Eq.(97) can be simplified further by using the Maclaurin series identity to the series within the Fourier 

integral in (97), yielding:  

 

e−c2ℕ𝑖w′ = [1 + 𝑅(τ,… )(−iw′) +
1

2!
𝑅(τ, … )2(−iw′)2 +

1

3!
𝑅(τ, … )3(−iw′)3…] 

 

 

(99) 

Where, the definition of R on the left hand side of Eq.(99) is used. Please note, the argument of the 

exponential now consists of a function defined on 4 independent variables: 𝑤′, τ and the variables 

describing the transverse spatial coordinates and the following relation is obtained through substituting 

Eq.(99) into Eq. (98): 

 

eα2(τ,… )u(τ,… ) = 𝑓𝑤′{e
−c2ℕ𝑖w′u(w′,… )}|τ 

 

(100) 

𝑓𝑤′ means the Fourier transform over w′ at τ. This identity is used which gets past truncation errors 

and lets eα2 be applied to u in terms of Fourier transform integrals.  

It is worth noting that the derivative term ℕ is assumed to be re-arrangeable in the product terms 

(power terms of ℕ ) in the above expansion. This is an approximation. However, appendix C4.3 

presents the case that overcomes this approximation and also justifies why this approximation is 

physically relevant.  

 α2̅̅̅̅  is defined as the name of the operator −c2ℕ𝑖w′ when the above derived substitution identity is 

used. 

The semantics of the α2 operator will become clear once the general steps that are applied with all of 

these operators in their respective spaces are stated. Let Z be the series of operations: 

 

Z = fft kχ, kψ,w,
→ χ, ψ, τe

1
4
℘(kx,ky,w) ∆ς fft χ, ψ, τ,

→ kχ, kψ,wfftw′

→ τe
1
2
α2
̅̅ ̅̅ (w′,τ,..) ∆ς fft kχ, kψ,w,

→ χ, ψ,we
1
4
℘(kx,ky,w) ∆ς fft x, y, τ → kχ, kψ,w 

 

(101) 

 

χ, ψ represent the transverse spatial dimensions. For the α2 operator it is explicitly written now with 

the step size factored out of its constant and with the 
1

2
 symmetrisation adjustment to the step-size. I 

remind the reader that fftw′ → τe
1

2
α2
̅̅ ̅̅ (w′,τ)∆ςu(w′, … ) means that  u is first converted into the 

frequency domain (because it has the same representation in w′), secondly the exponent is applied at a 

value τ , thirdly, the inverse Fourier transform on the frequency domain of the updated total function 

at only that  τ is carried out, fourthly, the process is repeated for all τ . At the input of this step 

u(χ, ψ,w) is sent and after this step an updated u(χ,ψ, τ ) is found. 

The full symmetrisation yields: 

 

u(χ,ψ, τ, ς′) = Zeα1∆ς Zu(χ,ψ, τ, ς′ − ∆ς) 
 

(102) 
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This is done iteratively overall all steps in the propagation coordinate, ς. 

One can see from the above treatment the power of this exponential operator theory. At the heart of 

traditional FDTD methods or Runge-Kutta methods the differential operators are replaced, with a 

numerical difference scheme. However, this method yields a step size dependent error and is 

inherently a computational approximation to the derivative terms. However, by using the Fourier 

representation of derivative terms, there is no violation in the nature of the derivative term, the 

derivative operator term is simply being replaced by its equivalent algebraic integral representation. 

There is no step size dependent error in this sense and provided that the Fourier transform can be 

represented by the FFT algorithm accurately, i.e. if the Nyquist criterion is met, there is no other over 

all errors in computing these derivatives.  

Applying an FDTD or Runge-Kutta method to solve the differential equations in steps 1-7 also bears 

more error in the integration than the preceding method. For example taking step 1, a FDTD method 

would look like: 

u℘(ςk+1
4
) = u℘(ςk) +

∂u℘(ς)

∂ς
|ςk(

1

4
∆ς)  = u℘(ςk) + ℘u℘(ςk)(

1

4
∆ς)  

 

(103) 

Where, the operators can be carried out in the Fourier treatment or with Taylor series expansions 

(specifically those with differential operators). The more pronounced error in the integration arises 

because the mean value theorem would still have to be applied for these methods as well, and these 

methods turn out to be a computational approximation of the analytic solution under the mean value 

approximation. However, the exponential method outlined in this chapter is the true analytic solution 

of the integration under the mean value approximation. Runge-Kutta methods bare the same form 

albeit more developed as (103). Therefore, it will always out-compete applying Runge-Kutta methods 

for the longitudinal propagation. The exponential describes the step without making the extra 

assumption that the system is discretized, it still respects the continuous nature of the problem while 

other methods do not make this distinction. Adaptive recursive or implicit methods can overcome the 

mean-value approximation itself, but these are substantially more complex methods that lie out of the 

scope of this chapter. The computational costs increase and the stability of such methods may be an 

issue or hard to evaluate.  

In sum, the system acts in an exponential manner to the propagation coordinate, since it equates to the 

derivative of this coordinate with no functional coefficient, thus, the most accurate, stable and intuitive 

way to model it would be in an exponential form.  
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4.3 Defining the Equation and Explaining the WLG Process 
 

In this section, the preceding method will be applied to a specific problem in physics: Namely, WLG 

in bulk material. As stated in the introduction, the various linear and non-linear processes involved in 

the spectral broadening of the input pump signal in the material can be modeled by the corresponding 

NLSE. Fig. 2 and fig. 3 and their captions in subsection 4.2 will illustratively explain the dominant 

temporal and spatial effects of WLG in bulk material.  

4.3.1 Defining the NLSE Equation 

 

The NLSE considered in this section, that describes the various effects contributing to WLG, is taken 

from [34] with trivial corrections (please see footnote in appendix C1): 

∂u

dς
=
i

4
(1 +

i

ωoτp

∂

∂τ
)
−1

∇⊥
2u − i

Ldf
Lds

∂2u

∂τ2

+ i (1 +
i

ωoτp

∂

∂τ
) [
Ldf
Lnl

|u|2u −
Ldf
Lpl

(1 −
i

ωoτc
)ρu + i

Ldf
Lmp

|u|2(m−1)u ] 

 

(104) 

The derivation was carried out by updating the Maxwell’s equations with the appropriate polarizability 

term covering all effects in Table 1. Both the slow-varying envelope approximation was used and the 

paraxial approximation. The L constants represent various non-linear and linear lengths for physical 

processes. They are all outlined in appendix C1 and taken from [34]. The equation is over reduced 

unit-less coordinates. Where, ς labels the propagation coordinate, τp  is the RMS value of the original 

pulse duration and ωo is the angular central frequency of the original pulse. ρ  represents the 

normalized plasma distribution being created by the optical intensity. The first two terms are the linear 

terms of the equation.  

ρ , the normalized plasma density term is a function of u. The optical radiation undergoes multi-

photon absorption to produce a plasma, meaning unbound charge carriers, in the material. The plasma 

that is created is assumed to be static, meaning the dynamics of the plasma density occurs over a much 

broader timescale than the pulse duration. The plasma density is defined by a linear first order non-

homogenous differential equation: 

∂ρ

∂τ
= αρ|u|2 + |u|2m 

 

(105) 

 m is a constant and is related to the order of photo-absorption.  

It is verifiable that Eq. (104) is of the general form of Eq. (75), and thus, the above derived method can 

be used. The equation is defined in unit-less coordinates  χ =
x

Sp
 ,ψ =

y

Sp
 where x,y are the normal 

transverse coordinates to the propagation axis of the input optical field. Sp is a constant in meters 

usually equal to the spot size, rendering  𝜒 , 𝜓 unit-less. The unit-less spatial gradient is the second 

derivative over χ, ψ. 

∇⊥
2= ∇χ

2 + ∇ψ
2  

As well, τ =
t−z/vg
τp

  where, z is the propagation coordinate, vg is the group velocity (constant) and τp 

is the RMS value of the initial input electrical field making τ unitless. Eq. (104) models the WLG 
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propagation in a frame of reference travelling at the group velocity of the input pulse and thus, is in 

terms of τ. Due to the slow-varying approximation, the linear phase term of the propagation coordinate 

is omitted.  

The unit-less z propagation coordinate is given as ς = z/Ldf , where Ldf is in meters and represents 

the diffraction length (the Rayleigh length for an input Gaussian).  

The above differential equation describes the evolution of the input envelope electric field normalized 

to the peak amplitude. The electric field at the input plane of the crystal (from free space) is described 

as: 

E = Ae
−(
x2+y2

2Sp2
+

t2

2τp2
)
ei(wot+φ) 

Where, wo is the central frequency and φ is a phase. A is the peak amplitude. u, the normalized 

envelope of the electric field is related to E as follows: 

u =
|E|

A
= e

−(
x2+y2

2Sp2
+

t2

2τp2
)
 

It is sufficient only to solve (104) in the appropriate coordinates to obtain the full solution of E within 

the crystal and at the terminal point of the crystal. The final u obtained yields the output E as follows: 

    

E = Auei(wot+φ)ei(kz) 

With the appropriate transform to unit coordinates. Where k is the momentum of the central frequency 

wo in the material and z is the total crystal length. 

The coefficient lengths are defined for an input that is a radial Gaussian beam and therefore, this 

equation is implicitly defined for an initial value Gaussian in time and boundary value Gaussian in 

space. However, the equation can model any arbitrary inputted electric field amplitude profile as long 

as the paraxial approximation at the input can be used  justifying the use of the  full 3-D split step 

technique above derived.  
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4.3.2 Illustration of Relevant Physical Effects Described by the NLSE 

 

Table 1, summarizes the physical meaning of each term on the right-hand side of the equation. [34] 

references work that presents an extensive discussion of these terms.  

Term Physical Process  

i

4
(1 +

i

ωτp

∂

∂τ
)
−1

∇⊥
2u 

Space-time Focusing: Diffractive term coefficient (function of 

temporal derivative). Accounts for the dependence of diffraction, 

i.e., spatial propagation in transverse dimensions long the 

propagation axis, on the frequency of the optical radiation. 

Diffractive term: Accounts for spatial propagation in transverse 

dimensions along the propagation axis.  

−i
Ldf
Lds

∂2u

∂τ2
 

Dispersion term assuming constant group velocity dispersion 

(GVD) across generated spectral components. 

i (1 +
i

ωτp

∂

∂τ
) 

Self-Steepening term (in paragraph below). 

Ldf
Lnl

|u|2u 
Non-linear term describing Self-Phase Modulation (SPM) and 

Kerr-lensing both due to the intensity dependent nature of the 

refractive index. 

−
Ldf
Lpl

(1 −
i

ωoτc
)ρu 

Plasma term describing plasma scattering and effects due to the 

refractive index variation of the plasma population.  

i
Ldf
Lmp

|u|2(m−1)u 
Plasma absorption term describing the effect of multiphoton 

absorption.  

Table 1: Physical meaning of derived terms in Eq. (104). 
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a) 

 

b) 

 

 

 

 



110 
 

c) 

 

d) 

 

 

Figure 2: a) Illustration of the effect of group velocity dispersion (explained extensively in chapter 2) 

and the effect of SPM (refer to Eq. (16) in chapter 2). SPM generates instantaneous frequencies in the 

opposite direction of the GVD reorganization of frequencies (references for SPM and GVD are found 

in chapter 2). b) Self-Steepening imposes a group velocity delay at different intensity points along the 

pulse because of the intensity dependent refractive index (int.dep.ref.index) term. For example, for a 

reducing term (n2 < 0) P1 has a higher negative velocity and heads towards P2 at the front of the 

pulse. P4 has a lower negative velocity than P3 and thus the net delay between these two points 

increases. The peak also shifts at a maximal negative velocity. This gives a steepened edge on the front 
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of the pulse and a shifted peak towards the front, creating an asymmetric pulse profile. For n2 > 0  the 

case is reversed.  c) Multi-photon plasma absorption exponentially increases with intensity (this can be 

deduced from the plasma equations presented in [34]) . Therefore, intensities are filtered by 

magnitude, where the peak will be reduced more than the wings of the pulse. This reduces the peak 

intensity and reduces the steepened slope generated by self-steepening, creating a balance. This also 

prevents the peak intensity to rise above the damage threshold of the material. This extends the 

amount of time the pulse can stay in the material[34]  and through SPM over a greater length; broader 

frequency bandwidth can be generated. d) Plasma refractive index variation is positive and counters 

SPM frequency generation (in the buildup region of the plasma density, where it is a strongly varying 

function of time). As well, the positive refractive index term counters the group velocity delay 

dynamics of the negative int.dep.ref.index term in the self-steepening process. This broadens the pulse 

and reduces the self-steepening effect.  

a) 
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b) 

 

Figure 3: a) Self-focusing is demonstrated. It is an analogy to SPM, where the int.dep.ref.index 

generates spatially instantaneous momenta proportional to the spatial derivative of the intensity[33, 

chapter 2]. These momenta propagate to compress the pulse, in a lensing effect (in the negative case of 

the int.dep.ref.index). The plasma term generates a time dependent absorptive aperture that represents 

exponentially higher absorption for higher intensity. This generates a donut type mode (refer to 

Results section 4.6.3). b) The time-dependent plasma refractive index addition counters the negative 

int.dep.ref.index and defocuses the pulse. This prevents self-focusing to focus the beam to peak 

intensities that damage the crystal, and can extend the WLG process.  

Since the extensive numerical method above derived is primarily to account for self-steepening 

(through the additional time derivative operation), it is worth presenting a brief overview of this effect. 

Self-steepening is a term that explains the effects of the additional group velocity dispersion a due to 

the dependence of the refractive index on the optical intensity. This effect contributes to a shift of the 

peak intensity and an asymmetric steepening of the optical pulse. The peak shifts to the back of the 

pulse for a positive second order coefficient of the refractive index w.r.t the expansion of the refractive 

index with the optical electric field (n2) and to the front for a negative coefficient[42]. This is because 

the self-steepening term in the simple NLSE goes as [42]: 

 

iε
𝜕(𝛾|u|2u)

𝜕τ
= iεγ

𝜕(|u|2)

𝜕τ
u + iεγ

𝜕(u)

𝜕τ
|u|2 

 

(106) 

𝛾 is the-non-linear coefficient used for the SPM term. Where ε is the self-steepening coefficient. The 

first term on the right hand side can be viewed as responsible to account for the fast varying effect of 

self-steepening. It is responsible for the amplitude intensity reorganizing due to enhanced SPM 

generation at the steepened slope and its interaction with the intensity dependent GV. The second term 

reorganizes the instantaneous phase variation, because of the additional intensity dependent group 

velocity change, and generates the steepening to begin with. It is responsible for the slower and global 

effects of self-steepening. Due to the time reorganization of the second term being intensity dependent, 

there is an additional instantaneous frequency generation effect, for more details appendix C2.2 

rigorously explores the effects of self-steepening.  Instantaneous frequencies generated through SPM 



113 
 

scale with the first derivative of the optical intensity. For positive n2, the asymmetric steepening of the 

optical waveform interacts with SPM in a manner that generates bluer   frequencies. 

The derivative operator acting on u with a time-dependent distributional coefficient adds numerical 

complexity to the problem and is why traditional split-step methods cannot be used and where the 

above derived method can be used for WLG in bulk. It is this physical operation and the 3-D spatial 

nature of the differential equation that justifies using the numerical method above derived. As well, 

self-steepening is responsible for creating an optical shock in the material with a high peak intensity 

that can eventually damage the material. Therefore, including this very important effect can provide 

upper bound estimates for crystal lengths used in experiments. As well, it can evaluate if plasma 

absorption is sufficient to balance out this effect in materials.  

In (104), the self-steepening term is described by:  

−1

ωoτp

∂

∂τ
[
Ldf
Lnl
|u|2u −

Ldf
Lpl
(1 −

i

ωoτc
) ρu + i

Ldf
Lmp

|u|2(m−1)u ] . 

An over-arching way of understanding these non-linear terms is that i (1 +
i

ωoτp

∂

∂τ
) acts on an overall 

intensity profile given as: 

 

γeffective|ueffective|
2 =

Ldf
Lnl

|u|2 −
Ldf
Lpl

(1 −
i

ωoτc
) ρ + i

Ldf
Lmp

|u|2(m−1) 

 

(107) 
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4.4 Defining the Split Step Operators and Split Step Method for the NLSE 
The exact operator method will now be derived for Eq.(104) in this section. In accordance with the 

method, the first step is to partition the crystal medium into a series of steps in the propagation 

coordinate where the solution of one step is fed into the input of the proceeding step. The solution 

coming out of a step is calculated by applying a series of operations on the input field distribution. 

These operations are based on the coefficient functions that act on u in each term on the right hand 

side of the differential equation. The procedure follows the method derived in section 4.2. All that 

remains is to group the terms in the NLSE in corresponding linear, non-linear and augmented non-

linear operators.  

The first 2 terms on the right hand side given as: 
i

4
(1 +

i

ωoτp

∂

∂τ
)
−1
∇⊥
2 − i

Ldf
Lds

∂2

∂τ2
  can be grouped 

together to produce one corresponding operation. These terms are grouped together because they are 

both linear operators of the spatial domain and time domain that are not functions of u and commute 

with each other. It will be shown later that the grouping of both these terms has a simple 

representation.  The operators in these two terms act on independent domains: The spatial domain and 

the temporal domain and therefore in independent inverse domains: The momentum domain and the 

frequency domain. Since, the commutation relation between these two terms is zero, meaning that the 

ordering of how each term in this operator is applied does not matter.  

Therefore, for the straight forward linear operator, it is defined as: 

Â =
i

4
(1 +

i

ωoτp

∂

∂τ
)
−1

∇⊥
2 − i

Ldf
Lds

∂2

∂τ2
 

 

(108) 

Â  is composed of two functions (each term on the right hand side) that are over derivative operator 

parameters. Â  has the following series expansion: 

Â = ∑∑𝑐𝑛[(−1)
j(

i

ωoτp
)j + 𝑑𝑛](

∂

∂τ
)j∇⊥

n

∞

j=0

∞

n=0

 (109) 

 

Where, 𝑐𝑛 = 0 when 𝑛 ≠ 2, otherwise  𝑐𝑛 =
i

4
. 𝑑𝑛 = 0 if 𝑛 ≠ 0, otherwise, 𝑑𝑛 = −i

Ldf
Lds

.  The above 

was derived with the binomial expansion substitution of (1 +
i

ωoτp

∂

∂τ
)
−1

, which is meant to be the 

functional description of that series (this can be seen in the original derivation of Eq. (104)). 

Therefore, Â is in the form of Eq. (76), which converges to a summation of two functions (described in 

Eq. (108)) and Â  satisfies the conditions to be considered as ℘ in section 4.2.  

By corollary C0.2 the derivative terms in the functional representation of Â in Eq. (108) can be 

replaced by the Fourier variables to obtain the operator (labelled as A(̂kχ, kψ,w)) that is applied in 

Fourier space, in accordance with the discussion in appendix C0 and section 4.2. This yields: 

A(̂kχ, kψ,w) = −
i

4
(1 +

1

ωoτp
w)

−1

(kχ
2 + kψ

2) + i
Ldf
Lds

w2 

 

(110) 

w is the angular frequency of τ , kχ, kψ 
are the angular frequencies of χ, ψ . The region of validity for 

the series convergence in the inverse space must be considered, see appendix C3. The operator series 

expansion in the frequency domain converges to Eq. (110) within the bandwidth of the slow varying 
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approximation used for Eq. (104). Thus, when applying the Â  exponential operator, no series 

truncation is needed (see note in appendix C0.2).  

In terms of the angular frequency (𝜔) of t (united proper time) for the entire expression of u w is 

related to it as: 

w =  τp(𝜔 − ωo) 
 

(111) 

Where, ωo is the central angular frequency of the input pulse.  

I am then left with terms on the right hand side of the considered differential equation whose 

coefficients are functions of u, ρ and also functions of u, ρ and the time differential operator. I group 

the terms whose coefficients are just functions of u in to another operator which is called the nonlinear 

operator acting on χ,ψ, τ: 

B̂(χ,ψ, τ) = i [
Ldf
Lnl

|u|2 +
Ldf
Lpl

(1 +
i

ωoτc
) ρ + i

Ldf
Lmp

|u|2(m−1) ]

+ (
−1

ωoτp
) [
Ldf
Lnl

∂

∂τ
|u|2 +

Ldf
Lpl

(1 +
i

ωoτc
)
∂

∂τ
ρ + i

Ldf
Lmp

∂

∂τ
|u|2(m−1) ] 
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ρ  is found by solving its ordinary differential equation using a Runge-Kutta 4
th
 order method (RK4) 

with u inputted into the operator. u inputted in the operator function is the u after previous operators 

are applied. This is also true for the Ĉ  operator shown below. The RK4 method is sufficient for this 

non-homogenous first order ODE.  

In contrast to Â , it would be of no benefit to consider B̂ in any inverse space and I consider it in the 

original  χ, ψ, τ space. Also, it can be shown that each term in B̂  has a commutation relation of zero 

with any other term or combination of other terms. Therefore, as in the case with Â ordering of 

individual terms do not matter.  

The remaining are now the terms with coefficients that are both functions of u, ρ and the time 

differential operator.  I call this operator the augmented non-linear operator: 

Ĉ = (
−1

ωoτp
) [
Ldf
Lnl

|u|2
∂

∂τ
+
Ldf
Lpl

(1 +
i

ωoτc
)ρ

∂

∂τ
+ i

Ldf
Lmp

|u|2(m−1)
∂

∂τ
 ] 
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C(w′, τ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = (
−1

ωoτp
) [
Ldf
Lnl

|u|2 +
Ldf
Lpl

(1 +
i

ωoτc
) ρ + i

Ldf
Lmp

|u|2(m−1) ] (−iw′) 
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The symmetrisation is obtained by studying the physical effects of each operator (Table 2).  

Dispersion and Diffraction do not rely on the slow-varying (or mean field approximation) of u and 

thus, they must be sampled more because they can be relatively faster varying in the propagation slice. 

As well, the self-steepening effect, being a higher order effect does not contribute as much as the 

physical processes in the B operator. Therefore, it will be sampled once in the propagation slice.   

Using the analysis of section 4.2 for the linear, non-linear and augmented operator, the following is 

obtained: 
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Z = fft kχ, kψ,w,
→ χ,ψ, τe

1
4
Â(kχ,kψ,w)∆ς fft χ, ψ, τ,

→ kχ, kψ,wfftw′

→ τe
1
2
C(w′,τ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∆ς fft kχ, kψ,w,

→ χ,ψ,we
1
4
Â(kχ,kψ,w)∆ς fft x, y, τ → kχ, kψ,w 

 

(115) 

 

Yielding:  

u(χ,ψ, τ, ς′) = ZeB̂∆ς Zu(χ,ψ, τ, ς′ − ∆ς ) 
 

(116) 

 

Eq.(115) and (116) are iteratively implemented over all steps in ς. 

Table 2 gives an additional physical interpretation of each operator.  

A B C 

Spatio-Temporal focusing, 

dispersion, diffraction  

SPM, Kerr Lensing, plasma 

effects on refractive index, 

plasma scattering, plasma 

absorption, intensity envelope 

and plasma envelope 

contribution to self-steepening 

Remaining Self-steepening 

contributions: Derivative of 

amplitude electric field 

 

Table 2: Physical interpretation of each operator used in the specific WLG bulk problem.  
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4.5 Nyquist Criterion and Pseudo-Spectral Criterion for Spatial Grid Sizes 
 

In this section grid size considerations will be considered in order to reduce global step-size error. 

Provided that the Nyquist criterion for the sampling intervals is satisfied for the original input pulse, 

the error originates from: Under-sampling the instantaneous phase variation contributions from the 

exponential operators, the exponential error due to decaying exponential terms in the operator, 

commutation error between operators, and error due to the mean-value approximation used. The 

appropriate Nyquist criterion when applied to the phase terms is sufficient to subdue the phase error 

[43] making this method, through its pseudo-spectral nature extremely precise. The real exponential 

error can be reduced in a similar way: By considering characteristic lengths of these exponential 

decaying terms. This is rigorously derived in appendix C2. 

For the real exponential error, the exponential operator method scales with exponential error relative to 

the step size in the longitudinal coordinate. The exponential argument is the absolute value of the 

difference of the magnitude of the mean field and the actual field used in the functional terms of the 

real exponential argument. Therefore, at coarse step sizes there is the potential that this method starts 

to diverge and violate energy conservation while other methods do not. However, this acts as a natural 

step size filter since while other methods are more stable at coarser steps, the error increases. Thus, if 

accuracy is the prime metric, this method always converges to a low error solution when refining the 

propagation step size. As well, due to an additional error reduction property that can be applied and is 

not present in other methods, the Nyquist criterion, the error in other coordinates is greatly reduced to 

only the presence of numerical floating point error.  

One can also use the Euler type or Runge-Kutta type form shown in Eq.(103). This may allow for low 

accuracy but course resolution simulations. The operator method is easily convertible into any one of 

these other numerical schemes. And ignoring steps 1 to 7 and just applying an overall Runge-Kutta 

method, the operator form reduces nicely to the traditional implicit Runge-Kutta method acting on 

discretized spatial coordinates. However, this system bares lots of instabilities through convolution 

operators acting on convolution operators introduced by these types of stiff nonlinear equations that 

arise in the spatial and temporal discretization and mean value approximation. If these discretisations 

are omitted the implicit Runge-Kutta methods becomes less accurate and stable unless it becomes 

more complex to account for the numerical difference operators.  

In general, acquiring a proper upper bound calculation for the longitudinal step size is rather difficult: 

Unless, the mean field “slow-varying” approximation can quantitatively be defined. This would 

involve a numerical recursion scheme. Physical properties of the system being studied [45] can help. 

For example, [46] derives longitudinal step size conditions based on commutation relations and 

uncertainty relations between operators. As well, adaptive propagation step-size algorithms, for 

example, outlined in appendix C2 can reduce error.  

There are two main topics to consider when defining the step size: 

1) The step size should be appropriate such that the exponent terms do not vary faster than the Nyquist 

criterion defined for the system (otherwise there could be under-sampling errors that iteratively grow) 

producing aliasing effects and low sampling resolution effects.   

2) Under most cases a good first estimate of propagation step size corresponds to the inverse of the 

highest ratio of coefficients in (104) (i.e., max(
1

ωτp
, 
Ldf
Lds

, 
Ldf
Lnl

, etc)).  
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At the start of the simulation sampling is at or below the Nyquist criterion for the input pulse. The 

propagation step size is calculated from point 2). If however, the step sizes need to be varied, the 

simulation parameters are updated accordingly. Specific discussion and definition of the Nyquist 

criteria, how sampling intervals are updated, why they need to be varied are in appendix C2.  

4.6 Numerical Results from the WLG Simulation 
The overall goal of this section is to show that the above derived numerical method can accurately 

simulate the WLG equation introduced in section 4.3. Self-Steepening and the 3-D spatial nature of 

Eq.(104) are the main terms that require the elaborate numerical scheme derived above. A numerical 

study of all temporal effects will be explored in this section. Published experimental results from [49] 

will be compared to the simulation outcome for that system. The spatial profiles of spectral 

components and the overall beam fluence will be presented to explore the spatial nature of the method.  

In order to set up an accurate simulation of the WLG, material values for YAG were used and listed in 

appendix C1. As well, input parameters for the pump pulse and simulation sampling intervals are 

listed in appendix C1.  

4.6.1 Pertinent Simulation Results on/ and Verification of Physical Effects in the Temporal 

Domain 

  

Next, to illustrate the effects of dispersion in anomalous dispersion materials such as YAG, the GVD 

is made higher than the actual value for YAG (80 times higher in fig. 4, 5) and the pulse intensity is 

reduced to minimize the non-linear effects (to1015  
W

m2). The non-linear effects were not turned off but 

minimized through lowering the pulse intensity, because the goal is to show that the system 

approaches the case where only dispersion acts on the optical profile when the non-linear effects are 

reduced and the dispersive term is raised, which is what is to be expected. Explanations are in the 

figure captions. Fig. 4 – 7 are all plotted for temporal intensities at the central propagation axis and a 

Gaussian envelope input pulse of 194 fs RMS in duration and 76 µm RMS in spatial extent. The 

central wavelength is 3.1 µm. 

a) 
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b) 

 

Figure 4: a) Input pulse intensity is lowered and Dispersive term is raised. The pulse broadens in time 

and its amplitude is reduced as is what is expected in the simple dispersive case. The non-linear shift 

of the peak intensity due to self-steepening is still present, however, minimized. b) Self-Steepening is 

still present. n2 > 0 in YAG, and the slope at the back of the pulse is higher (however, negligibly so) 

and the peak is shifted backward in time. This effect is more pronounced at the beginning due to the 

higher peak intensity (the pulse has not broadened yet due to dispersion), and less pronounced at the 

end due to the low peak intensity from dominant dispersive pulse broadening. The peak shift is 

indicated by the solid blue line in the figure.  

 

 

Figure 5: Temporal phase at propagation slice 34. A parabolic phase profile is obtained with a positive 

derivative slope. This corresponds to the case of anomalous dispersion where a negative linear chirp is 

introduced in the pulse profile (higher frequencies are at the front of the pulse, i.e., negative times). 

From the peak shift due to self-steepening, a shift of the parabola minimum is observed. Also, due to 

self-steepening the right side is slightly compressed. The phase offset is due to the global phase 

variation with the propagation coordinate (due to the intensity dependent propagation wavenumber) of 

the pulse envelope.  
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In the following figures, the dispersion term was kept artificially high (albeit lower than the first case, 

20 times the value for YAG) and the pulse intensity was raised (to 5 ∗ 1016  
W

m2). The goal is to show 

the non-linear pulse compression that occurs between the interplay of SPM and dispersion. This effect 

occurs in anomalous dispersion materials with positive n2 and in normal dispersion materials with 

negative n2. The effect is well known in literature [51, 52] and is the predominant mechanisms for 

solitons in fiber (see chapter 2.1.2). SPM frequencies are generated in the reverse order as the effect of 

dispersion on the instantaneous frequencies (see fig. 6 b)). Therefore, at the beginning propagation 

slices higher frequencies and lower frequencies both go towards the center of the pulse, effectively 

compressing the pulse. After they reach the center they head away, broadening the pulse again.  

In this case self-steepening was turned on. As the blue and the red frequencies head towards each 

other, due to the additional positive index contribution from self-steepening, the bluer frequencies 

compress relative to each other and the redder frequencies expand relative to each other. This causes 

local intensity features that can break the pulse (optical wave-breaking [34]). As well, the self-

steepening enhances temporal gradients that cause more SPM. The SPM is thus, even more 

unbalanced with dispersion and the higher frequency differences drive these parts of the pulse away 

from the main pulse through the higher dispersion. If the characteristic length for this effect lies before 

the overall pulse compression, the optical wave can still be compressed, if it is after, wave-breaking 

will occur after pulse compression. Simulations using this novel technique can give information about 

crystal lengths for non-linear compression factoring in all of the pertinent effects such as self-

steepening, which as mentioned above plays a role in the compression.  

a) 
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b) 

 

c) 

 

Figure 6: a) Pulse compression occurs near propagation step 15 (red curve), roughly at 6 µm in this 

artificial dispersive system. Initial optical intensity is shown as the black curve. To illustrate the effect, 

the dispersion parameter is higher than material value for YAG. Bandwidth increases through SPM 

and temporal compression occurs with the anomalous dispersion. Due to the increased bandwidth 

ultrashort pulses are obtained. SPM is in a positive feedback loop due to the higher intensity gradients 

that are generated as the pulse compresses, enhancing the generation of the ultrashort pulse. b) Phase 

demonstrates a still existing linear chirp in the opposite direction of fig. 5 around the peak. This is due 

to the instantaneous phase contribution of SPM chirping the pulse in the opposite manner of dispersion 

in this case (anomalous dispersion, n2 > 0 ). Therefore, transform limited pulse compression occurs 

slightly before this step. In the wings of the pulse, the intensity gradient is reduced. SPM generation is 

reduced. There the chirp is in accordance to anomalous dispersion seen in fig. 5. The constant phase 

offset of -1.87 radians is due to the constant phase variation of the pulse amplitude with the 

propagation coordinate (due to the overall propagation wavenumber). c) Example of wave-breaking 

after pulse compression. On the blue side (in this case left side due to the slice being after pulse 

compression), wave-breaking is more pronounced due to compression. On the right side wave-
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breaking is present due to interference modulation of the various pulses centered at different red 

frequencies during the expansion when they traversed to the right side of the pulse. The slope on the 

right side is higher due to self-steepening forn2 > 0.  

As can be seen, in the anomalous dispersion dominated case with n2 > 0, self-steepening is reduced. 

Also, self-steepening happens on the red side of the pulse because it happens on the trailing edge of 

the pulse. If SPM dominates over dispersion, than bluer frequencies would be found on the right side 

of the pulse for n2 > 0 , due to the high modulation induced by the self-steepened intensity gradient. 

 As described in [34] wave-breaking caused by self-steepening is reduced by plasma effects. This is 

because as discussed in section 4.3.2, plasma reduces peak intensity regions while maintaining lower 

intensity regions.  

Using the material value of dispersion for YAG, yields fig. 7. Here the intensity is kept at 5*10^16 
W

m2
. 

The figure shows that plasma counters wave-breaking and the high peak intensity due to self-

steepening. Self-steepening occurs on the red side of the pulse, due to the signs of n2 and GVD. The 

wave-breaking characteristic length is increased and the pulse can remain in the crystal for longer 

propagation lengths.   

 

Figure 7: Pronounced self-steepening of the optical pulse propagating through the crystal. The 

temporal intensity profile of the spatial center of the pulse is plotted for various propagation distances 

in the crystal. The intensity is normalized to the peak pulse intensity of the input:  5*10^16 
W

m2
. The 

intensity profile corresponds well with [34] and supports the findings in that paper. 
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4.6.2 White-Light Generation: Simulation Spectrum compared to Experiment 

 

The white-light spectrum of the system will now be evaluated and compared to experimental data in 

literature. [49] has experimentally found the spatially integrated spectral density of WLG in a 2mm 

YAG crystal with an input temporal and spatial Gaussian centered at 3.1 µm, spatial 1/e
2  

value of 50 

µm, temporal power FWHM of 85fs and input peak power  of 76MW. The comparison between this 

simulation technique, the experimental data and their simulation is shown below. The range of the 

simulation was set at a wavelength above 1700nm, due to the zero dispersion point in YAG. The GVD 

was assumed to be unchanging through the spectral window, which is a source of error. Other sources 

of error include the fixed absorption order and all that is discussed in appendix C3. The bandwidth 

range exceeds the slow varying approximation used in the derivation of the white-light equation 

shown in this chapter. The ideal radially symmetric Gaussian input that was assumed in the 

experiment may not have been the case. Material values were taken directly from [49] without change.  

 

 

Figure 8: Comparison of experimental data from [49] and the simulation (shown in red). Simulation fit 

is in excellent agreement to the experimental data (within less than a factor of 3 everywhere). The 

theory fit in [49] diverges considerably on the blue side of the spectrum. Data from [49] was collected 

using the grab it! App and was collected by A. Choudhuri. The same input spatial and temporal 

distribution was used as in section 4.6.1. 

4.6.3 Spatial Effects 

 

In this section spatial information will be explored to demonstrate the 3+1D information that can be 

obtained from this simulation and a discussion of what can be done with this information will be 

presented. 
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4.6.3.1 Frequency Spatial Modes 

 

The spatial configuration of the various frequency components is useful for many downstream 

applications. For example, knowing the spatial profile of a given frequency range in the white-light 

generation can yield all information necessary to spatially shape the mode after the crystal to spatial 

distributions ideal for in-coupling into fiber systems or OPA stages. As well, the inherent nature of 

how WLG happens can be explored and systems can be designed that maximize the generation of 

frequencies from manipulating various spatial effects. An example of the latter will now be shown in 

this section.  Taking the system modelled in section 4.6.2 as the reference, spatial-frequency modes at 

the crystal are shown in fig. 9. Fig. 9 corresponds to the end propagation slice and it can be seen that 

the spatial distribution of a frequency component can focus differently in the crystal than another. This 

is due to different spatial distributions from the WLG interacting with the lens caused by the spatially 

varying refractive index. In the figures below, pump corresponds to the central wavelength of the input 

signal.  

a)                                                         b)          

 

   c) 

 

 

 

 

 

 

 

Figure 9: fluence( J/m
2 
) at end of crystal, spatial distributions. a) The spectral fluence spatial mode 

corresponding to a small range of  frequencies about 3.5 µm. b) The spectral fluence spatial mode 

corresponding to a small range of  frequencies about 3.1 µm (pump frequency). c) The spectral fluence 

spatial mode corresponding to a small range of  frequencies about 2 µm. Aliasing effects are present 

due to the inadequate sampling intervals in momentum space. Low resolution effects are present due 

to the inadequate spatial sampling interval. This can be reduced if window sizes are made bigger, i.e., 
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through the adaptive algorithm outlined in appendix C2.2, however simulations were done on a 

desktop computer with limited resources.  

As explained in the image captions, due to simulations being run on a desktop machine, errors above 

include slight under-sampling error (for example, low resolution error leading to the pixelated spatial 

profiles). Momentum under-sampling (or spatial window extent being too small) generates the slight 

aliasing in Fig. 9, for example. u is undergoing aliasing, therefore it fills more of the spatial window 

up to atleast a boundary of the window. Thus, this yields convolution effects with the rectangular 

window (rectangular sinc function convolved with u in momentum space) which also has the effect of 

increasing the aliasing. However, these errors do not take away much from the accuracy of the 

simulation as shown by the experimental comparison and will be fixed by simulating the data on a 

more powerful machine. Appendix C2.2 presents an adaptive step-size algorithm that fixes under-

sampling errors.  

 The conclusion of the above figures is the following: the pump central frequency becomes defocused 

into a Bessel-like function as it progresses through the crystal, while the other frequency components 

become more focused. The other frequency components exhibit the same ring like effect. The pump 

wavelength fluence density is the highest (refer to fig. 9) at all times in the crystal. Therefore, in 

regions of the optical waveform where the pump is present, due to the higher fluence, it will generate 

more plasma; the plasma will defocus the optical signal more in those regions.  

Intensity regions in the spatial profile of the optical waveform that have lower intensity see less of the 

plasma absorption and scattering effects. Therefore, the peak gradients can become more pronounced 

before plasma absorption/scattering reduces the peak intensity increase (and thus, reduces the 

gradients). Since SPM generates instantaneous frequencies in proportion to intensity gradients, more 

frequency components can be generated at the wings of the spatial distribution. This is one of the 

contributing reasons for why these ring patterns appear. For example, see Fig. 9a). The other 

contributing factor is that instantaneous momenta added from the spatially varying refractive index can 

increase nearer to the wings of the spatial optical waveform, due to the intensity gradients that can 

accumulate before peak intensities reach plasma absorption or scattering-defocusing thresholds. Thus, 

these momenta cause areas in the spatial distribution to focus differently, creating rings. The final 

contributing effect and perhaps the most pertinent is due to the modulation of the distribution that 

arises in momentum space due to self-focusing. Self-focusing and SPM are analogous effects as 

described above. In SPM case, modulation in the frequency spectrum is seen due to interference 

effects of regions in the waveform that generate the same frequency but at different times. The self-

focusing analogue would be that there is modulation in momentum space due to the same momenta 

being generated at two different spatial points. These modulations are radially symmetric in this case 

due to the radial symmetry of the equation given a radially symmetric input. The modulations in 

momentum space translate to modulations in real space due to the propagation property that in the far 

field, the momentum space is mirrored in real space[53]. Thus, the modulations in momenta space 

from the self-focusing effect manifest in this ring type pattern for a given frequency. These are the 

three major contributors to the ring effects seen in the frequency generation and in the pump.  
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4.6.3.2 Spatial Fluence Profile of the WL Pulse 

a) 

 

b) 

 

Figure 10: a)Spatial Fluence normalized to input peak fluence, fluence along a transverse dimension is 

plotted against propagation distance in the crystal (input of 4.6.2 is radially symmetric). b) Different 

view of a): at certain propagation distances the fluence is plotted against the two transverse 

coordinates to highlight the ring formation.  

 

Due to plasma absorption and scattering effects, a donut mode is observed to form that then focuses 

due to the spatially varying intensity dependent refractive index. The maximum fluence decreases due 

to absorptive losses until the focusing effect at the end dominates and it increases again. In 

intermediate propagation steps, the center of the beam focuses and then defocuses due to plasma 

scattering, creating rings due to the intensity dependent focusing conditions within the fluence. This 

generates cycles in the plasma filament. 
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4.7 Conclusions and Extensions  
 

A novel and fast 3+1D simulation technique based on the symmetric split-step Fourier method has 

been developed in this chapter. The novel numerical technique can solve generalized NLSE type 

equations not accessible with traditional split-step approaches and does not intrinsically have the same 

numerical errors that are present in Runge-Kutta type methods for partial differential equations. These 

generalized NLSE equations are important in optics, notably white-light generation in bulk material. 

This novel numerical technique was implemented to create a simulation of WLG in bulk. Results are 

compared to published experimental data and a good match between the simulation and the 

experiment is shown, even with spatial under-sampling errors. A top-down view of every aspect of 

WLG can be achieved with this simulation as was shown in extensively in section 4.6. Also, an 

adaptive algorithm to avoid under-sampling is shown in appendix C2.    

Extensions include to implement Raman terms in the simulation and to adjust the equation of [34] to 

generalize it for a broader frequency range (see appendix C3 and C4). The only limitation is the 

derived equations that the numerical technique is used to implement. This novel numerical technique 

does not add any constraints or numerical approximations above the Nyquist criterion for Fourier 

based methods. Also another extension would be to adjust the scalar equation to account for 

polarization. This is easily accomplished, as described in appendix C3. The method can be applied to 

each of the two coupled scalar equations that arise (see Eq. (31) and (32) in chapter 2, for an example).  

A transmission phase mask simulation has been developed but not shown in this chapter to take 

obtained spatial frequency modes from the WLG simulations and to shape them to desired inputs for 

downstream optics.  

Results were shown with an input Gaussian beam (radially symmetric). This was only to match the 

experimental beam profile used in [49]. However, this new numerical technique can model any 

arbitrary input signal.  

As a final remark, all simulation results were done on a desktop computer and each simulation run 

took no longer than 5 hours to complete.  
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Appendix A1: Materials List 

1. Yb-fiber Oscillator 

  Item Part # Vendor 

Yb164, gain fiber YB 501-PM CorActive 

Hi 1060, single mode bar fiber HI 1060 Corning 

Hi 1060 PM 

 

Corning 

   

   

WDM 980/1030nm WDM6-12-P-1-L-0 Lightel 

1030nm Wideband Polarization Insensitive Optical 

Isolator IS-1030-P-2-3-3-0 AC photonics 

980nm Wideband Polarization Insensitive Optical 

Isolator IS-98-P-2-3-3-0 AC photonics 

Fiber pigtailed collimator CFS8-1030-FC Thorlabs 

Kinematic Optic Mount KM100T Thorlabs 

Adapter for 8mm -> SM1 thread AD8F Thorlabs 

BreadBoard 18x24" MB1824 Thorlabs 

Kinematic Mirror Mount (Compact) KMS Thorlabs 

Continuous rotation Mount RSP05 Thorlabs 

Half-waveplate 1030nm WPF1212-L/2-130 Photop 

Quarter waveplate 1030nm WPF1212-L/4-130 Photop 

Polarization Beam-splitter cube PBS-1030-50 CVI 

976nm Laser Diode S30-7602-720 JDSU 

4-Channel laser diode controller LDC-3900 ILX lightwave 

Combination module (2A current source, 8W TEC) LCM-39440 ILX lightwave 

14-pin butterfly laser diode mount LDM-4984 ILX lightwave 

Current source/Laser diode mount cable CC-305S ILX lightwave 

TE controller/Laser diode mount interconnect cable 

(6ft.) CC-505S ILX lightwave 
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2. Stretcher & Amplifier Stage 

  Item Part # Vendor 

Yb doped, single mode, single clad PM-YSF-HI Nufern 

PM WDM 980/1030nm WDM-PM-9830-L-7-0-1W AFW 

Fiber AOM/driver 

PM fibre-Q, polarization maintaining 

1030nm Fibre-coupled Acousto-Optic 

Modulator (and driver) 

 Gooch&Housego 

1030nm Circulator PMOC31030P21111-100nm 

compoTron 

GmBH 

Fiber Stretcher Custom OFS 

Faraday Mirror FFDM-2246-122101 Haphit 

Fiber Pigtailed Isolator 

FPIS-1053-FH1P10-320-N 

(1053nm High power PM isolator for 

pulse power) Haphit 

Panda PM  fiber PM980 Corning 
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Appendix B1: Results of Updated Franz-Nodvik Algorithm for Crystal 

Pumping 
 

 

 

Figure 19: Simulations done on a Ho:YLF system. For a 1 cm 1% doped crystal (7.6 ∗ 103
w

cm2 pump 

intensity). Exact fit between the adjusted Franz-Nodvik algorithm factoring in spontaneous emission 

time and the rate equation is obtained. Without adjusting the Franz-Nodvik algorithm with 

spontaneous emission (red curve) total gain deviates towards the higher values.  
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Appendix B2: Materials list 
 

The materials list is given in table 5.  

Part List Company Notes 

Yb:KYW Eksma Ng aligned, 2.5mm, 2% doped 

Flat Dichroic Mirror Altechna 99% Reflection At 1.3um 

Flat Out-coupler Eksma 1.5(0.5)% transmission at 1.03um 

Mirror Altechna 1000mm radius curvature 

Mirror  Altechna 229mm radius curvature 

Mirror Altechna 229mm radius curvature 

PBS Optosigma High Damage Threshold 

Pockel Cell Doehrer RTP double cell 

Electronic Switching Birdmann <9ns rise time 

QWP Thorlabs 

 Custom Design Pump Lens DPM Photonics 

 Pump Diode LIMO Wavelength stabilised 976nm 

Custom Made Crystal Mount   

Table 5: Materials list. All Mounts were ordered from Thorlabs.   
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Appendix C0: Essential Proofs of Section 4.2 
 

C0.0 Fourier convention used 

 

The Fourier convention used is: 

F(w) = ∫ f(t)eiwtdt

∞

−∞

 

f(t) =
1

2π
∫ F(w)e−iwtdw

∞

−∞

 

Where w represents angular frequency and t represents the time domain. The coefficient 
1

2π
 is omitted 

in equations and derivations (for clarity) but assumed in this chapter. The convention to represent this 

integral in quick form is: 

f(t) = 𝑓𝑤(𝐹(𝑤))|t 

 

C0.1 Proof that any series expansion of derivative operators multiplied into u is equal to 

the inverse Fourier transform of substituting the derivatives with the representation of 

the derivatives in Fourier space into the series expansion and multiplying into the 

representation of u in the Fourier space. 

 

In this section the following result will be proved: 

If   

Q =∑∑cn∇
ncj

∂j

∂jτ

∞

j=0

∞

n=0

 

Than 

Qu = 𝑓kx, ky 
(𝑓𝑤([∑∑cn((−ikx)

n + (−iky)
n)

∞

j=0

∞

n=0

cj 
(−iw)j] u̿(w, kx, ky))|τ)|x, y

 

 

 

If the operator can be represented in the form: 

 

Q = ∑∑cn∇
ncj

∂j

∂jτ

∞

j=0

∞

n=0

 

 

(117) 
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 (cn 
, cj  are constants, the del operator acts over x,y spatial coordinates, or normalized spatial 

coordinates, τ is the time coordinate, or normalized time coordinate) which is true for the ℘ operator, 

than 

 

Qu = [∑ cn∇
n∑cj

∂j

∂jτ
]

∞

j=0

∞

n=0

u 

 

(118) 

 

The operators ∇n , 
∂j

∂jτ
 commute and the order of how they are applied on u does not matter. This 

follows for the commutation of partial derivatives over independent variables. 

Eq.(118)  is Fourier transformed in the w domain. Using the Fourier identity for derivative terms to 

any order, the following is obtained: 

 

Qu = ∑∑cn∇
ncj 

[𝑓𝑤((−iw)
j

∞

j=0

∞

n=0

u̅(w, x, y))]|τ 

 

(119) 

Since the integral does not act over x,y, ∇n  can be factored out of the integral. The property of 

summation of integrals was used to place the Fourier integral within the summation.  

Now, to evaluate the del operators over x,y the following 2D Fourier integral can be used: 

 

Qu = ∑∑𝑓kx, ky
(cn 

((−ikx)
n + (−iky)

n)cj 
[𝑓𝑤((−iw)

j

∞

j=0

∞

n=0

u̿(w, kx, ky))|τ)|x, y
 

(120) 

 

  

Where the Fourier identity of the del operator is used. The summation property of integrals was used.   

The integrals commute because they are evaluated over independent variables. The ordering of how 

the integral is evaluated does not matter.   

Also, due to the summation property of integrals, the integrals can be factored outside of the 

summation. This simplifies Eq. (120) to: 

 

  

Qu = 𝑓kx, ky 
(𝑓𝑤([∑∑cn((−ikx)

n + (−iky)
n)

∞

j=0

∞

n=0

cj 
(−iw)j] u̿(w, kx, ky))|τ)|x, y

 

 

 

(121) 

From equality of Eq.(121) and Eq. (118), Eq. (118)is equivalent to the Fourier transform of the series 

expansion of the Fourier representation of derivative operators multiplied into the Fourier 

representation of u. Concluding the proof. ∎ 
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℘ is of the same form as Q above, and these proofs apply to ℘. 

 

C0.2 Corollary: A series expandable function of derivative operators multiplied into u, in 

the original space, equals to the inverse Fourier transform of the same function where the 

derivative arguments are replaced by the representation of the derivatives in the Fourier 

space multiplied by the representation of u in the Fourier space. 

 

The double summation in Eq. (121) mathematically matches the same expansion as Eq. (117) with 

variable labels replaced. Therefore, the function described is simply the function of the Q operator 

over derivative arguments replaced by −iwℎ for the time derivatives and −ikx
v +−iky

v for the 

spatial del operator, ∇v used in the functional arguments.  Therefore,  

 

  
Qu = 𝑓kx, ky 

(𝑓𝑤([Q(−iw, (−iw)
ℎ , (−iw)max, −ikx ± iky 

, (
 
−ikx)

v

+ (−iky)
v , . . , (−ikx)

max + (−iky)
max )]u̿(w, kx, ky))|τ)|x, y

 

 

 

(122) 

An important caveat to the above is that Eq. (122) is true if the series in Eq. (121)  converges to a 

function within the inverse domains. If values in the domain are outside the region of convergence of 

the series, the full series form of Eq. (121)  will have to be employed. For the convergence condition 

of ℘, see discussion in appendix C3.  

A note: If the operator is defined as a series over derivatives that does not have a functional 

representation (i.e., the series does not converge to a function) or if the operator is defined as an 

infinite series of functions, than the above method derived in section 4.2 is still valid but with a slight 

difference. The Maclaurin expansion of the exponential operator will be over this series. This means 

that the full series will be substituted for the variable in the exponential Maclaurin expansion.   By the 

proof in C0.1 and C0.3 (below) the application of the operator to u is equivalent to taking the inverse 

Fourier transform of the exponential Maclaurin expansion with the Fourier variables substituted in the 

series multiplied into the Fourier representation of u.  While this avoids having to do numerical 

derivatives, the series terms of the Macluarin expansion will need to be truncated, and the general 

Maclaurin expansion will need to be truncated, generating numerical error.  

C0.3 Proof of the Exponential Fourier Representation of ℘ 

 

In this section the following result will be proved: 

e℘(τ,… )u(τ,… ) = 𝑓(Kχ, Kψ,w
) [e

℘̅ u ̅̅ ̅]|
 (𝜒, 𝜓, 𝜏)
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Expanding the exponential ℘ operator w.r.t to the propagation coordinate in a Maclaurin series yields: 

 

e℘ = 1 +℘+
1

2!
(℘)2 +

1

3!
(℘)3… 

 

(123) 

 

The step size is factored into℘, for ease of writing. In the above multiplicative ordering (or additive 

ordering) does not have to be defined since derivative operators commute like algebraic variables.  

From the above, an equivalent application of the exponential operator goes as: 

 

e℘(τ,… )u(τ,… ) = [1 + ℘+
1

2!
(℘)2 +

1

3!
(℘)3…]u 

 

(124) 

℘ is equivalent to a global summation of derivative terms with constant coefficients as indicated in 

Eq. (76). 

(℘(τ,… ))
n
 in expanded form is equivalent to a summation of products of powers of spatial derivative 

and temporal derivative terms. Using the Fourier representation of derivative terms and then 

factorizing, the following can be obtained: 

 

(℘(τ,… ))
n
u(τ,… ) = 𝑓(Kχ, Kψ,w

) [((℘̅))
n
 u ̅̅ ̅]|

 (𝜒, 𝜓, 𝜏) 
(125) 

℘̅ is simply the series of ℘ substituted with the fourier variable representation of the operators as 

indicated in C0.1. The expansion and factorization is straight-forward to obtain and is equivalent to the 

algebraic case of variables (i.e., ordering of operations does not matter) since derivative terms 

commute like algebraic variables and in the Kχ, Kψ,w space the variables used represent real numbers 

(are in fact algebraic variables).  

From the identity of Eq. (125) , for each term in the RHS of Eq. (124), the following is true ( ℘ ̅̅ ̅̅  ,  u ̅̅ ̅ 

denotes the Fourier representation of ℘ and u): 

term(℘)u = 𝑓(Kχ, Kψ,w
) [term(℘̅) u ̅̅ ̅]| (𝜒, 𝜓, 𝜏)

 

Therefore, Eq. (124) is equivalent to: 

 

e℘(τ,…)u(τ, … ) = 𝑓(Kχ, Kψ,w
) [[1 + ℘̅ +

1

2!
(℘̅)2 +

1

3!
(℘̅)3…] u ̅̅ ̅]|

 (𝜒, 𝜓, 𝜏)
 

(126) 

 

The summation on the RHS, over algebraic variables, can be represented as (straightforwardly, using 

the Maclaurin series identity without defining a multiplicative ordering-since all algebraic properties 

including product commutation hold): 
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e℘(τ,… )u(τ,… ) = 𝑓(Kχ, Kψ,w
) [e

℘̅ u ̅̅ ̅]|
 (𝜒, 𝜓, 𝜏)

 

 

(127) 

Following the discussion in C0.2 ℘̅ can be described as a function in this momenta frequency space. 

This concludes the proof of the identity. ∎ 

 Please note that the constant step size coefficient Δ𝑧 is factored into℘. 

Also, if the functional representation of ℘ in the Fourier space cannot be obtained due to the series not 

converging to a function, than the full expansion of Eq. (126) will have to be considered, where the 

series representation of  ℘ ̅̅ ̅̅   is used. Truncating terms both in the series representation of each term 

based on  ℘ ̅̅ ̅̅  in the Maclaurin series and in the Maclaurin series on the rhs of Eq. (126) will need to be 

done.  

C0.4 Proof of solution of differential equations in steps 1-7 

 

It can be seen directly by differentiationg the Maclaurin series of the exponential operator multiplied 

into u. Since the operator itself does not rely on the propagation coordinate (for example, a mean field 

approximation is used), the analytic integration of steps 1-7 with an arbitrary operator including 

convolution operators always yields the exponential operator form as a solution. See appendix C4 for 

example verification. 
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Appendix C1: Explanation of Constants in the NLSE  
In Si Units: 

Name Symbol Value 

Speed of light 
c 3.0 ∗ 108

m

s
 

Nonlinear refractive index 
n2 7 ∗ 10−20 

Central angular Frequency 
ω 

6.08 ∗
1014

s
 

β2 GVD −4.08 ∗ 10−25
s

m
 

ko In material 
Wavenumber 
corresponding to:  
ω 

3.61 ∗
106

m
 

βn nth photon 
absorption 
coefficient 

7.63 ∗ 10−266
m2n−3

W𝑛−1
 

σ Inverse 
Bremsstrahlung 
cross section 

2.6 ∗ 10−24m2 

τc Electron collision 
time 

3𝑓𝑠 

Eg Material band gap 
energy 

6.5𝑒𝑉 

Ao Peak amplitude of 
the envelope 

Described in section 
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electric field 4.6 

 

Name Symbol Equation 

Nonlinear length 
Lnl (

c

ωn2Io
) 

Dispersion Length 
Lds τp

2

β2
 

Diffraction Length 
Ldf kosp

2

2
 

Peak Intensity 
Io 

noc
|Ao|

2

2π
 

Multi-Photon Absorption 
Lmp 1

βmIo
(m−1)

 

Plasma density 
ρo βmIo

mτp
mℏω

 

Reduced plasma density 
ρ ρe

ρo
 

ρe 
is the electron density at a given time 

Multi-Photon Absorption 

Length* Lpl 2

ρoσωτc
 

Avalanche Ionization 

Coefficient α σIotp
no

2Eg
 

* This term was modified from the original term in [chapter 4, 34]. Due to a typo error formula was 

incorrect (units did not match).   
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Appendix C2: Nyquist Criteria and Sampling conditions 
 

C2.1 Initial Sampling Conditions 

 

This appendix will now proceed in deriving initial sampling requirements and show the adaptive step-

size algorithm used in the simulation. 

It is now prudent to derive the initial sampling intervals. 

The above NLSE is only valid for a reduced angular frequency range angular (inverse variable of τ ) 

from −0.5ωoτp < ω < 0.5ωoτp as stated in [chapter 4, 34] due to the slow-varying approximation. 

This means, a bandlimited approach can be assumed and thus, the Nyquist criterion can be applied to 

calculate the spacing in τ needed. For the FFT algorithm used, sampling is at the Nyquist Criterion.  

Thus the spacing in τ, according to the Nyquist criterion, dτ is: 

dτ ≤
2π

2(0.5ωoτp)
=

2π

ωoτp
 

 

(128) 

Where, ωo  corresponds to the central frequency of the initial input pulse. The range of τ is set to a 

desired domain length (Δτ-user specified) and then dω , in angular radian units is calculated as: 

dω ≤
2π

2(0.5Δτ)
=
2π

Δτ
 (129) 

 

The arrays are designed such that the window size is an integer multiple of the spacing and that there 

are an even amount of array elements. The positive endpoint of the windows is reduced in magnitude 

by one step size in relation to the negative endpoint of the window, due to the periodic nature of the 

FFT for even arrays. If this is satisfied in one domain it is automatically satisfied in the inverse 

(frequency) domain. These condition assures that frequency domain values (and vice-versa, this also 

applies for the time domain when taking the inverse fft) corresponding to the frequency array element 

number are what is expected (i.e., frequency values corresponding to the fft are the value obtained 

from incrementing with the spacing in Eq.(129) from the minimal frequency-0.5ωoτp).  The even 

condition insures that the matrix swapping needed in the Matlab fft algorithm does not introduce 

element swapping error. Due to  these conditions, the zero frequency is always sampled.Array sizes 

for the FFT algorithm in Matlab samples only at equality in the above Nyquist expressions (FFT 

assumes a periodic function with the window size and uses a Fourier series summation to accomplish 

this).  

The amount of data points for both the frequency range and the time range are the same: 

#of data points = Δτωoτp (130) 

 

For the Spatial resolution there are no imposed upper bounds in momentum. The upper bound in 

momenta is introduced from the maximum frequency bound introduced in [chapter 4, 34] and using 

the paraxial approximation. The Nyquist criterion for the normalized angular kχ, kψ momenta, reads 

as: 
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  |kχ, kψ| ≤
no(1.5ωcentral)1.5ωcentralSp

cτp
 

 

(131) 

In Eq. (131) for upper momentum bounds, the static refractive index is used, which makes Eq. (131) 

an estimate of the upper bound. Due to the intensity dependent nature of the index of refraction the 

maximal momenta can be higher than this upper bound estimation (this is taken into account by the 

adaptive step size algorithm shown in the next subsection).  

Given a spatial grid size that is a free user parameter in the model (just like the temporal grid size) the 

spatial step size and the momenta step sizes can be defined in the same way as derived above for the 

temporal step and angular frequency step sizes.  

dχ,ψ ≤
1

2(
no1.5ωoSp

cτp
)
=

2πcτp
3(noωoSp)

 
(132) 

 

The range of χ, ψ is set to a desired domain length and then dkχ, kψ is calculated as: 

dkχ, kψ =≤
2π

2(0.5Δχ,ψ)
=

2π

Δχ,ψ
 

 

(133) 

#of spatial data points = (2Δχ,ψ
no1.5ωoSp

cτp
)2 

 

(134) 

At the start, the spatial and temporal grid sizes should be chosen such that the input signal decays to 

zero before the edges of the window. However, this is not a strict requirement given the use of the 

adaptive step-size algorithm described below. The adaptive step-size algorithm can be used to account 

for the expanding domain windows and the changes in the required sampling increments and thus 

avoid aliasing errors.   

C2.2 The Adaptive Step Size Algorithm  

 

While the frequency range is limited by the slow varying approximation, extending the frequency 

ranges can still yield insight to the system response over the increased bandwidth. For example, fig.8 

in the results section demonstrates that the simulation still fits experimental results over frequency 

ranges that violate the slow-varying approximation. Window sizes need to be updated due to the 

various non-linear and linear effects. For example, the temporal and spatial window size should be 

increased, due to the GVD walk off the optical pulses and diffractive expansion in the transverse 

spatial coordinates. The following method offers a rigorous adaptive algorithm to adjust the original 

Nyquist Criteria. 

C2.2.1 Phase Contributions: Part of Algorithm that Evaluates the Effects of the First 

Derivative    

 

In the consideration of the step-size not only is it important to calculate the original step-size from the 

Nyquist conditions of the system but also to factor the additional instantaneous phases from the 

operators. In the respective domains the operators add instantaneous phase (i.e., frequencies) that 
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translates to higher maximal values in the inverse domain. For example, considering the self-phase 

modulation term in time translates to a broadening of the frequency domain. In order to evaluate the 

new domain boundaries a checking algorithm is employed in this computational method. The 

exponential operators can have both imaginary and real arguments in respective domains. The 

derivative of the imaginary arguments w.r.t to the domain being considered at values in the domain 

yields the additional instantaneous phase contribution at that domain value. For real arguments, the 

negative terms and positive terms are considered differently. For the negative terms, it is assumed that 

the derivative w.r.t to the domain being considered at a domain value yields the characteristic length of 

the decaying exponent at a domain value. From this, new sampling conditions are obtained at every 

propagation slice and verified with the original.  

In section C2.2.1 and C2.2.2, only the imaginary argument terms of the exponential A, B and C 

operators are considered. All derivations in these subsections are over the imaginary argument terms 

of these exponential operators.  

For imaginary terms, for operators acting over the same 3 dimensions, for a given domain in the 

subset, and propagation slice number (#+1): 

For the (𝐾𝜒,𝐾𝜓, 𝑤) domain subset: 

∂φ#+1
∂x

=
∂φ0
∂x

+∑
∂φA
∂x

n=#

n=1

 

 

(135) 

x is a place holder for the domain being considered in the subset. φA  stands for the imaginary 

arguments of the exponential operator A, φ0 is the original phase of the input pulse (note that the step 

size increment in the propagation coordinate is included as a coefficient within the imaginary 

argument).   

If the input pulse is transform limited the first term in Eq. (135) is zero. Thus, the maximal inverse 

domain value to the domain being considered is simply max (
∂φ#+1

∂x
) . Max is calculated over the full 

set of values (𝐾𝜒,𝐾𝜓, 𝑤). 

With the above considerations, the new Nyquist criterion for the domain being considered yields: 

𝑑𝑥#+1,𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 ≤
0.5 ∗ 2 ∗ π

max (abs(
∂φ#+1
∂x

))
 

 

(136) 

If the original sampling interval increment, dx0, in the respective domain is smaller or equal to this 

updated sampling interval increment than there is no need to adjust the sampling interval in the 

domain being considered. The window size of the inverse domain is: 

∆𝑥−1#+1,𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 = 2
0.5 ∗ 2 ∗ π

𝑑𝑥#+1,𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦
≥ 2 ∗ max (abs(

∂φ#+1
∂x

)) (137) 

 

  

𝑥−1 indicates an inverse domain (for example the temporal domain for frequency and spatial for 

momentum). 
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 To guarantee that the endpoints of the inverse domain are well sampled, 𝑑𝑥#+1,𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 is always 

taken to be smaller than the equality condition in Eq. (136). As well, a value is chosen such that the 

even array and integer multiple conditions of the domain window to the step size (described in 

subsection C2.1) is maintained.   

From Eq. (135), it can be seen that the  window size in the inverse domain (barring contributions from 

the exponential C operator explained below) can be calculated before the start of the simulation since 

the exponential A operator only relies on the frequency, momentum range and propagation step size 

and does not rely on the u inputted into the iteration. As an illustrative example, I will now calculate 

the spatial and temporal window size that accounts for dispersive and diffractive effects from the 

exponential A operator. This is a lower bound calculation since it does not factor in the C operator 

effects.  The derivative with respect to w, 𝐾𝜒,𝐾𝜓 for the exponential A operator argument can be 

analytically derived. Then the maximum phase derivative is multiplied into the total normalized 

propagation length:  

 

𝜕A(̂kχ, kψ,w)

𝜕𝑤
=
i

4

1

ωoτp
(1 +

1

ωoτp
w)

−2

(kχ
2 + kψ

2) + i2
Ldf
Lds

w 

 

(138) 

 

𝜕A(̂kχ, kψ,w)

𝜕𝐾𝜒/𝜓
= −

i

4
(1 +

1

ωoτp
w)

−1

(2k𝜒/𝜓
) 

 

(139) 

Since the 𝜒 and 𝜓 domains are equivalent in size (rectangular window) the above equation is only 

calculated for the 𝜒 domain. Using Eq. (137) and the equality condition, the following can be 

obtained: 

 

∆τ𝑒𝑛𝑑𝑠𝑙𝑖𝑐𝑒 = 2max (abs(
1

4

1

ωoτp
(1 +

1

ωoτp
w)

−2

(kχ
2 + kψ

2) + 2
Ldf
Lds

w))∆ς 

 

(140) 

 

Where, ∆ς is the length of the crystal in reduced propagation coordinates.  

∆𝜒/𝜓𝑒𝑛𝑑𝑠𝑙𝑖𝑐𝑒 = 2max (abs(
1

4
(1 +

1

ωoτp
w)

−1

(2k𝜒)))∆ς 

 

(141) 

 

Therefore, to account for dispersion and diffraction the spatial and temporal lower bound window 

sizes are given by Eq. (140) and (141). 
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The domains are grouped together as  (𝐾𝜒,𝐾𝜓, 𝑤), (𝜒, 𝜓, 𝜏),( 𝜒, 𝜓, 𝜏, 𝑤′). When considering the 

domain subsets, the C operator introduces an additional order of complexity due to its 4 domain 

nature. The exponential C operator imposes phase on the frequency representation and on the (𝜒, 𝜓, 𝜏) 

as will be seen. Firstly, the instantaneous phase in the frequency domain contribution is derived. Eq. 

(135) is updated as follows for the frequency derivative: 

∂φ#+1
∂w

=
∂φ0
∂w

+∑
∂φA
∂w

n=#

n=1

− (f(τ, 𝐾𝜒, 𝐾𝜓))dς 

 

(142) 

Where, f(τ, 𝐾𝜒, 𝐾𝜓) is obtained from f(τ, 𝜒, 𝜓), the coefficient of (−𝑖𝑤′) in the C operator exponential 

argument. dς  is the propagation step and is explicitly shown for the C operator term. This accounts for 

the maximal time delay generated by the group velocity dependence to the intensity varying refractive 

index which is described in the self-steepening effect and thus the exponential C operator.  Thus, Eq. 

(142) calculates the temporal window from both the linear dispersion and from the group velocity 

effects of the self-steepening term.  

The above can be upper bound estimated as: 

∂φ#+1
∂w

=
∂φ0
∂w

+∑
∂φA
∂w

n=#

n=1

−max (f(τ, 𝜒, 𝜓))dς 

 

(143) 

The C operator acts in the same way as the B operator when considering the spatial domain. Therefore, 

Eq. (135) is applied for the 𝐾𝜒,𝐾𝜓 domains.  

The rest of the effects of the exponential C operator acts on (𝜒, 𝜓, 𝜏) and its effect will now be 

considered in that domain set. The instantaneous phase contribution of the exponential C operator will 

be derived now in the (𝜒, 𝜓, 𝜏). For the imaginary term of the C operator, it can be visualized that the 

effective operation is to create a new optical field by taking the values of the incoming optical fields 

and delaying them by the imaginary coefficient of w (labelled as f(τ) ) in the exponential argument. 

This is in-line with the explanation given in section 4.3 for the self-steepening term. Thus, the C 

operator is grouped with the B operator (effectively it is over (𝜒, 𝜓, 𝜏)). To calculate how its 

instantaneous phase contribution should be considered, the exponential C operator can be seen as 

reorganizing the phase information from the input phase as follows: 

φc = φo( 𝜒, 𝜓, τ − f(τ, 𝜒, 𝜓)dς) 
 

(144) 

 

Labelling,  

G = τ − f(τ , 𝜒, 𝜓)dς 
 

(145) 

 

The phase derivative is given as: 

∂φc
∂τ

=
∂φo( 𝜒, 𝜓, G)

∂G
[1 −

∂f(τ 𝜒, 𝜓)

∂τ
dς] 

 

(146) 

Eq. (144) is equivalent to reorganizing the phase slices in time by the offset term f(τ)dς . In Eq. (146) 

the first term, if the multiplication is expanded, is equivalent to adjusting the delay of the 
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instantaneous frequencies, as described in section 4.3. Meaning that, due to the GV intensity based 

adjustment; parts of the envelope containing a certain instantaneous frequency will be delayed relative 

to others. The second part of the term introduces instantaneous frequencies through the additional 

phase modulation that occurs with intensity dependent GV’s. It can be viewed as SPM that occurs due 

to an intensity dependent GV that stretches or compresses the envelope and thus the instantaneous 

phase that it carries.  

Numerically, the phase is reorganized by the offset term f(τ)∆ς , as in Eq. (144), and then the 

numerical derivative is calculated.  

For the 𝜒, 𝜓 domains the phase derivative is: 

∂φc
∂ 𝜒, 𝜓

= [
∂φo(𝜒, 𝜓, G)

∂𝜒, 𝜓
|G = const] +

∂φo(𝜒, 𝜓, G)

∂𝐺
[
∂f(τ 𝜒, 𝜓)

∂𝜒, 𝜓
dς] 

 

(147) 

The above numerically translates to reordering φo as described in the previous paragraph, then taking 

the numerical derivative with adjacent spatial coordinate slices.  

For the sake of simplicity the ordering of how the exponential B and C operators are applied are 

omitted from the analysis. u inputted into the slice is used for the exponential C operator calculation. 

Therefore, the instantaneous phase is thus: 

∂φ#+1
∂x

=
∂φ0
∂x

+∑
∂φB
∂x

+
∂φC
∂x

n=#

n=1

 

 

(148) 

Where 
∂φB

∂x
 is the derivative of the exponential B operator imaginary argument (the propagation step 

size for the exponential B and C operator is factored into the argument and not explicitly shown here).  

In this case the exponential B operator term in Eq. (148)  can be evaluated by just considering the 

exponential arguments of the operator (updated with u outputted from the previous slice). However, 

the C operator term cannot be evaluated in such a manner. The original phase distribution must be 

reordered going into each propagation slice due to the reordering effect of the exponential C operator. 

From this algorithm one can deduce the new bandwidth of the momentum domains as well as the 

frequency domain (w).   

This yields for the sampling condition: 

𝑑𝑥#+1,𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 ≤
0.5 ∗ 2 ∗ π

max (abs(
∂φ#+1
∂x

))
 

 

(149) 

To guarantee that the endpoints of the inverse domain are well sampled, 𝑑𝑥#+1,𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 is always 

taken to be smaller than the equality condition in Eq. (149). 

 

C2.2.2 Additional Considerations: The Second Derivative of the Phase 

 

Due to the frequency generation from the intensity variant refractive index, not only does the 

bandwidth in the frequency domains need to be extended, as shown above, but the new resolution in 

the (angular) frequency domains change (momentum, time-frequency). The (angular) frequency step-
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size needs to be updated. As already stated, the intensity variant phase derivative obtains the 

instantaneous frequency. As used above, the maximum first derivative obtains the maximum 

frequency. Therefore, the minimum of the second derivative w.r.t the inverse domain of question, will 

obtain the minimal change in frequency.   This will directly determine the new sampling step size in 

the inverse frequency domains: The step-size must be at this minimal frequency change or below. The 

incoming phase of u need not be considered here, as the minimum difference between frequencies is 

all that is important. However, additional constraints must be considered (see fig. 11 ).  

 

 

 

Figure 11: Not only does the minimal frequency variation have to be considered, but the absolute 

difference between the new frequencies and the incoming frequency grid as depicted in this diagram. 

This consideration yields Eq.(150).   The factor of half is maintained to insure adequate sampling.  

With these additional constraints, for the B and C exponential operators, in the (𝜒, 𝜓, 𝜏) domains the 

grid spacing in the inverse domains have to satisfy:   

 

dfnew ≤ 0.5min (min (rem(

∂2φB
∂x2

dx

df
) , df − rem(

∂2φB
∂x2

dx

df
)),min (rem(

∂2φB
∂x2

dx

df
) , df

− rem(

∂2φB
∂x2

dx

df
))) 

 

(150) 

 

In Eq.(150), the propagation step size is factored into the derivative terms. dx  is the domain step-size 

being considered. df  is the original frequency step (inverse domain of x). Rem is the remainder 

function evaluated at all coordinate value, it is a 3-D array. The inner mins are also 3-D arrays. The 

outer min represents the operation of evaluating the minimum of the two global mins for the two inner 

mins. It is evaluated over two scalars. This is always computed below the equality condition. 

The last consideration is that due to the Fourier series nature of the FFT, the minimal spacing 

calculated in Eq.(150) has to be a divisor of the maximal frequency. A spacing is chosen that is less 
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than the upper bound in Eq.(150) but satisfies the integer multiple criterion and the even array 

criterion.  

Going back to the beginning of section C2.2.1, in discussion of the exponential A operator and C 

operator for the (𝐾𝜒,𝐾𝜓, 𝑤) domains, the second derivative there to is evaluated, exactly in the same 

manner as the above analysis. Physically, time and space shifts from the linear GVD and spatial 

diffraction can shift in intervals smaller than the grid spacing causing low-resolution sampling errors.   

C2.2.3 Putting it all together 

 

The minimum step-sizes calculated from the above first derivative and second derivative contributions 

are then used for all respective domains. For example the second derivative step-size of the B and C 

exponential operator is compared with the first derivative step-size of the A and C exponential 

operator and the minimal value is used. The A and C exponential operator second derivative is 

compared to the first derivative of the B and C exponential operator. The u array is expanded 

accordingly; the array is subdivided into the new smaller slices using the initial original slice values. It 

is then padded to the corresponding maximal size needed. The operators are then applied and the same 

process is repeated for the next propagation slice.   

C2.2.4 Effects of the Negative Exponential Arguments in the Algorithm 

 

For negative real exponential arguments, the decaying exponential argument should not go to e−1 

within the sampling interval increment. To insure this, the sampling interval should be 0.5 the value or 

less where the decaying exponential argument would go to e−1. The characteristic inverse length 

where this occurs for the domain (𝐾𝜒,𝐾𝜓, 𝑤) is in the w subdomain and occurs because of the 

exponential C operator: 

Ldw
−1 = max (f(τ, 𝜒, 𝜓))∆ςat slice # + 1 

 
(151) 

The above is obtained using the approximation of the exponential C operator discussed in the 

appendix C2.2.1. 

Therefore, the new sampling condition is calculated as: 

𝑑𝑥#+1,𝑑𝑒𝑐𝑎𝑦 =
0.5

max (Ldw
−1)

 

 

(152) 

For the domain of interest, the original sampling interval increment should be smaller or equal to: 

min(𝑑𝑥#+1,𝑑𝑒𝑐𝑎𝑦 , 𝑑𝑥#+1,𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦) 

 
(153) 

For the exponential B operators the same analysis can be carried for the (𝜒, 𝜓, 𝜏).  

To further the discussion, the step-size in the propagation coordinate introduces a linear scaling for all 

phase and decaying exponential effects described above. Thus, by reducing this step-size the onus of 

tuning other domain step-sizes is reduced.  
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C2.3 The Impact of the Positive Exponential Terms 

 

For positive exponential terms, their impact on the sampling interval is not considered since it is 

assumed that u remains integrably bound in L-2 after the application of these terms. Therefore, u will 

still decay, albeit more slowly. The envelope of u would be even more slowly varying compared to the 

phase function and thus if the system is being sampled already at a maximum interval corresponding 

to the maximal phase frequency the system is automatically not under sampled.  

The same is true for positive exponential terms in the frequency space, since the spectral 

representation is integrably bound in L-2 for this problem. However, in the WLG simulation it is 

found that the real exponential terms in frequency space corresponds to a gain at higher frequencies 

and attenuation at lower frequencies. Though, since the frequency interval remains fixed, this shift 

towards higher frequencies can cause instability for large crystal lengths.  

To clarify: Eq. (104) is a non-unitary NLSE that naturally yields gain and absorption type terms. Thus, 

for its physical application, it is only valid in the regime where there is an overall absorption term per 

propagation increment. Otherwise, since there is no actual gain in the system, energy conservation 

would be violated even if solutions are integrably bound in L-2. This is thus, a stricter condition than 

the original assumptions outlined in section 4.2.  Therefore, for a given input optical field, frequency 

range and material parameters, there is an upper bound propagation length where the equation is still 

valid, due to the effects of the positive exponential terms. Hence wise, once the total energy of u 

coming from an iteration starts to increase (and there is overall gain) the region of validity of the 

equation is violated. To overcome this problem, additional terms describing a clamping effect for the 

positive exponential terms have to be factored into Eq. (104). 

C2.4 The Propagation Step-Size 

 

As long as the above updated Nyquist conditions are valid for a propagation step size, the only 

additional source of error is the mean field approximation used in the two non-linear type operators. 

The magnitude of the envelope function should not vary considerably in the propagation step. 

Considering the effects of the real exponents as discussed in the previous sections of this appendix 

already can place some upper bounds on the propagation coordinate. However, the propagation 

coordinate is simply reduced until convergence of results as a function of propagation step size is 

achieved.  
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Appendix C3: Relevant Omissions, singularities and extensions to the NLSE 
 

This appendix will cover certain omissions and errors in Eq.(104) as well as extensions to the 

equation. Eq. (104) is linearized in such a manner that higher order terms in the Taylor expansion 

about a given coordinate point (χ, ψ, τ, ς′) are omitted. Therefore, the equation can be written in terms 

of the constants stated above, i.e. in terms of Ldf, Lds, etc. Also, it is assumed that the original pump 

peak contributes the most to the generated white light and thus, the constants are only calculated for 

the original pump signal. The slow-varying approximation of the envelope imposes the condition that 

the bandwidth is equal to the central frequency of the pump [chapter 4, 34]. In fact, mathematically, 

the equation can be extended past this bandlimited requirement. For example, this was done to 

simulate the experimental results in section 4.6.2. Mathematically, the only constraint is that the 

frequency bandwidth cannot violate the series convergence to the functional form of Â in its inverse 

space. Otherwise, the full divergent series will have to be considered, yielding un-physical solutions. 

This can be seen as the mathematical limits of the approximate NLSE for the system represented in 

Eq. (104). The series will be divergent if: 

1

ωoτp
w ≥ 1 

And if: 

  
1

ωoτp
w = 0 

The series can be recast in an equivalent form that is convergent for 
1

ωoτp
w ≥ 1 by algebraic 

manipulation (i.e., finding the equivalent Laurent series). Therefore, the functional form of the Â  

operator can still be used. However, the series will always be divergent for  
1

ωoτp
w = 1 and 

1

ωoτp
w =

0. The frequency representation of u has to be bandlimited, i.e., go to zero at these endpoints, to insure 

that when the series becomes invalid, the overall product between the series and u is zero. 

  
1

ωoτp
w = 1, represents a point discontinuity, while 

1

ωoτp
w = 0 represents an asymptotic 

discontinuity. Thus, due to the integral nature of the Fourier transform, the point discontinuity can be 

ignored and the limiting value can be used (corresponding to the functional value in frequency space). 

However, sampling at this endpoint value can result in physically unsounds solutions, and this 

situation is avoided by limiting the bandwidth below this endpoint.  

Therefore, the bandwidth can at-most be extended to: 

−ωoτp < w < ωoτp 

 

The other errors are more subtle. For example, as more frequencies are generated, the Lpl, 

Lmp,Lds,Ldf,etc. change and do not necessarily approximately equal the original. This is because they 

are all functions of  χ,ψ, τ indirectly through the instantaneous frequency ω(χ, ψ, τ) .  

 Also, the coefficient of multi-photon ionization (βm) changes since different generated frequencies 

are at different photon orders relative to the band gap of the material. Therefore, at higher frequencies 
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away from the central frequencies, the equation underestimates the scattering and absorption due to the 

plasma since the multi-photon absorption length (Lmp) is higher than what it should be. If the 

intensity of these components are equivalent to the original peak pump intensity  than numerically 

these components should have lower intensity distributions than what is given by the equation and in 

turn should generate less frequencies in the white light spectrum than their contributions in Eq. (104). 

However, the intensity of these components, especially near the end of the spectral bandwidth are 

much lower than the pump. Thus, this justifies the approximation that Lmp  remains constant; the 

product of the increased β with the decreased intensity stays relatively constant within a certain range. 

To minimize such errors if they do arise at the beginning of each slice along the propagation direction, 

I calculate, using u coming from the end of the previous slice:  

Lmp(χ, ψ, δτn) =  

1

β(ω(χ, ψ, τ))mIo 
m−1

 

 

(154) 

 

δτn = τn − 1 < τ ≤ τn 
 

(155) 

 

ω(χ, ψ, τ) = ωo +
2π

τn

δ∅(χ,ψ, τ)

δτ
 

 

(156) 

 

Io is the original peak intensity of the input pump pulse. ω(χ, ψ, τ) is the instantaneous frequency of 

the chirped pulse, m is the order corresponding to ω(χ, ψ, τ) (thus, m is as well a function of χ, ψ, τ). 

For the nth interval of reduced time and at the given reduced spatial coordinates the value of Lmp  
is 

calculated in the above manner.  

∅ is the phase of u, coming from the end of the previous slice and δτ is the τ step size (it is assumed 

that the instantaneous frequency values are slowly varying compared to the reduced time step size). 

Here it is considered that only the instantaneous phase of the pulse would register as a frequency 

change for the βmcoefficient.  

It is also assumed that within the interval δτn the change in Lmp 
is negligible and overall Lmp 

is a 

slowly varying function such that its τ  derivative is negligible. Therefore, one can omit the derivative 

of Lmp when setting up the operators. If this assumption is violated it would be needed that the B 

operator would have to be changed to account for the additional derivative term; this also holds true 

for Lnl, lpl and Ldf.  

For the differential equation in τ  for normalized ρ it can be updated to: 
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∂ρ

∂τ
= αρ|u|2 +

β(ω(χ, ψ, τ))mIo 
mτp

ρomℏω
|u|2m 

 

(157) 

 

Where, the coefficient of inverse Bremsstrahlung is a weak function of the optical values of the pulse 

and can be treated as constant.  

The plasma term in the NLSE is defined and scaled relative to ρo which is a constant parameter 

defined only for the input pulse. If there is an initial chirp in the pump pulse going into the crystal,  

ρo(χ,ψ) =  ∑
β(ω(χ, ψ, τ))mIo

mδτ

mℏω(χ,ψ, τ)

c=n

c=0

 

 

 

(158) 

where,  

τmax = nδτ 
 

(159) 

and,  

∂ρ

∂τ
= αρ|u|2 +

β(ω(χ, ψ, τ))mIo 
mτp

ρo(χ,ψ)mℏω
|u|2m (160) 

 

If the right hand term in (160) is close to unity than: 

Lpl(χ,ψ, τ) =
2

ρoσω(χ,ψ, τ)τc
 (161) 

 

If not: 

Lpl(χ, ψ, τ) =
2

β(ω(χ,ψ, τ))mIo 
mτp

mℏω
σω(χ,ψ, τ)τc

 

 

(162) 

Any point discontinuities in the instantaneous phase can be omitted since the material cannot respond 

in a differential time scale. The response function of the material is limited to a finite time. As well, if 

the sampling points in reduced time lie on point discontinuities, than it is required to sample within the 

reduced time step and update the parameters accordingly.  

When the instantaneous frequency is zero than it is imposed that the expression for ρo goes to zero at 

that interval in the summation. As well, the term on the right of the 
∂ρ

∂τ
 differential equation is zero for 

zero instantaneous frequency.  Lmp would approach ∞ thus, in the NLSE, the expression where Lmp 

is used in the equation goes to zero.  

Lds should be updated in a similar manner for the interval δτn whereby its values are taken at the 

instantaneous frequency. Ldf is taken at the instantaneous momentum corresponding to the 

instantaneous frequency for the interval δτn and the assumption is used that the spot size used in the 

calculation is the same as the original pump signal. Lnl can be updated in a similar manner. 
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Another point of interest is that the propagation coordinate step size is dependent on Ldf. Thus, the 

step length depends on the instantaneous frequency as well and changes for different intervals of time. 

However, the overall amount of iterations is fixed, since the total reduced length has the same scaling 

with Ldf. 

 Raman scattering is another effect that has been omitted and is out of the scope of the above results. It 

is assumed that the Raman response function timescale is longer than the optical pulse. Appendix C4 

lists the modification necessary to factor in Raman type terms into the method.  

Finally, the equation is a scalar equation valid for isotropic material where the white light is totally 

depolarized or linearly polarized [chapter 4, 49]. Under the circumstance that it is depolarized, one can 

make the assumption that the individual polarization states see the same uaverage and thus, this 

equation models the propagation of uaverage. 

The simulation can easily be extended for considering polarization. There will be two scalar coupled 

equations. The method is applied to each of those equations.  
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Appendix C4: Extension of the Model: Raman Terms (Convolution Terms), 

Proof of steps 1-7 and Higher Order Update to C Operator 
 

C4.1 Operator for Raman Convolution Terms and Proof of steps 1-7 

 

In this section, I will derive the exponential operator representation in the domain and inverse domains 

of convolution terms such as Raman terms. Also, since the derivation mirrors the proof of the 

solutions to the differential equations in steps 1-7, while deriving the Raman exponential operator, I 

will show the proof that can be applied for all differential equations in steps 1-7.  

Convolution terms such as: 

∫ 𝑓(t′)u(t′ − t)dt′ ≡

∞

−∞

𝑓(t) ∘ u(t) 

 

(163) 

Can still be analytically integrated like in steps 1-7. If f depends on z than the mean field 

approximation can be used in the same manner as demonstrated with those steps. The rest of the 

arguments of both functions above (x,y,z) is not shown, for the purposes of clarity, but are there. The 

Maclaurin series expansion of the exponential operator w.r.t the propagation coordinate of the above 

is: 

eΔ𝑧𝑓(t)∘ = 1 + Δ𝑧𝑓(t) ∘ +
1

2!
(Δ𝑧𝑓(t) ∘)2 +

1

3!
(Δ𝑧𝑓(t) ∘)3… 

 
(164) 

It can be verified that this is a solution to the differential equation shown in steps 1-7, as follows: 

If 𝑢 = e𝑧𝑓(t)∘𝑔(𝑡), and using the identity of Eq. (164) in the differentiation (now with the free variable 

z), the following is obtained: 

𝜕e𝑧𝑓(t)∘𝑔(𝑡)

𝜕𝑧
= [𝑓(t) ∘ +

1

1!
(𝑧𝑓(t) ∘)𝑓(t) ∘ +

1

2!
(𝑧𝑓(t) ∘)2𝑓(t) ∘ …

1

3!
(𝑧𝑓(t) ∘)3𝑓(t) ∘]𝑔(𝑡) 

 

(165) 

The above was obtained by differentiating Eq. (164) w.r.t to the propagation coordinate variable. Since 

𝑓(t) is assumed to be only a function of t, it can be treated as a constant in the differentiation. Eq. 

(165) uses the fact that differentiating a term w.r.t the propagation coordinate yields: 

𝜕
1
n!
(𝑧𝑓(t) ∘)n

𝜕𝑧
=

1

(n − 1)!
(𝑧)n−1(𝑓(t) ∘)n =

1

(n − 1)!
(𝑧𝑓(t) ∘)n−1𝑓(t) ∘ 

 

(166) 

Which is the result using the normal chain rule of differentiation. Also since,   

 

1

(n − 1)!
(𝑧𝑓(t) ∘)n−1𝑓(t) ∘= 𝑓(t) ∘

1

(n − 1)!
(𝑧𝑓(t) ∘)n−1 

 

(167) 
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Since the convolution is over the t variable and z can be treated as a constant w.r.t convolution. Also, 

convolutions of functions commute by property of convolution [chapter 4, 50]. 

Therefore, using Eq. (167) and factoring out the convolution (which can be done due to the 

multiplicative commutation property of convolution with the summation) term Eq. (165) becomes: 

𝜕e𝑧𝑓(t)∘𝑔(𝑡)

𝜕𝑧
= 𝑓(t) ∘ [1 +

1

1!
(𝑧𝑓(t) ∘) +

1

2!
(𝑧𝑓(t) ∘)2…

1

3!
(𝑧𝑓(t) ∘)3] 𝑔(𝑡)

= 𝑓(t) ∘ (e𝑧𝑓(t)∘𝑔(𝑡)) = 𝑓(t) ∘ 𝑢(𝑡, 𝑧) 
 

(168) 

Where the last equality follows from the definition of u.  If 𝑢 = e𝑧𝑓(t)∘𝑔(𝑡), 
𝜕𝑢

𝜕𝑧
= 𝑓(t) ∘ 𝑢(𝑡, 𝑧) which 

is the differential equation that needs to be satisfied for the convolution term. 

At 𝑧 = 0, 𝑢 = 𝑢(𝑡, 0), substituting 𝑧 = 0 above yields: 

𝑔(𝑡) = 𝑢(𝑡, 0) 
 

(169) 

Giving, for a general coordinate step the integrated solution at z = zo +  Δ𝑧 (step-size, Δ𝑧, is weighted 

by a symmetrisation constant from the global step-size as shown in steps 1-7): 

𝑢(𝑡, (𝑛 + 1)Δ𝑧) = eΔ𝑧𝑓(t)∘𝑢(𝑡, 𝑛Δ𝑧) 
 

(170) 

Where n is some integer number relating to the slice number. Therefore, the exponential operator for 

the convolution term is verified to be eΔ𝑧𝑓(t)∘. If 𝑓(t) is truly independent from z then the above is an 

exact solution. The above proof is the same for the ℘ operator (given the discussion in appendix C0.3 

that ordering of operations in ℘ do not need to be considered and the propagation coordinate can be 

treated the same as a constant w.r.t to ℘, I.e, ℘ does not act on z). This Means that ℘ can be 

symbolically substituted for 𝑓(t) ∘ symbol in the proof above and the ℘ differential equation is 

proved.  

 If, like the α1 and α2 operators, 𝑓(t) is not independent of z (here 𝑓(t)  can be a convolution 

coefficient function,  like 𝑓(t) ∘ or a multiplicative coefficient function like for α1 and α2 ), than the 

above proof is valid, however, the mean-value approximation will have to be substituted in the proof. 

𝑢 = e𝑧𝑓(t,zo)∘𝑔(𝑡) would have to be used. Then, the series expansion can be used, as outlined above. 

Using the expansion of the exponential operator w.r.t z shown in u about zo, the following is obtained: 

e𝑧𝑓(t,zo)∘ = 1 + (𝑧 − zo)𝑓(t, zo) +
1

2!
(𝑧 − zo)

2𝑓(t, zo)
2 +

1

3!
(𝑧 − zo)

3𝑓(t, zo)
3… 

 
(171) 

The rest follows the same as the proof above. 𝑓(t, zo) is not a function of z so the derivative 

w.r.t z acts only on the powers of z. 𝑓(t, zo) can be factored out of the summation as in the 

above procedure since multiplicative ordering is non-specific and does not matter (𝑓(t, zo) 
commutes with the summation and itself). 

 

 

see appendix C4.3 for a relevant note on the α2 operator. 

C4.2 Raman/Convolution Term Frequency Representation 

Since,  

e𝑓(t)∘𝑢 = [1 − 𝑓(t) ∘ +
1

2!
(𝑓(t) ∘)2 −

1

3!
(𝑓(t) ∘)3…]u 

 
(172) 
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For clarity, the symmetrisation specific step-size increment is factored into f. The convolution raised to 

a power is defined as iterative convolutions of function f. As well, the ordering of these convolutions 

does not matter. Convolution in the time domain is equivalent to the Fourier transform of the product 

of the Fourier frequency representation of functions in the convolution For iterative convolutions, it 

can be shown as a Fourier identity that this is equivalent, in the time domain, to the Fourier transform 

of the product of the Fourier frequency representation of all functions in the convolution [chapter 4, 

50]. Therefore, the following is true: 

 

e𝑓(t)∘𝑢 = 𝑓𝑤 [1 − f(w) +
1

2!
(f(w))

2
−
1

3!
(f(w))

3
…]u(w)|t 

 
(173) 

 

Which is equivalent to: 

e𝑓(t)∘𝑢 = 𝑓𝑤[e
𝑓(w)]u(w)|t 

 
(174) 

The operator in the frequency space is simply: e𝑓(w) and can be applied in the manner shown in 

section 4.2. 

Raman terms are essentially convolutions of the type shown here. The operator representation can 

thus, straightforwardly be derived in this numerical technique.  
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C4.3 Approximation Used in Justifying the Series Expansion of the Exponential C Operator 

and Higher Order Update to the C Operator 

 

In section 4.2, the Maclaurin series expansion for the α2 operator was shown using the Mean-value 

approximation outlined in steps 1-7, for ℕ , as: 

 

eα2 = 1 + c2ℕ
∂

∂τ
+
1

2!
(c2ℕ)

2
∂

∂τ

2

+
1

3!
(c2ℕ)

3
∂

∂τ

3

… 

 

(175) 

Where the step size is factored into ℕ. Strictly speaking however, the series expansion of α2 is: 

 

eα2 = 1 + c2ℕ
∂

∂τ
+
1

2!
(c2ℕ

∂

∂τ
) (c2ℕ

∂

∂τ
) +

1

3!
(c2ℕ

∂

∂τ
) (c2ℕ

∂

∂τ
) (c2ℕ

∂

∂τ
)… 

 

(176) 

Since ℕ is a function of τ the product of the derivatives and c2ℕ’s cannot be re-arranged. They do not 

commute. However, if the approximation is used that ℕ is a slow-varying function w.r.t to u, its 

derivative w.r.t τ can be assumed to be negligible (I.e., zero). In that case both of the above equations 

are equivalent and Eq.(175) can be used. Using, Eq.(175) in the WLG bulk simulation reproduces 

exactly what physically happens to the optical field when factoring in self-steepening (see discussion 

in section 4.2, section 4.3 and appendix C2). This is additional justification in using Eq.(175).  

Given the fact that the α2 incorporates the pertinent physics in a clear way in its application to the 

WLG problem, it is prudent to derive error estimations and to update the application of the operator in 

such a way that the error truncation is at least at the same level as general split-step operator methods: 

ℴ(Δ𝑧3) (or higher) as stated in section 4.2. This is accomplished as follows: 

Eq.  (176) can be expanded as follows (here to illustrate the step-size exponent, the step size is 

factored out of ℕ): 

 

eα2 = [1 + Δ𝑧c2ℕ
∂

∂τ
+
1

2!
(Δ𝑧c2ℕ)

2
∂

∂τ

2

+
1

3!
(Δ𝑧c2ℕ)

3
∂

∂τ

3

…] +
Δ𝑧2

2!
[(c2ℕ)

∂

∂τ
(c2ℕ)

∂

∂τ
]

+
Δ𝑧3

3!
[[(c2ℕ)

2
∂

∂τ

2

(c2ℕ) + (c2ℕ) [
∂

∂τ
(c2ℕ)]

2

]
∂

∂τ

+ 3(c2ℕ)
2
∂

∂τ
(c2ℕ)

∂

∂τ

2

] 

 

(177) 

 

The term is corrected up to ℴ(Δ𝑧4). If only ℴ(Δ𝑧3) is desired than the Δ𝑧3 term on the RHS of Eq. 

(177) can be omitted. As described in section 4.2 since the first term of Eq. 174 is applied in 

(x,y, τ, w′) space, I apply all corrections in that space as well. Derivatives of  c2ℕ are numerically 

evaluated using the Fourier derivative identity. In the appropriate space this yields: 
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eα2(τ,… )u(τ,… ) =

= 𝑓𝑤′{[e
−c2ℕ𝑖w′ +

Δ𝑧2

2!
[(c2ℕ)

∂

∂τ
(c2ℕ)(−𝑖w

′)]

+
Δ𝑧3

3!
[[(c2ℕ)

2
∂

∂τ

2

(c2ℕ) + (c2ℕ) [
∂

∂τ
(c2ℕ)]

2

] (−𝑖w′)

+ 3(c2ℕ)
2
∂

∂τ
(c2ℕ)(−𝑖w

′)2]]u(w′, … )} |τ 

(178) 

 

 The e−c2ℕ𝑖w′ is the series convergence of the first term of Eq. (177) in the (x,y, τ, w′)  space and was 

derived in detail in section 4.2. The identity from this derivation is used here. Application of the 

exponential α2 operator in this way can yield a ℴ(Δ𝑧4) error truncation. If additional error truncation 

is necessary then additional terms of the expansion of Eq. (176) can be obtained and the summation in 

Eq. (178) updated accordingly. The Ĉ operator, being the α2 operator in the WLG simulation is 

updated according to Eq. (178) for ℴ(Δ𝑧4) error. 

 

C4.4 Relevant Note on Terminology 

 

In the above analysis the Maclaurin series is used when the coordinate value zo can be regarded as 

zero (the origin) for the local coordinate system of the operator without any loss of generality. For 

example, the Taylor series was used in Eq. (171). When using the mean-value approximation, the 

Maclaurin series can be used with zo  being regarded as the origin without any loss of generality but 

the reader must keep in mind that the functions of z in the operators are at zo in the calculation and for 

that step can be regarded as constant over the propagation coordinate.   
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Chapter 5: Thesis Outlook 
 

In chapter 2 a novel fiber oscillator was constructed to be used for electron diffraction experiments. 

Two oscillators outputting a compressible pulse to sub 90fs with a central wavelength of 1.03 µm was 

constructed based on the non-linear polarization mode-locking scheme. Average power was 250mW to 

300mW, at rep.rates of 41MHz and 31 MHz. The Oscillators had an amplitude stability of 0.2% 

fluctuations which out-competes traditional Ti:Sapphire systems.  This demonstrates a new oscillator 

that is very compatible with downstream electron diffraction experiments and meets the design criteria 

for these experiments both in average power, pulse duration and stability. 

In chapter 3, a solid-state regenerative amplifier was constructed that amplified pulses to 0.4mJ at a 

repetition rate of 1 kHz. The novel simulation scheme outlined in the chapter matches with 

experimental data and thus a robust simulation model was derived for such systems. The next step is to 

increase the amplification by changing the crystal doping in the cavity and by tuning the pump beam 

to match the signal spot-size, thereby increasing the amount of stored energy the signal has access to.  

The new fiber oscillator and regenerative amplifier scheme will be fed into a pulse compression stage 

and then used for electron diffraction experiments, replacing conventional laser sources employed in 

these labs.  

In chapter 4, I derived a new and fast numerical theory to simulate, in all three spatial dimensions and 

time, a wide class of generalized non-linear Schrodinger equations. I then performed simulations on 

white-light generation in bulk in all spatial dimensions and time and various hard to simulate non-

linear effects such as plasma effects and self-steepening were included in the simulations. Simulations 

were done on a YAG system and matches published experimental results well. This technique and 

simulation tool can be used in the design process to generate a wide-band coherent spectrum for 

molecular coherent control experiments. Fundamental physical effects in the generation of white-light 

are explored and described in detail in this chapter. Finally, an adaptive algorithm for the simulation is 

described in this chapter along with extensions and future steps.  

The simulation will be extended to incorporate Raman contributions to the white-light spectrum. A 

beam shaping transmission-phase mask design tool was also developed to shape the beam for various 

downstream applications (such as seeding OPA’s).   

The robust femtosecond source and the method and simulations developed in this thesis unlock new 

experimental possibilities in pump-probe experiments. The laser source can be tuned to output a large 

number of different possible optical pulses to drive photoelectron generation at the photocathode. New 

advances in electron source technology for imaging atomic motions in real time then can be more 

effectively explored. The method and simulation technique developed to explore white light 

generation in bulk material will enable experimentalists to design accurate optical pulses for driving 

the sought after optically induced chemical changes in materials. The intended goal of this thesis is 

then accomplished: An optical toolkit has been developed for high end electron diffraction pump 

probe experiments for both the electron probe and optical pump at the sample.    
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