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Kurzfassung

Da das menschliche Skelett permanent Belastungen ausgesetzt ist, sind dessen mechanischen
Eigenschaften von entscheidender Bedeutung. Sie hingen unter anderem von der Knochen-
mineralisierung ab. Wiahrend Knochenumbau, Wachstum oder Frakturheilung wird von kno-
chenaufbauenden Zellen (Osteoblasten) eine zunéchst nicht-mineralisierte Matrix (Osteoid)
gebildet, die hauptséichlich aus Kollagen Typ I besteht und anschlieffend mineralisiert. Hier-
bei werden manche der Zellen in den Knochen eingebaut und differenzieren zu Osteozyten,
deren Dendriten sie untereinander und mit der Knochenoberfliche verbinden. Es gibt Hinwei-
se darauf, dass Osteozyten iiber das so gebildete Netzwerk die Materialzusammensetzung in
ihrer Umgebung beeinflussen konnen.

Das Ziel der Studien, die im Rahmen dieser Arbeit vorgestellt werden, war es neue Informa-
tionen iiber die elementare Zusammensetzung des mineralisierten Knochens zu gewinnen. Um
unterschiedliche Methoden wie quantitative Riickstreuelektronenmikroskopie (qBEI), ener-
giedispersiver Rontgenanalyse (EDX), Raman Mikrospektroskopie und konfokaler Lasermi-
kroskopie (CLSM) zu kombinieren, wurden neue Routinen entwickelt oder bereits etablierte
Methoden verbessert. Mit diesen Techniken konnten sowohl humane Proben (Oberschenkel-
querschnitte von gesunden Erwachsenen und Kindern) als auch Mausknochen (Oberschenkel

Léngs- und Querschnitte von zwei Mausmodellen) charakterisiert werden.

In einer ersten, grundlegenden Studie wurden zwei Parameter verglichen, die beide eng mit der
Knochenmineralisierung verkniipft sind. So zeigte die Gegeniiberstellung des mineral /matriz
Raman-Wertes und der Kalziumkonzentration (ermittelt mit qBEI) gute Ubereinstimmung
mit theoretischen Uberlegungen. Diese Methoden wurden auch verwendet um Knochengewebe
von Miusen 7zu charakterisieren bei denen ein genetischer Defekt zu einem Mangel von Scle-
rostin (ein Negativ - Regulator fiir Knochenaufbau) fithrte. So war es moglich nachzuweisen,
dass eine hierdurch verstirkte Knochenneubildung zu einer veréinderten Mineralisationskinetik
des Knochens fiihren kann. Nachdem zukiinftig Sclerostinantikérper fiir die Behandlung von
Knochenkrankheiten eingesetzt werden sollen, haben diese Erkenntnisse grofe medizinische
Bedeutung. Aus diesem Grund wurde auch die Mineraldichteverteilung eines Mausmodells
mit extrem fragilem Knochen (Osteogenesis Imperfecta, OI) untersucht. Die Mause wurden
mit Sclerostinantikorpern behandelt und mit unbehandelten Tieren verglichen. Es zeige sich
ein signifikanter Knochenzuwachs doch die Mineraldichteverteilung verdnderte sich gleicher-
mafen fiir gesunde und fiir OI M&use.

In einer Studie am humanen kompakten Knochen konnten der Zusammenhang zwischen dem
Osteozytennetzwerk und der Knochenzusammensetzung untersucht werden. Elemente wie Na,
M g und S wiesen typische Konzentrationsverteilungen auf. Die entwickelten Routinen wurden
auch verwendet um Mineralisationsfronten zu charakterisieren, welche eine kritische Phase der
Knochenentwicklung darstellen. Es zeigte sich, dass die Konzentrationen von K, Mg, Na und
C'l abhiingig von dem analysierten anatomischen Ort, stark voneinander abweichen.

Abschliefend kann gesagt werden, dass durch die Entwicklung neuer Routinen zusétzliche Er-
kenntnisse iiber die Knochenmineralisierung und Zusammensetzung gewonnen werden konn-
ten. Die Resultate sind von medizinischer und biologischer Bedeutung und tragen zu aktuellen
Debatten iiber die Knochenentwicklung bei.
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Abstract

Bone matrix mineralization is an important quantity linked to mechanical properties of the
skeleton. If new bone is formed (in the course of bone remodeling, growth or fracture healing),
osteoblasts produce a soft non-mineralized matrix consisting of mainly collagen type I (Os-
teoid), which eventually mineralizes. Some of the osteoblasts get embedded in the bone matrix
and differentiate to osteocytes. These cells develop dendrites, which interconnect osteocytes
to each other and to the cells at the bone surface, forming the osteocyte-lacuna canaliculi
network (OLCN). There is evidence that osteocytes have the ability to alter the composition
of bone tissue adjacent to the lacunae and the canaliculi.

The purpose of the presented work was to gain new insight into the elemental composition
of mineralized bone matrix at different sites of human bone tissue, and in mouse models
linked to human genetic diseases. Routines for the combination of quantitative backscattered
electron imaging (qBEI), energy dispersive X-ray analysis (EDX), Raman micro-spectroscopy,
and confocal laser scanning microscopy (CLSM) were developed. Using these tools, human
(femur cross sections from healthy adults and children) and murine samples (femur long-and
cross sections of two mouse models) were analyzed with focus on the elemental composition.

In a methodological study the consistency of matrix mineralization measured by Raman micro-
spectroscopy (e.g. the mineral /matrix ratio) and the Calcium content (wt%Ca) as measured
by qBEI was proved. Both methods were applied to a mouse model exhibiting induced bone
overgrowth due to a genetic defect causing a lack of Sclerostin, which is a negative regula-
tor for bone formation. We found changes in the mineralization kinetics depending on the
anatomical site. This result is of clinical importance since sclerostin antibodies are suggested
for future treatment of diseases characterized by fragile bone. Hence, also a mouse model
of a brittle bone disease (Osteogenesis Imperfecta) was analyzed with and without sclerostin
antibody treatment. A significant increase in bone mass was documented while the mineral-
ization pattern revealed no interaction between genotype and treatment.

The correlation between OLCN and the composition of the mineralized matrix was exam-
ined in the same regions of human compact bone. Characteristic distributions of the minor
elements (Mg, Na, S) were found. The developed tools were also used to investigate min-
eralization fronts, reflecting a critical stage of bone development. Differences in the Ca/P
ratio and in the concentrations of K, Mg, Na and Cl depending on the anatomical site were
revealed.

In conclusion, using newly developed measurement routines, it was possible to gain novel in-
formation of bone mineralization and composition. The results contribute to actively debated
issues of biological and medical importance.
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Chapter 1

Introduction

The human skeleton meets a multitude of requirements such as resistance to high impact
forces and long-term strain, facilitation of body growth, and fracture healing. In its role as
an endocrine organ, hormones excreted from bone cells are permanently involved in systemic
regulation mechanisms. These biomechanical and biological properties require a complex but
highly adaptive bone architecture and composition which is achieved by a hierarchical organi-
zation from the organ level down to the nano-range (Figure 2.1). Especially the combination
of the tough organic matrix, mainly consisting of collagen type I, and a stiff mineral phase
leads to a high resistance to fracture despite low material weight.

Adaption to mechanical load and renewal of matured bone matrix is facilitated by permanent
bone remodeling. Through the interplay of osteoclasts (bone resorbing cells) and osteoblasts
(bone forming cells), old bone matrix is gradually replaced by young tissue, accounting for
high heterogeneity in tissue age. Tissue age is linked to the degree of mineralization and thus
also to the local material stiffness [1]. Hence, bone tissue consists of compartments exhibiting
distinct variations in mechanical properties what inhibits crack propagation, likely decreas-
ing the susceptibility to fracture [2]. During the bone-formation phase osteoblasts produce
non-mineralized matrix, called osteoid, which eventually mineralizes. Some osteoblasts get
entrapped in the osteoid tissue and subsequently start to differentiate to another cell type -
the osteocyte. While differentiation, early osteocytes change their protein expression pattern
and start to develop cell processes forming a dense network that interconnects cells and bone
surface. Already in 1951 H. Kind introduced the exciting concept of osteocytic osteolysis,
suggesting osteocytes, have the ability to interact with their proximal environment allowing
deposition and resorption of mineral from the matrix [3]. The osteocyte lacunae canaliculi
network (OLCN) provides paths for protein secretion, communication, nutrition supply, ion
exchange and mechanosensing capabilities [4]. Osteocytes are reported to interact with cells
on the bone surface, thus being part of the regulatory mechanism for bone resorption and
formation [5].

In healthy adult humans, bone remodeling renews the bone matrix continuously without af-
fecting the overall bone mass. Hence, disturbances of this system caused by genetic defects,
acquired disorders, malnutrition, reduced physical activity or other environmental factors lead
to an imbalance of bone formation and resorption or to alterations in the molecular structure.



1 Introduction

Osteoporosis is one of the most abundant diseases affecting mainly postmenopausal women
and elderly men [6]. Men sustain 20 — 30 % of all osteoporotic fractures |7]. About 40 %
of women older than 50 years suffer a fracture related to post-menopausal Osteoporosis [6].
Postmenopausal Osteoporosis is a systemic disease mainly characterized by an altered bone
turnover leading to a net loss of bone mass [8]. About 20 % of women suffering an osteoporotic
hip fracture have long term impairments in the ability to walk and osteoporotic vertebral frac-
tures often cause back pain, kyphosis (spinal curvature), and height loss [9]. According to the
demographic development of our society, bone health will be a major topic to ensure a high
quality of life for elderly people.

Beside Osteoporosis, there are also many other pathological changes in bone development
known [10]. The investigation of bone samples from patients or from animal models linked to
a certain disease is essential for the development and optimization of new treatment strategies.
Characterizing bone matrix under pathological conditions often provides valuable insight into
the fundamental mechanisms of osteogenesis, which might not show up in studies on healthy
bone. An illustrative example is Osteogenesis Imperfecta or brittle bone disorder, a heritable
bone condition caused by mutation of genes encoding collagen type I or a collagen-linked pro-
tein leading to low bone mass and altered bone material properties [11]. There are currently
more than 1500 mutations known causing Osteogenesis Imperfecta with mild to severe (peri-
natal lethal) phenotypes [11|. The investigation of bone biopsies taken from the iliac crest of
Osteogenesis Imperfecta patients revealed abnormally increased bone matrix mineralization,
likely contributing to bone fragility [12]. From this and other studies we learn that (i) beside
bone volume also intrinsic bone material parameters must be taken into consideration for a
comprehensive tissue characterization and (ii) it must be kept in mind that mineral and or-
ganic properties are closely connected and should be interpreted in the context of each other.
The situation appears even more complicated when it is taken into account that compositions
of mineral and of organic matrix are not static but change in the course of time. This is re-
ported to happen extensively at very early stages of mineralization where new bone is formed
(during growth, fracture healing or remodeling), but also at later time points the composition
of bone distinctly depends on the tissue age [13, 14, 15, 16].

The considerations made above highlight that an approach to characterize bone material needs
to combine specialized methods. An optimized measurement strategy must consider consis-
tency of sample preparation according to differing sample processing requirements depending
on the applied techniques. Furthermore, damage of the specimen surface caused during data
acquisition might adulterate subsequently obtained parameters. Hence, the aim of this the-
sis is to modify, extend and combine methods to create novel tools for the investigation of
bone material. Thus, facilities available at the Ludwig Boltzmann Institute of Osteology
(Vienna, Austria) and the Max Planck Institute for Colloids and Interfaces (Potsdam, Ger-
many) are used to gain information on same regions of interest (ROI) of embedded human and
murine bone samples. Using this approach for a predefined ROI, information on the sample
composition, mineral and organic matrix, tissue age and OLCN structure, thus allowing a
more comprehensive interpretation of the material properties is gained. Therefore, standard-
ized measurement routines and sample preparation protocols for quantitative backscattered
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1 Introduction

electron imaging (qBEI), energy dispersive X-ray analysis (EDX), confocal laser scanning mi-
croscopy (CLSM) were adapted or newly developed with a focus on compatibility amongst
these methods and to Raman micro-spectroscopy. As parameters linked to the degree of min-
eralization are accessible by qBEI and Raman, the corresponding quantities on the very same
ROIs in human osteonal bone were investigated with both methods. In the associated paper,
this correlation as well as the contribution of biological and technical fluctuations has been
presented (A. Roschger et al., JBO 2014) [17].

Combining ¢BEI, CLSM and Raman micro-spectroscopy leads to new insight into the miner-
alization kinetics in mice carrying a defect in the Sost gene (Sost-knockout Sost KO) (N. Has-
sler* and A. Roschger*! et al., J Bone Miner Res 2014) [18]. This gene encodes sclerostin,
which is known to be a negative regulator for bone formation [19]. Hence, Sost KO mice
are expected to exhibit high bone mass. The developed routines provide access to tissue age
specific parameters like degree of mineralization and organic matrix properties. These find-
ings are of special clinical importance since the administration of sclerostin antibodies SclAB
(targeting the same pathway) is one of the most promising approaches for future treatment
of Osteoporosis and other bone fragility diseases [20]. The obvious follow-up study was to
evaluate the mineralization pattern in a mouse model suffering a brittle bone disorder related
to extremely low bone mass (namely Osteogenesis Imperfecta) with and without SclAB treat-
ment (A. Roschger et al. Bone 2014) |21].

The concept of osteocytic osteolysis assumes that osteocytic activity and the OLCN structure
are linked to bone material properties and composition [22, 23|. Additionally, osteocytes are
known to play a major role in the very early phase of mineralization [4] and impaired osteocyte
activity causes severe mineralization defects [24|. Hence, an examination of major and minor
elemental concentrations at regions with different OLCN structure and at mineralization fronts
of different anatomical sites was performed using a combination of qBEI, EDX and CLSM.
The aims of these projects are to gain information on the role of minor elements in early
stages of mineralization and to shed light on the impact of the OLCN on the bone material
composition.

I* Both authors contributed equally to this paper and are listed in alphabedical order
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Chapter 2

State of the Art

2.1 Bone Structure, Remodeling, and Development

2.1.1 Multiscale Structure and Composition of Long Bone

Long bone is multi-structurally organized, ranging from the organ level down to the nano-
scale resulting in the capability to resist high forces without fracturing despite low material
weight [25]. As shown in Figure 2.1 a compact cortical shell of mineralized bone matrix en-
cases the bone marrow. In contrast to this (diaphyseal) part of the long bone in metaphyseal
regions (adjacent to the growth plate), a spongy (trabecular) bone structure is located in-
side the bone marrow cavity (left image in Figure 2.1). At these regions near the joints, the
organ is most sensitive to mechanical forces requiring this additional stabilization [26]. In
humans the cortical thickness of the femur midshaft is around 7.5 mm (65 years old women)
and decreases during further aging [27]. Typical values for trabecular thickness in healthy
adult humans are 150 — 180 um with a calcified bone volume to tissue volume fraction of
around 18 % [28, 29]. In the last years much progress was made in the characterization of the
structural properties of bone. Modern micro-computer tomography (uCT) devices provide
detailed 3-dimensional information on the architecture of cortical and trabecular architec-
ture of ex-vivo bone samples. Recently, also the in-vivo application of a uCT scanner with
an appropriate resolution to visualize the trabecular structure of rat bone was introduced [30].

The cortical part of human long bone exhibits cavities (haversian canals) which are occupied
by blood vessels, orientated mainly parallel to the bone’s long axis. The adjacent bone matrix
is aligned in lamellar circumferential orientation around the haversian canals forming osteons
(Figure 2.1). Tissue between the osteons is called interstitial bone and also consists of lamel-
lar aligned matrix likely being part of a former osteon which lost its structure according to
the remodeling process. Each lamella has a thickness of about 3 — 5 pwm and differs from its
neighbors in collagen fiber bundle orientation as discussed below |31, 32].

High resolution imaging revealed an abundant presence of ellipsoid-shaped voids (approx-
imately 13000 mm2) within the mineralized bone matrix, so called lacunae [34]. These
lacunae are interconnected by a dense network of narrow channels known as canaliculi (about
200 — 300 nm diameter |35]). Already in the middle of the 19th century, structure and align-
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Macro Micro Nano
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Figure 2.1: Hierarchically organized structure of a human long bone (femur) exhibiting a
trabecular structure adjacent to the joints (metaphysis and epiphysis) and compact corti-
cal in the midshaft region (diaphysis). The cortical shows a typical osteonal structure with
circumferentially aligned lamellas consisting of fiber bundles with more or less regular orien-
tation. Each fiber is built of mineralized single collagen fibrils. Adapted by permission from
Macmillan Publishers Ltd [33].

ment of the lacunae and the canaliculi network were described [36]. Later it was shown that
cells called osteocytes, which exhibit long cell processes within the canaliculi, occupy these
voids, thus forming a cell network pervading the whole bone tissue. Since the osteocytes are
interconnected by gap-junctions, communication or/and molecule transportation through the
network are most likely and will be discussed later (Chapter 2.1.4).

On the nanometer level, bone is a unique nano-composite material [25]. The combination
of a tough organic matrix consisting of collagen type I, non-collagenous proteins like Pro-
teoglycans, lipids, water, and a stiff crystalline phase of more or less pure Hydroxyapatite
(HAP) (Ca19(PO4)6(OH)sy) leads to properties featuring high resistance against cracks and
fractures. Collagen fibrils with a thickness of about 100 nm are well aligned but they change
their orientation depending on their location [37|. Hence, they form a twisted plywood-like
three-dimensional structure [38|. According to the hierarchical structure, each fiber consists
of single collagen fibrils as shown in Figure 2.1. HAP crystals are located within collagen
chains hardening the tissue to resist mechanical stress and exhibit plate-like dimensions of
about 2 — 7 nm x 15 — 200 nm x 10 — 18 nm [25, 39]. To reinforce resistance against sheer
forces, divalent and trivalent collagen cross-links are formed during ossification linking adja-
cent collagen fibers and fibrils.

Despite technical improvements, the characterization of the chemical composition of bone
is still challenging, especially if spatial resolution in the pm-range is desired. Due to so-
phisticated combination of organic matrix and mineral phase, different methods need to be
combined for a comprehensive material characterization. Beside others, still much remains

Page 6 Andreas Roschger



2 State of the Art 2.1. Bone Structure, Remodeling, and Development

unknown about the local distribution and bindings of minor and trace elements like Magne-
sium (Mg), Potassium (K), Lead (Pb), Zinc (Zb), Chlorous (C1), Sulfur (S) and Strontium
(Sr). Mg, Pb, and Sr are known to substitute C'a®>" ions in the HAP crystal, thus poten-
tially changing the lattice structure |40, 41, 42|. Additional, Mg and Zn are reported to
be found in the organic matrix located in the active centers of various enzymes like alkaline
phosphatase [43]. S is a minor element that is located in Proteoglycans, which can act as
inhibitor of mineralization [44]. Proteoglycans are mainly found in the cartilage tissue, but
also in mineralization fronts at sites of new bone formation or (in smaller quantities) in the
mineralized bone matrix. Transmission electron microscopy revealed that Proteoglycans are
located close to the canaliculi walls, most likely to prevent further mineralization of the voids
occupied by osteocytes [45]. Interestingly, Pb and Zn were found to accumulate in the bone
tissue at similar regions, but also to much higher amounts in narrow bands in the articular
cartilage, the so called tidemarks [46].

The importance of Zn for the alkaline phosphatase enzyme [43| and of M g for the stabilization
of amorphous calciumphosphate phases [47| indicate the importance of these elements dur-
ing early mineralization. Nevertheless, the process of bone mineralization is still intensively
investigated. Much is unknown about the early stages in the formation of organic matrix
and HAP crystallization and therefore even less is known about the role of minor and trace
elements in the mineralization process.

2.1.2 Bone as a Dynamic Biomaterial

Like most biological tissues, bone is a dynamic material facilitating growth of the individual,
fracture healing, repair mechanisms of micro fractures and adaption to mechanical loading.
The major actors for these remodeling and modeling processes are the osteoblasts (bone build-
ing cells) and osteoclasts (bone resorbing cells). The interplay of these cells is controlled by
various communication mechanisms like the RANK - RANKL (Receptor Activator of NFkB
Ligand) pathway or WNT signaling, which are extensively described in the literature [48, 49].
The overall bone volume balance can be neutral, positive or negative depending on osteoblast
and osteoclast activity [50]. Obviously, during a growth phase a positive balance is needed
while it remains almost neutral in healthy adult people. Hormonal changes during aging or in
bone diseases often cause a negative balance (e.g. in Osteoporosis). This results in an overall
loss of trabecular bone and thinning of cortical bone increasing the susceptibility for fragility
fractures [33]. Therefore, to medicate patients with fragile bone, much effort is made to de-
velop drugs to shift bone remodeling from a negative to a neutral or even a positive balance
which requires an essential understanding of the remodeling cycle. Bone remodeling appears
on the endosteal surface and on trabecular surfaces (both surfaces together are termed the
endosteum). Bone modeling occurs throughout life in murine bones on the outer periosteal
surface (periosteum). In bigger mammals a remodeling process also occurs inside the cortical,
thus forming a system of cannels occupied by blood vessels (Haversian system). Sims et al.
lists five phases occurring during remodeling [51]:

After a resting period, where no bone formation or resorption occurs, the activation and
resorbtion phase (1) starts. Initiated by systemic hormones (Parathyroid hormone (PTH)
or 1,25-dihydroxyvitamin D3) or by mechanical stress sensed by osteocytes, osteoclasts dif-
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Figure 2.2: Schematic illustration of various anatomical sites of a long bone and the five
phases of the bone remodeling cycle; (1) activation and resorbtion phase, (2) reversal phase,
(3) bone apposition and osteoblast maturation, (4) osteoblast apoptosis or differentiation, (5)
osteocyte maturation; Reprinted from Reference [51| with permission from Elsevier.

ferentiate into multinucleated cells. During bone remodeling osteoclasts attach to the bone
surface, solute the mineral phase of the bone matrix, while simultaneously resorbing the or-
ganic matrix leaving behind resorption pits or Howship’s lacunae and release coupling factors
(cardiotrophin-1 and sphingosine-1-phosphate) that stimulate osteoblast differentiation on the
endosteal surface. These coupling factors also signal to periosteal osteoblasts, perhaps through
the osteocyte canalicular network.

In the following (reversal phase (2)) osteoclasts undergo apoptosis (programmed cell death).
Mononuclear cells are then forming a layer rich of Proteoglycans, which will later become the
so-called cement line.

After the reversal phase pre-osteoblasts mature, attach to the bone surface and place non-
mineralized bone matrix, which mainly consists of type I collagen. This purely organic matrix,
called osteoid, has a thickness of approximately 10 pum and rests for about 10 days before the
primary mineralization process starts. In this phase (3), HAP crystals are formed through
various transient phases, which are yet not fully understood. Within a few days the degree
of mineralization reaches about 70 % of the maximum value. That corresponds to roughly
18 weight percent Ca (wt%Ca) [14]. This period of rapid mineralization is followed by the
phase of secondary mineralization, that lasts for several months. Finally the C'a concentration
saturates (at about 23 to 24 wt% reported for humans [14]).

In the next phase (4) mature osteoblasts, when their task of producing osteoid is completed,
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Figure 2.3: Calibrated backscattered elec-
tron image (qBEI) showing differently miner-
- alized bone packets. The numbers represent
the C'a concentration in wt% as determined by
gBEIL Modified from Reference [25] with per-
mission of the Royal Society of Chemistry.

become lining cells or become encased in the bone matrix differentiating into preosteocytes.
The preosteocytes become osteocytes and develop processes which connect to their neighbors
and to the bone surface. They start expressing proteins characteristic for the differentiation
into mature osteocytes (Sclerostin, RANKL) ) during matrix mineralization seems to be spe-
cific and highly-controlled (phase 5) [5]. Proteins (e.g. IL-6 family cytokines) are released by
the osteoblast lineage and act to stimulate osteoblast differentiation and bone matrix produc-
tion on endosteal surfaces, but limit osteoblast activity on the periosteum.

As a result of the gradual remodeling processes, bone tissue consists of various bone structural
units (BSU) with different tissue age and therefore also of various degree of mineralization as
depicted in Figure 2.3. Since remodeling is a continuous process, the entire human skeleton
is replaced by new bone matrix in about 10 years [52]. Consequently, it needs to be strictly
distinguished between the individual age (depicting the age of the animal or human) and
tissue age (corresponding to the age of a defined region of bone material).

Instantly, the question arises how tissue age can be measured. Fortunately an elegant routine
was developed to label time points of bone formation using fluorescent dyes like Tetracycline
(humans), or Alizerin or Calcein (animals). These fluorochromes are administered typically for
2 times for 3 days in 14 days interval (in adult humans) or are injected with a 1 — 10 days break
(mice) before bone examination|18, 53, 54|. Since these dyes bind to the apatite crystal during
the very early stage of mineralization, regions of new bone apposition can be identified using
a fluorescent microscope, and even more interestingly they label regions of well known tissue
age in the mineralized matrix. A Raman micro spectroscopy routine was developed to set
measurements with respect to these labels and also recently backscatter electron microscopy
was combined with the tissue age information to gain bone material properties at regions
with defined tissue ages [53, 55, 56]. Thus combinations of these methods provide material
information independent of bone turnover.
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2.1.3 The Early Mineralization Process of Bone Matrix

As mentioned earlier, the mechanical strength of bone is not only determined by bone mass
and architecture but also by its material properties [25]. About 21 days (in humans) after
osteoblasts laid down a matrix of non-mineralized tissue (osteoid) the early period of bone for-
mation starts [57]. Disturbances in this so-called primary mineralization phase likely impair
the mineralization pattern and therefore also the mechanical behavior of the whole bone later
on. Hence, the understanding of the chemical processes at and next to active mineralization
fronts is crucial for a comprehensive description of the bone material properties and last but
not least also for the development of new therapeutic drugs.

The act of calcification in healthy bone is a well-regulated process, which is still part of
current research. The osteoblastic formation of non-mineralized osteoid (consisting mainly
of collagen type I) provides the basic tissue for mineralization. This soft tissue consists of
collagen molecules parallel to the bone surface (Figure 2.4). There is still a discussion whether
mineralization starts in the 40 nm wide gap zones or in the tighter overlapping zones of the
collagen fibrils [58].

mineral particles collagen molecules

Figure 2.4: Arrangment of the mineral particles (2 — 4 nm thickness) in the collagen fibril.
The collagen fibrils exhibit a staggered structure with characteristic 67 nm period |25|. With
permission of the Royal Society of Chemistry.

HAP precipitation happens in several steps and is thought to start with the formation of
about 1 nm small solid units, called Posner’s clusters (Cag(PO,)) [59]). Aggregation of these
clusters leads to spherical amorphous Calciumphosphate particles with a diameter between 20
and 30 nm within the collagen fibrils [60]. Accompanied by a local decrease of the pH-value,
phase transitions occur resulting finally in the formation of HAP [58]. Subsequently, the HPA
crystals start to grow in a plate-like geometry. This process can be divided into a period of
fast (primary) mineralization (< 10 days) and a period of slow (secondary) mineralization
until the C'a content reaches saturation |61, 14].

Within the last years the role of so-called matrix vesicles (MV) in biomineralization became
subject of extensive discussions. M Vs are spherical bodies (diameter: 20 — 200 nm), which are
bud off the plasma-membrane of cells (in the case of bone formation, supposedly osteoblasts or
preostecytes) [62]. It is documented that beside others, MVs are enriched in tissue non-specific
alkaline phosphatase [63, 62|, which is known to be a key enzyme in the hydrolyzation process
of pyrophosphate (P Pi) increasing the local concentration phosphate ( Pi) which is essential
for the formation of HAP. Additionally, PPi acts as inhibitor of mineralization |64, 65| and
thus increased levels of PPi are associated with mineralization defects in humans (hypophos-
phatasia) [66] and corresponding animal models [64, 67]. MVs are also supposed to contain
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lipids, which might act as mineralization nuclei [62].

Despite the gain of knowledge on the role of MVs in the early stages of bone formation it is
still subject of discussion, whether the major role of MV is (i) to secrete proteins, enzymes and
inorganic substances to enable the first step of the mineralization process, or (ii) to promote
apatite-nucleation already inside the vesicle to subsequently seed them to the organic matrix
or (iii) to directly associate with the collagen to initiate matrix calcification [62].

From small angle X-ray scattering (SAXS) and transmission electron microscopy measure-
ments a plate like structure of the crystals with a few nanometer thickness is concluded
[68, 69]. However, the reason for the 2-dimensional growth of the HAP remains unclear. A
recent study of Xie et al. suspects an interplay of citrate and non-collagenous proteins to
determine the crystal shape [70].

2.1.4 Osteocytes and their Role in Bone Mineralization

Already at the beginning of the 19th century the role of osteocytes in the bone and mineral
metabolism was subject of speculations [71]. Only within the last years these cells were found
to orchestrate bone remodeling and to substantially contribute to the C'a and P metabolism
of the whole organism. It was shown that osteocytes express fibroblast growth factor 23
(FGF23); a hormone, that promotes phosphate excretion into urine and thus being part of
the phosphate regulation mechanism [4]. Also sclerostin, which is known to be a negative
regulator for bone formation, is expressed by osteocytes, inhibiting a pathway that is known
to regulate osteoblastic apoptosis rate (Wnt- S-catenin signaling [72, 19]). This mechanism is a
target for future strategies for treatments of bone diseases characterized by low bone mass like
Osteoporosis or Ontogenesis Imperfecta. The idea for this approach came up when investi-
gating two rare bone diseases: the van Buchem syndrome and Sclerosteosis. Both correspond
to mutations in the SOST gene, encoding the previously mentioned protein Sclerostin. These
patients exhibit abnormally high bone mass and increased bone length. The fact that no
fractures are reported, suggest that no alterations in the bone material quality occur, which
lead to an increased bone fragility [73|. Based on this observation, a model of Sost - knock-
out (SostKO) mice with a targeted disruption of the sclerostin coding region was generated
resulting in a lack of sclerostin production [74]. Sclerostin antibodies (SclAB) were recently
developed deactivating the circulating sclerostin proteins mimicking this mechanism |75, 76].
Consistently, Sost KO mice and mice treated with SclAB exhibit a higher bone volume frac-
tion in the cancellous bone, a thicker cortical bone and thus improved mechanical parameters
|77, 21].

Beside sclerostin, a protein which is known to be one of the main triggers promoting osteo-
clastogenesis (RANKL) was detected in the processes of the osteocyte-like (MLO-Y4) cells
[78]. The expression of RANKL suggests that using multiple pathways, osteocytes have the
potential to influence the balance between bone resorption and formation. Additional to the
mentioned proteins, osteocytes express more markers indicating the crucial role that these
cells are playing in bone metabolism and also in the hormonal balance of the organism |79].
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Several experiments have shown that bone has the ability to react to mechanical stress, thus
loading is known to increase bone mass. Osteocytes revealed to have mechanosensoric capa-
bilities. Fluid flow through the lacuna-canaliculi system is sensed by the dendrites and/or the
cell body stimulating sclerostin secretion and other pathways [80]. Even if the mechanism is
not fully understood, a dense and extensively branched network like the osteocyte lacunae -
canaliculi network (OLCN) offers ideal properties for the detection of local changes of fluid
pressure caused by strain due to mechanical loading.

Beside the statements above, the question remains, whether osteocytes have the ability to di-
rectly interact with the mineralized matrix of their neighborhood. Osteocytes express markers
like acid phosphatase and catepsin K which are usually attributed to osteoclasts which use
them during bone resorption to solute the mineral and organic phase respectively [81]. Con-
sistently, the Acid Phosphatase and Cathepsin K levels in the osteocytes appeared elevated
in lactating mice, most likely to release C'a that is needed for lactation |35]. In that study, it
was also indicated that the lacuna size and also the canaliculi diameter were increased in this
stage. Beside that work, there are more studies where canaliculi and/or perilacunar matrix
exhibits signs of remodeling indicating that osteocytic osteolysis naturally used to resorb and
deposit bone matrix at inner bone surfaces [23, 82, 83, 84|. Even if the canaliculi and osteo-
cyte lacunae account for only a minor porosity of the bone, still 60 % of the bone matrix are
in 1 pum distance or less to the next canaliculi or osteocyte lacuna [85]. Thus the network
features an extensive inner surface of about 1200 m? for an adult human individual, that is
potentially available to the osteocytes. This is about 100 times larger than the bone surface
available to osteoblasts and osteoclasts [86]. Consequently, even small systemic changes of
canaliculi dimensions (in the magnitude of 0.1 nm) would have a significant impact on circu-
lating, systemic ion levels [4].
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2.2 Physical Characterization Techniques of Bone Tissue

2.2.1 Quantitative Backscattered Electron Microscopy (qBEI)

Experimental setup

Figure 2.5 shows the schematic setup of a scanning electron microscope, enabling qualitative
and quantitative analysis of bone architecture, material composition and tissue organization
with micrometer resolution.

In general there are three different types of electron sources (filaments) (Figure 2.6). Tung-
sten hairpin cathodes, Lanthanum Hexaboride filaments (LaBg) or field emission cathodes
are most often used, featuring various properties in terms of beam geometry, electron current,
beam stability, lifetime and financial costs. The tungsten hairpin cathode is the first filament
type applied for SEM, but is still used due to its low costs and tunable emission current. As
the bias voltage determines the region of electron emission, it can be used to tune the emission
current and the focus size can be set to an optimum. The typical lifetime reaches from 40 to
100 hours and the costs are low compared to other cathode types [87, 88|.

State of the art filament types are field emission electron guns made of tungsten, but often
coated with zirconium to reduce the work function of the electrons. These filaments exhibit a
sharp tip with a diameter of 100 nm or less providing high field strength. This combined with
the well defined spot of electron emission, leads to a small focal spot despite a high current
density of about 10° A/cm? (tungsten hairpin cathodes: ~ 3 A/cm?) [88]. For this filament
type, high beam stability and favorable beam characteristics are opposed by increased vacuum
requirements and financial costs of cathode material and replacement.
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After the electron extraction at the cathode, the beam is guided through a system of apertures,
electric and magnetic lenses and coils for beam deflection that varies according to the desired
properties of the final electron probe. Usually, an aperture wheel provides an adjustable elec-
tron current, which can be fine-tuned by varying the voltage at the extractor pinhole. The
high voltage lies between 5 and 30 £V for most applications and must be chosen with respect
to the desired image contrast, sampling volume, energy deposition and tolerable beam damage.

Scanning electron microscopes are usually operated in vacuum. Depending on the cathode
type ultra high vacuum (around 1071 mbar) in the gun chamber may be needed while high
vacuum (107% mbar) is most often appropriate for the system vacuum. Specialized systems
also allow measurements at environmental conditions in the sample chamber.

Figure 2.6: Common types of electron sources: secondary electron images a tungsten hairpin
electron gun (a), a LaBg cathode (b), and a field emission electron gun (c); Reprinted from
Reference [88] with permission from Springer-Verlag GmbH.

Generated signals

Electronic bombardment causes different types of outgoing signals, which can be measured
using appropriate detectors. Backscattered electron detectors are often mounted in a ring-
design around the primary electron beam next to the pole piece to measure the flux of emitted
high-energy electrons after elastic scattering at the sample (Figure 2.7). In contrast, secondary
electron detectors are designed to collect the low-energy electrons, which escape the sample
after inelastic scattering thus providing information on the surface topology. Additionally, an
energy dispersive X-ray system (EDX) may be used for chemical sample composition analysis
by detecting the characteristic X-rays, which are emitted after atomic excitation due to the
interaction of the primary beam electrons with the electron shells of the target material. In
general the resolution and the quality of the gained signal depends on various parameters,
namely the diameter of the primary electron beam, the penetration depth of the electrons
(and thus the primary electron energy) the pixel size of the digital image, electron flux and
counting statistics, beam damage, and instrument stability.

Fundamental knowledge of the physics of the electron - matter interactions is crucial in order
to interpret the outgoing electronic and electromagnetic signals (Figure 2.8). Figure 2.9
shows a Monte Carlo simulation with parameters, similar to our measurement setup (20 kV
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Figure 2.7: Photo of the vacuum chamber of
a Zeiss Supra 40 SEM (Oberkochen, Germany).
The backscattered electron detector is placed
in a ring design below the pole piece while the
energy dispersive X-ray detector and secondary
electron detector are mounted laterally.
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Figure 2.8: Overview of the outgoing signals caused by primary electron (PE) bombard-
ment of an embedded bone sample. High-energy backscattered electrons ( BE), low-energy
secondary electrons (SE), as well as X-rays and cathodoluminescence radiation (CL) can be
detected to characterize sample composition and topology. Reprinted from Reference [90]
with permission from Paul Roschger.
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acceleration voltage, bone-like target material). While the information depth of SEs is only
around 10 nm, BFESs also escape from deeper below the sample surface, providing a distinctly
higher information volume. The escape probability of characteristic X-rays produced after
inner-shell ionization of the target material depends on photon energy and thus its attenuation
on its way to the sample surface. For the Ca — K, line the information depth is estimated to
be around 5 pm [90].

In the following the origin of these signals is discussed. Further information can be found in
the literature (e.g. see Reference [88]).

incident electron (PE)
20 keV

specimen surface
SE epth
=10 nm

BEdepth
=2 |..Ier$‘:

CaKadepm
=5 ym

Figure 2.9: Monte Carlo simulation of electron trajectories calculated for a bone-like ma-
terial. Information depths are marked for SEg.,, (secondary electrons), BEg., (backscat-
tered electrons) and CaK ogepy, (CaKa - X-ray line). Rk is the radius of the semi-sperical
Kanaya-Okyama electron range. Reprinted from Reference |88, 90| with permissions from
Springer-Verlag GmbH and Paul Roschger.

e Backscatter Electrons (BESs):

Elastic scattering of the electrons occurs when a scatter event leads to a change of an
electron’s trajectory, accompanied by only a minor loss of energy. After a cascade of
multiple scatter events (involving mainly angles less then 90°), some of the primary
beam electrons are able to escape the sample surface, still carrying energy just below
that of the primary electrons. With increasing acceleration voltage, these backscat-
tered electrons manage to escape the sample surface also from a distinct distance to
the impinging spot, thus impairing the spatial resolution (Figure 2.9). The percentage
of electrons sustaining high-angle scattering processes and further escaping the sample
after a single-scatter event is low compared to those with multi-scatter events [88].

The parameter 7 is introduced, to describe the yield of BEs. n denotes the ratio between
the numbers of BEs (ngFE) and primary beam electrons ng [88|. Fortunately for our
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analysis, n strongly depends on the electron density, and thus on the average atomic
number (Z) of the target material (Figure 2.10).

For samples with atomic numbers below 20, a linear relationship between Z and 7 is
observed. Since bone mainly consists of HAP (Z & 13.9) and organic matrix (Z ~ 6.5)
(|91]), a linear approximation seems to be adequate for all mixtures of HAP and organic
matrix, which can be used for a quantitative analysis of bone as introduced by [92] and
[93]. Surprisingly, 7 is independent on the energy of the primary beam electrons. This
is supposed to be the result of two adverse effects, namely, the higher energy and thus
the higher probability for electrons to escape the specimen according to a decreased
stopping power, and on the other hand, the increased penetration depth of the electrons
decreasing the number of electrons reaching the sample surface after scattering [88].

Secondary Electrons (SEs):

In contrast to elastically scattered BEs, SEs are caused by scatter events where a
loss of energy occurs due to the production of characteristic X-rays, Auger electrons,
Bremsstrahlung and others. Typically SFE's, that escape the sample have an energy of
only 2 — 50 eV [88]. For these low-energy particles, the stopping power is increased
distinctly, resulting in a very low information depth for SEs as shown in Figure 2.9.
Only electrons of the first nanometers below the surface might leave the sample, thus
reducing the escape depth of the electrons to roughly 1/100 of escape depth of BEs.
Consequently, the SE signal is perfect to image surface topology in high resolution.
The dependency on the atomic number of the target material is much less pronounced
compared to BEs. Nevertheless, Seiler et al. were able to show that the composition
dependent contrast of the secondary electron signal can be enhanced using a high-
vacuum chamber and an in situ sample cleaning system [88], [94]. In contrast to BEs
the SE yield increases with decreasing acceleration voltage. This is due to increased
production of SEs near the surface |88|.
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Quantitative backscattered electron imaging (qBEI)

Using backscattered electron microscopy Boyde et al. suggested to use the Z-dependency of the
backscattered electron yield to identify regions with different mineralization [92|. P. Roschger
et al. extended this approach and established a routine to calculate the calcium concentration
based on the measurement of the average Z, thus introducing the method of BEI [95]. Some
assumptions like the homogeneity of the interaction volume, the apatite composition and the
atomic number of the organic matrix were made, which revealed to be appropriate in a vali-
dation study where the gBEI method was compared to energy dispersive X-ray analysis data
of reference materials [93].

In the calibration routine, which needs to be performed for each measurement, Aluminum
(Al) and Carbon (C') standard reference materials are used to adjust image brightness and
contrast in a predefined way. In the case of the two devices used in our studies, the gray
level in the 8-bit image of Al is set 225 and the carbon peak to 25 |93]. As long as the
working distance remains constant, and monitoring of specimen current, detector stability
and cathode parameters indicates stable measurement conditions, a fixed correlation between
BE flux (represented by the gray value in the qBEI images) and the average atomic number
are warranted. The further conversion to the local Ca concentration (wt%Ca) corresponds
to Formula 2.1 [93].

wt%Ca = 0.1733 x GV — 4.332 (2.1)

While statements regarding the average atomic number of the target material are most re-
liable, for the conversion of gray values to wt%Ca one must keep in mind that changes in
the atomic numbers of the organic matrix or fundamental changes in the mineral composition
might cause systematic errors.

Based on Formula 2.1 qBEI images can be used to gain the bone mineralization density
distribution (BMDD) correlating each gray value (and therefore the wt%Ca value) with its
frequency of appearance in the analyzed image [93|. An example of such a histogram is shown
in Figure 2.11.

Since the conversion from the image to the histogram causes a loss of spatial information of
the mineral distribution, the BMDD curve reflects a fingerprint of the mineralization pattern.

Thus it can be used for its characterization and comparison with other samples and individuals.
As illustrated in Figure 2.11 the BMDD histogram is characterized using 5 parameters [12]:

e Capeqr: most frequently measured C'a concentration

o Caprean: weighted mean Ca concentration

o Caygp: full width at half height of the distribution

e Care,: percentage of bone area which is less mineralized than 17.68 wt%Ca

o Capgn: percentage of bone area which is higher mineralized than 25.30 w%Ca
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Figure 2.11: Example of a BMDD histogram. The five parameters Capear, Canrean, Cawidain,
Camigh, Carew are used to characterize the distribution.

While Capeqr and Capyeq, carry information on the degree of mineralization, C'ayy,q4, becomes
smaller the more homogenous the mineralization pattern is. Hence, this parameter can be seen
as a measurement for the heterogeneity of mineralization. The cut-off values for Cap,, and
Capign are chosen with respect to the 5 % and 95 % percentile of an average BMDD originating
from cancellous regions of healthy adult people [14|. The evaluation of BMDD revealed to
be a powerful tool for the characterization of bone turnover effects on mineralization, and
(maybe even more interesting) the description of pathological mineralization disturbances in
humans [96, 97, 98, 14, 99| and in animal models |21, 100, 101, 102].

2.2.2 Energy Dispersive X-ray Analysis (EDX)

Beside the generation of BEs and SEs as discussed in Chapter 2.2.1, the interaction of elec-
trons with matter also involve the emission of X-rays which can be used for a spatially resolved
elemental analysis. The observed X-ray spectrum consists of two different components. The
Bremsstrahlung, a continuous spectrum consisting of radiation produced due to the deceler-
ation of the electrons in the sample, and electron-induced X-ray fluorescence (characteristic
radiation), which is caused by electronic transitions.

Electronic transitions

In case of characteristic X-ray emission, the energy of the emitted photon £, corresponds
to the difference of the involved energy shells E; and E; (Formula 2.2). The Bohr model of
atoms describes the electronic shells as discrete energy levels. High-energy photons as used
in an SEM are able to ionize the atoms of the target material by direct electron-electron
interaction. If an inner shell electron is punched out, the atom remains in an excited state

Andreas Roschger Page 19



2 State of the Art 2.2. Physical Characterization Techniques of Bone Tissue

followed by an electronic transition from an outer shell (higher energy level) to an inner one
(lower energy level), which is accompanied by a release of energy in the form of the emission
of an X-ray quantum or an outer shell electron, a so called Auger electron. In the first case
the emitted photon with the energy [, might be able to leave the sample contributing to
the spectrum of characteristic X-ray radiation. E,, equals the energy difference between the
initial and the final shells F; and Fy.

E,=hv=F,— F 2.2
P f

The fact that the potential energy of the electron shells strongly depend on the charge of
the core and thus on the chemical element, allows us to assign the energies of the measured
photons to the elements present in the target material. Since the intensity of the outgoing
photon flux corresponds to the element concentration, in the quantification routines this can
be used to derive the composition of the sample.
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Figure 2.12: Allowed electronic transitions and corresponding X-ray energies of a C'u atom.
The energy levels split according to the quantum numbers n, [, j. Reprinted from Reference
[103] with permission from Cambridge University Press.

Figure 2.12 shows the electronic energy levels for Copper (Cu) and the possible transitions.
The main shells (K, L, M, N,...) split into 2n + 1 subshells and can be characterized by the
quantum numbers n, [ and j. All electron transitions with the K shell as their final state are
summarized to the K-series, consisting of multiple K, lines, Kz lines, and so on, depending
on the initial shell of the transition electron. In practice, it cannot be distinguished between
the various contributions of the subshells due to the limited energy resolution of the detector,
but they contribute to broadening of the peak. It must be noted that not all transitions are
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probable due to selection rules of dipole transitions:

1)Aj =0,+1, -1
2)Al =41, -1

Quantification

These rules can be used to estimate the relative peak intensities of «, 5 and ~ lines which are
often well-separated, thus helping to identify the present element if there are energy overlaps
in the spectrum. Quantification of the present elements based on the X-ray spectra is still a
challenging topic, especially if there is only minor prior knowledge of its composition. Most
quantification routines take matrix effects, X-ray attenuation, various information depths and
sample coating into account. But there are still a couple of light elements, which are hard
to detect reflecting unknown components which might cause errors in the quantification. Ad-
ditionally, all routines assume a homogenous elemental distribution within the information
volume (despite the presence of coating which can be considered) and also a flat sample sur-
face. Adulterations in the quantitative results are most likely if these requirements are not
fulfilled. Nevertheless, qualitative comparisons of minor elements between different regions of
similar composition are most reliable even if the concentrations are close to the detection limit.

Restrictions

Emission of fluorescence photons and the emission of Auger electrons are two competitive
processes and both signals provide information on the atomic number of the involved element
[88]. As shown in Figure 2.13 there is a strong dependency of the X-ray yield wg on the
atomic number after K-shell ionization. While for Z < 30 the majority of exertation energy
is released according to the emission of Auger electrons, the X-ray production is favored for
higher atomic numbers [104|. As for our analysis of bone, all elements have an atomic number
distinctly below 30, this competition limits the X-ray flux that can be used for an elemental
analysis.

From a technical point of view, the maximum resolution is determined by the primary electron
beam energy (typically around 10 keV’) and the element of interest. The former defines the
interaction volume in the sample, thus lower energies lead to a smaller depth of penetration and
thus to increased resolution. On the other hand one should keep in mind that X-rays emitted
by light elements like O have distinctly less energy compared to more massive elements. Due
to the strong dependency of the linear attenuation coefficient p; on the X-ray energy, the
depth of information increases with the energy of the fluorescence radiation, thus reducing
the spatial resolution (Formula 2.3).

[(X) = [(0)e e (2.3)

2.2.3 Raman Micro-Spectroscopy

Within the last years the application of spatially resolved vibrational spectroscopy (like Raman
micro spectroscopy and Fourier transformed infrared spectroscopy) on bone tissue increased
remarkably. Their ability to gain manifold information on the chemical composition of the
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Figure 2.13: X-ray fluorescence yield wx and Auger electron yield ox depending on the
atomic number of a target material. Reprinted from Reference [104] with permission from
AIP Publishing LLC.

sample in a non-destructive way, contributed significantly to the understanding of composi-
tion and organization of the organic and mineral constituents of bone.

In contrast to X-ray fluorescence as described above, Raman spectroscopy makes use of elec-
tromagnetic radiation (AE = E; — Ey = hv) emitted after vibrational transitions of the
target’s molecules.

E I —
E A

Molecular / E HHHHH E
energy A Ep
levels
Ep = E2 T E1

Ey

Figure 2.14: Illustration of molecular energy absorption with a primary laser energy FEp:
Photons with at least the energy £, — E3 — F; have the ability to excite the molecule to a
higher energy state. Reprinted from Reference [105] with permission from Elsevier.

The excitement to transient vibrational stages can be described classically as done in Ref-
erence [105]. An external electromagnetic field (£, incident laser beam) induces a dipole
moment (u) according to formula y = aF with « depicting the polarizability. Since both
E and « can vary in time, the amplitude of the resulting dipole moment is most likely not
constant but modulated due to the superposition of these two components. Splitting the time
dependency of the resulting p into its steady-amplitude components provides an illustrative
description of Rayleigh, Stokes and anti-Stokes scattered radiation as shown in Figure 2.15.
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Vibrational modes

The vibrational frequency of the molecule v and a possible not-induced molecular dipole mo-
ment (which is not included in this simple description) are different for various molecules.
The resulting energy levels E; and £y and consequently also the transition energies between
these levels (AE = E; — Ey) are characteristic for the molecule composition.

Due to the considerations made above, the analysis of the gained Raman spectrum provides
information on the present vibrational energy states and therefore on the molecules present
in the sample. The number of possible vibrational modes of a molecule is linked to its degrees
of freedom (n) and amounts to 3n — 6 modes for non-linear molecules (like H>O) and to
3n — 5 for linear molecules (such as C'Oy). Not all of these vibrations can be observed in the
Raman spectrum, but therefore the analysis of the absorption spectrum of the primary beam
provides complementary information as done in infrared spectroscopy. In general, symmetric
or in-phase vibrations of non-polar groups can be studied by Raman while asymmetric or
out-of-phase vibrations of polar groups are most easily studied by infrared spectroscopy [105].

Raman spectra consist of peaks of higher (anti-Stokes scattering) and lower (Stokes scatter-
ing) wavelengths compared to the coherent (Rayleigh) scattered primary beam as illustrated
in Figure 2.16. Rayleigh scattering is most probable (about a factor 107 smaller then the
excitation intensity) while this factor is about 107¢ for Raman scattering. Usually, peaks
in the Stokes spectrum are more intense compared to the anti-Stokes region, but the exact
ratio depends on the occupation of thermally excited states and thus on the temperature. A
classical description of the Raman scattering process can be found in [105] and [106].
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Figure 2.16: The classical scheme shows the induced dipole moment g caused by and ex-
ternal electromagnetic field (a), the induced variation of the polarizability « (b), and their
superposition (c¢). In (d) the contributions of steady amplitudes are shown, splitting the vi-
bration into their three relevant components. Reprinted from Reference [105] with permission
from Elsevier.

Peak intensities

The intensity of a peak in the Raman spectrum is proportional to the number of the corre-
sponding vibrational units. Hence, intensity differences of a certain peak area between differ-
ent locations or samples correlate with concentration of the number of contributing bindings,
thus allowing a semi-quantitative analysis. Deriving quantitative information of the presence
of certain molecules is much more complicated, because every vibrational mode has its char-
acteristic Raman tensor, which is linked with the yield and the polarization of the emitted
photons. Raman tensors might be modified by their chemical environment, thus making their
general descriptions difficult. The Raman scattering intensity I is given by Formula 2.4 if a
single or multiple molecules are taken into account [107].

and I, = I, Z

2 2

Iyl (2.4)

Iy =1y

— ,—»
lg/Oé lg

l, and [y are the direction cosines of incident and scattered beam respectively (g and ¢ sig-
nify the polarization), and o' is the Raman tensor of a certain vibration. Figure 2.17 shows
a typical Raman spectrum for bone.

As used for the studies in this thesis the development of confocal Raman micro spectroscopy
facilitates high lateral resolution (< 5 um), depending on the used optics. For further infor-
mation see Reference [108]. This setup features the combination with other non-destructive
on-Block methods like confocal laser scanning microscopy (CLSM), backscattered electron
microscopy, energy dispersive X-ray analysis, nano-indentation and others. Especially es-
tablishing a routine for Raman measurements between fluorescent labels as introduced in
Chapter 2.1.2 opened great possibilities for an advanced interpretation when comparing the
same tissue age of different samples. Beside the mineral/matrix ratio as discussed below,
also parameters linked to Proteoglycans, Lipids, PMMA, and other can be obtained [109].

The mineral/matriz ratio
The mineral /matrix peak area ratio is frequently used to characterize matrix mineralization.
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Figure 2.17: Example of a typical Raman spectrum obtained in mineralized bone tissue.
Peaks related to the mineral phase (PO,) and the organic matrix (amide) are labeled. The
COs3 peak is linked to Carbonat substitution.

The correlation of this parameter with the qBEI outcome is in the focus of a recently pub-
lished study performed in the frame of this thesis ([46], Chapter 4.1). Hence, it is reasonable
to have a closer look to the nature of this parameter.

The term mineral/matriz denotes the ratio of integrated peak areas under Raman peaks
caused by a vibrational mode of the PO, group like the 1y PO, peak at a wavelengh of
961 cm™!) or 1, POy ( 430 em™) or (v4PO,; 589 cm™!') and one of the amide bands repre-
senting the organic matrix (amidel (1620 — 1700 em™') or amidelIT ( 1240 — 1320 em™ 1))
[15]. Hence, mineral/matrixz is a parameter frequently used to characterize matrix min-
eralization and to describe alterations in bone material quality {110, 82, 111, 112|. Also a
combination of Raman micro spectroscopy and fluorescence microscopy was established to
place measurement points between fluorescent labels as introduced in Chapter 2.1.2, provid-
ing normalization for tissue age and thus allowing more precise interpretation independent of
bone turnover [55, 53, 56, 113|.

In previous studies the orientation dependency of the peaks corresponding to the PO, groups
was analyzed systematically in human osteonal bone. It was shown that the peak intensity,
corresponding to the vy POy stretching vibration, strongly depends on the orientation of the
bone lamellas and therefore on the alignment of the collagen fibrils. In contrast no orientation
dependency was observed when examining the v, PO, and the vy PO, Peaks [114].

Since the predominant part of PO, is bound to HAP crystals, the intensity of the correspond-
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ing peaks is linked to the amount of HAP present in the measurement volume. Amongst
others, deviations might be due to type B carbonation when COj groups substitute PO,.
This is expected for about 2 — 5 % of HAP present in human bone [115].

The amidel and amidel Il peaks can be used to characterize the collagen matrix. The amidel
peak is associated with the C' = O double binding (present in the peptide groups of collagen
and other organic constituents) and involves mainly stretching of the carbonyl group [16]. Ac-
cording to its orientation dependency, this vibration offers the ability to study the alignment
of the collagen fibrils by using a linear polarized excitation beam. In contrast to that, the
amidel Il peak is caused by a stretching vibration of the C'— N in combination with a N — H
binding vibration of a peptide group. Opposing polarization contributions of perpendicular
and parallel components of the amidel Il peak yield to orientation independent results when
analyzing the whole peak [114]. As done for our study, this spectral region can be used if an
influence from the collagen alignment is not desired.

In general, the intensity of the Raman peaks is correlated with the number of vibrational units
(in our case mainly PO, or C' — N, N — H groups) in the measurement volume. Factors, like
orientation dependency, matrix effects, inhomogeneity of sample composition, fluctuations in
laser intensity or wavelength and unknown detector characteristics complicate a quantitative
analysis. Additionally, as discussed above, the estimation of the Raman-tensors (describing
the response of a certain vibrational unit) is not trivial. The Raman-tensor of the amidel
band is well documented for the trans peptide group of an aspartame single crystal and
there is evidence that it hardly changes when the peptide group is incorporated within a
long alpha helix, as present in collagen [116]. Tsuboi et al. also investigated the Raman
tensor for the amidel Il vibration using an aspartame single crystal [116], but to the best
of our knowledge there are no further studies on the transferability to polypeptides as they
occur in the collagen matrix of bone. Concerning the mineral phase, there was no appropriate
documentation of the PO, Raman tensor found in the literature. According to the complexity
of a quantitative analysis, peak area ratios are more suitable to characterize and compare bone
samples. Hence, for our studies, the orientation independent v, PO4/amidelll integrated
peak area ratio (mineral/matriz) was used. The considerations made above confirm that
the mineral /matrix ratio provides a robust orientation-independent parameter when using
the vy, POy/amidel Il bands characterizing bone mineralization with a resolution of about
< 5 pwm when using in a micro spectrometry device.

2.2.4 Confocal Laser Scanning Microscopy (CLSM) of
Stained /Labeled Bone Samples

The introduction of fluorochromes to characterize bone material offered new possibilities to
gain dynamical histomorphometric parameters as already established in a large number of lab-
oratories for routine-analysis. Recently developed applications exceed these standard analysis
methods thus allowing imaging of three dimensional structures or to make use of the fluo-
rescent signal to predefine measurement regions for other methods. Modern CLSM systems
provide great advantages in terms of image contrast and spatial resolution compared to con-
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ventional fluorescent microscopes. Contrary to conventional microscopes, these devices use
lasers with different wavelengths as light sources, and a confocal setup assures a defined mea-
surement volume in z, y and z direction.
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Figure 2.18: Tllustration of the beam path in a confocal laser scanning microscope: (1) filter
(2) objective, (3) out-of-focus layer, (4) in-focus layer, (5) beam splitter, (6) detector, (7)
pinhole; Reprinted from Reference [117] with permission from Springer-Verlag GmbH.

Technical setup

Figure 2.18 illustrates the beam path in a CLSM. The beam-splitter (5) can be designed as
a simple half reflective mirror or a wavelength sensitive mirror optimizing illumination and
detection properties. The objective lens focuses the beam on the sample. According to the
confocal setup, the emitted signal is guided back to the beam splitter and further focused with
a convex lens on a pinhole plane (7). The measurement setup is executed in a way, that the
focal plane at the pinhole represents the desired focal plane on the sample (4). Thus, signals
that originate from sample regions below or above (3) the focal plane are projected in front
of or behind the pinhole plane. Consequently, the pinhole size defines the information volume
and thus the origin of the florescent radiation that is further processed at the detector. In
a CLSM usually one or more photomultipliers are used as detectors exhibiting an acceptable
sensitivity (about 40 % quantum efficiency), high countrate processing capabilities and there-
fore good signal to noise ration.|[117]

Resolution

To find the optimal compromise between high spatial resolution and signal to noise ratio,
besides setting laser intensity and detector gain (voltage applied in the photomultiplier). The
adjustment of the pinhole size is crucial as follows. The lateral resolution is defined as the
smallest distance between two points, that still allows identifying them as separate objects.
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Figure 2.19: Intensity
pattern after diffraction.
The Airy 1 pinhole setting
cuts the distribution at its
first minimum, thus giving
a compromise between
intensity and resolution.
Reprinted from Reference
[118] with permission from
Elsevier. - _—

Lateral image blurring due to diffraction can never be fully avoided. Thus the image of a
perfect point on the sample corresponds to a disc with a certain radius at the pinhole plane,
the so-called Airy disc, or more exactly the Airy pattern if further orders of intensity maxima
are taken into account (Figure 2.19). The Airy disc contains about 97 % of the total light
while the first halo contains with 1.7 % the majority of the remaining intensity. Consequently,
regarding the resolution vs. intensity issue, for most cases it makes sense to set the pinhole in
a way that it fits the Airy disk while higher order maxima are excluded in the beam path. As
a matter of fact it is not possible to make statements on the shape of objects smaller than the
Airy disk, and also the disc radius r determines the smallest distance for distinguishing two
objects and thus defining the lateral resolution. Formula 2.5 is a result of an estimation for
the Airy radius for confocal microscopy. A depicts the fluorescence wavelength. The opening
angle ¢ and the refraction index of the lense n refer to the objective parameters and can be
summarized to the numerical aperture (NA). Depending on the numerical aperture, with high
quality optics about 20 — 25 % of the emitted photons can be collected.

A
T =04-X-(sin(p)-n) =04 — 2.5
con focal ( (()0) ) NA ( )
The resolution can be somewhat increased by reducing the pinhole size to diameters lower
than the Airy 1 value, but this is accompanied by a strong decrease in intensity. On the other
hand, if there are only minor requirements for the lateral resolution also big pinholes might
be sufficient. For our device the pinhole sizes reach from 10 pum — 600 pm.

Basics of fluorescence

To find the optimal measurement setup for CLSM measurements of samples labeled with
fluorochromes, some fundamental knowledge on the physics of the emission of fluorescence
radiation is helpful as detailed described in in the textbooks (e.g. [118] and [117]). A fluo-
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rochrome molecule has the ability to absorb light of a defined wavelength thus performing an
electronic transition to an excited state. (Sy — S7). During a delay time (some picoseconds)
non-radiative transitions might occur until the system reaches the lowest vibrational energy
level of the excited electronic state (internal conversion). Subsequently, the molecule relaxes
to the ground state Sy, which is accompanied by the emission of a fluorescence photon, featur-
ing a wavelength larger than the excitement radiation as illustrated in the Jablonksi diagram
in Figure 2.20. The energy of the fluorescent radiation is below the exaltation energy (Stokes
shift), thus making it possible to discriminate between reflected or scattered primary photons
and fluorescence (Figure 2.21).

Applications

According to the molecule’s electronic and vibrational states, the fluorescence spectrum but
also the excitation spectrum differ for different fluorochromes® (See Chapters 3.4 and 4.2.2).
In a CLSM characteristic spectral properties of different dyes like Tetracycline (for humans)
and Calcein or Alizarin (for animals) allow to separate the signal from the unspecific auto
fluorescence and further to map the location of the various fluorochromes independently.

The mentioned substances refer to those, which are most commonly used to label mineralizing
bone tissue. Of course there are manifold other fluorochromes designed for various applications
providing insight into biological systems in vitro and in vivo as described in the literature [117].

Recently, a method was established to visualize the osteocyte-lacuna-canaliculi network mak-
ing use of the fluorescent character of Rhodamine6G. Kerschnitzki et al. showed that a Rho-
damine solution can be used to stain all inner and outer surfaces of the tissue, like cortical and
trabecular surface and borders of the haversian channels, osteocyte lacunae, and canaliculi
[85, 119]. Making use of the 3D imaging capabilities of the CLSM, a routine was developed

thttp:/ /www.lifetechnologies.com /at /en /home/life-science /cell-analysis /labeling-chemistry /fluorescence-
spectraviewer.html
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Figure 2.21: Excitation and emission spectrum of Tetramethylrhodamine isothiocyanate
(TRITC) in methanol; Reprinted from Reference [118] with permission from Elsevier.

to produce volumetric images of the OLCN and further to use a skeletonization and quantifi-
cation routine to gain network density and other parameters [85].

Additionally, we found that Rhodamine has an unspecific but high affinity to the organic ma-
trix. This offers comprehensive information, when investigating mineralization defects, which
include regions that exhibit no contrast to the embedding material in qBEI (Chapter 3.7).
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Chapter 3

Material, Methods and Methodological
Developments

3.1 Routine Sample Preparation

All specimens used in the present studies are undecalcified bone samples dissected from fe-
murs of humans or mice, embedded in polymethylmethacrylate (PMMA) using an established
protocol [14, 93, 120]. Murine distal femurs were fixed in 70 % ethanol immediately after dis-
section while human samples were frozen (~ —20°C') for storage and put in 70 % ethanol
before to sample preparation.

Prior to the embedding procedure, water was removed by a dehydration series of 70 % - 80
% - 95 % - 100 % ethanol and residual fat was removed by putting the dehydrated sample
in acetone over night. If desired a Rhodamine6G (AppliChem, St.Louis, USA)-staining pro-
cedure as described in Chapter 2.2.4 was performed at this point. Subsequently, the sample
was placed in PMMA and the hardening process was initiated in an incubator during careful
control of the temperature (for more details see Reference [90, 95, 93]).

The PMMA blocks were then trimmed and a low-speed diamond saw (Buehler Isomet, Lake
Bluff, Illinois) was used to cut the embedded bone samples in the desired orientation.

Murine femurs were cut either in longitudinal direction (Figure 3.1a) facilitating measure-
ments at the cortical bone of the femoral midshaft (blue), the metaphyseal (red) and epi-
physeal (orange) cancellous bone or in transversal direction at the diaphysis of the femur
(perpendicular to the long axis of the bone). While longitudinal sections exhibit cancellous
and cortical bone, growth plate and articular cartilage, transversal sections of the diaphysis
gain access to the whole femur cross sections but include no trabecular bone structure (Figure
3.1b). Consequently, various cutting directions provide access to different histological regions.
Thus, to decide the cutting orientation, the addressed problem needs to be taken into account.
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Figure 3.1: Example of longitudinal (a) and transversal (b) cutting direction of a mouse
femur. Three compartments are considered for evaluation: diaphyseal cortical bone (blue),
metaphyseal spongiosa (red), and epiphyseal spongiosa (orange)

3.2 Samples

Samples for studies on human bone, Chapters 4.1, 4.3, and 4.4

Femur samples of 10 humans (6 adults and 4 children, sample #1-11 in Table 3.1) were dis-
sected from the diaphysis and were cut in transversal direction to preserve the circular shape
of the osteons and to have access to the maximum cross-sectional area. For most of these
samples, only half of the femur cross-section was available, but the lateral sites, which were
used for the analysis, were always preserved (Figure 3.2). If desired, samples were stained
with Rhodamine before embedding. The samples were provided by the Department of Foren-
sic Medicine of the Medical University of Vienna and the study was performed in accordance
with the ethic commission board of this institution (EK#: 1757/2013).

Samples used to study Sost-knockout (SostKO) mice (Chapter 4.2.2)

The speciments used in this study are sample sets #12-15 in Table 3.2. The paragraph is
based on the corresponding section of the publication by N.Hassler, A. Roschger, et al. [18].

Details of the investigated mouse model have been published previously [74]. Four-month-old
female wild-type (n—10) and SostKO mice (n—9) with a targeted disruption of the Sost
coding region were maintained in cages with constant temperature of 25°C' and a 12/12-hour
light /dark cycle, fed a standard rodent diet (3302, Provimi Kliba SA, Switzerland) with wa-
ter ad libitum. All animal experiments were performed in accordance with the Swiss federal
law for animal protection under the control of the Basel-Stadt Cantonal Veterinary Office,
Switzerland. The mice received in vivo fluorochrome double labels by subcutaneous injection.
Prior to sacrifice of the animals, fluorochromes with a high affinity to Hydroxyapatite (HAP)
were injected for four times at defined time-points. Two Calcein labels (green, 30 mg/kg;
Fluka, Buchs, Switzerland)) were set 8 weeks before sacrifice with 10 days time interval, and
Alizarin (red, 20 mg/kg; Merck, Zug, Switzerland)) was administered 5 and 15 days before
sacrifice, labeling the very young tissue. This sort of multi-chromatic labeling of 4 time points
is not done routinely, because for evaluation of dynamical histological parameters two labels
of the same fluorochrome are sufficient. In our case the additional labeling of the 8 weeks
old tissue together with the combination of material-characterization methods, provided sub-
stantial information on the mineralization kinetics and material development in the course of
time in Sost KO mice and wild-types. Femora were excised, fixed, dehydrated and embedded
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Figure 3.2: A part of a na-
tive unembedded human fe-
mur dissected from the fe-
mur diaphysis prior to cut-
ting and embedding. Lat-
eral sites are avialable for

~ analysis.

in PMMA as described above.

Samples used to evaluate the impact of sclerostin-antibody (SclAB) treatment in
a mouse model of severe Osteogenesis Imperfecta (OI). (Chapter 4.2.3)

Samples described in this paragraph are the sample sets #16-23 in Table 3.2. The following
text is based on the corresponding section of the publication by A. Roschger et al. [21].

Mice with a defined genetic mutation (in precise: the splice donor site of exon 9) of the colla-
gen type I coding gene (Collal) were used, as previously described [121|. The mice (denoted
as Collal’"/* mice) were bred on a FVB background ' and were generously provided by Dr.
J. Aubin, University of Toronto. Animals were housed in the Animal Care Facility of the
Shriners Hospital Montreal. The project was approved by the McGill University Institutional
Animal Care and Use Committee. Male wild-type and Collal?"*/* mice were randomly as-
signed to SclAB treatment or control injections, starting at either 4 weeks (phase of rapid
growth, 'pediatric model’) or 20 weeks of age ("adult model’) with n = 8 per group. SclAB
(designation as BPS804; developed in a collaboration between Novartis Inc and MorphoSys
Inc) or control antibody was used. The control antibody was an unrelated antibody that
had been raised against chicken lysozym. Antibodies were injected intravenously at a dose of
100 mg/kg BW, based on prior studies by Novartis Inc. The total injection volume was 50 uL.
Injections were given once per week over a period of 4 weeks. Mice were euthanized at the end
of the 4 week intervention period, i.e., at the age of 8 weeks and of 24 weeks, respectively. To
enable the analysis of dynamic histomorphometric measurements, each mouse received two
intraperitoneal (into the abdominal cavity) injections of Calcein (25 mg per kg body weight)
at 5 days and at 2 days (8 weeks old) and at 6 days and at 2 days before sacrifice (24 weeks
old), respectively.

I"FVB" depicts an established mouse strain, that is commonly used for modeling of genetic diseases
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3.2. Samples

Table 3.1: Overview over all human samples which were investigated in the frame of this
thesis. The specimen were cut out of the femoral diaphyseal midshaft in transversal orienta-

tion.
sample  group internal Rhodamine age  sex
ID staining

#1 adult  FM46 no 39a f
#2 adult  FM30 no 29a f
#3 adult FM38 no bba f
#4 adult FMO04C yes 50a  f
#5 adult FM38r yes 55a  f
#6 adult  FM40 yes 56a  f
H#T adult  FM48 yes 48a  f
#8 child  FM15 yes 1.5a m
#9 child  FM21 yes 2.5a f
#10 child  FM25 yes 1.5a f
#11 child  FM28 yes 16m f
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Table 3.2: Murine samples used in the projects described in Chapter 4.2.2 and Chapter 4.2.3

sample (set)  genotype, internal sample . . flourochrome
orientation age  sex
Nr. treatment 1D site labeling
So 1, 4,
CL57BL/6 7,10 ,13, o
#12 femur  longitudinal no 16w f
wild-type 16, 19, 22,
25, 27, 28
So 3, 6,
CL57BL/6 9, 12, 15, o
#13 femur  longitudinal no 16w f
Sost KO 18, 21, 24,
30
CL57BL/6 femur
#14 So 31 - 40 transversal 4 labels 16w f
wild-type diaphysis
CL57BL/6 femur
#15 So 41 - 49 transversal 4 labels 16w f
SostKO diaphysis
FVB -
#16 To1l-8 femur  longitudinal 2 labels 8w m
wild-type
FVB S
H#17 To9-16 femur  longitudinal 2 labels 8w m
Collal’m/+
FVB
#18 wild-type  To 17-24  femur  longitudinal 2 labels 8w m
+SclAB
FVB
#19 Collal”/+ To 25-32  femur longitudinal 2 labels 8w m
+SclAb
FVB S
#20 To 33-40  femur  longitudinal 2 labels 24w m
wild-type
FVB N
#21 To 41 - 48 femur  longitudinal 2 labels 24w m
Collal’m/+
FVB
#22 wild-type  To 49 -56  femur  longitudinal 2 labels 24w m
+SclAB
FVB
#23 Collal”™/+ To 57-64  femur  longitudinal 2 labels 24w  m
+SclAb
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3.3 Quantification of the Calcium Content of Bone using
a Field-Emission Scanning Electron Microscope

In the scope of this thesis, established characterization techniques for bone were extended,
combined with other methods, or newly developed. This facilitates new approaches in charac-
terizing bone tissue, exceeding the routinely applied methods in terms of a more comprehensive
micro architectural and chemical analysis of the same samples in an almost non-destructive
way.

As introduced in Chapter 2.2.1, outgoing from the observation that the intensity of backscat-
tered electrons mirrors the degree of mineralization [92], quantitative backscattered electron
imaging (qBEI) became a validated tool for the quantification of local C'a concentration of un-
decalcified PMMA embedded bone samples |95, 93|. For the last 15 years, qBEI measurements
were performed at the Ludwig Boltzmann Institute for Osteology, Vienna, Austria, with high
consistency, contributing significantly to the understanding of bone matrix mineralization in
health and disease [14, 96, 122, 123, 124|. The current operating device, a Zeiss DSM962,
(Oberkochen, Germany), will be replaced soon by a Zeiss Suprad0 (Oberkochen, Germany)
last-generation field emission cathode scanning electron microscope (FESEM). Therefore, the
previously established measurement and quantification routines need to be adapted to the
new device with special respect to measurement reproducibility, stability of primary beam
and detector, counting statistics, beam damage of the sample and last but not least compa-
rability of the results to the old device. Table 3.3 compares the two devices and depicts the
main differences.

For reliable quantitative measurements, stability of primary electron beam and detector elec-
tronics are crucial to guarantee correct gray value information once the calibration routine is
performed as described in Chapter 2.2.1.

For both devices the specimen current is monitored using a faraday cup (mounted on a regular
sample holder) before and after quantitative measurements to assure that variations in the
beam current do not account for more than 4+ 1 value deviation from the original value.
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Table 3.3: Comparison of the two scanning electron microscopes, which were used in the
scope of the reported work: The (about 15 years) old device (DSM962) will be soon replaced
by a state of the art field emission scanning electron microscope (FESEM - Supra40))

Carl Zeiss - DSM962 Carl Zeiss FESEM - Supra40
Schottky field emission
Cathode Type Tungsten Hairpin Cathode electron gun with zirconium
envelope
specimen current 110 pA 280 pA - 310 pA
optimized working distance 15 mm 10 mm
backscattered electron detector Aquadrant d-quadrant
solid state detector solid state detector
vacuum requirements 107 - 1075 mbar <107 mbar in the sample chamber
<10~ mbar in the gun chamber
operating high voltage for qBET 20 £V 20 kV
image format 512 x 512 px - .pic 1024 x 768 px - .tif
1144 x 901 pum? 1802 x 1351 um?
at pixel size 1.76 pm? (100x) at pixel size 1.76 pm (65%)
field of view
572 x 451 pm? 901 x 676 pm?
at pixel size 0.88 um (200x) at pixel size 0.88 um (130x)

Smart Sem (version 05.05.00)

Operating Software DSM962 - Software package v2.1 on MS-DOS 5.00
on MS WindowsXP

Primary beam stability

While a tungsten-hairpin cathode as used in the DSM962 microscope allows a precise fine-
tuning of the extractor current to maintain a constant specimen current, the electron flux
of the field emission cathode in the Supra40 system varies during its lifetime of more than
1000 h. Within the timespan of some hours this drift revealed to hardly affect the calibration.
To prohibit significant alterations of counting statistics and beam damage due to long-term
changes in the beam intensity, the allowed specimen current bandwidth was restricted to
280 — 310 pA. Additionally, after enabling the high voltage at the beginning of a measure-
ment day, it takes the electron beam about 15 minutes to reach stable conditions where no
quantitative measurements can be performed.

Detector stability

Surprisingly, the stability of the backscattered electron detector (or more precisely of the
detector’s preamplifier) revealed to be a major issue. We noticed that the amplifier electronics
exhibited a significant temperature dependency adulterating the outgoing signal depending
on the room temperature (Figure 3.3). In addition, a memory effect was observed leading to
brighter gray value images subsequent to measurements on high Z materials (Figure 3.4).

It was possible to overcome these problems by testing various preamplifiers. The original
component was replaced the by one that did not exhibit any detectable memory effect and
only showed a minimal sensitivity to changes of the environmental temperature. In addition,
the closed cycle cooling system was extended to include the detector’s preamplifier and a
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Figure 3.3: Temperature dependency of the original backscattered electron detector pream-
plifier: The impact of a change in the room temperature on the measured gray valiues was
highly reproducable.

thermoconducting fleece was mounted on the civeuit board to assure constant temperature of
tlie most sensible electronic parts.
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Figure 3.4: The diagrams of a Al/C reference material (the same as shown in Figure 3.7)
reveal a distincl memory ellect. While gray values were stable during scanning a Faraday cup
{no signal at the detector) an offset was observed after scanning a Ni sample(high clectronic
signal).

Counting Statistics and Beam Damage

When interpreting bone mineralization density distributions (BMDD) as described in Figure
2.11, not only the peak position is taken into consideration, but also the width (full width at
half height (FWHH)) of the BMDI) curve, being a parameter of the heterogencity of miner-
alization. It wasg previously shown that beside the mineralization pattern of the bone, also
the counting statistic and therefore the resulting noige in the images account for about 5 %
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of the BMDD’s FWHH [125]. Since the counting statistics depend on multiple (and partly
unknown) parameters like primary beam intensity, working distance, detector area, detector
design and electronics, the best way to compare the characteristics is to have a look at peak
shapes of reference materials with both microscopes, rather than to calculate the detected
electrons. This is done in Figure 3.5 where the dashed line represents the calibrated measure-
ments in the standard setup with the DSM962 on an Aluminum (Al) standard material while
the colored lines belong to Supra4() measurements with various scan-speeds on the identical
region of interest.

Scan Speed 11 (90 s/image) exhibited a FWHH value closest to the reference curve of the
validated device. As expected broadening of the distribution was observed with increasing
scan speed due to increased noise as a result of lower count rates.
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Figure 3.5: Measurements on an Al sample with various scan speeds (acquisition times):
The dotted line was the result of a standardized measurement using the old DSM962 device
while the other lines correspond to histograms obtained with the FESEM Supra40 device.

As for the Suprad0 system scan speed 11 (90 s/image) revealed to lead to comparable counting
statistics for the two microscopes the question arises if the beam damage is also similar. In
Table 3.4 these calculations are performed for different resolutions with respect to similar
pixel size. According to the increased pixel number per image of the new device, the field of
view is enlarged (and thus the magnification decreased) for a given pixel size.

In Table 3.4 the electron exposure per um? (ke/um?) is introduced as a measurement for the
beam damage and is supposed to correlate strongly with the real damage caused by bom-
bardment of electrons. It is suggested that the main beam damage effect is linked to burning
of C'and O [126, 127]. That is consistent with our observations . This likely leads to a
loss of light elements in the target material and consequently to an increase of the average
atomic number; thus the yield of backscattered electrons increases in the exposed regions as
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Table 3.4: Estimation of the beam damage (electron exposure) using optimized measurement
parameters for the microscopes: The magnification of the FESEM Supra40 system was chosen
with respect to the pixel size of images gained at the DSM962 device. (FOV = field of view)

Specimen I _ i Resolution FOV (x) FOV (y) meas Time e~ exposure
Pixel (x) Pixel (y) )
(pA) (pm/px) — (um) (pm) (s) ke/(pm?)
DSM962 (100x) 110 650 512 1.76 1144 901.12 90 60
DSM962 (200x%) 110 650 512 0.88 572 450.56 90 240
Supra40(65x) 300 1024 768 1.76 1802.24  1351.68 90 69
Suprad0(135x) 300 1024 768 0.88 901.12 675.84 90 277

a function of exposure time and electron flux. Even though the introduced parameter for the
beam damage seems to be reasonable, no information is included about the time course of
exposure. It is reported that the change of the chemical composition of bone is not the same
for continuous and intermittent electron bombardment [126, 127]. Nevertheless, according to
the analogue measurement routine and the fact that the electron exposure is similar for both
routines, comparable beam damage is expected for both devices as long as measurement pa-
rameters are preserved as described above. In Figure 3.6 the result of 8 subsequent calibrated
measurements on bone and PMMA with measurement parameters typical for the investigation
of human bone is shown. While there is no impact on the peak related to mineralized bone
tissue (a) the gray value of PMMA increased by one within the course of the measurements
(b). Thus, we conclude that for qBEI measurements beam damage is not a problem even if
the same region is scanned for multiple times.
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Figure 3.6: Histograms of eight repeated measurements performed on the same region of an
embedded bone sample exhibiting mineralized matrix and PMMA with common measurement
parameters: No drift is observed at the gray values of the bone region (a) while a minor beam
damage effect is present at PMMA (b).
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Calibration routine

The calibration routine for measurements with the Supra40 SEM is done analogously to the
routine reported for the DSM962 [93]. Using 65x magnification (1.76 pum? pixel size corre-
sponding to 100x magnification at the DSM962) a C, Al dual element reference sample is
continuously measured with the Supra40 device. Simultaneously the gray value histogram is
calculated automatically and imaged as shown in Figure 3.7. By adjusting the detector’s gain
and offset (contrast and brightness of the image) peak positions are set to the grey values 25
(C) and 225 (Al). + 1 grey level (corresponding to + 0.17 wt%Ca [93]) deviation is tolerated.
Once this is done, brightness and contrast parameters are stored and must not be changed.
After some measurements (typically 20 minutes) the reference sample is re-measured to mon-
itor the instrument stability. As long as the reference measurements before and after taking
gBEI images are consistent, the images are considered for further evaluation.

| |

1en Mag= 65X WD=10.0mm  Aperture Size = 30.00 ym File Name = cal02.if Extractor | = 139.70 pA
Pixel Size = 1.763 pm Gun Vacuum = 8.06e-010 mbar Date :15 Apr 2014 Brightness = 40.1%
-Signal A=CZBSD EHT = 20.00 kv System Vacuum = 2.47e-006 mhar  Time :11:23:25 Contrast = 68.1%
BSD Gain = High Scan Speed = 11 Extractor | = 139.70 pA Photo No. = 3646 Stage at Z = 36.543 mm
——

Figure 3.7: Calibration routine using an Al - C' reference sample: The upper panel shows
the backscattered electron image of the dual reference sample (C: left, Al: right). In the lower
panel, the current histogram is shown in real time during the continuous scanning process.
Brightness and contrast of the image is adjusted to fit the peak positions of the histogram to
25 (C') and 225(Al)

Direct comparison of the devices

After the considerations made in this chapter, beam and detector stability, image quality,
beam damage and the calibration routine seem to be under control in the new Supra4d() SEM
and the results are supposed to be comparable to the validated and established DSM962
device. Thus measurements with both devices were performed covering the same regions of
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interest on the same sample (human cortical bone) with 1.76 um? pixel size (65x and 100x
magnification respectively). Figure 3.8 opposes the calibrated measurements with the previ-
ously determined parameters.
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Figure 3.8: Calibrated qBEI measurements of the same ROIs with standardized measure-
ment parameters using the DSM962 and the FESEM Supra40 device: In none of the five
analyzed regions notable differences between the two histograms are observed.

It can be seen that the BMDD histograms for all 5 selected regions are nearly identical for
both systems. Thus we conclude that the results are comparable and it is allowed to compare
measurements made on the Supra4( microscope to the previously published reference values
of healthy human people measured at the DSM962 system [128].

3.4 Determination of the Calcium Content at Defined
Tissue Age

One strength of the qBEI method is the ability to gain information on mineralization of large
bone areas (e.g. of human bone biopsies). Thus a BMDD curve as shown in Figure 2.11, con-
tains information of the whole measured surface. In healthy bone low mineralized regions (left
tail of the BMDD curve) likely correspond to young regions where the early mineralization
process occurs while old, interstitial bone packets are normally higher mineralized and thus
refer to the right tail of the curve. In spite of these considerations, in principle information
on the spatial distribution of mineralization and on the age of the investigated tissue is not
contained in the BMDD measurement as described in Chapter 2.2.1. Thus, if deviations from
a reference BMDD curve are observed, they are difficult to be interpreted without additional
information on bone turnover, which can be obtained by histomorphometry (dynamic indices
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500 ym

Figure 3.9: Confocal laser scanning microscopy (CLSM) image of a Sost KO mouse with
two double labels: Alizarin and Calcein fluorochromes were injected at defined time points
into the living mouse to mark regions of active bone formation. The image was chosen for
the cover page of the an issue (October 2014) of the Journal for Bone and Mineral Research
(JBMR)

of bone formation). Hence, it was part of this thesis to develop a routine to use qBEI for
collecting information on bone matrix mineralization of defined tissue ages and so to create
a tool designed to reveal potential changes in the mineralization kinetics. This was done on
the occasion of a mouse model of Sost KO mice representing a stage of drastically increased
bone apposition published by N. Hassler A. Roschger et al. [18] (Chapter 4.2.2).

Animals used for this study (see Table 3.2) were labeled with fluorochromes as introduced in
Chapter 2.2.4) for four time points. The first double label (Alizarin-red) was set 8 weeks and
the second one (Calcein - green) two days before sacrifice (Figure 3.9). Within the double
labels there was a time difference of 10 days. As the fluorochromes bind to HAP, they deposit
in the mineralizing tissue short after injection. If the dissected tissue is then investigated
using a confocal laser scanning microscope (CLSM), narrow green and red bands mark tissue
of known age.

A routine was developed making use of the simultaneous acquisition of fluorescent and re-
flection images of the sample surface using the CLSM as follows: As reflection, fluorescence
and SEM signals originate from the same sample surface, reflection images are used to deter-
mine the transformation parameters (translation, flip and rotation) between CLSM and SEM.
Sharp edges and features like osteons and osteocyte lacunae facilitate precise superposition
with an uncertainty of about three um. The transformation parameters are stored and then
applied to the corresponding fluorescent image. This procedure facilitates matching of the
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backscattered electron signal and fluorescent labels, in a quality which could not be achieved
without taking the reflection images into account.

Figure 3.10: Matching of quantitative backscattered electron images (qBEI) with fluores-
cence images (FLUO): Reflection images (REF) obtained simultaneously with the fluorescent
images facilitating precise superposition and thus tissue age information can be transferred
to the qBEI image (¢BEI ROIs).

In the following, the positions of the labels are marked, stored, and denoted with respect to
their location and fluorochrome type using ImageJ (NIH, v1.48¢). They are then transferred
to the qBEI image where exclusively the regions within the double labels are considered for
further evaluation (Figure 3.10). After clearing the images from cracks and osteocyte lacunae,
the gray values are converted into wt%Ca values according to the standard routine.

Regarding the current project, this new procedure helped to determine the degree of miner-
alization at two defined time points in Sost — KO and wild-type mice providing information
on the mineralization kinetics and also new possibilities in comparison with other established
methods like Raman micro spectroscopy [18] .

3.5 Energy Dispersive X-ray Analysis (EDX) to
Characterize the Composition of Bone
As introduced in Chapter 2.2.2 EDX is a spectroscopic method, which facilitates qualitative

and quantitative characterization of the distribution of major and minor elements in a target
material like bone. For these measurements a field-emission electron microscope (Supra40,
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Zeiss, Oberkochen) was equipped with a silicon drift energy dispersive X-ray detector (SDD)
(Oxford instruments, X — Max"80 ) with 80 mm? sensor area. Sensor cooling is provided
using a two staged Peltier element. A polymer-window as well as a vacuum environment
allows also the measurement of low Z materials like C', N and O. For the current studies,
an EDX measurement routine was developed to characterize mineralized bone matrix with
special respect to the Ca/P ratio. As mentioned in Chapter 2.1.3 and Chapter 4.1.3 the
majority of C'a and P is bound to the mineral phase. Thus, changes in the corresponding
elemental ratio likely indicate alterations in the crystal composition as it is already reported
for bone diseases like Osteogenesis Imperfecta [129]. Literature is spare comparing the Ca/P
ratios in healthy bone within various histological compartments.

Despite the power of this method (fast data acquisition, well-defined information volume ac-
cording to the high lateral resolution, low information depth, and low background noise) some
considerations need to be made to estimate the limits of the method as discussed below.

Optimization of the measurement setup

A series of measurements was performed to determine optimal parameters, taking into ac-
count acceptable beam damage, detector dead time (signal processing time), count rate, and
the elements of interest. Compared to settings optimized for ¢BEI measurements, the device
is now operated in the high current mode using a 60 pum pinhole featuring a beam current
of about 1.5 nA. The acceleration voltage is reduced from 20 £V to 10 kV to reduce the
sampling volume and the countrate, and to increase the sensitivity for low Z elements. In
principle these modifications allow high-resolution mapping of elemental distributions with a
resolution below 1 pm, but for that a long acquisition time (and thus increased beam damage)
is needed. Thus for the purpose of quantitative EDX measurements where no high-resolution
is needed, a sample region of 39.1 x 29.3 um? was scanned (3000x magnification). The sam-
pling time was set to 30 s lifetime (/& 40 s realtime) using the process time index 4 (INCA
software package, v4.15, Oxford Instruments, Oxfordshire, UK). Longer acquisition times or
longer process times showed only minor improvements of the spectrum quality.

Quantification routine

Using these parameters, the quantification was performed using the INCA software package.
As for most commercially sold quantification software, the underlying mathematical algo-
rithms are unknown prohibiting customized fitting and correction algorithms. The software
includes an automated peak identification, a pile up correction and a correction for the thick-
ness of the carbon coating. A so called quantoptimation with a reference material (Ni), is
done before each measurement series, thus performing an energy calibration fine-tuning and
fluorescence radiation flux measurement which are needed later during quantification.

The quantification routine of the INCA software also incudes a database of measured standard
reference materials allowing a fully automated quantification. Nevertheless, as the main aim
of our quantitative approach was the determination of the Ca/P ratio of bone, fluorescent
parameters gained from a house-made HAP pellet were added to the database and used for
all consecutive quantifications of C'a and P. Additional to the calibration standards, the
quantitative results are influenced by parameters like the considered elements, the thickness
of the carbon coating and its inclusion in the evaluation, and the assumption of a so called
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"dark matrix" which is added if the total fluorescence intensity is less than expected from
the quantoptimation. The implementation of these parameters is up to the operator and thus
limits the explanatory power of the quantitative statements. While the comparisons with
quantitative results based on other methods and devices must be done with caution, measure-
ments of similar regions of interest under unchanged excitation and quantification conditions
on the same device feature high comparability.

We found that the C'a/P ratio, which is of special interest for our considerations, seems to be
a robust parameter regarding changes in the quantification parameters while this is not the
case for C'a and P absolute values as shown in Figure 3.11
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Figure 3.11: Results of the quantification procedure with different parameters for Ca, P
and Ca/P: C - coatings with variable thicknesses are assumed in a model with and without
C considered as "dark matrix".

For the measurements in our study, calculations were performed assuming a Carbon coating
of 20 nm thickness and also C' was used to characterize the dark matrix. For all elements
beside C'a and P, fluorescent parameters from the original INCA database were used for
quantification.

Beam damage

After these considerations, the effect of the electron-induced beam damage can be elaborated
for the standardized measurement and quantification parameters as they are used for the
analysis of the samples in the studies.

To do this, ten regions of interest (ROIs, 44 x 59 um?, 2000x magnification) were located
inside various bone structural units as shown in Figure 3.12. EDX spectra of each ROI were
consecutively obtained 20 to 130 times with 20 s lifetime resulting in an electron exposure
time of 28 s (about 40 % dead time).

According to the consecutive measurements of the same ROI, the beam damage can be evalu-
ated by monitoring results of the quantification for each element. This is done in Figure 3.13
by plotting elemental concentration vs. electronic exposure time (=real time).
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Figure 3.12:
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Backscattered electron image of human cortical bone (femur midshaft), which

was taken after the EDX measurements: The exposed regions (44 x 59 um?) appear lighter
due to the damage caused by the electron bombardment.
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The results of these measurements are crucial for the interpretation of the quantification.
While the apparent concentration of C'a and P distinctly increase in the course of electronic
bombardment (Figure 3.13a,b), this is only to minor extent the case for Mg and Na. (Figure
3.13e,f). The loss of C'is consistent with literature where "burning" of low Z elements due to
beam damage is described [130, 131]. Importantly, the at%Ca/at%P ratio does not depend on
the exposure time and therefore on the beam damage (Figure 3.13c). As long as a standardized
routine had been performed, the relative comparison of all quantification results seems to be
adequate. The dotted lines in Figure 3.13 represent the points of estimated beam damage
after a single measurement with standardized parameters as described above (magnification
(3000x), exposure time (~ 40 s), pinhole (60 pm)). The lines are located at the 95 s mark,
which is due to shorter measurement time and lower magnification of these test measurements.

Page 48 Andreas Roschger



3 Material and Methods 3.5. EDX to Characlerize the Composition of Bone

5 RO o
16- ROI2 191
— ROI3
S — ROI4 o
S s ROI5 ® e
— ROI6
— ROI8 o
ROI9
8 T T T . 1 — ROI10 5 T T T T J
0 200 400 600 800 1000 0 200 400 600 800 1000
real time real time
1.91 181
o
E> s
-E AN =
© i 5
S A ’
s P
LAY (e e e e N G 121
1 .5 T T T T 1 1G - T T T T 1
0 200 400 600 800 1000 0 200 400 600 800 1000
real ime real time
049 0.9-
0.8- o
o W\
: s ool T TN re /)
£ & [ W\ IS X~
=1 5 o 2 49 \\./'\_M
k5
0.04+——— T T T J 0.4 T T T T g
0 200 400 600 800 1000 0 200 400 600 800 1000
real ime real time
401 55+
m-
Q Q
5] S
m m
c - T T T T 1 ac L L] L T L}
0 200 400 600 800 1000 0 200 400 600 800 1000
real ime real time

Figure 3.13: Evaluation of the beamn damage for different elements caused by the electron
exposure during EDX analvsis: Each line corresponds to consecutive measurements performed
on the same 44 x 59 pm? arca as shown in Figure 3.12. The dotted line represents the heam
damage which is expected for the standardized measurement routine and is located at the
95 s mark.
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3.6 Visualization of the Osteocyte Lacunae Canaliculi
Network (OLCN)

Within the last years, studies revealed the involvement of the osteocytes and the OLCN to
play a major role in bone matrix mineralization [5, 4]. Tt was also shown that through its
large surface, the OLCN provides global access to mineralized regions inside the bone ma-
trix, making a direct interaction between the network and bone quality parameters plausible
[85, 22|. To gain more information on the OLCN structure, a technique was developed to stain
all inner and outer bone surfaces using Rhodamine staining of native samples [85, 119|. This
approach facilitates the visualization of osteocyte lacunae and the OLCN by using a CLSM.
Until yet the staining and imaging routine was applied to undemineralized, unembedded bone
samples by putting the sample into a Rhodamine6G - saturated aqueous solution prior to
CLSM measurements.

Adaptation of the staining procedure

One aim of our studies was to locally correlate features of the OLCN (measured with CLSM)
with the composition of the bone matrix gained from ¢BEI and EDX. Hence, it was necessary
to modify the staining routine to make it compatible with the standard PMMA embedding
procedure as described in Chapter 3.1 and thus to avoid the use of water for staining purposes.
A tests series was performed comparing staining qualities using a PMMA-Rhodamine mix-
ture and an ethanol-Rhodamine mixture. According to the findings, we decided to stain the
samples using a mixture of ethanol and Rhodamine (1.25 g Rhodamine per 300 ml ethanol)
which was applied after dehydration and prior to embedding as described in Chapter 3.1.
Tubes containing samples and staining fluid (40 ml) were mounted overnight on a homemade
low-speed spinning wheel, facilitating permanent fluid flow and thus ideal penetration. For
human samples the staining fluid was renewed for three times while for mice bone a single fluid
exchange was sufficient due to the lower bone volume. Afterwards, embedding, hardening,
and further sample preparation steps were performed as usual and seemed to be unaffected
by the staining. Network visualization was performed on the polished and uncoated blocks
using a CLSM (CTS SP5, Leica, Wetzlar, Germany).

Standardized parameters for the investigation of bone samples

Human osteonal bone regions were investigated using a 40 X magnification oil immersion
objective (Leica, HCX PL APO 40x NA = 1.25) and the image resolution was set to
1024 x 1024 pz (field of view:388 x 388 um? pixel size: 378 nm?). Images were taken
with a 543 nm laser combined with a Substrate beam-splitter. The reflection signal of a
488 nm laser beam was simultaneously collected making use of a separate photomultiplier.

Overview images were generated by using an automated grid scan (pinhole: 67.9 pum) and
subsequent stitching, performed by the operating software (Leica LAS AF v2.6.4.8702) re-
sulting in 2-dimensional high-resolution images covering the whole sample reaching file sizes
of up to 1.2 GB per .tif image.

Using the parameters mentioned above, except for the airyl pinhole (67.93 pm), consecutive
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images where obtained of different layers in vertical (z) direction with a step size of 300 nm
up to a depth of around 60 pum below the surface resulting in about 200 single images. In
the course of such an image stack acquisition, a predefined continuous adjustment of laser
intensity and photomultiplier gain voltage was performed to correct for laser and fluorescence
radiation attenuation and thus to maintain constant image quality.

Figure 3.14: Confocal laser scanning microscopy (CLSM) image of the Rhodamine stained
osteocyte lacunae canaliculi network (OLCN) in human osteonal bone: The osteocytes are
aligned circumferentially around the Haversian canal and are interconnected by a dense canali-
culi network. Image dimensions are 388 x 388 pum. The insert shows a 3D-reconstruction of
a single osteocyte lacuna obtained with the same technique.

The gained data contains 3-dimensional information on the course of the canaliculi and also
on density, shape and distribution of the osteocytes. A projection of 10 such images (3 pum
volume depth) is shown in Figure 3.14. The data can be evaluated and quantified using a
house-made software package developed by Felix Repp (Max Planck Institute of Colloids and
Interfaces, Potsdam, Germany) and Philip Kollmannsberger (Max Plank Institute of Colloids
and Interfaces, Potsdam, Germany and ETH Ziirich, Ziirich, Switzerland) which includes a
standardized adaptive threshold, a skeletonization algorithm, cell recognication and evalua-
tion, and network analysis (density, orientation, knot distribution,...).

When investigating stained mouse femora we decided to use a 63 x oil-immersion objective
(HCX PL APO 63x/140-60 OIL) with an airyl pinhole of 95.51 um and a z-step size of 150 nm
according to the higher density of the OLCN compared to humans.
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Interpretation of the reflection signal

As mentioned above, the reflection signal of a 488 nm laser beam was simultaneously recorded.
This was done also from layers below the surface. Surprisingly, we found that this signal re-
sembles the lamellar structure of the mineralized bone matrix as shown in Figure 3.15. A
comparison with high resolution backscattered electron microscopy and light microscope im-
ages using a circular polarized differential contrast (CDIC) filter confirmed the position of
the lamellar structure. This revealed that reflection-bright lamellae correspond to in-plane
orientated collagen fibers. Comparable (but more accurate) data were observed making use
of second harmonic generation in CLSM [132].

Figure 3.15: Confocal laser scanning microscopy (CLSM) image of a Rhodamine stained
human osteonal bone in fluorescence (a) and reflection (b) mode: While the fluorescence
image exhibits the OLCN, in the reflection image the lamellar structure of the osteons is
visible. Regions which are nicely stained (green dot), non-stained (blue dot), and heavily
stained (red dot) are marked (error bars = 100 pm).

It must be noted that the physical explanation for the reflection signal from below the surface
is unclear. It might be caused by differences in the refractive index between the lamellae or
might be due to multiple scatter events in the case of a beam path perpendicular to the colla-
gen bundle orientation. Since the phenomenon is poorly understood, an accurate evaluation
of the lamellae is not taken into account in the network evaluation. Nevertheless, the consis-
tency with the known lamellar structure of bone is striking, thus we used the reflection signal
to distinguish between adjacent bone structural units or regions of osteonal and periosteal
bone apposition.

Limitations

Despite the power of the Rhodamine staining procedure some limitations need to be discussed
in this context. One might have the idea to use the Rhodamine fluorescence signal to measure
the diameter of single canaliculi. Unfortunately, this is problematic due to the resolution less
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than the canaliculi diameter (> 378 nm vs. about 200 — 300 nm diameter [35]). Thus in all
of our images, the signal originating from a canaliculi appears blurred and broadened making
the investigation of the lateral canalicular dimensions impossible.

Another question arises when evaluating the overview images as shown in Figure 3.15. Beside
osteons and other regions with a properly stained network (green dot), there are bone packets
exhibiting no Rhodamine signal (blue dot). Considering the fluorescence images, it is hard
to decide if these areas resemble regions without network, or if the network there is somehow
isolated from the blood vessels (or the bone surface) so that no staining fluid penetrates dur-
ing sample preparation.

On the other hand, some regions exhibit outstanding intense and diffuse fluorescence signals
(red dot) making a clear identification of canaliculi impossible. We found that these regions
correspond to non-mineralized or very low mineralized bone areas which let us speculate that
these are sites where the mineral content (and thus the matrix density) is too low to pre-
vent, the ethanol/Rhodamine mixture from penetrating the interfibrillar matrix, resulting in
a blurred diffuse signal.

Non-stained regions as well as those with too intense staining are sites where obviously no
network analysis can be performed, but nevertheless they resemble sites with exceptional bi-
ological conditions providing some information on the mineralized matrix and thus must not
be seen as simple staining artifacts.

In the frame of the limitations it should be noted that until yet Raman spectroscopy was not
performed on Rhodamine stained samples. It is likely that especially at sites of new bone
formation the fluorescence signal superimposes the Raman scattering signal and thus impairs
an analysis.

3.7 Visualization of Osteoid using Rhodamine Staining

Beside the characterization of the OLCN, Rhodamine staining revealed to be a tool to visualize
non-mineralized tissue like osteoid. As we found that the Rhodamine strongly accumulates in
the osteoid, the idea raised if it might be useful to label mineralization defects (e.g. osteoma-
lacia) occurring in various bone diseases and states like hypophospatasia, hypophosphatemia
or vitamin D deficiency [133, 134, 135].

Backscattered electron microscopy is an established tool to image the mineralized matrix, but
reaches its limits when also the non-mineralized tissue is of interest. Even a simple quantifi-
cation of the amount of osteoid is usually not possible due to the low contrast between purely
organic matrix of osteoid and PMMA. As shown in Figure 3.16, staining with Rhodamine as
described in Chapter 3.6 and subsequent imaging with a CLLSM, revealed to be comprehensive
and compatible to routinely performed backscattered electron microscopy. Both methods can
be performed on the same sample surface, even if the sample is coated with carbon. Since,

Andreas Roschger Page 53



3 Material and Methods 3.7. Visualization of Osteoid

also the osteocyte lacunae located in the non-mineralized matrix become visible (black voids
in Figure 3.16b) and the staining routine seems not to interfere with conventional fluorescent
labeling, this approach is planned to be applied on samples where a characterization of min-
eralization defects is required.

Figure 3.16: Visualization of the non-mineralized bone matrix of a severe mineralization
defect in the cortical region of a mouse femur: In the backscattered electron image (a) only
the mineralized parts of the defect region are visible. The Rhodamine signal obtained with
the confocal scanning laser microscope (CLSM) (b) can be used to characterize the amount
of non-mineralized matrix. In (c) both signals are superimposed (error bars = 100 um).
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Chapter 4

Results and Discussion

Methodical developments as described in Chapter 3 were performed to gain new insight into
the bone mineralization process in health and disease. The comprehension of bone develop-
ment and composition is critical for the characterization of physiological and pathophysio-
logical processes. Analyzing bone samples from animal models (in our case Sost-knockout
(SostKO) mice and a model for Osteogenesis Imperfecta treated with Sclerostin antibodies
(SclAB)) with established and newly developed methods yields to valuable data focusing on
bone quality properties additionally to information on bone mass and architecture. The pre-
sented combination of quantitative backscattered electron microscopy (qBEI), Raman micro-
spectroscopy, energy dispersive X-ray analysis (EDX) and confocal laser scanning microscopy
(CLSM) provides access to the degree of mineralization and mineral crystal properties, the
composition of organic matrix, and the elemental composition at predefined regions of inter-
est (ROI) [16, 14, 18]. Pathological conditions or treatment potentially alter these quantities,
thus causing changes in the quality of the bone material independent of the overall bone mass
and structure [50, 25|. As it is reported bone quality essentially contributes to bone strength
and is thus is closely linked to fracture risk [50, 25].

For the development of new therapeutic drugs it is essential to monitor not only the change in
bone quantity, but also to focus on the properties of bone to help estimating long-term or side
effects. In this sense also the examination of the osteocyte lacuna canaliculi network (OLCN)
of human bone samples will lead to important information as this network is reported to play
a major role in mechanosensation, for the reaction to changes in systemic ion concentrations,
and for the endocrine character of bone [4, 80, 79, 23].

This motivates the application of newly developed/extended and established methods to char-
acterize basic mechanisms of bone matrix mineralization of human and murine bone samples.
For a common interpretation of BEI and Raman outcomes, in the frame of this thesis for the
first time a head-to-head comparison of these two methods was performed on the same ROIs.
This approach revealed a fundamental relationship between the C'a content as determined
by qBEI and the mineral /matrixz ratio elucidated by Raman spectroscopy. The so gained
relationship is the topic of Chapter 4.1 where identical secondary mineralized osteons and
interstitial regions were analyzed with both methods.
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There is some evidence that these very early stages of bone formation are crucial for a normal
development of organic matrix and for a proper mineralization of it [136]. Thus, another
focus of this thesis is on the tissue close to these regions, where a rapid increase in mineral
content is reported [14]. The corresponding approach using EDX is described in Chapter 4.4
where mineralization fronts and the adjacent tissue were analyzed with respect to the local
concentration of major and minor elements. The investigated sites are regions of new bone
apposition and thus reflect a critical state for bone development. However, these sites resem-
ble only a minor fraction of heterogeneous bone tissue.

Taking into account that on the micron scale, bone is not homogenous, it becomes obvious
that for the comparison between samples the way of selecting the regions of interest must be
chosen with respect to the addressed questions. qBEI measurements at regions normalized
for tissue age as done in our study on SostKO mice (Chapter 4.2.2) revealed changes in the
mineralization kinetics (N. Hassler*, A. Roschger*! et al. [18]).

In contrast to this approach, whole bone area qBEI mappings and evaluation led to results
depending on the bone turnover with a maximum of explanatory power on the current miner-
alization pattern. In this sense the analysis of our study on SclAB treated mice was performed
(A. Roschger et al. Bone 2014 [21]) (Chapter 4.2.3).

In these two studies mineralization is characterized in conditions of increased bone formation
due to elevated osteoblastic activity and in the case of the second study also a model of Os-
teogenesis Imperfecta is included.

As described in the introduction (Chapter 2.1.4) the role of osteocytes cannot be neglected
when discussing matrix mineralization. Beside others the osteocyte network is supposed to
play a major role in C'a and Phosphate homeostasis due to their suspected ability to alter
the bone composition of their environment [22|. For this reason another study was performed
focusing on the local distributions of major (Ca, P) and minor (Mg, N, K, S, Cl) elements
with respect to various OLCN types in human compact femoral bone (Chapter 4.3).

4.1 Correlation of Bone Matrix Mineralization Measured
by Quantitative Backscattered Electron Microscopy
(qBEI) and Raman Micro-Spectroscopy

This chapter describes the comparison between the mineral/matriz parameter measured by
Raman micro-spectroscopy and weight percent Ca as determined by qBEI. The study is a
fundamental work helping to interpret the two variables in the context of each other and is
already published in the Journal of Biomedical Optics by A. Roschger et al. [17|. Figures, se-
lected paragraphs and considerations presented in this chapter are also part of this publication.

IBoth authors contributed equally to this paper and are listed in alphabetical order.
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Raman spectroscopy and vibrational spectroscopy in general became a powerful tool for the
investigation of bone material and offers access to chemical properties of the collagen matrix
and the mineral phase. The physical basics of Raman spectroscopy are described in Chap-
ter 2.2.3.

Despite the fact that there are also other methods with similar spatial resolution providing
data closely connected to the degree of mineralization (like EDX and qBEI) a head to head
comparison of Raman micro-spectroscopy and these methods was not performed yet. In the
current project we applied both, Raman micro-spectroscopy and qBEI, to identical ROIs in
healthy human compact bone undergoing secondary mineralization to elucidate the princi-
pal relationship between the mineral/matriz (voPOy/amidelITl) ratio (Raman) and wt%Ca
(¢qBEI). The results will allow a more accurate interpretation for every study where qBEI and
Raman spectroscopy are applied on the same spots. Hence, the addressed questions are:

1. How is the mineral/matrixz ratio linked with the Ca content as measured by qBEI?
2. Can the technical variation be separated from biological heterogeneity?

3. What is the statistical power of each technique?

4.1.1 Selection of Measurement Regions

To answer these questions, we analyzed 99 ROIs of 20 x 20 um? located inside osteons of the
femoral midshaft of three healthy women with respect to a large variation in mineralization
between the ROIs (Table 3.1 Sample #1, #2, #3). The samples were provided by the depart-
ment of Forensic Medicine of the Medical University of Vienna and were prepared as described
in Chapter 3.1 and |95|. The same ROIs were analyzed with both methods and an average
wt%Ca value was derived for every ROI using qBEI (DSM962, Oberkochen, Germany) while
25 measurement spots were acquired to determine the mineral/matriz Raman parameter as
shown in Figure 4.1.

4.1.2 Results

Recording and evaluation of the Raman spectra was performed by colleagues in our institute
supervised by Elephterios Paschalis, PhD. A precise description of the measurement proto-
col and the statistical analysis can be found in [95]. Additionally to the measurements also
theoretical estimations were performed to derive the expected correlation between the gained
parameters as follows:

Theoretical considerations to derive an estimated correlation between qBEI and
Raman parameters

Figure 4.1d shows the correlation between the mineral/matriz and the wt%Ca parameters.
The fact that a linear extrapolation of the data misses the origin of the graph by far, let assume
that the overall relationship between these parameters is not directly proportional. To check
if this observation is expected from a theoretical point of view, mathematical estimations
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Figure 4.1: (a) Overview of a quantitative backscattered electron imaging (qBEI) image with
overlaid light microscope images: Light microscope images (LM) were taken at the Raman
device for the documentation of measurement points (red dots). The blue boxes designate the
regions of interest (ROI) for ¢BEI analysis. (b) qBEI analysis: Orientations and positions of
the blue boxes were transferred from (a) to mark the exact positions of the ROIs that were
considered for ¢BEI analysis. (¢) Raman analysis: representative Raman spectrum of human
bone; the v5/POy4 and the amidelIl peaks (red) were used to derive the mineral/matriz
ratio. (d) Comparison of Raman and ¢BEI results: mineral/matriz assessed by Raman

versus wt%Ca measured by qBEI Each circle represents the average value of one 20 x 20 pm?
ROI (blue boxes in (a) and (b)).
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were performed taking into account the different natures of Raman and qBEI parameters and
following simplifications:

1. For all estimations the PMMA content is neglected. This seems to be reasonable since
the volume of PMMA-filled canaliculi account for less than 1% of the mineralized matrix
[85]. Also only PMMA peaks close to the detection limit were observed in the Raman
spectra.

2. For this first approximation the Ca/P ratio is assumed to fit the theoretical value of
pure Hydroxyapatite (HAP) (Cao(P04)6(OH)s) of 1.67.

3. All the Phosphate (PO,) and C'a content is assumed to be bound in HAP implying that
Ca and POy contributions from phosphorylated non-collagenous proteins or protein-
bound Ca only account for minor quantities.

In the following a set of abbreviations is used:
e Npp,: number of the PO, groups per unit volume
® Nunicarrr: number of the C'— N, N — H groups per unit volume
® Myinera: Mass of mineral per PO, group
® Mymiderrr: Mass of organic matrix per C' — N, N — H group
e wit%mineral: weight percentage of the mineral crystal

® Rumidgerrr: molecule-dependent parameter, including all constants and vibrational prop-
erties of the amidel Il group

e Rpp,: molecule-dependent parameter including all constants and vibrational properties
of the PO, group

According to simplification (1), bone is considered to be a two-component system, consisting
of a mineral and an organic phase. Hence, wt%mineral is defined as the mass of mineral
per volume (Npo, * Muyinerar) divided by the total mass (Formula 4.1). Simplification (3)
includes that a direct conversion between wt%Ca as measured by qBEI and wt%mineral is
straightforwardly calculated as in Reference [95] (wt%mineral = 2.51 - wt%Ca).

N * minera
2.51 - wt%Ca = wt%mineral = PO, * M l

(4.1)
POy4 * Mumineral + Namide]][ * MamidelIT

This can be transformed to

wt%mineral Npo, - Mmineral

— 4.2
100 — wtY%omineral — Numiderrr - Mamidel 1T (4.2)

The left side of the equation (Formula 4.2) can be derived from qBEI measurements and cor-
responds to a ratio between the mineral phase (wt%mineral) and the non-mineral (organic)
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matrix (100 — wt%mineral = wt%organic). The right side includes parameters depending
on the vibrational units accessible by Raman spectroscopy. Thus the goal is to derive a rela-
tionship between this term and the mineral/matriz Raman ratio:

The intensity of Raman scattered light I(v)g is proportional to the primary beam intensity
Iy and the number of scattering molecules N:

. 247T3 I(] -N - h(VO — V>4
C 4532 cr pep(1 — e /AT

I(V)R ’ [45(aa)2 + 7(7a>2] (43)
All other terms, including the speed of light (c¢), Planck’s constant (h), molecular vibra-
tion frequency (v), laser excitation frequency (1y), reduced mass of the vibrating atoms (u),
Boltzmann constant (k), absolute temperature (7'), mean value invariant of the polarizability
tensor (a,), and the anisotropy invariant of the polarizibility tensor (7,) can be summarized to
the molecule-dependent parameters Rgmiqerrr and Rpo,, respectively. These definitions allow
simplifying the mineral/matriz ratio as shown in Formula 4.4. According to the confocal
experiment setup, the measurement volume V' can be treated as constant.

Hence it follows for a defined vibration x:

I,=1-V-R, N, (4.4)

and consequently

mineral(r,POy)  Ipo, Iy-V - Rpo, - Npo,

(4.5)

matriz(amidelIT) — ILuniderrr LoV + Ramiderrr - Nomiderrr

B Rpo, - Npo, _ Rpo, - Mamider1r Npo, - Mumineral (4.6)
Romiderir - Namidel 1 Ramiderir - Mmineral  NamideI 11 * Mamidel11

Hence, we derived the desired association between Raman and qBEI parameters:

mineral(vo POy) g wt%mineral (4.7)
= Slope - :
matriz(amidel IT) P€" 100 — wt%mineral
with
R Rami e
Slope = Po:/ delll (4.8)

Mmineral /mamideIII

The value of the slope remains unknown. Rgmigerrr and Rpoy include unknown contribu-
tions from the optical parameters, Raman tensors, and measurement geometry, which are
hardly accessible. Also regarding mamigerrr, detailed information on the composition of or-
ganic matrix is missing. Thus the slope-value cannot be derived numerically. Nevertheless,
the theoretical consideration made above lead to two remarkable predictions as also described
in Reference |17]:
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1. A linear correlation between the mineral /matrixz ratio (Raman) and wt%mineral /100—
wt%mineral (QBEI) is expected. The mathematical transition from wt%mineral /100 —
wt%mineral to wt%Ca includes a conversion from a ratio to a fraction. Therefore, lin-

earity is not preserved when deriving a theoretical correlation between mineral/matriz
and wt%Ca.

2. Linear direct proportionality between the mineral /matriz ratio and wt%mineral /100—
wtY%mineral is expected as a result of the absence of an additive constant (offset) in
Formula (4.7). Thus, a mathematical extrapolation of the measurements is expected
to go through the origin after transforming the x-axis of Figure 4.1d from wt%C to
wt%mineral /100 — wt%mineral.

Regarding "Prediction 1" we found consistently that linearity of the measurement distribution
slightly increased due to the described transformation to the x-axis.

As expected from "Prediction 2" we found that the x-axis transformation from wt%Ca to
wtY%mineral /100 — wt%mineral leads to linear direct proportional correlation. The mathe-
matical extrapolation of the regression line goes through the origin within the 95% confidence
bands (Figure 4.2). These behaviors of the ¢BEI and Raman parameters are in excellent
agreement with the theoretical considerations made above.
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Figure 4.2: Correlation of mineral/matriz (voPOy/amidelIl) assessed by Raman and
wt%mineral /100 — wt%mineral measured by qBEIL: Each data point refers to a ROI. Ad-
ditionally, the linear regression line (black dashed line), the 95 % confidence bands of the
slope (dark dashed line), and the 95 % prediction bands (bright dashed line) are shown. As
predicted by theoretical estimations, the plotted data are correlated linearly (R?* = 0.75).

Calculations on the influence of the Ca/P ratio of bone mineral
From a theoretical point of view it is possible to estimate changes in the mineral /matriz ratio
in the case of a changed mineral composition (assuming relatively unaltered organic matrix)
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like the influence of other mineral phases or the degree of the apatitic crystal lattice ion sub-
stitutions. Extending Formula 4.7, we now introduce a parameter «, which depends on a hy-
pothetical mineral composition and describes the relation between wt%Ca and wt%Mineral.
a equals 2.51 for pure HAP and changes due to the properties of the mineral [95].

minfzral(V?PO4) _ wt%Ca - o Ap - MamidelIT with  Ap = RPO4 (4‘9)
matriz(amidel[T) 100 — wt%Ca - « Momineral Romidel11
The last term of Formula 4.9 can be summarized to the factor K.
K — /\RmamideIII (410)

Mmineral

Figure 4.3 illustrates the mineral/matrixz ratio calculated from arbitrarily chosen wt%Ca
values for three different K. K5 was chosen to fit the results of our measurements. Resulting
from the approximation that mineral consists of pure HAP (Ca/P = 1.67), the range between
the two dashed lines reflects the difference between a hypothetical 1:1 mixture of HAP and
Octacalciumphosphate (2CayH(POy); - 2.5H,0) (Ca/P = 1.5, K; = 0.63, a = 2.70) and
type B-carbonated HAP with Ca/P = 1.9 (Cag5(PO4)5(CO3)(OH),), K3 = 0.54, a = 2.49).
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Figure 4.3: mineral/matriz (voPOy/amidelll) calculated from arbitrary wt%Ca values
with variations in K. The K-value includes unknown parameters like R,igerrr and Rpo,
and the exact composition of the collagen and the mineral phase. Ky was chosen to fit the
measurements. Using the approximation that bone consists of pure HAP, the bandwidth
between the two dashed lines reflect the difference between a 1:1 mixture of Octacalcium
Phosphate (Ca/P = 1.5) and carbonated HAP with Ca/P = 1.9. The gray region reflects
the converted 95 % prediction bands. The validity of these graphs for the low mineralized
regions remains unclear.
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28

1.51 e

v,PO,/Amide IlI
o

0.51

0.0 - - . . - .

0 5 10 15 20 25 30
wit%Ca Figure 4.4: (a)  Technical
" variability: mineral /matriz
) (1, POy /amidelIT) versus wt%Ca.
2.05 The bars of the crosses are 2 o
of the technical variation. The
1.5 technical variations were derived

for both methods by obtaining the
same region for approximately 20
times.  (b) Intraindividual vari-
ability within a 20 x 20 pm ROL
Crosses symbolize the observed
standard deviations (SDs) within
each measurement field for Raman

v,PO,/Amide IlI
o

0'00 5 1'0 1'5 2'0 2'5 3'0 and qBEI. To improve legibility not
wit%Ca all data points are shown with error
bars.

Technical variations vs. biological variations

Despite the high linear correlation, the question lingers whether the deviations from the
regression line in Figure 4.2 are due to technical variations of the measurement setup, or due
to biological heterogeneities influencing Raman and qBEI signals in different manner. To
determine the influence of these factors, in Figure 4.4 error bars are added to the data points
representing 2 o (Raman: 0.0088 mineral/matriz, qBEL: 0.099 wt%Ca) of the technical
variation as described in Reference [17]. For both, Raman and qBEI, the technical variability
causes only minor uncertainties. Thus we conclude that the technical variations are too low
to substantially contribute to the deviation of the data points from the regression line.

In Figure 4.4b the error bars illustrate the measured standard deviation (SD) within each
ROI. Therefore, error bars in the y-direction represent the SD of the mineral/matrixz ratio
of the 25 measurement points of the corresponding region. To achieve comparable statistics
between Raman and qBEI, within every ROI average gray values of all 5 x 5 pixel bins were
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used to calculate the standard deviations for qBEI. Hence, for Raman and for qBEI 25 values
per ROI are used to determine the biological variances, but nevertheless the statistical power
is different. This is due to the fact that for qBEI each value itself is the average over a field
of 5 x 5 pixels. As a consequence, this procedure reduces the noise in the qBEI causing re-
ductions of the SDs and the coefficients of variation (COV).

The comparison of measured variations with technical fluctuations (Figure 4.4) leads to the
conclusion that the variations within a 20 x 20 gum? ROI are predominantly due to a biological
variation rather than fluctuations caused by the measurement process.

A more accurate analysis of the SDs strongly suggests a dependency on the degree of min-
eralization (wt%Ca) for both ¢BEI and Raman. Low mineralized ROIs (< 21 wt%Ca) have
significantly higher SDs in both methods (p < 0.0001) compared to the ROIs with a Ca con-
tent between 21 and 26 wt%. Interestingly, for high mineralized ROIs ( > 26 wt%Ca) the SD
deviation in wt%Ca remains unchanged (p = 0.528), while the SDs of the mineral/matriz
values increase significantly compared to those with medium mineral content (p = 0.014).
The results of this analysis are shown in Table 4.1. When the COVs are calculated, the
significant differences of the variations between the low and the medium mineralized regions
remain (p < 0.0001) while the COVs of the medium and high mineralized regions are equal
for Raman (p = 0.708) and qBEI (p = 0.959) (Table 4.1).

The significances for the qBEI outcome were also calculated with the same results for the
wt%mineral-ratio as introduced in Formula 4.2, so that changes due to the conversion to
wt%Ca can be excluded as confounding factors.

Table 4.1: Median standard deviations (SD) and coefficients of variation (COV) within the
regions of interest for Raman and gqBEI measurements for three ranges of different mineral-
ization: The values of the SDs correspond to the error bars indicated in Figure 4.4.

* p < 0.0001 vs. low mineralized (< 21 wt%Ca), ° p < 0.05 vs. high mineralized
(> 26 wt%Ca)

<21 wt%Ca 21 —26 wt%Ca > 26 wt%C
wt%Ca (qBEI) - Range wt%Ca wt%Ca wt%Ca

(n=19) (n="173) (n=T7)
Raman - SD (I, pos/Lomicerrr)  0.0924 0.0482 * ° 0.0815
4BEI - SD (wt%Ca) 0.796 0.426 * 0.427
Raman - COV 0.1807 0.06096 * 0.06035
gqBEI - COV 0.042 0.018 * 0.016

Interindividual variations of the regression slopes

The statistical evaluation (linear regression analysis) of the inter-individual differences showed
that neither slope nor intercept with the y-axis of the linear regressions were significantly
different for all three samples.
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4.1.3 Discussion and Conclusion

In agreement with the theoretical evaluation, no direct proportionality between wt%Ca (mea-
sured by qBEI) and mineral/matriz (measured by Raman) was found, but as expected this
was the case for wt%mineral /(100—wt%mineral) (derived from wt%Ca) and mineral /matrizx
in bone regions undergoing secondary mineralization. All the presented data as well as the
correlation refer to these regions and may not extrapolate to regions with low mineral content
close to the mineralization front as discussed below. It is demonstrated that the deviations
from the linear regression line are predominantly due to biological heterogeneity. Therefore
we now address the various sources of these uncertainties:

Variability between the ROIs

Our study links the mineral/matriz ratio (voPO,/amidelIl) measured by Raman micro-
spectroscopy with wt%Ca as assessed by gBEI in healthy human bone, exclusively in the
secondary mineralization phase. The Ca content of the analyzed measurement fields ranges
from 17.6 wt%Ca up to 27 wt%Ca covering most of the C'a concentration range present in
human bones (Figure 4.1d). The narrow regions of primary mineralized bone, that occur
next to active mineralization fronts, were excluded from this study. A transformation of the
x-axis from wt%Ca to wt%mineral /(100 — wt%mineral) (termed wt%mineral ratio) results
in Figure 4.2. The linear correlation and its intercept with the x-axis close to the origin
(which lies in the 95% confidence band) are in agreement with a theoretical estimations when
approximating the mineral phase using pure HAP (Figure 4.2).

When comparing the technical and the observed variability for both methods, we found that
the scattering of the data points in Figure 4.2 is primarily related to the biological hetero-
geneity of bone material. Even within a 20 x 20 um? region of interest (ROI), that was placed
inside a single bone structural unit, the material appears heterogeneous, causing variations
in the measurements higher than the technical uncertainties (Figure 4.4). As a consequence,
the deviation from the regression line is caused by local changes in the material properties.
Therefore the question remains, as to what extent do changes in the sample composition in-
fluences the results.

Influence of the C'a/P of bone mineral

Often, the Ca/P ratio is used to characterize the mineral composition but for human bone
tissue, C'a/ P values vary between 1.6 and 1.7 [137|. Other studies using EDX measured C'a/P
weight percent ratios between 2.1 and 2.2, which corresponds to the Ca/P ratio range men-
tioned above [138, 130]. This variability is likely due to changes in the apatite composition
due to type A and type B carbonate substitutions as well as Mg, Na or K ones, or even
the presence of Ca-ion lattice vacancies in the apatite crystal [139, 140, 141, 142|. Of course,
alterations in the mineral composition or phase change both, Raman and qBEI outcomes.
The expected range of the measurements according to changes in the Ca/P ratio are esti-
mated in Section 4.1.2 for a hypothetical 1:1 mixture of HAP and Octacalcium Phosphate
(Ca/P = 1.5), as well as for type B-carbonated HAP (Ca/P = 1.9).

The Ca/P ratios of 1.5 and 1.9 in this model may reflect exaggerated deviations in the mineral
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composition from pure HAP and likely don’t relate to appreciable phases occurring in bone.
Nevertheless, it reveals in which way changes in the mineral are altering the correlation be-
tween wt%Ca and mineral /matrixz. Since the gray shaded region in Figure 4.3 corresponds
to the 95% confidence interval from the measured scatter of mineral/matriz and wt%Ca
values in Figure 4.2, it can be speculated that the variability between and within the ROIs
originates from distinct local changes of the mineral composition. However, the origin of these
changes remains unclear. Fluctuations in the degree of carbonate substitution, the presence of
mineral phases other than HAP, or C'a substitution with ions such as Mg, K are plausible ex-
planations. This is in agreement with previous studies showing that the chemical composition
of HAP changes as a function of the location (thus tissue age) within an osteon [112, 140].
Of course it cannot be excluded that changes in the organic matrix also contribute to the
observed variability. For example, phosphorylated organic molecules potentially increase the
local PO, content, and protein bound C'a may also contribute to our results.

Variability within a ROI

We observed a significant increase of the standard deviations (SD) in the lower mineralized
ROIs for both methods (Table 4.1). These regions (< 21 wt%Ca) were located in osteons with
ongoing bone apposition (mineralizing surfaces), which were identified by a distinct gradient
of mineral content down to the level of pure osteoid. In such young osteons the degree of
mineralization increases as a function of distance to the Haversian channel. This causes a
gradient of mineralization within the ROIs and therefore enhanced SDs for the outcome of
both methods (Table 4.1). Also the local biological variance might be increased in very young
bone. The fact that these differences remain significant when normalizing the SDs for the
mean value and calculating the coefficient of variation (COV) supports these statements.
The variability of the C'a content within the ROIs in the high mineralized osteons or in-
terstitial regions (> 26 wt%Ca) remained unchanged. Interestingly, the variability of the
mineral /matriz ratio increased significantly in these regions. In contrast to that a statistical
analysis of the COVs of these regions showed no significant differences between medium and
high mineralized ROIs. Therefore, it can be assumed that for Raman the variability in the
maineral /matriz ratio is a function of degree of mineralization and tissue age, unlike qBEL.
Regarding qBEI, it was previously reported that there are slight variations in the mineraliza-
tion and also in the mechanical parameters between adjacent lamellae of osteonal bone, likely
contributing to the observed heterogeneity within a 20 x 20 um ROI [32].

Interpretation of the Slopes

As the curves in Figure 4.3 correspond to straight lines with various slopes in the mineral /matriz
vs. wt%mineral diagram in Figure 4.2, distinct changes in the slope of the regression line
would indicate fundamental changes in the tissue composition of the secondary mineralized
regions. Therefore, this type of measurement may prove to be an extra tool for the investiga-
tion of bone quality in diseased bone as it is reflective of altered mineral composition, and may
also prove to be a key factor bridging altered bone quality as assessed by Raman spectroscopy
with altered bone mineral density distribution. In future, together with the Raman evaluation
of the 1, PO, /COs3 ratio (a measurement for the degree of carbonate incorporation) and EDX
(quantification of the C'a/P ratio and the Na and K content) we expect to be able to check
whether an altered slope is due to a different mineral composition, or if abnormal composition
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of the organic matrix must be considered.

In this study the variations in the slopes between the individuals showed no significant dif-
ferences. However, due to the low sample number and the study design, slight changes in
the slopes might not reach significance. The presented techniques can be used to obtain data
from a larger healthy reference cohort to generate a more robust tool for clinical investiga-
tion. It must be noted that in this case, the acquisition settings must be the same for the
measurements on different samples assuring comparability of the gained data.

Nevertheless, the comparison of measurements on diseased bone with the data shown in this
study might help to understand changes in the mineralization process, if distinct deviations
from the presented correlation are observed.

Raman measurements are often performed close to the regions of new bone formation, between
fluorescent labels, marking young regions with strictly defined tissue age [55] - a tissue type
that is not covered in the current study. The combination of Raman and qBEI as used in this
study but closer to the mineralization front provides a promising topic for future investigation.
Thus, the very early stages of bone formation can be analyzed. The base for such an anal-
ysis is an extremely precise matching of the points of measurements between both methods,
which is still challenging (at least 1 pum accuracy). Superimposing optical and qBEI images
can most likely not achieve this. Nevertheless, correlation of the Raman parameters with the
tissue age or C'a concentration is expected to yield significant insights into the evolution of
bone mineralization in health and disease.

The interpretation of the correlation between Raman and ¢BEI data close to the mineraliza-
tion front is expected to become even more complicated because in these regions the chemical
composition of the measurement volume changes systematically as a function of the location,
and the makeup of the organic matrix is also rapidly changing. In these narrow bands the Ca
content as measured by qBEI and also the mineral /matriz ratio increase drastically with the
distance from the osteoid surface [55, 113, 14|. How the regression curves (Figure 4.1d and
Figure 4.2) behave in these interface regions, remains unknown. Deviations from the linear
regression are expected according to an increase of the PMMA content linked to the higher
microporosity. Additionally parameters like protoglycan/amidelll, mineral crystalinity or
relative lipids content are reported to change at mineralization fronts as a function of distance
to the Haversian canal [56]. Once a technique for precise matching of Raman and qBEI mea-
surements is developed, such studies can help to elucidate underlying mechanisms of tissue
mineralization.

Conclusion

Through combination of Raman micro-spectroscopy and qBEI v, PO,/amidel Il Raman in-
tensities (mineral /matriz ratio) data were linked to C'a content (wt%Ca) data. A linear cor-
relation of mineral /matriz (Raman) with the transformed wt%mineral /wt%(OrganicMatrix)
(qBEI) was observed in healthy human bone matrix being in secondary mineralization phase.
This type of correlation is in agreement with theoretical considerations. The local variability
of both parameters inside bone structural units is caused by biological heterogeneity and was
found to depend on the degree of mineralization. The combination of Raman and qBEI pro-
vides a novel approach for the detection of changes in composition of bone tissue that might
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help to understand the physiological and patophysiological mineralization process of bone.

4.2 Bone Mineralization in Sclerostin Deficiency

Beside bone mass and architecture, properties of the organic matrix as well as bone miner-
alization seem to be key factors characterizing bone quality and mechanics [25]. Although
these parameters are not easily accessible, especially for the development of new drugs to treat
Osteoporosis and other bone diseases, the material properties need to be taken into account
to give a comprehensive description of a drug, disease, or gene defect impact. In this sense,
the focus of this chapter is on the material properties of two mouse models related to a novel
approach for osteoanabolic treatment of Osteoporosis, Osteogenesis Imperfecta and maybe
also other bone diseases, namely the administration of SclAB [143]. Significant results were
gained using routines and methods developed during these studies as described in Chapter 3.4.

This chapter is based on a study presented as talks and posters on national and international
conferences 2345 and two further studies already published by N. Hassler®, A. Roschger*® et
al.; J Bone Miner Res, 2014 [18] and A. Roschger et al.; Bone, 2014 |21]. Figures, selected
paragraphs and considerations presented in this chapter were also part of these publications.

In the first of the studies the BMDD of Sost KO mice was obtained in various anatomical sites
using qBEI. For the interpretation of the so-gained observations, a more detailed analysis was
required. This was done in the second study, which revealed altered mineralization kinetics
and changed organic matrix properties in Sost KO mice lacking sclerostin, at the endocortical
site of the femoral diaphysis using qBEI and Raman spectroscopy as introduced in Chapters
2.2.3 and 4.1. The third study is a logical follow-up project, describing the mineralization
pattern of transgenic and wild-type mice being a model for Osteogenesis Imperfecta treated
with SclAB. These studies were performed in collaboration with Michaela Kneissel (employed
by Novartis Inc, Basel, Switzerland) and Frank Rauch (Shriners Hospital for Children, Mon-
treal, Canada) (Chapter 4.2.3). While qBEI measurements and image processing routines
were performed in the frame of this thesis, Raman measurements and peak evaluation were
done by colleagues in our institute (Ludwig Boltzmann Institute for Osteology) supervised by
Eleftherios Paschalis, Phd.

2A. Roschger et al; The mineralization kinetics of endocortical bone is altered in Sost knockout mice; First
LBG Meeting for Health Sciences; December 2013; Vienna, Austria; poster presentation (1.14)

3A. Roschger et al; Einfluss von niedrigem Sclerostin-Level auf die Knochenmasse und Knochenmateri-
alqualitat; Osteologie 2013; March 2013; Weimar, Germany; invited talk

4A. Roschger: Combination of Quantitative Backscattered Electron Imaging with Confocal Laser Mi-
croscopy: A Powerful Tool for the Evaluation of Bone Matrix Mineralization Kinetics, XIIth Congress of the
International Society of Bone Morphometry; American Society of Bone and Mineral Research; October 2012;
Minneapolis, USA.; oral prisentation

A Roschger: The Mineralization Kinetics of Endocortical Bone is Altered in Sost Knockout Mice; October
2012; Minneapolis, USA; poster presentation (MO0269)

6*Both authors contributed equally to this paper and are listed in alphabetical order.
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4.2.1 Bone mineralization density distribution (BMDD) of SostKO
mice

We analyzed longitudinally (n = 9) cutted blocks of the femur diaphysis of Sost KO mice and
corresponding sections (n = 11) of wild-type littermates by qBEIL. A further description of the
samples is given in Chapter 3.2 and in Reference |74|. These specimens were used to gain the
BMDD in cortical and cancellous regions (Figure 4.5). A remarkable increase in bone mass
in the Sost KO mouse model was observed, which is consistent with previous descriptions
[74, 77]. Figure 4.6 shows representative examples of BMDD distributions of cortical (a) and
cancellous regions (b).

1 mm

Figure 4.5: Longitudinal sections of distal femora of a wild-type mouse (a) and a Sost KO
mouse (b): The labeled regions were considered for quantitative backscattered electron anal-
ysis (qBEI).

While we observed a distinct shift of the BMDD histogram towards lower mineralization in
the cortical bone of Sost KO mice, the opposite was observed for cancellous regions for both
parameters linked to the degree of mineralization (Table 4.2). Hence, the question lingers how
these apparently contradictious observations can be interpreted. While the increase in miner-
alization in the cancellous region is supposed to be due to increased bone mass, and therefore
to an elevated average tissue age, the reason for the shift towards lower mineralization in the
cortical remains unclear so far. To address this point, transversal sections of another cohort
was evaluated with respect to mineralization kinetics and organic matrix properties compar-
ing regions of the same tissue age.
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Figure 4.6: Bone mineralization density distributions (BMDD) of the cortical bone (Ct)
and the spongiosa (Sp) of SostKO (-/-) and wild-type (WT) mice. In SostKO mice, in the
cortical bone the distribution is shifted towards lower mineralization (a) while in the spongiosa
the opposite is the case (b).

Table 4.2: Comparison of bone mineralization density distribution (BMDD) parameters
between wild-type (WT) and SostKO mice: Cappeqn, and Cape,y characterize the degree
of mineralization in cortical bone (Ct) and metaphyseal spongiosa (Sp). Cap g reflects
the heterogeneity mineralization. The quoted numbers refer to mean values and standard
deviation. *p < 0.05, **p < 0.005, ***p < 0.001

Ct Sp
WT  SostKO WT  SostKO
03 Diff. % 0° Diff. %
(n=11) (n=29) (n=11) (n=9)
Carrews 2563 25.14% 99.65  23.86%**
1.90 5.30
wt%Ca]  0.44 0.45 0.55 0.38
Capey. 2614 25.61% 24.04  24.63**
2.00 2.50
Wwt%Ca]  0.42 0.46 0.42 0.36
Caw; 2.95 3 359  3.12%
widh 1.70 13.10
wt%Ca]  0.23 0.15 0.34 0.21
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4.2.2 Mineralization kinetics and organic matrix properties of
SostKO mice

In the recently published study, femoral diaphysis cross sections of SostKO (n = 9) and
wild-type mice (n = 10) (described in Chapter 3.2) were investigated using the DSM962 mi-
croscope (Chapter 2.2.1) and Raman micro-spectroscopy (Chapter 2.2.3) [18]. Recording and
evaluation of the Raman spectra were performed by colleagues in our institute supervised
by Elephterios Paschalis, PhD. In this study a routine to combine the fluorochrome labeling
technique and qBEI was developed (Chapter 3.4). This was done to gain information on the
mineralization kinetics at the periosteal and the endocortical site of the femoral diaphysis.
Additional, Raman measurement points were set between the fluorescent labels to reveal pa-
rameters like the proteoglycan/matriz ratio, the mineral — maturity/crystallinity of the
bone mineral apatite crystallites (see Chapter 2.2.3). Tissue age normalized qBEI and Ra-
man measurements were executed as shown in Figure 4.7. Unfortunately, this kind of analysis
could not be performed at the cancellous regions in longitudinal sections according to rare
trabecular structure in the wild-type group.

Raman points +
Fluo

Figure 4.7: (A) Stitched fluorescent image from the confocal laser scanning microscope
(CLSM) of transversal section of a Sost KO mouse femur. Calcein double-labels (green) mark
the young tissue (tissue age 5 to 15 days), Alizarin labels (red) mark the older tissue (tissue
age 55 to 65 days). (B) Using reflection images obtained by CLSM, tissue age information
(fluorescent labels) are overlaid on the qBEI image. The yellow-framed areas were considered
for the analysis of mineralization at defined tissue ages. (C) Raman measurements were
performed at five different tissue ages. The crosses mark the position of the measurement
points. Marks #2 and #4 correspond to the regions considered for qBEI analysis.

It should be mentioned that in the scope of this study also samples from humans lacking
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sclerostin (suffering Sclerosteosis) were analyzed with qBEI and Raman spectroscopy. Due
to the rarity of this disease the sample number was low, thus limiting expressiveness. The
corresponding results can be found in [18].

Quantitative backscattered electron imaging (qBEI)

2-way ANOVA revealed no interaction between genotype and tissue age (Table 4.3). At
endocortical bone envelope the degree of mineralization in Sost KO mice was significantly
changed compared to wild-type mice at both tissue ages (Figure 4.8). Between calcein labels
(5 — 15 day-old tissue) a decrease of the mineral content (—1.9%, p < 0.0001) was found, as
was the case within the alizarin double label (55 — 65 day-old tissue) (—1.5%, p < 0.05).

No significant differences in mineralization were observed at the subperiosteal bone envelope
between SostKO and wild-type animals (Table 4.3). Within genotype, the differences in
mineralization (wt%Ca) between the young and old tissue ages were significant at the endo-
cortical (WT: +4.6%, p < 0.0001, KO : 4+5.6%, p < 0.0001)) and the periosteal (WT: +5.7%,
p < 0.0001, KO : +4.8, p < 0.0001) sites (Figure 4.8).

a) b)

284 p<005 28+ n.s.

- 15% of Ca Mean
4 ACa = 0.39wi%) g

27 p<0.001 [ s 27
§ L3
Q 264 = 261 7
‘§' sl _ 4 086 of Ca Mean ‘§’ i

254 {ACa = D.ATwi%) 254

241 24

WT KO WT KO WT KO WwT KO
young tissue  young tissue old tissue old tissue young tissue  young tissue old tissue old tissue

Figure 4.8: Degree of mineralization (wt%Ca) in Sost KO and wild-type mice: (a) Regions
of young tissue age (5 to 15 days) as well as older regions (55 to 65 days) exhibit significantly
lower mineralization (—1.9 % [—0.47 wt%Ca] and —1.5 % [—0.39 wt%Cal, respectively) at the
site of endocortical bone apposition. (b) At the site of periosteal bone apposition no changes in
mineralization were observed between Sost KO and wild-type mice, when comparing the same
tissue age. Consistently, older tissue is significantly higher mineralized than younger tissue
in both genotypes (significance levels not indicated). 2-way ANOVA revealed no interaction
between genotype and tissue age for both anatomical sites.

Raman measurements

2-way ANOVA analysis indicated that all monitored parameters depend on tissue age (Table
4.3) at both the endocortical and periosteal surfaces. On the other hand, Sost deletion af-
fected these parameters only at endocortical surfaces. Specifically, the Proteoglycan content
normalized to the amount of organic matrix was significantly higher in the Sost KO animals
at tissue ages 2 — 5 days, while the mineral-maturity/crystallinity values at endocortical sur-
faces were also dependent on genotype (per 2-way ANOVA analysis); subsequent individual
unpaired t-tests between groups at each specific tissue age did not reveal any significant dif-
ference (p > 0.05).
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Table 4.3: Results of 2-way repeated measurements ANOVA analysis of the quantitative
backscattered electron analysis (¢BEI) and Raman parameters. Significant values are bold.

tissue age effect genotype effect interaction

end peri end peri  end  peri
wt%Ca < 0.0001 < 0.0001 < 0.0001 0.690 0.400 0.256
proteoglycan/matriz <0.0001 0.002 <0.0001 0.214 0.132 0.689

min.maturity /crystallinity 0.001 <0.0001 0.024 0.574 0.295 0.139

4.2.3 Effect of Sclerostin Antibody Treatment (SclAB) in a Mouse
Model of Severe Osteogenesis Imperfecta

After the characterization of bone mineralization and organic matrix properties of mice lack-
ing sclerostin as presented above, the logical follow-up task is to describe the mineralization
pattern of a mouse model treated with SclAB. Fortunately, we were able examine this in grow-
ing and adult wild-type mice and in a newly established mouse model of severe Osteogenesis
Imperfecta as described in Chapter 3.2. This study is already published in Bone [21].

Longitudinal sections of the distal femur were analyzed using qBEI (DSM962). Additionally,
blood serum data, mechanical properties and histological parameters were obtained, which
are not presented, but are described in detail in the related publication [21]. Bone samples
from growing (8-weeks-old) and adult (24-weeks-old) wild-type mice were analyzed with and
without injection of ScIAB (for more details see Chapter 3.2.

We found that in all analyzed anatomical sites (metaphyseal spongiosa (MS), epiphyseal spon-
giosa (ES) and cortical bone at the diaphysis (Ct)) BMDD exhibited a clear shift towards
higher mineralization in the OI mice compared to the wild-type mice (see Figure 4.9). How-
ever, the impact of SclAB treatment on the BMDD was different with respect to skeletal sites,
genotype and animal age. Further, there was a general increase in bone matrix mineralization
from MS to ES to Ct and between 8 to 24-weeks-old mice (Figure 4.10 and 4.11). The BMDD
parameters Caarean, Cpeak s Cawidath, Carow and Caggn, were used to quantify statistically
these differences in the BMDDs of the animal groups as introduced in Chapter [14].

The quoted p-values refer to 2-way ANOVA tests for factor genotype and factor treatment.
No interaction terms were observed with exception of Cay ;g in the ES of the 8-weeks-old
mice and Cay,, of the Ct of 24-weeks-old mice. The written ranges of % changes in BMDD
parameters correspond to the results of the post-hoc tests between the individual experimen-
tal groups displayed in Figure 4.10 and 4.11.

8-weeks-old mice (Figure 4.10)

Considering factor genotype, qBEI of the distal femur of 8-weeks-old mice showed higher
matrix mineralization in OI. The most frequently occurring C'a-content were consistently in-
creased at all three measured sites in Ol mice compared to wild-type mice (Capeqr +5.2 to
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Figure 4.9: Backscattered electron image of the distal femur (longitudinal section) of 8-
weeks-old mice: Untreated wild-types (upper panel) showing the three regions of interest in
which BMDD analysis was performed: MS, cancellous metaphyseal bone; ES, cancellous epi-
physeal bone; Ct, cortical midshaft bone. Metaphyseal cancellous bone of untreated (lower left
panel) vs. treated (lower right panel) wild-types. Examples of BMDD histograms: Analysis
at the three skeletal sites of the four experimental groups.

+8.3 %, p < 0.0001). The weighted mean Ca-content was increased in the cortical region (Ct)
(Caprean +6.7 to +7.0 %, p < 0.0001). The heterogeneity of mineralization was decreased in
OI compared to wild-type exclusively in the Ct (Caw;qn —20.0 to —22.5 %, p < 0.0001). The
low mineralized portion of bone was increased in the MS and ES of OI mice (Capo, +45.2 to
+106.5 %, p < 0.0001) while there was no difference in the Ct. The high mineralized portion
exhibited elevated levels in the ES and Ct of OI (Cagign, +113 to +360 %, p < 0.0001).

Considering the factor “treatment”, SclAB administration led to a shift towards higher miner-
alization in the cancellous bone regions compared to non-treated mice. Capseqn, Was increased
in MS and ES (4+2.9 to +4.1 %, p < 0.05). This was accompanied by a decrease of Cawqn
(—0.7 to —17.4 %, p < 0.05) and a reduction of Cayy, (—19.7 to —34.8 %, p < 0.005) in these
regions. Cap;gy, significantly increased in the MS (+31.6 to +49.0 %, p < 0.05), while at the
other sites the same trend was present.
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24-weeks-old mice (Figure 4.11)

In contrast to growing mice, treatment with SclAB of old animals did not change any BMDD
parameters. Nevertheless, OI mice also exhibit a pronounced phenotype: Cape, was in-
creased at all sites (2.8 to +6.1 %, p < 0.0001). Consistently, C'apseqn, Was increased in the
MS and the Ct (+1.7 to +5.4 %, p < 0.05). Cawan was reduced in OI at MS and Ct (—4.3 to
—25.2 %, p < 0.05). Capey (+4 to +111 %) and Caggn (+34.1 to +360 %) were significantly
elevated at all sites in OI. With exception of Car,, in the Ct where 2-way ANOVA revealed
no significant difference, while post hoc test indicate a reduction. 2-way ANOVA revealed no
interaction terms between the factors "genotype" and "tissue age".

Gain of bone mass

Regarding the increase of femoral bone mass (BV/TV and cortical thickness) as measured by
pCT (performed by collaborators at the Shriners Hospital for Children, Montreal, Canada),
it should be noted that there was a distinct response to SclAB treatment in growing and adult
wild-type and OI animals. As expected within the same treatment and age group OI mice
exhibited lower BV/TV and cortical thickness.
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Figure 4.10: Results of qBEI analysis at the distal femur in 8-weeks-old mice of the metaphy-
seal spongiosa (MS), epiphyseal spongiosa (ES) and cortical bone (Ct): n = 8 mice per group.
Ep < 0.0001, **p < 0.005, *p < 0.05 vs. genotype and same treatment; °*°p < 0.0001,
*°p < 0.005, °p < 0.05 vs. treatment and same genotype using Bonferroni post-hoc test.
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Figure 4.11: Results of qBEI analysis at the distal femur in 24-weeks-old mice of the meta-
physeal spongiosa (MS), epiphyseal spongiosa (ES) and cortical (Ct): n = 8 mice per group.
**¥p < 0.0001, **p < 0.005, *p < 0.05 vs. genotype and same treatment; using Bonferroni

post-hoc test.
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4.2.4 Discussion

As already several studies associated reduced sclerostin activity with increased bone forma-
tion, within our studies and the presented projects we focused on the material science level
to reveal possible changes in bone tissue composition. This aim is also of special clinical
interest as the administration of SclAB is one of the most promising approaches for future
Osteoporosis treatment.

BMDD of SostKO mice

When analyzing Sost KO mice, routinely performed methods needed to be extended and
combined with CLSM to gain information on the mineralization kinetics at endocortical and
periosteal sites of bone apposition. BMDD analysis of longitudinal sections of Sost KO mice
revealed a differential effect of sclerostin deficiency between cancellous and cortical bone re-
gions. The shift of BMDD towards higher mineralization in the cancellous region is supposed
to be (at least partly) due to geometrical effects. As the femur metaphysis of the control
mice (adult - 16-weeks-old) contains only few small trabeculae, the average tissue age is likely
very low according to ongoing bone turnover. As mineralization needs some time to reach its
plateau [14, 144, 145, 146] , the lower average tissue age causes an overall low mineral content.
Without assuming any changes in the kinetics of mineralization, an overall elevation in miner-
alization is expected when the trabecular diameter increases and thus also the average tissue
age. With increasing distance from the surface, bone regions are more likely to be protected
from being remodeled and thus elevating the average time available for mineralization. Tak-
ing these considerations into account no statements can be made regarding the mineralization
kinetics in these regions.

We assumed that according to the different geometry of the cortical bone this effect might be
present to a much lower quantity. Nevertheless, the shift of the BMDD in this region towards
lower mineralization appeared contradictious. As we had the feeling that this effect cannot
be explained by the increase of newly formed bone matrix alone, change of the mineralization
kinetics was hypothesised causing potentially lower mineralization at similar tissue age.

Mineralization kinetics of SostKO mice

This hypothesis was tested using a combination of CLSM and qBEI. The presented results
revealed lower mineralization in the Sost KO mice compared to wild-type at the same tissue
age confirming our hypothesis made above. This result leads to the conclusion that there
must be a change in mineralization kinetics in the very early stage of bone matrix mineral-
ization. Interestingly, this effect was only present at the site of endocortical bone apposition
while at the periosteal site, there were no significant differences observed. This is in line with
the literature characterizing the corresponding human disease (Sclerosteosis) by an increase
of endosteal osteolysis [20]. On the other hand Li et al. showed that Sost KO mice exhibit a
decreased endocortical but also an increased periosteal perimeter indicating that the lack of
sclerostin effects both anatomical sites [77].

Proteoglycans in SostKO mice
Consistent with the changes in mineralization kinetics exclusively at the endocortical side,
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Raman measurements revealed changes in the organic matrix at this side but not at the side
of periosteal bone formation. Most interesting, the PG /matriz peak area ratio was signifi-
cantly increased in the Sost KO mice. PGs are reported to act as inhibitors for mineralization
[45, 44]. Furthermore, it is known that PGs are enriched at border regions of the canaliculi
[45] to prevent the void from mineralization. In this context it can be speculated that the
significant increase in PG /matrixz might reflect alterations in the osteocyte canaliculi network.

A new approach for further analysis SostKO mice
Based on these results regarding the differential mineralization kinetics and PG content,
possible working hypothesis for future investigations might be:

1. The lower mineralization and the increase in the PG/matriz at defined tissue ages in
the Sost KO mice are due to an increased microporosity, caused by a denser OLCN
compared to wild-type.

2. The lower mineralization and the increase in the PG/matriz at defined tissue ages in
the Sost KO mice are due to an increased microporosity, caused by an elevation in the
average canalicular diameter.

Hypothesis 1 can be tested using CLSM after Rhodamine staining as introduced in Chap-
ter 3.6 with fluorochrome-defined tissue age as described in Chapters 3.4 and 4.2.2. This
approach would allow characterization the of OLCN with respect to a specific tissue age. For
the image acquisition of a sample stained with Rhodamine and labeled with Alizarin and
Calcein it might be challenging to find measurement parameters to separate the three flu-
orescence signals. Figure 4.12 shows the results of a feasible study where a cortical region
of a SostKO mouse was imaged, visualizing the OLCN and the two double labels. With
the evaluation of the OLCN with respect to the fluorochrome labels we assume to be able
to test if there are structural differences in the OLCN in Sost KO compared to wild-type mice.

Regarding hypothesis 2, unfortunately the resolution of conventional CLSM is not appropriate
to detect changes in the canaliculi diameter, making a verification of the hypothesis impossible
with this technique. For the evaluation of canaliculi diameters other methods like synchrotron
phase-contrast-tomography and focused ion beam (FIB) sputtering technique combined with
SEM imaging appear more suitable, but also less accessible and more time consuming [147, 22|.
Furthermore, to the best of our knowledge these methods are not established to measure at
regions of defined tissue age until now.

Periosteal vs. endocortical regions in SostKO mice

Beside these hypotheses, the question lingers why changes in the mineralization kinetics and
the PG /matriz ratio were observed exclusively at the endocortical site. We speculate that
decreased mineralization arises from a local C'a and/or PO, deficit due to the extensive rate
of bone formation. Hence, it might be the case that the ion-supply at the less accessible en-
docortical site (where also the cancellous ossification is strongly raised) becomes insufficient
causing a local mineral deficit. As the periosteal site of bone formation is closer connected to
the metabolism, local C'a and/or PO, consumption might play a minor role. As discussed in
Chapter 2.1.3 the early mineralization process is still poorly understood, but there is general
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Figure 4.12: Result of a feasibility study with the goal to image the osteocyte lacuna
canaliculi network (OLCN) together with fluorescent labels marking a specific tissue age (red:
Alizarin, green: Calcein), using a confocal laser scanning microscope (CLSM). error bar:
10 pm

agreement that it is a critical and high controlled process. Thus it is reasonable that changes
in the ion supply at the very early mineralization stage would have a significant impact on
the properties of the matured bone matrix.

Periosteal vs. endocortical regions in SostKO mice

As the role of sclerostin in WNT signaling [11] is well documented and an increase in bone
mass in Sost KO mice is consistently reported in several studies, the question appears if the
administration of SclAB has a similar effect on (i) treated and untreated wild-type mice and
on (ii) mice suffering a severe bone disease. Hence, our study was designed to investigate
changes in bone mass, mineralization, and plenty other parameters linked to bone fragility in
wild-types and in a cohort of mice being a model for severe Osteogenesis Imperfecta.

Osteogenesis Imperfecta (OI) is a bone fragility disorder linked to a collage mutations causing
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fragile bone tissue with an increased susceptibility for fracture. Up to now there are more
than 1500 mutations known causing OI with phenotypes of highly variable severity (from
mild to prenatal lethality) [11]. Usually OI patients and corresponding animal models exhibit
low bone mass accompanied with increased bone matrix mineralization [148|. The present
mouse model fits this pattern. The increased mineralization is indicated by a shift of BMDD
towards higher mineral content. Thus Capeqr and Capgp are consistently elevated in 8 and
24-weeks-old OI mice compared to wild-types at all investigated anatomical sites. The de-
crease of Clay ;g in the cortical bone of both age groups indicates a reduced heterogeneity in
the mineralization pattern, which is also typical for OI [148|.

4 weeks of treatment with SclAB had almost no effect on the mineralization pattern of the
adult mice wild-type and OI mice. The effects observed for Capseq, (slightly increased) and
Capew (decreased) in the cancellous bone of growing mice cannot clearly be allocated to geo-
metrical effects as discussed above or to possible changes in the mineralization process. Since
2-way ANOVA revealed no interaction terms between the factors "genotype" and "tissue age"
for any age group or anatomical site, we conclude that SclAB treatment has a similar effect
on mineralization in the analyzed OI and wild-type mice. This statement includes that the
pathological collagen structure which likely leads to the hypermineralization in the OI mice
remains the same for bone formed during SclAB treatment. Hence, it can be speculated that
SclAB treatment of Ol patients will not heal OI in terms of causing the synthesis of physio-
logical bone matrix. But nevertheless, it is plausible that a higher amount of bone consisting
of pathologically modified collagen matrix still improves the resistance to fractures.

4.3 Bone Mineral Properties with Respect to the
Osteocyte Lacunae Canaliculi Network (OLCN)

4.3.1 Classification of the ROIs with respect to the OLCN

In Chapter 3.6 a method was introduced to stain the OLCN with Rhodamine, which is com-
patible with the standard embedding procedure as described in Chapter 3.1. This approach
offers the possibility to gain information on the OLCN and the bone matrix composition of
region of interests (ROIs) using EDX. These methodical developments were performed in the
frame of this thesis and allow addressing the following question:

e Assuming that regions in human cortical bone can be classified with respect to the
OLCN, how does the composition of the mineralized bone matrix depend on the canali-
culi network type just below the sample surface of a sectioned area?

Femur cross sections from eight humans without reported bone or bone-related diseases were
used for this study as described in Chapter 3.2. Figure 4.13 shows an overview fluorescence
image of the OCLN of the lateral part of a human (adult) femur midshaft cross section.
Studying such images we found 4 characteristic types of features, facilitating the classification
of ROIs. As labeled in Figure 4.14, the following types of ROIs were taken into consideration:
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Figure 4.13: Overview fluorescent (Rhodamine) image stitched from single images taken
at the confocal laser scanning microscope (CLSM): The labels mark various regions, which
were considered for further evaluation. (yellow: nicely stained osteons, green: not stained
regions, blue: regions with outstanding bright Rhodamine fluorescence, red: periosteal sites
with parallel network)

1. Almost circular osteons with a well stained network (homogenousely stained OLCN and
separable canaliculi)

2. Regions exhibiting no fluorescence, appearing as black areas in Figure 4.13
3. Osteons exhibiting an outstanding bright fluorescence signal

4. Regions with a highly parallel network with an orientation perpendicular to the pe-
riosteal bone surface

ROIs classified due to these features were taken into consideration at the lateral sites of all
eight femur cross sections. Table 4.4 gives an overview over the number of evaluated ROIs for
each sample.

4.3.2 Measurement Procedure

For each ROI a depth scan was performed using CLSM with a standardized protocol as de-
scribed in Chapter 3.6. In this way 3D information on the network structure was gained,
which was not further analyzed within this project.
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4.3. Bone Mineral Properties with Respect to the OLCN

Figure 4.14:  Fluorescent (Rho-
damine) images and corresponding
backscattered electron images of the
four different regions of interest
(ROI):

(a,b) Type 1: nicely stained osteons,
(c,d) Type 2: unstained regions,
(e,f) Type 3: regions with outstand-
ing bright Rhodamine fluorescence,
(g,h) Type 4: periosteal sites with
parallel network);

The red rectangles mark regions
which were eventually considered for
energy dispersive X-ray (EDX) anal-
ysis (39.1 x 29.3 um?).

scale bars: 100 um
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Table 4.4: Overview over the samples used in this project and the numbers of the measured
regions of interest (ROI): For Each ROI an image stack of about 200 images was obtained
(z-scan) with the confocal laser scanning microscope (CLSM). Three measurement fields per
ROT were selected for energy dispersive X-ray analysis (EDX).

ROI Type 4
ROI Type 1 ROI Type 2 ROI Type 3 .
sample age sex ) ROIs exhibiting
stained OLCN unstained ROIs heavily stained ROIs
parallel network

FM04C  50J f 15 10 6 4
FM38 55 f 10 8 2 3
FM40 56J f 10 8 5 0
FM48 48] f 16 8 3 3
FM15 1.5] m 7 0 10 8
FM21 25] f 7 7 4
FM25 1.5) f 0 4
FM28 16m f 6 0 7 4

total: 74 41 48 22

Subsequently, the samples were carbon coated (SEM Carbon Coater 108C, Agar Scientific,
Essex, UK) and the ROIs were revisited with a field emission electron microscope (FESEM,
Suprad0, Zeiss, Oberkochen) for gBEI measurements using parameters as described in Chapter
3.3. This was done prior to EDX analysis. As indicated in Figure 4.14 in every ROI three
EDX measurement fields were located (39.1 x 29.3 um? ). Spectrum acquisition and the
quantification of the elemental concentrations (Ca, P, S, N, Mg, K, Cl, O, C) were performed
according to the protocol described in Chapter 3.5. Out of the three measurements per ROI
the median value was used as entity for further statistical analysis. A typical EDX spectrum
for bone is shown in Figure 4.15.

4.3.3 Results

Pooling the data from all samples, Figure 4.17a shows a linear correlation between the quan-
titative values for Ca and P (R* = 0.97, P < 0.0001). The Ca and P concentrations revealed
to vary between 8.3 at% and 12.7 at%, and 4.8 at% and 7.2 at% respectively. We found that
the ROI classification, which was done with respect to the Rhodamine-related fluorescence
signal of the OLCN, is reflected by different at%Ca and at%P values. Highly significant
(P < 0.0001 - Mann Whitney test (non-parametric)) differences were found for at%Ca and
at%P between nearly all classification types (Figure 4.16). No significant differences were
only found between well-stained OLCN osteonal regions (ROI Type 1/yellow) and parallel
orientated OLCN regions (ROI Type 4/blue) for both Ca and P. (Figure 4.16). Interestingly,
a linear regression comparison analysis between these two ROIs (Type 1 vs. Type 4) revealed
a similar slope (p = 0.83) but highly significant different intercepts of the regression lines with
the y-axis (p < 0.0001) indicating elevated P levels for fixed C'a values.
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Figure 4.15: Typical spectrum of bone measured by energy dispersive X-ray analysis (EDX).
Most of the peaks are separated so that peak intensities can be associated with the corre-
sponding elements.

The Na concentration varied between 0.3 at% and 0.73 at%. The overall slope of the lin-
ear regression line in the at%Na vs. at%Ca diagram was significantly different from zero
(p < 0.001) as well as the slope for each single ROI Type (at least p < 0.05). This indicates
a positive correlation between Na and Ca concentrations (Figure 4.17d).

The Mg concentration plotted versus at%Ca exhibits no significant slope (p = 0.58) (Figure
4.17d). Similar to Na the Mg concentration in Type 1 ROIs compared to Type 4 ROIs in-
dicate an increase at sites with parallel network at the periosteal site compared to osteonal,
well stained tissue.

Quantification of the S concentration revealed values around 0.05 at%, which is too close to
the detection limit of EDX to perform any statistical analysis. Also the quantitative values
should be treated with caution. The data suggest that there is no dependency or only a slight
decrease of the S concentration with the mineralization (Figure 4.17c).

When comparing the individuals, one sample (#4 Table 3.1) revealed to exhibit a higher
at%Ca/at%P ratio compared to the others (1.73 vs. 1.66 p < 0.0001), potentially adulter-
ating results for the pooled data set. Thus, all statistical tests were also performed when
excluding sample #4 leading just to numerical changes in the results.

Separating the two age groups (women 48 — 56 a, n = 4) and children (16 m — 2.5 a, n = 4)
we found that the ROIs chosen in the bone samples of the children were in general lower min-
eralized compared to adults (p < 0.0001). As shown in Figure 4.18 the C'a/P ratio is reduced
in children. Even when focusing on the Ca-range between 10.5 and 11.5 at% (where both
age groups exhibit a distinct number of data points), the Ca/P values separate (p < 0.0001
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Figure 4.16: at%Ca (a) and at%P (b) content of the different types of regions of interest
(ROI)

ROI Type 1: nicely stained osteons

ROI Type 2: unstained regions

ROI Type 3: regions with outstanding bright Rhodamine fluorescence

ROIT Type 4: periosteal sites with parallel network

kD < 0.0001
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Figure 4.17: Elemental concentrations of P (a), S (c¢), Na (d) and Mg (d), and the Ca/P
ratio (b) vs. at%Ca being a parameter for the degree of mineralization measured by energy
dispersive X-ray analysis (EDX): The dots are median values of the three measurements; the
bars represent the range.
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for pooled ROI types). Additionally, within this range also the Na concentration is distinctly
reduced in children while the Mg content is elevated compared to the adult group (p < 0.0001
for pooled ROI types).
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Figure 4.18: Median values of elemental concentrations of P (a), S (c¢), Na (d) and Mg
(d), and the Ca/P ratio (b) vs. at%Ca being a parameter for the degree of mineralization
measured by energy dispersive X-ray analysis (EDX): Significant differences are observed when
comparing data points (P, Ca/P, Na, Mg) of young and adult humans, even when restricting
the at%Ca range to 10.5 — 11.5 at%.

4.3.4 Discussion

The presented study was designed to investigate the correlation between the OLCN and bone
composition of human femoral midshaft cross-sections. This approach targets indirectly the
ongoing discussion about osteocytic osteolysis where an interaction between osteocytes and
adjacent mineralized bone matrix is suggested. Manifold publications focus on the evaluation
of the interaction between osteocytes and their proximate environment indicating that there
are well-controlled mechanisms allowing the osteocytes to influence adjacent regions of the
lacunae or those close to canaliculi [22, 84, 83, 4]. Recently it was shown, that the local bone
density is distinctly increased close to the osteocyte lacunae wall. Similar, but less pronounced
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observations were made close to the canaliculi [22].

The Ca/P Ratio

In this context the results of our study provide additional information. We were able to show,
that for the investigated ROIs (very low mineralized regions at the mineralization fronts were
excluded) at%Ca and at%P are highly linear correlated (R? = 0.97). The slope of the linear
regression line reflects the at%Ca/at%P ratio (Ca/P) which was determined to 1.672 which
is close to the theoretical C'a/P value for pure HAP of 1.667. Hence, it can be concluded,
that (i) the majority of Ca and P is bound to HAP while the quantities bound to the or-
ganic matrix like phosphorylated non-collagenous proteins seem to contribute only to minor
quantities and that (ii) carbonatisation (C'Os substitution of either C'a or PO,) [115] or other
elemental substitutions [40, 41, 42| do not affect the Ca/P ratio remarkably. Of course it
cannot be excluded that (i) and (ii) appear to greater extent but cancel each other resulting
in the observed Ca/P ratios. Nevertheless, in the literature, C'a/P values of bone are often
reported to be close to 1.667 (at%-ratio) or 2.222 (wt%ratio) by using various techniques,
confirming our results [138, 130, 137].

Based on these considerations the at%Ca value (or likewise at%P) seems to be a reliable pa-
rameter to characterize the degree of mineralization. Therefore, in Figure 4.17 and Figure 4.18
the elemental concentrations are plotted against at%Ca to show the bone composition in the
course of ongoing mineralization.

Mineralization in regions with different network types

Interestingly, we found significant differences in the degree of mineralization (defined as in-
troduced above) between different ROT types. The distinctly lower mineralization of regions
exhibiting an outstanding bright Rhodamine fluorescence is likely due to the increase in in-
terfibrilar space which is not yet occupied by apatite crystals. We suppose that during the
staining procedure (as described in Chapter 3.6) the ethanol - Rhodamine solution diffuses
through the canalicular walls into the low mineralized matrix, and thus causing the outstand-
ing bright and blurred signal.

In contrast to that, regions appearing dark in the fluorescent image (ROI Type 2) appeared to
be the regions of highest mineralization. The majority of those ROIs were located in intersti-
tial bone regions, encased by cement lines. Although no information is available about the 3D
structure of these regions, it is obvious that the connection to the next blood vessel through
the OLCN is worse compared to osteonal regions. Previous work documented that a cement
line reflects a barrier for the majority of canaliculi, even if some of them manage to penetrate
the cement line, thus building a bridge to the adjacent bone structural unit [149|. The lack of
staining substance in the OLCN of these regions means that either (i) the connection to the
next blood vessel/bone surface is to weak for the ethanol/Rhodamine solution to penetrate
in noteworthy amounts or that (ii) according to the low nutrition supply the osteocytes died
followed by partial ectopic mineralization of the remaining voids making a penetration of
the staining fluid impossible. This would be in line with the observation, that ¢BEI images
show an increased number of high mineralized osteocyte lacunae in these regions (no statistics
performed, bright dots in Figure 4.14d). Previous work also focused on ectopically mineral-
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ized osteocyte lacunae and showed their increased abundance in interstitial bone [150, 151].
Hence, it looks like these high mineralized regions, exhibiting a lack of staining, are rare of
living osteocytes and thus of an intact OLCN. As a consequence, such regions would not (or
at least less) contribute to mechanosensory, protein expression, ostoecytic osteloysis or other
mechanisms, which are attributed to the osteocytes and their network. This should be taken
into account when estimating the impact of the OLCN on bone as a biomaterial and/or an
endocrine organ.

The finding that the degree of mineralization in well-stained osteons and periosteal regions
is between those of the other ROI types, fits the considerations made above. Surprisingly,
despite the fact that no difference in the C'a and P content of these two regions was observed,
the C'a/ P ratio revealed to be reduced at the periosteal sites exhibiting a parallel network. To
the best of our knowledge this is not documented so far and might reflect differing mineraliza-
tion mechanisms depending on the anatomical site. A detailed evaluation of mineralization
fronts focusing on elemental concentrations with respect to the anatomical site is given in
Chapter 4.4.

Concentrations of minor elements

There is only rare literature about the role of Na in bone metabolism or bone tissue. It is
reported that bone might act as reservoir for Na (and also K) and may be remobilized if
desired [139]. Interestingly, it was shown that low systemical Na levels (hyponatremia) lead
to bone loss caused by increased osteoclastic activity [152]. The increase of Na concentration
with ongoing mineralization as observed in our study cannot be explained so far. It remains
unclear whether Na binds to the apatite crystals or is part of the organic matrix. However,
the correlation with wt%Ca supports the first hypothesis.

In contrast, the role of Mg is documented in more detail. Mg is known to substitute C'a in
the HAP [42, 153] and is known to occur as stabilizer of amorphous mineral phases as they
might occur in early stages of mineralization [47]. Beside this, Mg is reported to be part of
DNA-proteases, so it is probably also bound to organic matrix [154]. Hence, like for Na it
remains unclear to which extent the observed Mg content is due to ions bound to mineral or
to organic matrix. Since at%M g revealed to be independent of the degree of mineralization
reflected by at%C'a, we suppose that the majority of Mg is bound to the organic matrix or in-
corporated in the HAP crystal during early mineralization without any further incorporation
during crystal growth. However, from what we know from other elements ( Pb, Sr) substitut-
ing for C'a in the HAP, such elements increase with the course of mineralization [155]. Hence,
the reported Mg concentration might be due to Mg bound to organic components of the bone
matrix. Interestingly, like the C'a/P ratio, also the Mg concentration exhibits differences be-
tween well-stained osteons (Type 1 ROI) and regions with parallel network at the periosteal
site (Type 4 ROI). This encourages the statement made above, that there might be different
mechanisms of bone formation depending on the anatomical site, which is also supported by
measurements performed at mineralization fronts as discussed in Chapter 4.4.

S is reported to be present in so called sulfated Proteoglycans. Proteoglycans in general are
reported to act as inhibitors of mineralization [44, 45]. They are abundant in cartilage tis-
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sue but also (but to less extend) present in bone. Studies have shown that for example the
Proteoglycan Perlecan is located mainly at the canaliculi walls [45]. Our study showed S con-
centations close to the detection limit of EDX. Hence, no reliable statistic can be performed.
However, the data might suggest that the S concentration is either constant or slightly de-
creasing with ongoing mineralization.

The result that the Ca/P ratio as well as Mg and Na concentrations depend on the indi-
vidual age (when comparing the same at%Ca range) is surprising. One might suspect that
the course of bone formation and thus the involvement of minor elements is always the same.
Despite the low sample number, for this cohort the separation for Ca/P, Mg and Na (at
least between 10.5 and 11.5 at%Ca) is quite convincing. Thus a systematically altered bone
material composition depending on the individual age is most likely. The evaluation of po-
tentially different concentrations of major and minor elements depending on the individual
age features an exciting topic for future investigation and might lead to new insights into the
role of these elements in bone and skeletal development.

Limitations

There are some limitations in this study, which should be taken into account when interpret-
ing the data. We are aware that the total number of eight individuals (4 per age group) is
quite low to make reliable general predictions. The study design was chosen to reveal basic
mechanisms of bone mineralization, which are not supposed to vary a lot between different
individuals. Nevertheless, interindividual differences in nutrition, age and genetic background
are not known und thus might cause scattering of the measurement parameters. The selected
samples originate from humans without documented bone diseases and were chosen with re-
spect to a cause of death, which was not related to bone metabolism, but the exact health
status of the persons is not known.

The EDX measurement fields used to gain the elemental information are useful as long as high
spatial resolution is not necessary and as long as relatively homogenous mineralized regions
are covered by the ROIs. Hence, mineralization fronts, where the degree of mineralization
changes rapidly with the location, were excluded from this study. Therefore, the elemental
distributions in these critical regions remain unknown (Figure 4.19). The detailed evaluation
of these interfaces between mineralized and non-mineralized bone tissue will be discussed in
the next chapter.

4.4 Changes of the Elemental Compositions of Bone at
Mineralization Fronts

4.4.1 Measurement routine

To address this question the EDX routine as introduced in Chapter 3.5 was modified to
perform profile scans to investigate the elemental distributions in defined distances to the
mineralization front. Therefore, ROIs of 39.1 x 29.3 um? were divided into 2 pm broad
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Figure 4.19: Energy dispersive X-ray analysis (EDX) results separated into measurements
taken at the periosteal (blue) and the osteonal site (red): According to the study design and
the measurement setup no information can be gained on the low mineralized regions between

0 and 8 at%Ca.

stripes placed parallel to the mineralization front (see Figure 4.21 and Figure 4.21). Spectra
were recorded for each box with measurement parameters described above (Chapter 3.5), thus
providing an average spectrum for every 29.3 x 2 um? sub-ROI. Mineralization fronts were
identified using BEI images as shown in Figure 4.21 with respect to following criteria:

e There is a layer of non-mineralized bone matrix (osteoid) adjacent to the surface of a
bone packet with low mineral content (Figure 4.21).

e There is a typical gradient of osteoid to the mineralized matrix, exhibiting cloudy dots
of mineralized clusters.

Spectra were consecutively recorded for each sub-ROI and quantification of the elements of
interest was performed as described above (Chapter 3.5). Figure 4.20 gives an example of a
spectra-set obtained within one ROI covering the mineralization front and the adjacent tissue.

Such datasets were obtained in the samples originating from femora of children (n = 4, sam-
ples #4 — 7 in Table 3.1) at three periosteal mineralization fronts (in one case only two) and
three osteonal mineralization fronts. Samples from adults were not investigated due to rare
periosteal bone forming sites. For the illustration of quantitative results, elemental concentra-
tions can be plotted versus the location. The spectra were shifted to set the visually defined
middle of the mineralization to the zero mark of the x-axis as shown in Figure 4.21.
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Figure 4.20: Backscattered electron image (BEI) (upper panel) of an osteon located in the
femur cross section of a healthy child (a). In the lower panel a high - resolution BEI image of
the mineralization-front region is shown. A grid of sub-regions of interest (sub-ROT) divides
the ROI into 2 pum thin stripes which were considered for successive energy dispersive X-ray
(EDX) measurements (b). The corresponding spectra are shown exhibiting the elemental
peaks typical for bone. The colors correspond to the mineralized matrix (black), transition
zone (green), osteoid (red) and PMMA (blue) (c).

4.4.2 Results

The Ca/P ratio at mineralization fronts

Figure 4.22 shows the quantified results of one representative specimen (#10, Table 3.1). De-
tailed data from the other specimens are presented in Appendix 5. Surprisingly, there was a
clear lower C'a/ P ratio observed in the mineralized region next to a mineralization front at the
periosteal site compared to the osteonal site. For all except one of the 23 analyzed profiles,
there was a total site related separation of the Ca/P ratio. This was usually accompanied
by a drop of the ratio even below 1.5 exclusively close to periosteal mineralization fronts. In
general, C'a/P revealed to be below the theoretical value of perfect HAP (Ca/P = 1.67).
According to extremely low C'a and P count rates in the osteoid the ratio was not evaluated
in these regions.
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Figure 4.21: In the following (Figure 4.22) the elemental concentration is plotted vs. the
relative location. Line profiles are shifted so, that the transition between mineralized bone

matrix and osteoid is at x = 0. Hence, x < 0 corresponds to mineralized matrix and at = > 0
osteoid and PMMA are located.

Concentration of minor elements close to mineralization fronts

The Na concentrations were found to be distinctly increased close to periosteal mineralizing
surfaces. For all samples a total separation of the data was observed, which was to some ex-
tend still present in the osteoid region. Consistently, also the Mg content exhibited increased
values at periosteal mineralization fronts (Figure 4.22f). Although the separation of the data
in the mineralized matrix was not as clear as for Na, in the osteoid region there were manifold
increases in M g concentrations observed for all datasets of all four samples at periosteal sites.

While K and Cl concentration were too low to be evaluated in the high mineralized matrix as
investigated in Chapter 4.3, at the mineralization fronts evaluable values were obtained. Like
Mg and Na, K and C1 concentrations were found to be increased at periosteal mineralization
fronts. In the case of K this observation is most significant in the mineralized part of the ROI
while Cl concentrations separate between the anatomical sites in the mineralized and in the
non-mineralized tissue. Interestingly, a peak in the C!l content was seen for all sites in the
osteoid. Such a peak was also discovered for the S concentration but in this case no difference
between periosteal and osteonal sites were observed (Figure 4.22d).
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Summary

As the reported elemental concentrations refer to the lowest mineralized regions in bone tis-
sue and as at%Ca data were evaluated simultaneously to the minor elements, it is possible to
insert the measurements in Figure 4.19. In Figure 4.23 the newly included data points, (each
representing a sub-ROI) now also cover the very low mineralized region. This plot shows
again the separation of the Ca/P values. Even in the already mineralized tissue at about
10 at%Ca (corresponding to sub-ROIs in 10 — 15 pm distance to the mineralization front)
there is a clear separation between the two sites showing lower C'a/P values at the periosteal
mineralization fronts. This is in line with the location-dependent data evaluation as described
above. Consistently K, Mg, N and Cl concentrations are clearly elevated at the periosteum
compared to osteonal mineralization sites when normalizing for the C'a content. Note that in
Figure 4.23 no data from the non-mineralized matrix are included.
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Figure 4.22: Ca/P ratio and quantified measurements of K, Cl, S, Na and Mg plotted as
described in Figure 4.21. = < 0 corresponds to the mineralized matrix and at x > 0 osteoid
and PMMA are located. Dashed lines refer to mineralization fronts located at the periosteal
site while straight lines represent osteonal sites of active bone formation.
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Figure 4.23: Energy dispersive X-ray analysis (EDX) results separated into measurements
taken at the periosteal site (blue) and the osteonal site (red): In contrast to Figure 4.19 now
also the data from the mineralization fronts are included (dark data points), thus covering
the whole at%C'a range. The separation of the Ca/P ratio, K, Mg, Na and CI with respect
to the anatomical site are obvious. This is not observed for S.
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4.4.3 Discussion and Outlook

Discussion

In the frame of this study we proofed that there is a difference in the bone material com-
position between regions close to osteonal and periosteal mineralization fronts in a group
consisting of four children. Increased levels of K, Mg, Na and Cl and a decreased Ca/P
ratio were observed at mineralizing surfaces at the periosteum when normalizing for relative
location or at%Ca. The S concentration seems to be the same for both anatomical sites.
Consistently, the reduced Ca/P ratio and increased Mg content at periosteal mineralization
fronts is also reflected by the results presented in Chapter 4.3.3, where we found increased P
and Mg concentrations at periosteal bone regions in distinct distance to the bone surface.

Interestingly, the distribution of minor elements strongly depends on the localization relative
to the mineralization front. The K content exhibits a peak in the mineralized bone matrix
between 0 and 10 pm distance to the mineralization front at periosteal bone forming sites.
This was not observed at osteonal regions where only very low K concentrations were mea-
sured. The results might indicate a stronger involvement of K in periosteal bone formation.
Wiesmann et al. studied the role of K in the transition from non-mineralized predentin to
mineralized dentin (a bone like material located in teeth) and suggested that monovalent
ions like A" might be more suitable to trigger extracellular matrix systems than bivalent ions.
The involvement of K in apatite biomineralization was hypothesized [156]. According to our
results, in this work an increase of K at the mineralization front is reported.

S and C' contents revealed distinct peaks in the osteoid. While S concentrations were similar
for both investigated sites, Cl was strongly increased at periosteal bone forming regions. The
elevated S content at the osteoid is consistent with the literature where an abundant presence
of proteinpolysachariedes (PS) at the mineralization fronts is reported. In that work also
increased S concentrations (which are assigned to PS) were measured at the osteoid [44]. No
literature was found describing an involvement of C! in bone formation.

It was further shown that more Mg and Na are present at periosteal mineralization fronts
compared to osteonal sites. Mg is known to substitute C'a in the HAP crystal [42, 153| and is
reported to be a stabilizer of amorphous mineral phases as they might occur in early stages of
mineralization [47|. In this context, different Mg concentrations are interesting. It is possible
that various Mg content at the mineralization front indicates different or different amounts
of HAP precursors.

There is hardly any information about the local distribution of Na in bone. It remains unclear
whether Na binds to the apatite crystals or is part of the organic matrix.

These results suggest differences in the composition of newly formed bone matrix depend-
ing on the anatomical site. In the literature no systematic measurements of the elemental
bone material composition at mineralization fronts are described until yet. Differential bone
compositions close to mineralization fronts might also be influenced by the accessibility of
mineralization precursors and nucleation centers |63, 62]|. Osteons are encased in the mineral-
ized matrix where a continuous resorption and formation of bone matrix occurs [52|. Hence,
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at these sites the supply with C'a, P and mediators of mineralization might not be an issue due
to resorption sites nearby, releasing necessary ions and proteins. The situation might change
at the periosteal site where during skeletal growth global bone formation occurs. In this case
the extensive supply with mineral precursors and modulators must be provided through the
blood vessels, likely mediated by matrix vesicles [63, 62].

Outlook

Taking the considerations made above into account, it is not totally surprising that tissue close
to mineralization fronts contains minor elements in different amounts. The various Ca/P ratio
and the Mg concentrations might indicate the presence of differing Calciumphosphate phases
during the early stages of mineralization depending on the anatomical site. To proof this
hypothesis, additional experiments need to be performed. In this sense the actual study was
extended and a follow up project is currently in progress:

e From the same four children unstained samples were embedded and prepared to perform
Raman spectroscopy mappings covering mineralization fronts at osteonal, periosteal and
endosteal sites. The corresponding regions were preselected using high resolution BEIL
From these measurements we expect to see differences in the characteristics of the POy-
related Raman peaks if other mineral phases than HAP are present close to the miner-
alization front.

e A beamtime application (European synchrotron radiation facility (ESRF) - beamline
ID13) was submitted and is already approved. Using small- and wide-angle X-ray scat-
tering, the mineral particle size and orientation will be evaluated close to mineralization
fronts at different anatomical sites.

Limitations

Despite of the highly consistent results for all four specimens, the sample number is too low
to allow extrapolations and general conclusions concerning other individuals. Comparable
evaluations for adults are not possible according to the lack periosteal bone apposition.

It should be noted that results of the quantification procedure of EDX results for concentra-
tions below 0.5 at% must be treated with caution according to the low X-ray count rates.
This affects all reported values of the minor elements. Nevertheless, the relative comparison
between various sites with similar degree of mineralization appears reliable and can be used
for the considerations. In general, for a reliable quantification, a constant interaction volume
is presupposed. This is likely valid for the mineralized bone matrix. When investigating os-
teoid regions the lower average atomic number of the target spot facilitates increased electron
penetration and less X-ray absorption on the way out of the sample. This will adulterate
the quantitative results possibly causing artifacts in the comparison between minor element
concentrations in the mineralized and the non-mineralized matrix and must be taken into
account for the interpretation of Figure 4.22. In contrast, relative changes are supposed to be
reliable as long as matrices with equivalent degree of mineralization are compared.
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As evaluated in detail in Chapter 3.5, beam damage contributes to systematical errors in the
quantification of absolute values of elements while the Ca/P ratio remains unaffected. For
the evaluation of the mineralization fronts regions of 60 um? were analyzed with the same
measurement parameters (same beam current and acquisition time) as the ROIs investigated
in Chapter 4.3 (1145.6 um?). Consequently, the damage caused by the electrons in the current
project is distinctly higher and in a strict sense, inserting the data points of both projects
into one sheet as done in Figure 4.23 is problematic. Thus this must be considered for the
comparison of the data of the two studies.

As stated above mineralization front regions were selected with respect to high-resolution
BEI images. Despite the fact that only regions exhibiting a pattern characteristic for min-
eralization fronts were considered for evaluation, we have no final proof that these regions
are sites of active bone formation. From our experience with qBEI image evaluation, it can
be stated that these fronts most likely correspond to regions where bone was apposed im-
mediately before death of the individual. However, there are bone diseases reported where
mineralization is prohibited causing "old" mineralization fronts. In general, making use of the
in-vivo Tetracycline labeling technique, it would be possible to prove, whether the considered
regions represented states of active bone formation, but such an approach was not available
for our samples.
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Summary

The purpose of the presented work was to gain new insight into the elemental composition of
mineralized bone matrix at defined anatomical sites of healthy human bone tissue, and into
mouse models linked to human genetic diseases. Hence, it was necessary to extend methods
and routines for the characterization of mineralized bone matrix with a focus on its elemental
composition.

Using these methodological developments, the question was addressed whether extensively
elevated bone formation affects the mineralization kinetics of bone. This was done by means
of a mouse model, likely relevant for future Osteoporosis treatment. Another aim was to shed
light on the relationship between osteocyte lacunae canaliculi network (OLCN) types and
the composition of the mineralized matrix, contributing to the active debate on osteocytic
osteolysis. We decided to apply the developed tools also to mineralization fronts, reflecting a
critical stage of bone development. Hereby, the goal was to reveal potential differences in the
mineralization process, which are supposed to be reflected by different elemental compositions
of regions close to bone forming sites.

Methodological developments

New measurement protocols for the combination of established and adapted characterization
techniques were introduced. It is now possible to combine quantitative backscattered electron
imaging (qBEI), energy dispersive X-ray analysis (EDX), confocal laser scanning microscopy
(CLSM) and Raman micro-spectroscopy on the same regions of interest (ROI) to gain more
comprehensive information on bone matrix mineralization.

The qBEI quantification protocol was successfully adapted to a state of the art field emis-
sion electron microscope (FESEM, Supra40, Zeiss, Oberkochen). Beam damage and counting
statistic effects were examined and documented. In the proposed protocol stability of the
primary electron beam and the backscattered electron detector are monitored to maintain
constant sampling conditions. Measurements of the same ROIs performed with the Supra40
microscope and with the established and validated DSM962 system (Zeiss, Oberkochen) con-
firmed comparability of the results.

By developing a routine to match images examined with qBEI (local Ca concentration) and
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CLSM (tissue age information), a tool was generated to gain tissue age specific information
on the degree of mineralization in addition to Raman parameters collected in the same ROIs.
This enhancement of established measurement routines provides access to the mineralization
kinetics of fluorescent-labeled bone.

If beside the degree of mineralization also information on the concentration of major and minor
elements is desired, a new established protocol for EDX analysis now facilitates quantification
of these elements with a special focus on the C'a/P ratio. Limitations like adulterations due
to electron beam damage and the impact of different quantification models are documented.
EDX measurements can now be performed in a standardized way in compact bone regions
and at mineralization fronts.

To characterize the OLCN in polymethylmethacrylate (PMMA) embedded bone samples the
Rhodamine staining protocol was successfully adapted according to the water-free embedding
procedure. Subsequent CLSM imaging led to impressive insight into the organization of the
OLCN. As Rhodamine staining does not interfere with qBEI and EDX analysis, ROIs can be
easily revisited making use of reflection images taken at the CLSM. Thus the bone composi-
tion can now be interpreted in the context of the OLCN structure.

A high affinity of Rhodamine to the non-mineralized bone matrix (osteoid) was observed.
Hence, the presented staining procedure and subsequent CLSM imaging provides valuable
information on the amount of osteoid. Thus this can be seen as a tool to visualize and to
quantify mineralization defects, which are not accessible using qBEI.

In a technical study, the correlation of mineralization examined with qBEI (wt%Ca) and
Raman micro-spectroscopy (mineral/matriz) was compared. The gained regression between
the quantities fit theoretical estimations and it was demonstrated that deviations from the
regression line correspond to biological inhomogeneities. These data will support the interpre-
tation of future studies were Raman and ¢BEI measurements are performed on the same ROIs.

Biological relevance

The presented adapted/extended methods were designed to gain a maximum of information
on the bone material composition and structure at defined regions. In multiple studies, they
were applied to murine and human bone samples investigating mineralized tissue in customized
setups to address the regarding scientific question.

Making use of these tools, changes in the mineralization kinetics of Sost-knockout (SostKO)
mice were found exclusively at the endocortical site of bone apposition. The outcomes ex-
plained the results of a previous study where lower bone matrix mineralization at cortical bone
was indicated using conventional qBEI analysis. Raman parameters also indicated alterations
of organic matrix in this region. Medical implications of these results are most likely as the
administration of sclerostin antibodies (SclAB), which target the same pathway, features one
of the most promising candidates for future treatment of Osteoporosis and other bone fragility
diseases.

In a follow-up study the impact on the mineralization pattern of SclAB injection in a mouse
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model of growing and adult Osteogenesis Imperfecta (OI) mice was examined. Using qBEI
it was demonstrated that SclAB administration had the same effect on the mineralization of
wild-type and OI mice. Compared to reports of other mouse models of less severe Ol types,
the response to the treatment was small, thus suggesting a treatment dependency on the
severity of the phenotype. Additional studies are needed before treatment with SclAB can be
considered for humans suffering OI.

Beside the determination of the degree of mineralization, the developed tools facilitate the
analysis of the elemental composition (using EDX) with respect to the OLCN type at the
same regions of human osteonal bone. Thus, it was demonstrated that the regions without
visible network correspond to high mineralized regions. The concentration of Na clearly in-
creases with the degree of mineralization while this is not the case for S and Mg. Surprisingly,
differences were found in the Mg concentration and in the Ca/P ratio between osteonal re-
gions (mainly radial orientated OLCN) and periosteal sites (highly parallel OLCN). These
differences were confirmed when investigating mineralization fronts with EDX, revealing fun-
damental changes in the composition of osteoid and low mineralized bone matrix. Periosteal
sites of bone formation exhibited a distinctly lower Ca/P ratio and higher K, Cl, N and
Mg concentrations compared to osteonal bone forming sites. According to these findings,
we assume differing mineralization mechanisms depending on the anatomical site. A running
project, which targets this question, also includes sites of endosteal bone formation. Using Ra-
man spectroscopy, and synchrotron small- and wide-angle scattering it is planed to determine
the differences in the mineral crystal size and shape to further characterize the mineralization
processes.

In conclusion, using the newly developed measurement routines, new insight into bone miner-
alization, composition and structure was gained. Their application in actively debated fields
led to results of great biological and medical importance.
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Figure 1: Ca/P ratio at mineralization fronts of four different samples. Dashed lines corre-
spond to periosteal, straight lines to osteonal regions. The gray mark labels the mineralization

front.
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mineralization front.
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Relationship between the vo PO, /amide;; ratio assessed by
Raman spectroscopy and the calcium content measured by
quantitative backscattered electron microscopy in healthy human
osteonal bone

Roschger A2, Gamsjaeger S, Hofstetter B, Masic A%, Blouin S*, Messmer P?,
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30, A-1140 Vienna, Austria.

2Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.

3Medical University of Vienna, Department of Forensic Medicine, A-1090 Vienna, Austria.

Raman microspectroscopy and quantitative backscattered electron imaging (qBEI) of bone
are powerful tools to investigate bone material properties. Both methods provide information
on the degree of bone matrix mineralization. However, a head-to-head comparison of these
outcomes from identical bone areas has not been performed to date. In femoral midshaft cross
sections of three women, 99 regions (20 x 20 um?) were selected inside osteons and interstitial
bone covering a wide range of matrix mineralization. As the focus of this study was only on
regions undergoing secondary mineralization, zones exhibiting a distinct gradient in mineral
content close to the mineralization front were excluded. The same regions were measured
by both methods. We found a linear correlation (R* = 0.75) between mineral/matriz as
measured by Raman spectroscopy and the wt.%Mineral/(100 — wt.%Mineral) as obtained
by qBEI, in good agreement with theoretical estimations. The observed deviations of single
values from the linear regression line were determined to reflect biological heterogeneities. The
data of this study demonstrate the good correspondence between Raman and qBEI outcomes
in describing tissue mineralization. The obtained correlation is likely sensitive to changes in
bone tissue composition, providing an approach to detect potential deviations from normal
bone.

Published:
J Biomed Opt. 2014 Jun;19(6):065002. doi: 10.1117/1.JB0.19.6.065002.
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Sclerostin deficiency is linked to altered bone composition.

Hassler N**, Roschger AY™, Gamsjaeger S*, Kramer I, Lueger S*, van Lierop A3,
Roschger P', Klaushofer K*, Paschalis EP', Kneissel M?, Papapoulos S°.

Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA
Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Strafse
30, A-1140 Vienna, Austria.

2Musculoskeletal Disease Area, Novartis Institutes for Biomedical Research, Basel,
Switzerland.

3Department of Endocrinology and Metabolic Diseases and Leiden Center for Bone Quality,
Leiden University Medical Center, 2333 ZA Leiden, The Netherlands

High bone mass in animals and humans with sclerostin deficiency is associated with increased
bone strength, which is not the case for all disorders with high bone mineral density, some
of which are even associated with fragility fractures owing to unfavorable bone composition.
In the current study we investigated whether alterations in bone composition may contribute
to the bone strength characteristics associated with lack of sclerostin. We examined cortical
bone of Sost — knockout (KO) mice (n = 9,16 weeks old) and sclerosteosis patients (young
[4 to 14 years|, n = 4 and adults [24 and 43 years|, n = 2) by quantitative backscattered elec-
tron imaging and Raman microspectroscopy and compared it to bone from wild-type mice
and healthy subjects, respectively. In Sost — KO mice endocortical bone exhibited altered
bone composition, whereas subperiosteal bone was unchanged. When comparing endocortical
bone tissue of identical tissue age as defined by sequential dual fluorochrome labeling the
average bone matrix mineralization was reduced —1.9% (p < 0.0001, younger tissue age) and
—1.5% (p < 0.05, older tissue age), and the relative proteoglycan content was significantly
increased. Similarly, bone matrix mineralization density distribution was also shifted toward
lower matrix mineralization in surgical samples of compact bone of sclerosteosis patients. This
was associated with an increase in mineralization heterogeneity in the young population. In
addition, and consistently, the relative proteoglycan content was increased. In conclusion, we
observed decreased matrix mineralization and increased relative proteoglycan content in bone
subcompartments of Sost — KO mice - a finding that translated into sclerosteosis patients.
We hypothesize that the altered bone composition contributes to the increased bone strength
of patients with sclerostin deficiency.

Published:
J Bone Miner Res. 2014 Oct;29(10):2144—51. doi: 10.1002/jbmr.2259..

* Both authors contributed equally and are listed in alphabedical order
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Effect of sclerostin antibody treatment in a mouse model of severe
osteogenesis imperfecta.

Roschger A', Roschger P', Keplingter P', Klaushofer K', Abdullah S*, Kneissel M3,
Rauch F*.

Tudwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA
Trauma Centre Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Strafe
30, A-1140 Vienna, Austria.

2Shriners Hospital for Children, Montreal, Quebec, Canada; McGill University, Montreal,
Quebec, Canada.

3Musculoskeletal Disease Area, Novartis Institutes for Biomedical Research, Basel,
Switzerland.

4Shriners Hospital for Children, Montreal, Quebec, Canada; McGill University, Montreal,
Quebec, Canada.

Osteogenesis imperfecta (OT) is a heritable bone fragility disorder that is usually caused by
mutations affecting collagen type I production in osteoblasts. Stimulation of bone forma-
tion through sclerostin antibody treatment (Sost-ab) has shown promising results in mouse
models of relatively mild OI. We assessed the effect of once-weekly intravenous Sost-ab injec-
tions for 4weeks in male C'ollal”"/* mice, a model of severe dominant OI, starting either
at 4 weeks (growing mice) or at 20 weeks (adult mice) of age. Sost-ab had no effect on
weight or femur length. In OI mice, no significant treatment-associated differences in serum
markers of bone formation (alkaline phosphatase activity, procollagen type I N-propeptide)
or resorption (C-telopeptide of collagen type 1) were found. Micro-CT analyses at the femur
showed that Sost-ab treatment was associated with higher trabecular bone volume and higher
cortical thickness in wild type mice at both ages and in growing OI mice, but not in adult
OI mice. Three-point bending tests of the femur showed that in wild type but not in OI
mice, Sost-ab was associated with higher ultimate load and work to failure. Quantitative
backscattered electron imaging of the femur did not show any effect of Sost-ab on CaPeak
(the most frequently occurring calcium concentration in the bone mineral density distribu-
tion), regardless of genotype, age or measurement location. Thus, Sost-ab had a larger effect
in wild type than in Collal?/"/* mice. Previous studies had found marked improvements
of Sost-ab on bone mass and strength in an Ol mouse model with a milder phenotype. Our
data therefore suggest that Sost-ab is less effective in a more severely affected OI mouse model.

Published:
Bone. 2014 Sep;66:182-8. doi: 10.1016/j.b0ne.2014.06.015. Epub 2014 Jun 19.
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