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1 RNA-Seq read mapping
Single- and paired-end RNA-Seq reads were mapped to the reference genome (ASM294v2.26) with the splice-aware
aligner GSNAP Wu and Nacu (2010), excluding split reads and read pairs longer than 5000 nt, and allowing up to 7%
mismatches. To detect known and novel splice sites, a splice site definition file compiled from the current annotation
(Pombase V2.22) was supplied to GSNAP and the probabilistic model to identify splice junctions de novo (flag –
novelsplicing) was used. After mapping, aligned paired-end reads were further filtered based on SAM flags contained
in the alignment files to keep only pairs with proper pairing and orientation (-f 99, -f 147). Finally, PCR duplicates
were removed with samtools Li et al (2009) rmdup (standard parameters). Splice sites were identified by using the
CIGAR string of all mapped paired-end total RNA reads (replicates added). All sites supported by 10 or more spliced
reads were considered for downstream analyzes. As only 48 introns were found with alternative splice sites (with
identical start but different end coordinate, or vice-versa), alternative splicing was later on not considered. For each of
those 48 splice sites, the splice junction with the highest read support was kept.

2 Transcriptional unit mapping
To map transcriptional units (TUs) we applied a segmentation algorithm to the paired-end Total RNA-Seq data sepa-
rately for each strand. The per base coverage was extracted by considering the full fragments of a read-pair, e.g. from
the start coordinate of the first read in the pair to the end coordinate of the second read in the pair. The cumulative read
coverage vectors over the two biological replicate datasets was considered. The algorithm takes as input a coverage
vector and three segmentation parameters: coverage cutoff, minimal length (min-length) and maximal gap (max-gap).
First, all positions in the genome that exceeded the coverage cutoff were marked. Second, non-marked positions that
were located between two marked positions that have a separation less than max-gap are also marked. Third, regions
with a consecutive number of marked positions greater than min-length were reported. We used the current S. pombe
annotation (Pombase V2.22) to estimate suitable values for the three segmentation parameters in our data: first, a
coverage cutoff was estimated by an approach similar to David et al (2006). The distribution of the per base cover-
age between current annnotations was modeled as a bimodal distribution consisting in few non-annotated transcribed
regions and a majority of non-transcribed (background) regions. The background-region distribution was modeled
as a Gaussian distribution. The mode m of the background-region distribution was set to the median of the whole
distribution. The variance of the background-region distribution was estimated as the variance of the distribution that
is obtained by mirroring the part of the mixture with values lower than the mode m about the axis y = m. The cutoff
(10.26) distinguishing background from transcribed regions was then set to a one-sided nominal p-value of 0.01 for
the fitted Gaussian.

Second, min-length and max-gap are estimated simultaneously in an exhaustive search over all combinations of
min-length and max-gap values between 10 and 1,000: for each combination, a segmentation of the genome was
performed and scored based on the overlap with transcripts of the current annotation. We used the Jaccard index as
a similarity measure, which is defined as the size of the intersection divided by the size of the union of the two sets.
The Jaccard index reached maximal values for min-length and max-gap in the range between 50 and 500. Since there
was no single optimal combination and the S. pombe transcriptome is very dense, we chose rather small parameters
with min-length 200 and max-gap 80. With these parameters (coverage cutoff = 10.26, min-length = 200, max-gap
= 80), the segmentation resulted in 7,062 TUs. To further improve this map of TUs, we only kept TUs that showed
significant read coverage (average per base coverage < 20 in the two-minute labeled 4tU-Seq samples, normalized for
sequencing depth using annotated ORFs read counts and following Love et al (2014). This filter resulted in a final set
of 5,596 TUs.
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3 Estimation of RNA metabolism rates from 4tU-Seq data

3.1 Overview
We used a probabilistic model that relates read counts of some kind (exonic reads, spliced and unspliced junction
reads) to a set of model parameters Θ which includes the RNA metabolism rates and technical nuisance parameters.
With casual notations, we modeled the probability of observing read counts k of one kind in one sample as p(k|Θ) =
NB(k|mean(Θ), dispersion), where NB() is the negative binomial distribution. Subsections 3.2-3.5 model the RNA
species concentrations in the sequenced samples and subsection 3.6 models the expected number of reads sequenced
given these concentrations. This gives mean(Θ). The last subsection describes the parameter estimation procedure.

3.2 Junction Model
For a given junction, let [precursor RNA] be the cellular concentration of the unspliced RNA and [mature RNA] the
cellular concentration of the spliced RNA. With synthesis rate µ, splicing rate σ and degradation rate λ the following
ODEs describe the dynamic of the system assuming first-order kinetics:

d[precursor RNA]
dt

= µ− σ[precursor RNA]

d[mature RNA]
dt

= σ[precursor RNA]− λ[mature RNA]

with following initial conditions:

[precursor RNA]labeled|t=0 = 0

[mature RNA]labeled|t=0 = 0

[precursor RNA]unlabeled|t=0 =
µ

σ

[mature RNA]unlabeled|t=0 =
µ

λ

Under the assumption that introduction of labeled Uracils in the media (t = 0), the solutions are:

[precursor RNA]labeled(t) =
µ

σ
(1− e−σt)

[mature RNA]labeled(t) =
µ

λ(λ− σ)
(λ(1− e−σt)− σ(1− e−λt))

[precursor RNA]unlabeled(t) =
µ

σ
e−σt

[mature RNA]unlabeled(t) =
µ

λ(λ− σ)
(λe−σt − σe−λt)

3.3 Exon model
For single-exon TUs, there is no processing. Following the same rate notations, we obtain the same kinetics as for the
precursor RNA (not that here λ plays the role σ earlier):

[exon RNA]labeled(t) =
µ

λ
(1− e−λt)

[exon RNA]unlabeled(t) =
µ

λ
e−λt
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3.4 Uracil Bias
Not all uracils available to the transcription machinery are labelled, leading to a labelling bias against transcripts with
a small number of Us (Miller et al, 2011). Following Miller et al (2011), the probability p(4tUI) that one transcript
incorporates at least one 4tU was modelled as:

p(4tUI) = 1− (1− p(4tU replaces U))Number of U in transcript

This correction was difficult to apply to the junction model because of all possible RNA variants (isoforms, precursor
and mature RNAs) overlapping the junction. However, we found that a U-bias correction would have negligible effects
for intron-containing TUs because even their mature RNAs were containing generally containing many Us (short TUs
were almost all single-exon). Hence, for typical values of p(4tU replaces U), p(4tUI) was very close to 1 for intron-
containing TUs. In the following, U-bias correction was only applied to the exon model, which became:

[exon RNA]labeled(t) = p(4tUI)
µ

σ
(1− e−σt)

[exon RNA]unlabeled(t) =
µ

σ
e−σt + (1− p(4tUI))

µ

σ
(1− e−σt)

3.5 Cross-contamination
What we measure is the purified and the not purified (so-called total) fractions of RNA. Measurements are sensitive
to small amount of cross-contamination of unlabeled RNAs in the purified fraction, because unlabeled RNAs can
represent the vast majority of RNAs especially at early time points. Thus, we introduced a cross-contamination factor
χ that we assumed to be common to all RNA species for simplicity. Up to sample-specific factors common to all RNA
species (see section 3.6), the concentration of purified and not purified RNA relates to the RNA cellular concentrations
as:

[purified RNA] = (1− χ)[labeled RNA] + χ[unlabeled RNA]
[not purified RNA] = [labeled RNA] + [unlabeled RNA]

3.6 Expected number of reads given RNA species concentrations
3.6.1 Expected number of reads

Let xi,j be the concentration of feature i in sample j (e.g. [purified precursor RNA] is the concentration of the
feature ’unspliced read’ in labeled samples). The expected counts ki,j of feature i in sample j was modeled as:

E(ki,j) = FjNixi,j

where Fj is sample-specific scaling factor (see below) and Ni is the effective length of feature i (see below).

3.6.2 Controlling for overall amount of labeled RNA and sequencing depth

The RNA-sequencing protocol requires a constant amount of starting material and yields approximately the same
number of reads per sample. Hence, the overall increase of labeled RNA over time is not reflected in the total amount
of reads obtained. Therefore, normalization of the samples relative to each other had to be performed using sample-
specific factors Fj . This normalization factor also allows controlling for variations in sequencing depth.

3.6.3 Controlling for TU length

The exon model is based on all reads overlapping the exon, and therefore depends on the exon length, yet not in a
simple proportional fashion. Indeed, purified transcripts are sonicated into fragments of a typical length, in our case
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about 200bp (mean fragment length, the actual number is not essential, it is only used in the derivation step). For
asymptotically long transcripts, the expected number of fragments per transcript is:

Ni ≈
length of transcript i

mean fragment length
, for i long intronless TU

However, this approximation fails for short transcripts. Indeed, sonication of short transcripts (about less than 2 times
the mean fragment length) leads to a large fraction of very short fragments that are selected against during library
preparation and do not get sequenced. Hence, to model the relation between fragment length and expected number
of sequenced fragments for the whole range of transcript lengths, we empirically used a linear approximation that
includes an offset Loff (see estimation below). This led us to an effective length such that:

Ni =
length of transcript i+ Loff

mean fragment length
, for i intronless TU

In contrast, the junction model relies on spliced and unspliced reads that overlap junctions. Reads that overlap a
junction satisfy two criteria: i) they originate from fragments that overlap the junction and ii) the reads themselves
overlap the junction. Junctions are typically further away from transcript ends compared to the fragment length. We
therefore asssumed that the expected number of possible fragments satisfying criterion i) is the same for all junctions
genome-wide. Criterion ii) implies that the effective length for the junction model is proportional to read length.
Matching junction model and exon model estimates to the same scale was achieved by setting the effective length of
the junction model to read length (78bp in our case) over mean fragment length:

Ni =
read length

mean fragment length
, for i spliced or unspliced junction

Note that because the expected counts are linear in the effective length Ni, it is crucial to have a good estimate,
otherwise the synthesis rates are not comparable between genes. This highlights an important advantage of the junction
model over the exon model, since the former relies on fewer modeling assumptions with an effective length that is
common to all junctions.

3.7 Parameter estimation
In the following we develop a method for estimating all parameters based on the observed count data by maximizing
the likelihood.

Assuming negative binomial distribution of RNA-seq read counts (Love et al, 2014), the log likelihood reads as:

ll =
∑
i,j

log(NB(ki,j |Ei,j(Θ), α) (1)

where Θ is the set of parameters {µi, σi, λi, Fj , χ, Loff, p(4tUreplacesU)} for all junctions or exons i and for all
samples j, and where α is the dispersion parameter of the negative binomial. We assumed that the dispersion parameter
is uniform over all samples and features, which we believe is a reasonable assumption.

3.7.1 Estimation of the dispersion parameter

Due to the complexity of the model and the large number of parameters it is not practically feasible to directly optimize
the log likelihood. In a first step the mean Ei,j of each data point (a data point is given by the number of reads
belonging to one transcriptional feature e.g. exonic reads, junction reads at one time point) between the two replicates
was computed. In a second step, the dispersion α was fitted by maximum likelihood letting the Ei,j fixed:

α = argmax
∑
i,j

log(NB(ki,j |Ei,j , α)) (2)
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Then the actual model was fitted using this value of α as fixed parameter. The expected counts obtained by this
model were used again with (2) to get an improved estimate for α. Two rounds of iterations showed that α is a stable
parameter and does not differ much from the first order guess (about 10% change). Forced changes of α by factor of
10 and 0.1 showed that the actual model parameters Θ are quite robust against variation of α, since the estimated rates
did not change significantly (relative changes 10−4). Hence, we did not increase the number of iterations.

3.7.2 Overall estimation procedure

After extensive testing and numerical simulations, we found that the best results were obtained using the following
procedure.

Transcripts with a length less than 120 base pairs were excluded from the analysis because of insufficient coverage,
as the read length itself comprises 80 base pairs. We used the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
using the R function optim() with analytical gradient. We actually maximized the logarithm of the log likelihood,
which turned out to give more reproducible results.

1. Start with Loff = 0, p(4tUreplacesU) = 1, and χ = 0 and keep them as fixed parameters in the BFGS
optimization procedure.

2. Select the 350 “best” intronless genes (in terms of coverage by visual inspection in a genome browser) and apply
BFGS with the exon model (because we have the least number of assumptions here). The fitting is repeated 100
times using different start parameters, which allows us to estimate the robustness of the model. In this way we
were able to extract the set of normalizing constants Fj for each sample (median of the fits). Because they are
relative quantities, we deliberately set F1 = 1.

3. Run the exon model and the junction model using the Fj as fixed input parameters. Each fit is done with 100
different initial values. Define the median of the calculated parameters as estimate.

4. Repeat step 2 and 3 using different values for the cross-contamination ranging from 0 to 5 % (independent
experiments with spike-ins motivated this range), different Loff and p(4tUreplacesU). These two parameters
were set according to criteria described below.

Criteria for step 4 are as follows. Under the assumption that all junctions within one gene should have the same
synthesis rate we chose the level of cross-contamination with the best correlation of the synthesis rates between the
first and second junction of genes with 2 or more introns. When setting p(4tUreplacesU) for the exon model so that
these correlations match each other, we observed no significant correlations between synthesis rate and gene length.
This result was in agreement with the junction model, for which no correlation between synthesis rate and gene length
was found either. Moreover, the best value for p(4tUreplacesU) was 1%, which is strictly within the expected range
and close to the value of 0.5% estimated by (Miller et al, 2011) when profiling S. cerevisiae and in the range of
estimates obtained by high performance liquid chromatography (Appendix Figure S2). Nonetheless, one should keep
in mind that the lack of correlation between synthesis rate and gene length for intronless genes in our data is due to a
modeling assumption and not a result of our investigations.

The results were used to improve our estimate of the dispersion parameter and steps 1 to 4 were repeated to improve
the model parameters even further.

3.8 Rescaling of synthesis rate
The two quantities [purified RNA], [not purified RNA] are both linear in µ. Hence, the synthesis rate can only be
estimated up to a global constant. We therefore arbitrarily set F1 = 1 for the fitting. Absolute synthesis rates were
then obtained by scaling all values so that the median steady-state expression level of ORF-TUs matches the one
reported by a genome-wide absolute quantification study (median of 2.4 coding mRNAs per cell, Marguerat et al
(2014)).

3.9 Comparison of junction and exon model
Synthesis and degradation rates within one TU showed higher consistency when estimated by the splice junction model
than by the exon model (Spearman rank correlation = 0.44 versus 0.41 for synthesis time, Appendix Figure S3A,F,
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and Spearman rank correlation = 0.79 versus 0.78 for half-life, Figures 3E and Appendix Figure S3G). The higher
consistency of the junction model can be because i) it actually models the splicing step and ii) it is more robust against
sequencing biases. We thus used rates estimated by the splice junction model for all intron-containing genes, and fell
back to the exon model for intronless genes only.

3.10 Note on incorporation lag time
Our model did not consider time until 4tU gets available to the transcription machinery (by diffusion and import). The
lag is a constant that is the same for all genes. Note that this time has to be very short since labeled RNA was detected
after 2 min labeling.

4 Identification of sequence elements predictive for rates and linear regres-
sion

The goal of this procedure was to identify sequence elements predictive for a given rate of interest (synthesis, splicing,
or degradation), in a given gene region of interest (promoter for all TUs and 5’UTR, coding sequence, introns, 3’UTR
for ORF-TUs) and to estimate coefficients for each nucleotide at each position of these sequence elements. The
procedure consisted of two consecutive stages ’seed finding’ and ’seed extension and regression’.

The output of the ’seed finding’ stage are initial sequence elements that associate with the rate. To this end, a
linear mixed model was considered to assess the effect of each possible 6-mer in turn, while controlling for random
effects over all 6-mers. We followed here an idea proposed by Liyang et al. (NAR, 2014) to estimate the activity of
microRNAs. Formally, the effect of the j-th 6-mer on the rate was modeled according to:

y = Wα + xjβj + u + ε

p(u) = N(u|0, λτ−1K)

p(ε) = N(ε|0, τ−1I)

, where y is a n-vector of rates over all n TUs (respectively splice sites), W is an optional n×cmatrix of covariates, α
is the corresponding vector of coefficients, xj is th n-vector of the number of instances of the j-th 6-mer in the region
over all TUs (respectively splice sites), βj is its coefficient, u is a n-vector of random effects, and ε is the n-vector
of errors. For all rates, we considered as covariate the unit vector in order to model an intercept. We also considered
as covariate the length of the 3’UTR in the case of the degradation rate, which we had found to be significantly
associated with degradation. For other rates, no further covariate was used. The covariance matrix K was set to
XTX where X, whose columns are the xj , is the matrix of 6-mers counts. The covariance on the random effects
allows controlling for the effects of all other 6-mers. The model was fitted using the GEMMA software (Zhou and
Stephens, Nature Genetics, 2012). All 6-mers significantly associated with the rate (FDR <0.1, likelihood-ratio test
with Benjamini-Hochberg correction for multiple testing) were retained. If both a 6-mer and its reverse complement
were found significant, the two were considered as a single unstranded 6-mer, and the other ones as stranded 6-mers.
Significant 6-mers overlapping by all but one or two base (eg. TTAATG and TAATGA) and sharing more than half of
their genome-wide instances reciprocally were recursively assembled into longer k-mers (in this example TTAATGA).
This procedure led to stranded and unstranded k-mers that we coined ’seed’.

The goal of the ’seed extension and regression’ stage is to extend seeds to cover neighbor nucleotides significantly
and to estimate the effect of each nucleotide. This is achieved with the following iterative procedure:

1. Initialization: The ’sites’ are initialized by all elements in the region of interest matching the seed up to one
mismatch (two mismaches for the long HOMOL-box motifs) together with 2 nucleotides 5’ and 2 nucleotides 3’ of it.
For the unstranded motifs (two homol boxes) we also considered the reverse complements of the motifs as match.

2. Linear regression: We denote by ni the number of sites for the i-th TU andL the length of a site. The ’consensus’
sequence is defined as the sequence of the position-wise most frequent nucleotides over all sites. The following linear
model is fitted by maximum likelihood:

yi = β0 +

ni∑
j=1

βcons +

L∑
k=1

βk,wi,j,k
+ εi

7



where β0 is the intercept, i.e. the average level in the absence of any site, βcons is the effect of one consensus site,
wi,j,k is the k-th nucleotide of the j-th site of the i-th TU, and βk,A, βk,C , βk,G, βk,T are the effects of each nucleotide
at position k relative to the nucleotide of the consensus site at the same position. By definition βk,w is constrained to
be 0 if w equals the k-th nucleotide of the consensus sequence. The errors εi are assumed to be independently and
identically normally distributed. Reverse complemented motifs enter in their canonical form.

3. Extension: For each site considered in step 2, its overall effect βcons +
∑L
k=1 βk,wi,j,k

is tested to be significantly
different from 0 (P < 0.05). To compute the p-value we evaluate the multivariate t-statistic (using glht of the multcomp
package in R, see Hothorn et al. (2008) and Bretz et al. (2010)). A position weight matrix (PWM) is constructed based
on all significant sites extended by 2 nucleotides 5’ of the 5’-most significant position and 2 nucleotide 3’ of the 3’-most
significant position. To construct the PWM, the genomic nucleotide distribution is taken as background distribution.
The sequences significantly matching the PWM (P> 0.80, multinomial model with a Dirichlet conjugate prior) are
considered as the new sites. Step 2 and 3 are repeated until sites do not get extended in length. This is decided by
visual inspection of the obtained PWM (the extended bases equal the background distribution). It turned out that the
extension stage was only necessary and useful for the two well conserved Homol boxes.

The final motif sequence we report is the consensus sequence of the motifs. We searched again in the regions of
interest for them (allowing 1 mismatch for all but the two HOMOL-Boxes (2 mismatches)). We finally applied the
same linear model as in point 2. on these found sites to obtain the final coefficents.

5 Validation of sequence model using Clément-Ziza et al (2014) eQTL dataset
We compared fold-change associated with local genetic variants in Clément-Ziza et al (2014) with the predicted effects
from the sequence-to-rate model described in the section 4.

5.1 Read counts
This study profiled steady-state RNA levels and not the newly synthesized RNAs. Hence, the coverage on introns was
too poor to perform accurate quantification of the precursor RNAs. We thus focused on the quantification of steady-
state levels of mature RNAs of our TUs. To this end, RNA-Seq data from recombinant S. pombe strains libraries
(Clément-Ziza et al, 2014) were downloaded from ArrayExpress ( http://www.ebi.ac.uk/arrayexpress/,
identifier E-MTAB-2640). Genetic variants and strain genotypes was obtained as supplementary Datasets from the
manuscript. RNA-Seq reads from each strain were mapped separately to the reference genome using STAR (ver-
sion 2.4.0i) Dobin et al (2013) with default options. We considered for further analysis ki,j , the number of reads
overlapping at least one exon for TU i in sample j.

5.2 Fold change associated with local genetic variants
The read counts ki,j defined above were modelled according to the following generalized linear model:

ki,j ∼ NB(µi,j , αi)

µi,j = sj × qi,j
log2(qi,j) = β0

i + βlocal
i gi,j +

∑
b,batch

βbatch
b xbatch

j,b

where NB is the negative binomial distribution, αi is a gene-specific dispersion parameter; sj is the size factor of
sample j; gi,j is the genotype (0 for the reference allele, 1 for the alternative allele) at the variant of interest for
gene i in sample j; xbatch

j,b is 1 if sample j is from batch b and 0 otherwise. The model was implemented with the
R/Bioconductor package DESeq2 (Love et al, 2014), which provides robust estimation of the size factors, of the
dispersion parameters and the fold changes. The log-fold change of interest, βlocal

i , together with its standard error,
was then considered for further analysis. Effect of batches, reported in the original study, were dominating the signal
and important to control for. We also investigated controlling for hotspots (8 eQTL hotspots were reported in the
original study) but this led to an increased variance for little bias reduction.
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6 Multivariate analysis of splicing time
We performed linear regression of log splicing time of each junction against i) all the nucleotides of 5’SS, the BS and
the 3’SS region, ii) TU log-synthesis time, iii) the TU length and iv) the number of introns in the TU. The branchsite
coordinates were predicted by the FELINES algorithm Drabenstot et al (2003). First regression was done against each
covariate individually. Then, a joint model was built incrementally including each covariate in this order. Fraction of
explained variance for both procedures are reported in table below.

Fraction of explained variance Individual Incremental
Sequence 0.50 0.50

log-synthesis time 0.45 0.42
TU length 0.09 0.07

Number of introns 0.034 0.0024

Except for the number of introns, all covariates contributed approximately equally in the individual and in the
incremental model, showing that they are independently predicting synthesis time. In contrast, the number of introns
did not added explained variance, likely because the predicted splicing time already correlated with number of introns
(Compare Figure EV3F to Figure 6D). To determine the important nucleotides of the 5’SS, the BS and the 3’SS region,
we used cross-validation. We started with all nucleotides +/-10 of the 5’SS, the BS and the 3’SS and decreased the
window sizes systematically in several reduce steps. First we increased the starting position of the 5’SS -10 to -9,-8,-7,
... until cross-validation showed a loss in predictive power. Then we decreased the 5’SS +10 position in a similar
manner. We continued analogously with the BS and 3’SS. We also used several different orders of removing the
nucleotides (e.g. starting with 3’SS), to assert that we get similar results which are not biased by the order we apply
the reduce step. We used 10-fold cross-validation. We trained the model on 9 parts and validated on the 10th part.
Hereby we received a set of 10 models. To report the accuracy of our estimates we use the standard deviations of the
coefficients reported by each model, the reported coefficients are the median of all 10 models.
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Appendix Figure S 1: Segmentation algorithm parameters and antisense artifacts in current genome annota-
tion. (A) Distribution of mean RNA-Seq read coverage per segments for currently annotated (blue) and not currently
annotated regions (red) and mean coverage cutoff for the segmentation algorithm to call a region expressed (vertical
line). (B) Jaccard index (z-axis) when computing per base overlap between automatic segmentation and current an-
notation versus min-length and max-gap parameters of the segmentation algorithm. (C) Top ten GO terms enriched
(model-based gene set analysis, Bauer et al. 2011) among 402 non-recovered protein coding genes from Pombase. (D)
Sense mean coverage (x-axis) versus antisense mean coverage (y-axis) of 1011 non-recovered ncRNAs of the current
annotation. (E) Mean sense coverage (x-axis) and antisense coverage (y-axis) of Pombase 3’UTR regions that extend
TU defined 3’UTRs by 250nt or more. Per base coverage is extracted from total RNA-Seq data used in this study.
The mass of the data in upper left quadrant indicate that long Pombase UTRs mostly arise from antisense artifacts
in former studies. (F) Histogram of TU length. (G) Distribution of the number of introns per TU. (H) Histogram of
intron length.
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Appendix Figure S 2: 4tU incorporation probability by HPLC. Proportion of 4sUs in RNA extracts of cells grown
for 60 min. in 4tU media as estimated by HPLC (Materials and Methods) for 3 biological replicates (x-axis) using 200
microgram RNA (circle) and 400 microgram RNA (triangle), and estimate from 4tU-seq model (dashed horizontal
line). Cells were grown for 60 min. to get rid of most RNAs present prior to 4tU exposure. HPLC 4sU peaks were
measured because cells catabolize 4tU into 4sU prior to RNA incorporation.
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Appendix Figure S 3: Modeling RNA kinetics. (A) Estimate of synthesis time for ORF-TUs with two introns based
on the first intron (x-axis) against estimate based on the second intron (y-axis). (B) Mean coefficient of variation for
synthesis (red) and degradation (black) rates estimated from the two first introns of genes with two or more introns
using total RNA-seq and the labeled RNA-seq at 2 min. only, 2 and 4 min., etc., up to the full series. (C) Exon-
only model used to estimate synthesis times and half-lives of intronless TUs. (D) Half-lives of intron-containing TUs
estimated using the junction model (x-axis) versus the exon model (y-axis). (E) As in (D) for synthesis times. (F)
Synthesis time of intron-containing TUs estimated using the exon model on the first exon (x-axis) versus second exon
(y-axis). (G) As in (F) for half-lives. (H) Comparison of synthesis times of ORF-TUs between this study (x-axis)
against synthesis rates publised in (Sun et al. 2012). (I) As in (H) for half-lives.
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Appendix Figure S 4: TU 3’-end in overlapping antisense ORF-TUs. Observed and expected number of TU 3’-ends
in CDS, intron, 5’UTR and 3’UTR of antisense ORF-TUs. Expected counts are estimated by 999 times randomization
of all overlapping sense-antisense TU-pairs. Dark grey bars show the mean and the range which contains 90% of
expected counts (“error bars”).
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