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When children learn their native language, they have to deal with a confusing array of
dependencies between various elements in an utterance. The dependent elements may
be adjacent to one another or separated by intervening material. Prior studies suggest
that nonadjacent dependencies are hard to learn when the intervening material has little
variability, which may be due to a trade-off between adjacent and nonadjacent learning.
In this study, we investigate the statistical learning of adjacent and nonadjacent depen-
dencies under low intervening variability using a modified serial reaction time (SRT)
task. Young adults were trained on mixed sets of materials comprising equally probable
adjacent and nonadjacent dependencies. Offline tests administered after training showed
better performance for adjacent than nonadjacent dependencies. However, online SRT
data indicated that the participants developed sensitivity to both types of dependencies
during training, with no significant differences between dependency types. The results
demonstrate the value of online measures of learning and suggest that adjacent and non-
adjacent learning can occur together even when there is low variability in the intervening
material.
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Introduction

It is generally assumed that statistical learning, a mechanism that encodes
statistical regularities in the environment, plays a role in language acquisition
(see Aslin & Newport, 2009; Seidenberg, 1997). An extensive body of work has
shown that adults as well as infants can readily pick up on regularities among
adjacent elements, such as among adjacent speech sounds or visual shapes
(e.g., Bulf, Johnson, & Valenza, 2011; Kirkham, Slemmer, & Johnson, 2002;
Saffran, Aslin, & Newport, 1996). This sensitivity to adjacent dependencies
has been found to be present even in newborns (Teinonen, Fellman, Néétinen,
Alku, & Huotilainen, 2009).

Beyond adjacencies, natural languages also involve a variety of nonadjacent
dependencies, in morphosyntax—as in nonadjacent verb patterns such as is/are
verb-ing, and sentence-level syntax—as in embedded sentence structures such
as The man the boy saw kissed the woman. Therefore, an important research
topic is whether statistical learning is possible when the dependent elements
are nonadjacent. As adjacent and nonadjacent dependencies coexist in natural
languages, a further issue is whether statistical learning of both adjacent and
nonadjacent dependencies can occur together. Answering these questions is
essential to determine the importance of statistical learning in natural language
acquisition.

Concurrent Statistical Learning of Adjacent and Nonadjacent
Dependencies

The empirical findings to date suggest that statistical learning of nonadjacent
regularities is possible under favorable conditions (e.g., Creel, Newport, &
Aslin, 2004; Gebhart, Newport, & Aslin, 2009; Gomez, 2002; Gomez & Maye,
2005; Newport & Aslin, 2004; Onnis, Christiansen, Chater, & Gomez, 2003;
van den Bos, Christiansen, & Misyak, 2012). Nonadjacent learning can, for
instance, readily occur when perceptual cues that group together the nonadja-
cent elements are available (Creel et al., 2004; Gebhart et al., 2009; Newport &
Aslin, 2004; van den Bos et al., 2012), or when learners are preexposed to non-
adjacent pairs in an adjacent structure prior to being exposed to the same pairs in
anonadjacent structure (Lany & Gomez, 2008; Lany, Gomez, & Gerken, 2007).
Notably, it has been found that the variability of the materials intervening be-
tween the nonadjacent elements places an important constraint on nonadjacent
learning (Gomez, 2002; Gémez & Maye, 2005; Onnis et al., 2003). Gémez
(2002) trained participants on an artificial language that consisted of three-
element spoken sequences with deterministic nonadjacent dependencies
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between the first and third elements (e.g., AxB and CxD, nonadjacent prob-
ability p = 1.0). The variability of the intervening element was manipulated
by varying the set size of the second elements in four between-participant con-
ditions (x = 2, 6, 12, or 24 exemplars). The manipulation resulted in lower
intervening variability in the conditions with smaller set sizes and higher in-
tervening variability in those with larger set sizes. Participants listened to the
sequences for approximately 20 minutes, after which they made grammatical-
ity judgments on strings that either followed trained patterns (e.g., AxB and
CxD) or deviated from trained patterns in the third element position (e.g., AxD
and CxB). Goémez found that learners accepted the grammatical strings at high
rates across all four conditions (mean acceptance rates 77% to 100%), but those
trained under larger intervening set sizes were less likely to erroneously accept
the ungrammatical strings, relative to those trained under smaller intervening
set sizes (mean acceptance = 20%, 47%, 54%, and 68% for x = 24, 12, 6, and
2, respectively). It thus appears that nonadjacent dependencies can be learned
readily when the adjacent elements are highly variable, but perhaps not when
these elements have less variability. Interestingly, individuals with specific
language impairment have been found unable to use variability in statistical
learning of nonadjacent dependencies (Hsu, Tomblin, & Christiansen, 2014).
Gomez’s (2002) findings raise the possibility that nonadjacent learning may
be hindered by adjacent learning. In particular, the poorer judgments with in-
creasing strength of the adjacent statistics may suggest a “tendency to focus on
adjacent dependency,” which may be “fundamental in learning and may even be
the default” (Gomez, 2002, pp. 434—435). According to this possibility, learn-
ers will focus on adjacent relations upon encountering exploitable adjacencies,
eventually succeeding in adjacent learning but having difficulty with or even
failing in nonadjacent learning. However, upon encountering uninformative ad-
jacent dependencies, learners may switch attention to informative nonadjacent
relations and consequently succeed in acquiring nonadjacent dependencies. If
true, this would suggest a severe limitation in learners’ ability to track adjacent
and nonadjacent statistics concurrently (see also Pacton & Perruchet, 2008).
Romberg and Saffran (2013) investigated whether adjacent and nonadjacent
dependencies can be learned concurrently or whether there may be trade-offs
between adjacent and nonadjacent learning (see also Vuong, Meyer, & Chris-
tiansen, 2011). Similar to Gomez (2002), they trained adult learners on an
AxB grammar with deterministic nonadjacent dependencies between the first
and third elements (three A-B frames, p = 1.0 each). Embedded within the
nonadjacent frames were second element exemplars (x = 12) that resulted in
high intervening variability for nonadjacent learning. Adjacent relations (Ax or
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xB) were probabilistic and less informative than the nonadjacent relations (high-
est adjacent p = .80 and p = .67 in Experiments 1 and 2, respectively). Different
groups of learners listened to the spoken sequences at exposure durations that
ranged from 5 to 20 minutes. At test, all learners performed two judgment tasks
in one of two testing orders (adjacent test first or nonadjacent test first). The
adjacent test involved discriminating between strings with legal nonadjacent
frames surrounding a trained or untrained second element for the frames. The
nonadjacent test involved discriminating between strings with trained or un-
trained nonadjacent frames while holding constant the likelihood of the adjacent
relations within the frames. The main results showed that learners performed
above chance on both tests with no significant differences between tests across
exposure durations. This suggests that adjacent and nonadjacent dependencies
can be learned rapidly together, at least given high intervening variability.

The Present Study

The present study sought to provide a stronger test of concurrent adjacent and
nonadjacent learning, by investigating learning under low intervening variabil-
ity. As reviewed above, it is under this condition that nonadjacent learning has
been found to be more difficult than under high intervening variability (e.g.,
Gomez, 2002). We therefore used a smaller intervening set size of four ex-
emplars, as compared to a set size of 12 intervening exemplars in Romberg
and Saffran (2013). Furthermore, Romberg and Saffran’s training materials
featured deterministic nonadjacent dependencies but probabilistic adjacent de-
pendencies within the same set of materials. Their materials were therefore
biased toward the acquisition of nonadjacent dependencies (see also De Diego
Balaguer, Toro, Rodriguez-Fornells, & Bachoud-Lévi, 2007). By contrast, there
was no such bias in our study, as adjacent and nonadjacent statistics were
matched by implementing probabilistic adjacent and probabilistic nonadjacent
dependencies in separate sets of materials that were randomly intermixed dur-
ing training (p = .50 each). Using different materials across the dependency
conditions allowed us to observe nonadjacent learning when adjacent pairs
were made uninformative not only during the testing phase but also during the
learning phase, ruling out the possibility that nonadjacent performance may be
mediated by adjacent pairs in either of the phases.

Similar to Romberg and Saffran (2013), we presented adult learners with
three-element sequences during training and asked them to perform offline tests
at the end of training (see also Gémez, 2002). However, we greatly extended
the training given to participants. Compared to natural learning situations,
the duration of exposure given in artificial grammar learning studies tends
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to be much reduced—typically around 20 minutes in studies on nonadjacent
learning (e.g., Creel et al., 2004; Goémez, 2002; Gomez & Maye, 2005; Onnis
et al., 2003; Romberg & Saffran, 2013; van den Bos et al., 2012). Failure
to observe learning in the laboratory might stem from the limited learning
opportunity given to learners rather than from inherent limits on learning. A
recent study by van den Bos and colleagues (2012) has examined learning of
probabilistic nonadjacent dependencies within this time frame. No learning
was found unless visual or phonological grouping cues were present. In this
study, we lengthened each training session to approximately 1 hour, and (more
critically perhaps) there were three sessions on successive days, allowing for
potential memory consolidation of dependency knowledge to take place (e.g.,
see Durrant, Taylor, Cairney, & Lewis, 2011).

Finally, another novel aspect of the current study concerned the assessment
of learning. In addition to offline testing after training, we tracked each par-
ticipant’s performance online using a modified serial reaction time (SRT) task
(Misyak, Christiansen, & Tomblin, 2010a). The SRT task (Nissen & Bullemer,
1987) is often used in studies of sequence learning, which measures reaction
times (RTs) to sequence elements in structured and random trials online during
learning. Pattern-specific learning is revealed as RTs to structured blocks de-
crease relative to RTs in random blocks. The SRT task, which does not require
participants to reflect upon trained patterns, can be distinguished from offline
tests that require participants to make explicit decisions about trained patterns,
such as predicting the next element in a sequence or making judgments about
the grammaticality of test sequences. Prior studies have shown that results
obtained via the SRT task may be dissociated from those obtained via offline
tasks (e.g., Cherry & Stadler, 1995; Gaillard, Destrebecqz, Michiels, & Cleere-
mans, 2009; Howard & Howard, 1989, 1992; Jiménez, Méndez, & Cleeremans,
1996; Willingham, Greeley, & Bardone, 1993; see Dienes & Berry, 1997, for a
review).

As noted above, Romberg and Saffran (2013) measured adjacent and non-
adjacent learning using offline judgments. In their study, taking the adjacent
test first was found to result in worse performance on nonadjacent than ad-
jacent dependencies in the first experiment, and taking the nonadjacent test
first resulted in worse adjacent than nonadjacent performance in the second
experiment (though the reverse patterns did not obtain within the same experi-
ments). Because only offline judgments were available, it is not possible to tell
whether the patterns observed reflect differences in learning or whether they
might arise during offline testing. In our study, therefore, we included an online
SRT measure in addition to two offline ones, a prediction and a grammaticality
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judgment task (see the Method section). As grammaticality judgments may
involve meta-cognition to a greater extent than prediction, it was administered
last during offline testing. Finally, and potentially relevant for applications to
language learning, the modified SRT task used here has been shown to provide
a sensitive indicator of learning and correlate with online language processing
ability in earlier studies (Misyak & Christiansen, 2010; Misyak et al., 2010a;
Misyak, Christiansen, & Tomblin, 2010b).

To summarize, our study investigated concurrent learning of probabilis-
tic adjacent and probabilistic nonadjacent dependencies under low intervening
variability. The adjacent and nonadjacent dependencies were featured in sepa-
rate sets of materials and were matched in probabilities. Our participants were
exposed to the materials in an extended SRT training phase, which provides
an online measure of learning. Dependency learning was additionally tested
using two offline tasks administered after the last training session. If statistical
learning of adjacent and nonadjacent dependencies can occur together, despite
low intervening variability, learners should show sensitivity to both types of
dependencies, at least in the online SRT measure. The concurrent learning may
or may not similarly manifest in the offline measures, as offline performance
is subject to additional influences from meta-cognitive decision making. Al-
ternatively, if statistical learning is biased toward adjacent dependencies to the
exclusion of nonadjacent dependencies, then upon encountering the exploitable
adjacencies learners should show sensitivity to the adjacent dependencies but
not to the nonadjacent dependencies. Such a bias, if true, should be evident
in the online measure, and perhaps also in the offline ones, as suggested by
previous findings (e.g., Gomez, 2002).

Method

Participants

Forty-five Dutch native speakers (14 males, My, = 21.3 years, SD = 2.9)
participated in the experiment. They were paid €24 for the three 1-hour sessions
held on successive days.

Training Materials

Training materials consisted of spoken three-element sequences of Dutch pseu-
dowords, which were orthographically legal and easy for native speakers to
pronounce (bur, ciez, daip, fot, gan, huf, jom, lerg, mig, nem, pes, kov, sjuk,
sor, talt, trin, rew, vun, wijb, zas). The tokens were recorded by a female native
Dutch speaker. Assignment of tokens to elements (first, second, or third) was
randomized across participants.
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A Nonadjacent sequences B Adjacent sequences

Axl Bl Axl Ez MB; i MBz Yu
Ax, B, Ax, B, MPy, MP,y,
Ax; B, Ax,B, MP,y, MP,y,
Ax, B, Ax, B, MPy, MP,y,
Cx, D, Cx, D, NQ, v, NQ.,y,
Cx,D, Cx,D, NQ,y, NQ.y.
Cx, D, Cx,D, NQ,y, NQ,y,
Cx,D, Cx,D, NQ,y, NQ.y,

C Modified SRT task

BUR ‘

JOM | TALT
PES__ JOM | TALT | BUR ‘
Ty pES | KOV JOM | TALT | BUR
o) talt PES KOV MIG
o) mig

Figure 1 The lists of adjacent and nonadjacent grammatical sequences used in the study
are presented in panels A and B. For the SRT task, written distractors were drawn from
the other subset of each dependency type (indicated by the dashed line in panels A and
B). An example of the modified SRT display is presented in panel C.

Two sets of grammatical sequences were constructed, both with a small
adjacent set size (x = 4 exemplars; see Figures 1A and B). There were a total
of 16 unique grammatical sequences per dependency set. The nonadjacent
sequences consisted of four probabilistic nonadjacent pairings between the
first and the third element (A-B; and A-B,; C-D; and C-D;; p = .50). As
each second element (X, X3, X3, or X4) was followed by each third element
(B1, By, Dy, or D») at equal frequency, the second element did not provide
any useful information for selecting the third element. The adjacent sequences
consisted of four probabilistic adjacent pairings between the first and the second
element (M-P; and M-P,; N-Q; and N-Q,; p = .50). As each third element
(Y1, Y2, Y3, and Yy) followed each second element (P, P,, Q1, or Q,) at equal
frequency, third elements did not provide any useful backward information
for selecting the second elements. Adjacent and nonadjacent sequences were
randomly intermixed during training.
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Modified SRT Task

The modified SRT task was used to obtain online measures of learning (see
Misyak & Christiansen, 2010; Misyak et al., 2010a, 2010b). On their computer
screen, the participants saw a table with three columns and two rows (see Figure
1C). Each cell showed a nonword. Upon hearing each nonword in a sequence
(e.g., “jom-talt-mig”), they simply had to click on the corresponding cells (the
targets). The written target for the first element (e.g., JOM) was presented in
the first column, the second target (e.g., TALT) in the second column, and the
third target (e.g., MIG) in the third column.

Each column of the table included one target and one distractor. The dis-
tractors were drawn from the other subset within each dependency type (see
Figure 1) and were constrained by element position. The distractors used for
the first column were the first elements of a nontarget sequence in the same
dependency set (e.g., the written distractor for the target element A was ele-
ment C and vice versa; for element M, the written distractor was element N and
vice versa). Similarly, the distractors for the second and third columns were
second and third elements, respectively, of a nontarget sequence in the same
dependency set (e.g., the written distractor for the target second element P was
element Q and vice versa). The written targets and distractors appeared equally
frequently and were counterbalanced for display positions across trials.

A training trial started with the presentation of a fixation cross in the center
of'the computer screen for 750 milliseconds. Then the visual display was shown
until the end of the trial. The first nonword was played 250 milliseconds after
the onset of the display. From the starting position of the mouse, which was
at the center of the computer display, the participants were asked to make a
mouse click inside the rectangular area containing the first target as quickly
and accurately as possible. Immediately following the participant’s response,
the second nonword was played and the participant made a second mouse-click
response. The same procedure applied to the third nonword. The trial ended
as soon as the participant had made the third mouse click. RTs were measured
from the onset of each element’s auditory presentation. A different random
order of trials was used for each participant. We did not aim to compare RTs
across positions (e.g., for the first vs. second target) but were only interested
in RT changes for a given position across the trials of the training sessions.
In other words, it may be the case that it took participants longer to move the
mouse to the first than to the second target, but this was not relevant for the
present purposes.

To assess pattern-specific learning, ungrammatical trials were included in
addition to grammatical trials. In each session, participants went through four
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grammatical blocks (16 grammatical sequences x 4 repetitions = 64 trials per
dependency set per block), then one ungrammatical block of 8 nonadjacency
and 8 adjacency violation trials, and two further grammatical blocks. Non-
adjacent ungrammatical sequences were constructed by switching the third
elements across nonadjacent subsets (e.g., AxD, CxB). Adjacent ungrammat-
ical items were constructed by switching the second elements across adjacent
subsets (e.g., MQy, NPy). Adjacent and nonadjacent ungrammatical sequences
were randomly intermixed in the ungrammatical blocks. Pattern-specific learn-
ing was assessed by comparing the RTs in the ungrammatical blocks to the
RTs in the grammatical blocks that immediately preceded and followed the
ungrammatical ones (e.g., Misyak et al., 2010b). If dependencies among the
elements are learned, the RTs should be longer in the ungrammatical block
than in the grammatical blocks. RTs for the second and third elements were
averaged separately using trials from the appropriate adjacent and nonadjacent
sets—henceforth, adjacent and nonadjacent RTs, respectively.

End-of-Training Tests

There were no offline tests after the first or second training sessions. Upon
completing the training trials of the third session, the participants were told that
the triplets they had heard followed certain patterns and that their knowledge
of these regularities would be tested in three short tasks—a nonadjacency
prediction task (8 trials) followed by an adjacency prediction task (8 trials) and
a grammaticality judgment task (16 trials per dependency set). No feedback
was provided for any of the offline tests.

In the prediction tasks, the same SRT display was used as during training, but
the critical element was omitted from the spoken stimuli. In the nonadjacency
prediction task, the participants made mouse-click responses for the first and
second elements based on auditory information, as before, but selected the third
element without any auditory information. In other words, they had to predict
the third element. For the items in the nonadjacent set, this was possible based on
the nature of the first element, whereas the second element was uninformative.
In the adjacency prediction task, they made a mouse-click response after hearing
the first token, then selected one of the elements in the second position without
any auditory information, and finally selected the third elements based on the
auditory information.

In the grammaticality judgment task, the participants heard one triplet of
spoken elements at a time. Adjacent and nonadjacent trials were randomly in-
termixed. Half of the triplets within each set followed trained patterns, whereas
the remaining half had a violation at the critical second or third element position
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(e.g., nonadjacent grammatical AxB vs. ungrammatical AxD, adjacent gram-
matical MPy vs. ungrammatical MQy). The participants pressed one of two
keys (yes or no) to indicate whether or not the triplet followed previously trained
patterns. Responses were scored as correct if the appropriate key was pressed.

Similar to Romberg and Saffran (2013), the set of bigrams (e.g., xB, xD)
were of equal frequency across our grammatical and ungrammatical nonadja-
cent sequences. Adjacent probabilities were not informative for distinguishing
between grammatical and ungrammatical sequences on nonadjacent test trials.
Conversely, nonadjacent probabilities were not informative for the adjacent
test trials.

Results

SRT Task

Participants were 98% correct on average (SD = 1.3) in making mouse-click
responses during training. All correct reaction times were included in subse-
quent RT analyses. A summary of adjacent and nonadjacent RT's across training
blocks and sessions is presented in Figure 2.

The adjacent and nonadjacent RTs decreased considerably across the gram-
matical blocks, especially within the first session. Collapsing across dependency
types, the RT improvement averaged 60 milliseconds (SD = 55) within the first
session and close to zero in the subsequent sessions. A 2 (Dependency type:
adjacent vs. nonadjacent) x 3 (Session: 1 to 3) x 6 (grammatical blocks within
each session) within-subject analysis of variance (ANOVA) on logarithmically
transformed RTs confirmed that there were significant main effects of session
and block (both ps < .001) and a significant session x block interaction, which
was corrected for violation of the sphericity assumption using the Greenhouse-
Geisser formula, F(6.38, 280.78) = 13.15, p < .001, n,? = .23. Collapsing
across the sessions, the adjacent RTs tended to decrease slightly faster than the
nonadjacent RTs over the grammatical blocks (mean RT decrease between the
initial and final block = 25 milliseconds, SD = 36, for adjacent dependencies,
compared to 13 milliseconds, SD = 39, for nonadjacent dependencies). How-
ever, the dependency X session interaction was not significant (Greenhouse-
Geisser corrected), F(4.03, 177.16) = 2.19, p = .07, np2 = .05. There was no
significant main effect of dependency type, F < 1, p = .88, 1, < .001, nor
was there a significant dependency x session interaction, F < 1.62, p = .20,
n,”> = .04, or a significant three-way interaction, F < 1, p = .76, 1, = .02.

If the participants’ RTs decreased across blocks and sessions because they
had learned the dependencies and could predict the target elements, then remov-
ing the regularities in these patterns should lead to disruption of their responses
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Mouse-click Grammaticality

RT (ms) Effect (ms) ™ Adjacent Effect ™ Nonadjacent Effect
50

700 A
40

675 A 30
20

650 1\
10
0

625 1

Session 1 Session 2 Session 3

600

575 1
| -*Adjacent RT
220 *® Nonadjacent RT
1 2 3 4506 7 8 9 10 1112U013 14 15 16 17 18 19U 20 21

Training Block

Figure 2 Adjacent and nonadjacent RTs across training blocks (error bars represent
standard errors). Each session consisted of seven training blocks. Blocks 5, 12, and 19
were ungrammatical blocks. The bar chart displays the averaged grammaticality effects
across dependency types and sessions (grammaticality effect = ungrammatical RT —
pooled grammatical RTs, which were based on the grammatical RTs in the two blocks
that immediately preceded and followed the ungrammatical block).

in the ungrammatical blocks. Reinstating the regularities should lead to a re-
bound in response facilitation. To test this prediction, we compared the average
RTs in the ungrammatical blocks to the pooled RTs in the grammatical block
immediately preceding the ungrammatical block and the grammatical block im-
mediately following the ungrammatical block. A 2 (Dependency type: adjacent
vs. nonadjacent) x 3 (Session: 1 to 3) x 2 (Grammaticality: ungrammatical
vs. grammatical) within-subject ANOVA on logarithmically transformed RTs
showed a significant main effect of session, indicating that the overall mean
RTs decreased with training (Greenhouse-Geisser corrected), F(1.66, 73.19)
=22.44,p < .001, npz = .34. Crucially, the ANOVA confirmed that the main
effect of grammaticality was significant, F(1, 44) = 39.39, p < .001, > = .47.
Collapsing across dependency type and sessions, grammatical RTs were faster
than ungrammatical RTs by 25 milliseconds on average (SD = 33). However,
there was no main effect of dependency type, F < 1, p = .49, npz = .01, nor
was there a significant dependency x grammaticality interaction, F(1, 44) =
2.92, p = .10, npz = .06, or a significant three-way interaction, F < 1, p = .79,
n,” = .005.
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Table 1 Summary of the descriptive statistics and the fixed effects in the logistic re-
gressions for the offline data

A. Descriptive statistics for prediction and grammaticality judgment data

Accuracy  Hit False d
Measure Dependency type (SD) (SD) alarm (SD) (SD)
Prediction All trials 61% (18) - - -
Adjacent 64% (23) - - -
Nonadjacent 58% (23) - - -
Grammaticality judgment All trials 58% (10) - - -
Adjacent 63% (14) .69 (.19) .43 (.20) .88(1.05)
Nonadjacent 54% (13) .66 (.19) .58 (.18) .27 (.83)
B. Fixed effects for the prediction data (N = 720)
Model Predictor Coefficient SE Wald Z )4
Intercept-only Intercept A48 12 3.94 <.001
Dependency as predictor Intercept 33 .14 2.29 .02
Dependency = 31 .16 1.94 .05
adjacent
C. Fixed effects for the grammaticality judgment data (N = 1440)
Model Predictor Coefficient  SE Wald Z )4
Intercept-only Intercept 34 .06 5.40 <.001
Dependency as predictor Intercept .16 .08 1.98 <.05
Dependency = 37 A1 3.40 <.001
adjacent
Offline Results

A summary of the offline results can be found in Table 1. The participants
averaged 61% correct (SD = 18) on the prediction task and 58% correct
(SD = 10) on the grammaticality judgment task. To test whether the overall
performance differed from chance (50%) for each task, we carried out a
mixed-effects logistic regression using the /me4 package in the statistical
software R (Bates, Maechler, & Bolker, 2011; Jaeger, 2008). Raw accuracy
data were entered as the dependent variable, subjects as a random effect,
and only the intercept included in the fixed effects. Consistent with the SRT
results, the regression showed that the participants performed significantly
above chance on both the prediction task, b = .48, z = 3.94, p < .001, and the
grammaticality judgment task, b = .34,z = 5.40, p < .001.

In contrast to the SRT results, however, the participants showed lower
accuracy on the nonadjacent than adjacent dependencies in the offline tasks.
On average, the participants scored 58% correct (SD = 23) on nonadjacent
and 64% correct (SD = 23) on adjacent trials in the prediction task, and 54%
correct (SD = 13) on nonadjacent and 63% correct (SD = 14) on adjacent trials
in the grammaticality judgment task. A histogram showing the distribution of
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A Prediction B Adjacent B Nonadjacent
15 1

10 -

Counts

01 02 03 04 05 06 07 08 09 1.0

B Grammaticality Judgment
20 1

01 02 03 04 05 06 07 08 09 1.0
Proportion Correct

Figure 3 Histograms of the proportion correct (bin width = 0.1) for adjacent and
nonadjacent trials in (A) the prediction task and (B) the grammaticality judgment task.

the proportions of correct values by the dependency type in each task can be
found in Figure 3.

To examine whether offline performance differed as a function of the
type of dependencies tested, we performed another mixed-effects logistic
regression with dependency type added as a fixed effect. As summarized in
Table 1, dependency type had a significant effect on offline performance.
The odds of making a correct response in the prediction task were 1.36 times
higher for adjacent than nonadjacent dependencies (b = .31). Similarly, the
odds of making a correct grammaticality judgment were 1.44 times higher
for adjacent than nonadjacent trials (b = .37). The effect of dependency type
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approached significance in the prediction task, z = 1.94, p = .052, and was
highly significant in the grammaticality judgment task, z = 3.40, p < .001. The
significant intercepts in the models confirmed that performance on nonadjacent
dependencies was significantly above chance in both tasks (both ps < .05).

Finally, an analysis of the grammaticality judgment data using signal detec-
tion methods (e.g., Stanislaw & Todorov, 1999) yielded a converging pattern
of better sensitivity favoring adjacent dependencies in offline performance (see
Table 1). The analysis showed comparable average hit rates across dependency
types (M = .69 and .66, respectively), but a much higher false alarm rate for
nonadjacent than adjacent dependencies (Magjacent = -43, Mronadjacent = -58).
A t test confirmed that the resulting d-primes were significantly higher for
the adjacent than nonadjacent condition (Mefrect = .61, SD = 1.29), #(44) =
3.16, p = .003, although both measures were significantly higher than 0 (both
ps < .05), indicating again that participants were able to discriminate between
the grammatical and ungrammatical sequences for both dependency types, but
that their discrimination performance was better for adjacent than nonadjacent
dependencies.

Discussion

Participants in the present study heard nonword sequences featuring adjacent
dependencies and sequences featuring nonadjacent dependencies with a small
intervening set size (four elements). Both the online data (based on RTs in
the SRT task) and the offline tests (prediction and grammaticality judgment)
showed that the participants learned the adjacent dependencies. Successful
learning of the adjacent dependencies is consistent with the results of many
earlier studies (e.g., Saffran et al., 1996; Teinonen et al., 2009).

More importantly, the participants in our study also acquired nonadjacent
dependencies, which have often been found much harder to learn (see Aslin
& Newport, 2009, for a review). Earlier studies where successful nonadjacent
learning was observed used preexposure of the nonadjacent pairs (e.g.,
Lany et al., 2007; Lany & Goémez, 2008), perceptual cues to facilitate their
grouping (e.g., Creel et al.,, 2004; van den Bos et al., 2012), or targeted
larger intervening set sizes than used here (e.g., Gémez, 2002; Romberg &
Saffran, 2013; van den Bos et al., 2012). Although the finding showing that
nonadjacent learning is possible under low intervening variability without
added cues does not constitute a novel observation (e.g., De Diego Balaguer
etal., 2007), our results extended previous findings, as we observed learning of
probabilistic nonadjacent dependencies under low intervening variability while
earlier studies used only deterministic ones. Together the findings suggest
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that, although nonadjacent learning can be facilitated by the aforementioned
conditions, none of these conditions are necessary for learning to occur.

Research on early language development has shown that important ele-
ments, such as individual verbs in verb-centered grammatical structures, tend
to show low variability in early stages of language acquisition (e.g., Goldberg,
Casenhiser, & Sethuraman, 2004; Ninio, 1999; see also N. C. Ellis & Ferreira-
Junior, 2009; Wulff, N. C. Ellis, Romer, Bardovi-Harlig, & Leblanc, 2009, for
studies on second language acquisition). Ninio (1999) focused on the develop-
ment of verb-object (VO) and subject-verb-object (SVO) patterns in younger
children (aged 1;01 to 2;01) and found that children typically started with one
to two path-breaking verbs. The children continued to use these verbs for a
relatively long period of time before they added more verbs to the patterns.
Similarly, Goldberg et al. (2004) performed corpus analyses of children’s and
mothers’ speech and found that most of the instances in which particular pat-
terns were used involved a limited number of verbs—a highly frequent verb
together with several less frequent ones. These and related studies (e.g., Boyd
& Goldberg, 2009; Maguire, Hirsh-Pasek, Golinkoff, & Brandone, 2008; Wulff
et al., 2009) have argued that the initial learning of input patterns can be robust
with, and may be even facilitated by, low-variance input. While previous studies
on the learning of nonadjacent dependencies has shown that nonadjacent learn-
ing is facilitated by more, rather than less, variable input (e.g., Gomez, 2002),
our finding is relevant to the language research discussed here as it shows that
statistical learning of nonadjacent relations can be robust in the face of low
(intervening) variability.

In our study, the probabilities of the dependency patterns in the adjacent and
nonadjacent sets were matched. In accordance with these matched probabilities,
the online results indicated that the nonadjacent dependencies were learned as
well as the adjacent ones. Neither the online nor offline data showed evidence
for a mutually exclusive pattern of adjacent versus nonadjacent learning. These
findings are therefore inconsistent with the view that learners focus by default
on adjacent dependencies, which would hinder nonadjacent learning (Gémez,
2002; see also Pacton & Perruchet, 2008). They are, however, in line with a
view of associative learning that postulates the formation of “remote associa-
tions” between various nonadjacent elements in a sequence along with adjacent
associations between contiguous elements, as put by Ebbinghaus (1885/1964)
over a century ago:

[T]he associative threads, which hold together a remembered series, are
spun not merely between each member and its immediate successor, but
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beyond intervening members to every member which stands to it in any
close temporal relation. (p. 94)

In accord with this manifold associative learning view (Ebbinghaus, 1885/1964;
see Slamecka, 1985, for a review; for discussions, see Capaldi, 1985; Dallett,
1965; N. C. Ellis, 1970; Hakes & Young, 1966; Slamecka, 1964, 1965), the
present study, combined with Romberg and Saffran’s (2013) findings, shows
that adjacent and nonadjacent learning can occur together when learners are
exposed to strings with adjacent and nonadjacent patterns. This concurrent
learning is possible even under low intervening variability, as indicated by our
results.

Moreover, Romberg and Saffran (2013) found that adjacent and nonad-
jacent learning can occur together when probabilistic adjacent and determin-
istic nonadjacent dependencies are embedded within the same strings. Our
results further show that adjacent and nonadjacent learning can proceed in
parallel when probabilistic adjacent and probabilistic nonadjacent dependen-
cies are present in different strings. This suggests that statistical learning can
exploit transitional probabilities across multiple sets of dependency patterns
concurrently, for each set that contains predictive information, be it adjacent
or nonadjacent dependencies. Previously, van den Bos et al. (2012) found no
learning of probabilistic nonadjacent dependencies under limited exposure (one
session of approximately 20 minutes) in the absence of grouping cues. The suc-
cessful learning found here highlights the importance of providing extended
exposure to the patterns. In our study, the forward conditional probabilities
were matched at p = .50 for both adjacent and nonadjacent dependencies. In
addition, however, the backward conditional probabilities were 1.0 for both
types of dependencies.! Prior studies have shown that learners are also sensi-
tive to backward conditional probabilities (e.g., Pelucchi, Hay, & Saffran, 2009;
Perruchet & Desaulty, 2008), and hence it is possible that the backward statistics
might play a role in the current results (though whatever effect this may have,
this effect will be constant across both types of dependencies). Future studies
should look into the possible contributions of these sources of predictability to
the learning of adjacent and nonadjacent dependencies.

Our study included both online and offline measures of learning. In neither
of these measures was there evidence for an all-or-none trade-off between
adjacent and nonadjacent learning. Nevertheless, there was a difference in the
offline results favoring adjacent dependencies, which was absent in the online
SRT measure. What might account for this pattern? One possibility is that our
SRT measure failed to capture the adjacency advantage in the online learning
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phase. In this study, the ungrammatical trials were implemented toward the
end of each training session. Visual inspection of the SRT curves suggests
some divergence between the adjacent and nonadjacent curves earlier, such
as at the third block of the first session, although the lack of ungrammatical
RT control did not allow for a measure of dependency-specific learning to be
derived and tested. Perhaps adjacent dependencies can be learned faster than
nonadjacent dependencies thanks to their greater temporal proximity. However,
such an advantage in the speed of learning may be only temporary, especially
for very short sequences like those used here. If this possibility is correct, we
may be able to detect online differences favoring adjacent dependencies when
dependency-specific learning measures are administered earlier in training.
Alternatively, the adjacency advantage might arise specifically in the
offline tests. The same might apply for earlier studies suggesting an adjacency
bias in offline measures of learning (e.g., Gémez, 2002). For sequences as
short as ours, it is possible that an adjacency advantage may be negligible in
online measures. During the offline tests, however, participants had to make
an explicit choice for which they had to translate their intuitions about the
sequences into overt responses. In this task, the adjacent pairs may have been
more salient or easier to retrieve from working memory than nonadjacent pairs.
This interpretation is compatible with the view that adjacent associations may
be more amenable to direct observations than remote associations (Ebbinghaus,
1885/1964; Slamecka, 1985). However, Ebbinghaus postulated that adjacent
associations may be the only ones observed in “conscious mental life” (p. 94).
This claim is not entirely consistent with our results. Following conventional
interpretation of the signal detection sensitivity measure, the above-zero
d-prime for nonadjacent dependencies seen here suggests that nonadjacent de-
pendencies can influence performance on direct tests, though to a lesser extent
compared to adjacent dependencies. Clearly, more research is necessary to shed
further light on the adjacency advantage found in offline performance (and
the lack thereof in online data). With respect to our main question—whether
adjacent and nonadjacent sequences from separate sets of materials can
both be learned in the same exposure window in spite of low intervening
variability—both types of measures yielded converging positive evidence.

Implications and Conclusion

An emerging body of empirical studies has begun to link statistical learning to
natural language acquisition and processing (see Arciuli & Torkildsen, 2012,
for a review). However, these studies have tended to focus on first language—
linking statistical learning, for instance, to grammar acquisition (Kidd, 2012),
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vocabulary development (E. M. Ellis, Gonzales, & Dedk, 2014; Shafto, Con-
way, Field, & Houston, 2012), and online comprehension in first language
(Conway, Bauernschmidt, Huang, & Pisoni, 2010; Misyak & Christiansen,
2012; Misyak et al., 2010a, 2010b). The robust learning of a relatively complex
set of dependency patterns shown by our young adult participants suggests that
statistical learning may play a role in adult second language learning (see also
Onnis, 2012). Future investigations should look beyond first and child language
acquisition, and begin to examine the role of statistical learning in adult and
second language acquisition. In investigating these links, our study suggests
that investigators should carefully plan duration of exposure so as to ensure
sufficient exposure to trained patterns. It is also advisable that online measures
of learning be used in addition to offline ones. Insofar as the learning of com-
plex patterns is concerned, the sole use of offline measures risks providing an
incomplete assessment of learning (e.g., Jiménez et al., 1996; Morgan-Short,
Steinhauer, Sanz, & Ullman, 2012; Tokowicz & MacWhinney, 2005; see also
Norris & Ortega, 2000, for a review indicating biases in the measures used to
assess learning in second language acquisition research). Inclusion of online
measures is all the more pressing, as research begins to move toward exploring
the role of statistical learning in the acquisition of such complex systems as
natural language.

To conclude, our results show that, under suitable learning conditions, adult
learners acquire nonadjacent dependencies readily along with adjacent ones.
There was, in our data, no evidence that one type of learning occurred at the
expense of the other type of learning. Our results indicate that statistical learning
is more powerful than previously thought, which supports the hypothesis that
statistical learning may play an important role in the acquisition of long-distance
dependencies in natural language.

Final revised version accepted 8 September 2014

Note
1 We thank an anonymous reviewer for pointing this out.
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