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Abstract

Leaf seasonality impacts a variety of important biological, chemical and physical Earth
system processes, which makes it essential to represent leaf phenology in ecosystem
and climate models. However, we are still lacking a general, robust parametrisation
of phenology at global scales. In this study, we use a simple process-based model,
which describes phenology as a strategy for carbon optimality, to test the effects of
the common assumption in global modelling studies that plant species within the same
plant functional type have the same parameter values, implying they are assumed to
have the same species traits. In a previous study this model was shown to predict
spatial and temporal dynamics of leaf area index (LAI) well across the entire global
land surface provided local grid cell parameters were used, and is able to explain 96 %
of the spatial variation in average LAl and 87 % of the variation in amplitude. In contrast,
we find here that a PFT level parametrisation is unable to capture the spatial variability
in seasonal cycles, explaining on average only 28 % of the spatial variation in mean
leaf area index and 12 % of the variation in seasonal amplitude. However we also show
that allowing only two parameters, light compensation point and leaf age, to be spatially
variable dramatically improves the model predictions, increasing the model’s capability
of explaining spatial variations in leaf seasonality to 70 and 57 % of the variation in LAI
average and amplitude respectively. This highlights the importance of identifying the
spatial scale of variation of plant traits and the necessity to critically analyse the use of
the plant functional type assumption in Earth system models.

1 Introduction

The ability to understand and predict leaf seasonal cycles, a process known as leaf
phenology, is essential to our understanding of earth systems processes, through its
impact on the carbon and water cycles (White et al., 1999; Wilson and Baldocchi, 2000)
and climate (Hayden, 1998). As such, phenology is an essential component of global
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vegetation models and an improvement in our understanding of, and ability to predict,
leaf phenology would improve Earth System Model predictions.

One of the aspects of global vegetation models that is currently under scrutiny is
the way parameters are assigned to the simulated vegetation within a given model
grid cell. Traditionally, models make use of the Plant Functional Type concept (PFT).
In this approach, a small number of PFTs are defined, each with a corresponding set
of parameters, then a given grid cell is assigned to one, or a mixture of, these PFTs.
However, more recently efforts are being made to include a more biologically detailed
representation in the form of plant traits. PFTs are classes of plant species with sim-
ilar characteristics and roles within ecosystems (Box, 1996; Smith, 1997) and found
within certain bioclimatic regions (Prentice et al., 1992; Haxeltine and Prentice, 1996).
All model parameter values are then assigned to each PFT either based on ground
measurements or through parameter estimation. This approach has the underlying as-
sumption that all plants within such a PFT show an identical behaviour (Sitch et al.,
2003), an assumption applied to all processes represented in such models, includ-
ing leaf phenology. Dynamic global vegetation models predict PFT distributions based
either on pre-defined climate envelopes (Prentice et al., 1992) or pre-defined com-
petitive outcomes, both approaches being based on existing PFT distributions (Arora
and Boer, 2006). Recent studies have attempted to use a more physiological based
approach (Fisher et al., 2015).

The main advantage of using PFTs in vegetation models is the simplicity of the con-
cept and the relatively small number of parameters, minimising both the amount of
data and computational effort required. Using PFTs to represent ecological processes
at global scales would be the obvious initial choice for parameter inference because
the number of parameters can be kept low while still representing the various types of
vegetation.

However, there are a number of disadvantages to using the PFT approach, mainly
due to the fact that a PFT-type categorisation imposes fixed parameter values and can-
not capture the continuous variation observed in plant traits within and among PFTs
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(see review by Van Bodegom et al., 2012). Capturing such heterogeneity may not only
improve the prediction of biogeochemical and physical dynamics in Earth system mod-
els but may also improve predictions of other longer term vegetation processes such
as shifts in vegetation composition to climate change. Recent studies have therefore
focussed on replacing the PFT method with using plant traits (Sakschewski et al., 2015;
Verheijen et al., 2013; Pavlick et al., 2013) and identifying the distribution of traits to use
in different locations across the Earth surface (Kattge et al., 2011; Reich et al., 2007).

Given the potential advantages and disadvantages of the PFT approach, it is im-
portant to formally evaluate it in comparison to alternative approaches, such as using
location-specific traits, but such a formal comparison has not been carried out to date.

In the current paper we aim to investigate the use of PFT and trait based param-
eters within the framework of a data constrained global phenology model. We have
chosen to use a previously developed leaf phenology model (Caldararu et al., 2014)
as a simpler case than a full scale DGVM. For the purpose of this paper, we use the
term phenology to encompass seasonal trajectories of leaf area index (LAI) as well as
the timing of leaf off and leaf on, which is what the term refers to in its stricter sense.
We explore the extent to which the PFT assumption can capture the spatial variability
in leaf seasonality. To this end, we use three main different model parametrisations:
the local parametrisation, the fitted parameters at the PFT level and a novel approach
which combines PFT level parameters with local traits, as well as a global and regional
parametrisation (Sect. 3). We explore the differences between the different parametri-
sations (Sect. 4) and we aim to explain the effects shown by local parameters and their
relationships with plant traits (Sect. 5).
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2 Datasets used
2.1 LAl data

We use leaf area index (LAI) data from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) on board the Terra platform. We use the MODIS collection 5
product MOD15A which is available at 1 km spatial resolution and an 8 day time step
(https://Ipdaac.usgs.gov/). The MODIS LAl is based on a reflectance algorithm which
uses the red and near infrared bands and includes corrections for canopy structure
and background soil reflectance (Knyazikhin et al., 1999). In cases where this main
algorithm fails, a backup algorithm is used, which is based on an empirical relationship
between LAl and NDVI (normalised difference vegetation index). We use the quality
assurance flags provided with this product to filter pixels that were derived using the
backup algorithm or which are classified as snow covered, as described in Caldararu
et al. (2012). We use data for the globe with a spatial resolution of 1 km, which we then
aggregate to the GEOS-4 base resolution of 2° latitude by 2.5° longitude. The data was
split into a training (2001-2005) and an evaluation (2006) dataset.

2.2 Environmental variables

To drive the model, we use temperature and photosynthetically active radiation (PAR)
data from assimilated meteorological data products of the Goddard Earth Observing
System (GEOS-4) (Bey et al., 2001), which is available at a spatial resolution of 2° lati-
tude by 2.5° longitude and a temporal resolution of 3 h, which we average to a one day
temporal resolution. The soil moisture data required in the model was obtained from
the NCAR/NCEP reanalysis daily average surface flux data set (http://www.esrl.noaa.
gov/psd/data/gridded/data.ncep.reanalysis.surfaceflux.html) (Kalnay et al., 1996). this
is provided at a 1 day temporal resolution and has been regridded to the GEOS-4
spatial resolution.
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2.3 Plant functional type map

We use a global PFT map which is used in the Integrated Biosphere simulation model
(IBIS) (Kucharik et al., 2000). This differentiates between 13 different plant functional
types based on general plant properties (trees vs. grasses), temperature tolerance
(tropical vs. temperate) and leaf habit (deciduous vs. evergreen). The PFT data is pro-
vided at a 1km spatial resolution, which we re-grid at the GEOS 4 native resolution
based on majority landcover in each grid cell.

3 Model fitting
3.1 Model description

We use a global scale mechanistic phenology model (Caldararu et al., 2014) which
is based on a carbon benefit approach so that leaf gains and losses are adjusted
to achieve the optimal carbon assimilation at the canopy level. The phenological tim-
ing predicted by traditional models arises implicitly by predicting LAl values. At each
timestep t and for each location x, the model calculates leaf gain and loss, and hence
overall change in LAl as:

dLAI(x, ?) iy
—gr = Pt 1), LAI(x,£ - 1)) Ztha (1)

Here, P refers to leaf production processes, which are calculated as a function of solar
radiation /, and the LAl at the previous timestep LAI(x,f — 1) and L refers to leaf loss
summed over all groups of leaves of the same age a (see Table 1 for a full list of
parameters).

To describe leaf gain, we define the concept of target LAI as the optimum number of
leaf layers for a given light level at the top of the canopy /, so that the bottommost leaf
layer receives sufficient light for photosynthesis, that is light at the compensation point
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C (W m‘2). The target is calculated using Beer’s law of light extinction and expressed
as:

I-Altarg = _% In(%)’ )
Here a is the canopy extinction coefficient calculated as a function of day of year and
latitude (Brock, 1981; dePury and Farquhar, 1997). The solar radiation at the top of the
canopy /, is averaged over a number of p days. We calculate separate values for LAl,, 4
for direct and diffuse radiation to account for the different response of photosynthesis
to the two. The overall target is then calculated as the minimum of the two values. At
any time step, if the existing LAl is lower than the target value, new leaves are gained
to reach the target LAl. We introduce a parameter gain,,,, to limit the new leaves that
can be added at each time step to reflect the physiological limits to building new leaves.
The gain at any time ¢ and for all locations x is then calculated as:

gainay, LAliarg(X, 1) = LAI(X, £ = 1) > gainmay
P(x,t) = 4 LAligg(X, 1) = LAI(X,t = 1), 0 < LAliq(X, ) — LAI(X,f = 1) < gaing,y (3)
0, LAligrg(X,2) — LAI(X,f = 1) <O

To account for the effects of temperature, we set a threshold of 0°C mean daily tem-
perature under which no leaves are gained. Initial parameter optimisations where this
threshold is a free parameter have shown that the model is not very sensitive to its
value.

Following the optimality hypothesis, leaves are lost when their carbon assimilation is
less than their respiration and maintenance cost, defined as the limit assimilation value
Amin- We calculate the carbon assimilation as a linear function of PAR absorbed by the
canopy, /i, per unit leaf area:

Phot —q
Ajight = :_MT cass (4)
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Here ¢ and g are model parameters representing photosynthetic efficiency
(umol s W'1) and canopy level light compensation point (umolm’2 3'1). Due to the
lack of data constraints for carbon assimilation in our modelling framework, we nor-
malise assimilation values and associated parameters. As a result, parameter values
for ¢ and g in the above equation do not represent measurable values in the field, but
instead scale between potential minimum and maximum photosynthetic rates within
the model.

To account for water limitation to assimilation and, implicitly, phenological processes,

we introduce a factor fj;, calculated as:

Sy (Ws)sz u
fp=—————-— 5
v eLAl € ®)

where W; is volumetric soil moisture (unitless) obtained from the NCAR/NCEP dataset,
sy and s, are parameters associated with water extraction capacity from the soil, e
represent potential evapotranspiration and v is plant water use.

Similarly, we define an age factor f,4 to describe the declining carbon assimilation
of leaves as they age:

f, = min(1, expH@ei=a), (6)

where u is the rate of decrease with age (years'1) after a limit age a,;; (years). Using
both these factors the overall assimilation is calculated as:

Aot = Alightfwfa- (7)

Overall, the leaf loss at any point in time ¢ and all locations x for any group of leaves of
the same age a (cohort) is:

L(x,t,a) = {LAI(x,t,a), Aior(t, @) < Amin

= (8)
0, Apt(t,a@) = Anin-

To calculate the overall canopy LAI loss we can then sum over all age groups.
16854
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3.2 Model setup

We use five different model parametrisation to explore the extent to which the PFT
approach is applicable to a data constrained phenology model. The first such model
setup, previously used in Caldararu et al. (2014) is to fit a unique parameter set to each
grid cell. We will term this the “local” model. This approach involves a very large number
of parameters (14 parameters at each grid cell, for 2041 vegetated grid cells results in
a total of 28574 parameters). It is important to note, however, that the total amount
of data available from sources such as MODIS is also very large, making it possible
to parametrize extremely parameter-rich models, depending on the exact nature of the
data.

The second model setup is using one set of parameters for each PFT, resulting in
only 182 parameters for the entire globe. We term this the “PFT” model. To investigate
the potential effects of geographical separation, we further separate each PFT into
geographical regions (e.g. North American temperate deciduous broadleaf and Euro-
pean temperate deciduous broadleaf), resulting in 44 regions. This was done to test
the assumption that species evolving in different geographical locations have different
physiological parameters even when belonging to the same PFT. This setup is referred
to as the “region” model and has 616 parameters. As a point of reference, we also
introduce a “global” model where parameters are common for all grid cells, under the
assumption that there is no difference in phenological behaviour between vegetation
types or geographical regions.

To test the extent to which each parameter represents local characteristics, in the
final model setup one or more parameters are location specific while the rest have PFT
wide values. We then term a parameter “local” if it has a specific value at each grid cell.
This setup is the “combination” model’. As there are a very large number of possible
combinations of local parameters, we perform an initial analysis to determine which
parameters would most improve the model performance, if local. We performed a prin-
cipal components analysis (PCA) of the spatial variation in parameter values fitted for

16855

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/16847/2015/bgd-12-16847-2015-print.pdf
http://www.biogeosciences-discuss.net/12/16847/2015/bgd-12-16847-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

the local model. This highlighted that the principal axis of variation in all parameter
values was strongly correlated with variation in Cg;ect, While the second axis was dom-
inated by variation in a.;; (Table A1). We also fit 14 different model parametrisations,
allowing each parameter in turn to be local, while the other parameters are fitted at
the PFT level. The two parameters identified by the PCA, the light compensation point
Cairect @nd the leaf age limit a,;;, also show an increase in model performance, espe-
cially in terms of spatial variation explained (Table A2). As a consequence of these two
analyses, we focus in detail on only one model that combined local and PFT parame-
ters in which the C;ot @and a.,;; parameters are local. This model has 4238 parameters
for the whole globe, compared to 28 574 for the local model and 182 for the PFT.

We fit all models to the data using a custom Markov Chain Monte Carlo (MCMC)
algorithm, known as the Filzbach algorithm (http://research.microsoft.com/en-us/um/
cambridge/groups/science/tools/filzbach/filzbach.htm), which has been described in
detail in Caldararu et al. (2012). Filzbach utilizes MCMC with the Metropolis—Hastings
algorithm to estimate the joint distribution of the parameter set 8. In our study we as-
sume no prior information about @ and so our implementation reduces to estimating
the @ associated with the highest probability of the observations given the model. To
do this we need to define a likelihood function that gives the probability of the data for
any set of predictions from the model with a given parametrization. For the local model
this likelihood function is maximised independently at each location x and is calculated
as:

I(Z,6y) = D NIN(LAlps(X, 1), LAlyeq(X,1,65), 53] 9)
t(x)

where LAl,4(X,?,6y) is the predicted LAI at location x at time ¢ (this depends on the
model parameters 6,); LAl,s(X,t) is the observed MODIS LAl at location x at time
t; and n(LAlgps(X, 1), LAl eq(X,t,6y),04) denotes the probability density for observing
LAlops (X, £) given a normal distribution with mean LAl 4(x, t, 6,) and standard deviation
o, Which expresses the magnitude of unexplained variation in LAIl. The likelihood is
calculated as a sum over all time steps at location x, expressed as #(x).
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For the global, regional and PFT models, the likelihood estimation is carried out at the
global, regional or PFT level, the likelihood being calculated as the sum at all locations
x within a group G, x(G):

1(Z6l66) = 2 D IN[N(LAlgg(X, 1), LAl e4(X,2,65), 05)] (10)
x(G) t(x)

Here Z5 and ¢ denote observed LAl and model parameters for a given group of grid
cells G. Within the combination model, the likelihood is again minimised for a whole
PFT but in addition to the PFT level parameters 6 the predicted LAl is also a function
of local parameters g . For all model parametrisations we use years 2001-2005 as
training data and 2006 for evaluation purposes. Without separating training and test
data in this way, the more parameter-rich models would be guaranteed to give a better
fit to the data. Separating the training and test improves our ability to assess model
performance although, given that the training test data are separated by a relatively
short time, and not separated in space, we expect a tendency for the more parameter-
rich models to provide superior performance against the test data.

3.3 Model performance metrics

To compare the different types of models described above, we define several model
performance metrics against the test data. The best model should be able to capture
both the timing and magnitude of the seasonal cycle at each location and the spatial
variability in seasonal cycles across the globe. As an overall measure of fit we use the
root mean squared error (RMSE) normalised by the mean LAI which is a measure of
the fit at each particular location. The mean LAl and LAl amplitude describe the mag-
nitude of the seasonal cycle and we use the percent of variation explained to capture
the extent to which the model describes their spatial distribution. Similarly, we use the
start and end of the growing season to describe the timing. We define the start of the
growing season as the first date of the year when the LAI reaches 0.2 of the maximum
LAI, while the end of the growing season is the equivalent last date. To capture the
16857
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timing in tropical areas with a less pronounced seasonal cycle, we also use the timing
of maximum LAI. All metrics are reported for the model evaluation period (2006).

We choose not to use statistical information criteria (e.g. Bayesian information cri-
teria) because our model fitting methodology does not easily allow the computation of
a single likelihood metric. The model structure is the same for all parametrisations, with
the main model differences being the number of parameters at each grid cell. However,
this means that different quantities of data are also used to fit different models. For
example, since the local model is fitted separately at each location, effectively consists
of 2041 separate models, each with 14 parameters, while the PFT model contains 13
models each with 14 parameters. Rather than work out a global information criterion
based-metric for the models we instead opt to use the more meaningful metrics of the
relationships between the model predictions and the data described

4 Results

An overall comparison of the five model parametrisations (Table 2) shows that the
global model has the highest error, while the local model has the lowest error. The fact
that the global setup has a very high error is not unexpected since there are known
physiological differences between plant functional types, which is why the use of PFTs
is common in global modelling studies. However, the PFT model also has a much
higher error than the local one. The regional model does not show a significant im-
provement from the PFT, with the exception of the tropical broadleaf evergreen forest
PFT. Below we will discuss in detail only the PFT, combination and local models, where
this particular forest PFT has been separated into geographical (continental) regions.
Figure 1 shows the overall model error over the entire study period for the three main
model parametrisations. Relative root mean squared error (RMSE, unitless) values are
much higher for the PFT model than for the local model, 0.52 £ 0.5 compared to only
0.24 £ 0.03. The combination model has a lower error of 0.38 + 0.45. These errors are
much lower for tropical forests, typically 0.15 for the local model, compared to 0.22 for

16858

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/16847/2015/bgd-12-16847-2015-print.pdf
http://www.biogeosciences-discuss.net/12/16847/2015/bgd-12-16847-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

the PFT and 0.16 for the combination models. Similar errors occur in temperate decid-
uous areas. The highest errors are observed in tropical grasslands and shrublands for
all models and specifically for the PFT model (up to 2).

Figure 2 shows the relative difference between model and observed LAl annual
mean and amplitude. Both the local and combination models underestimate the mean
LAl across all PFTs by 11.3 and 23.4 % respectively. The PFT model exhibits a higher
bias, with a mean value of 45.4 %, with the highest difference in tropical and temperate
deciduous regions (over 90 %). The PFT model underestimates the seasonal amplitude
in tropical forests by up to 50 % and by 20 % in higher latitude regions, while overes-
timating it by up to 200 % in subtropical grasslands and savannas. The combination
model shows a similar pattern but a lower bias, with differences of 27 % in tropical
forests and 13 % in temperate areas, similar to those of the local model.

Figures 3 and 4 show a comparison of predicted and observed LAl mean and am-
plitude for forest and grass PFTs, respectively. The PFT model captures the mean
behaviour but is not able to predict the full range of values in either mean LAI or sea-
sonal amplitude for any PFT, explaining on average only 28 and 12 % respectively of
the spatial variation in LAl mean and amplitude. The combination model shows an im-
provement explaining on average 70 % of the spatial variation in mean LAl and 56 % of
the amplitude, compared to the local model, which explains 90 and 87 % respectively.

All models show a similar ability to predict the timing of the seasonal cycle, with an
error of 16 days for the start of the growing season and differences of up to 24 days for
the maximum and end of the growing season, while in tropical evergreen forests where
the time of maximum LAl is 16 days earlier compared to that shown by the MODIS
data.

Figure 5 shows LAl time series for four different PFTs. At the tropical evergreen
forest location the local and combination models show a similar fit, whilst the PFT
model cannot capture any seasonal cycle. At the dry tropical (savanna) location, the
local model shows a good fit, but both the combined and PFT model predict a much
higher LAI. For the temperate deciduous forest, all models capture the timing of the
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seasonal cycle, but the PFT model predicts a lower amplitude than that observed in
the MODIS data. For the boreal evergreen forest, both the PFT and combination model
predict a higher LAl than that observed by MODIS.

Figure 6 shows the relationship between model error and grid cell heterogeneity in
terms of fraction of cell occupied by the dominant PFT for model RMSE, bias in LAl
mean and bias in LAl amplitude. All three metrics show no correlation with grid cell
heterogeneity, with an R? of less than 0.01, indicating that there is no systematic bias
in errors caused by the chosen PFT map.

To further investigate the observed differences arising from the model parametrisa-
tion, we can analyse the parameter values for each different model. Figures 7 and 8
show parameter distributions for the light compensation point and leaf age limit param-
eters for six selected PFTs. Figure 9 shows global distributions of the local parameters
in the combined model. The PFT model fitted parameters are in most cases capturing
the mean values of the local parameter distributions, but the discrepancy is higher in
PFTs where the distribution has a long tail or multiple modes, especially in the grass
PFTs (Fig. 8). In the evergreen tropical forest the discrepancy between the one value
estimated by the PFT model and the wide range of both the local and combination
parameters is particularly large, as, according to the model, phenology in these areas
is limited by leaf age (Caldararu et al., 2014) and the different modes observed in the
parameter distribution are essential for representing the leaf cycles caused by species
with long but varied lifespans. The discrepancy in leaf age values between the different
model parametrisations for the temperate PFT does not have such a profound effect
on predicted LAI as phenology in these regions is limited by temperature and light and
the age parameters are often poorly constrained even for the local model. Other large
differences in parameter values are observed in the grass PFTs which, as discussed
above, have some of the highest errors.

Overall, all metrics show that the PFT model performs poorly across the globe, while
the combination model, which has only two location specific parameters, shows a good
fit to the data.
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5 Discussion
5.1 Plant traits in the combined model

The most straightforward biological explanation for the observed results of the com-
bined model is that the two local parameters — the light compensation point and leaf
age limit — are location specific plant traits that vary within a PFT sufficiently to af-
fect model performance. Previous studies which have included traits as a replacement
for the PFT concept have done so starting from biological principles, either based on
trait databases (Verheijen et al., 2013) or by evolving traits through plant competition
(Sakschewski et al., 2015). In contrast, in the current study we include no prior knowl-
edge of which parameters correspond to known plant traits and the local parameters
in the combination model are inferred from the fitted model. The question that arises
is if the resulting parameters and parameter values provide any biological insights or
if this is just a mathematical artefact, resulting either from the data used or the model
structure.

The light compensation point is not a trait commonly used in models or included in
trait data, but it is closely related to leaf photosynthetic parameters such as V., and
Jmax @nd could easily be derived in terms of these if our model included a biochemical
description of photosynthesis. There is one other parameter in our model, the photo-
synthetic efficiency, ¢, that is perhaps closer to the commonly used traits but did not
emerge as the most important parameter in the PCA (Table A1) or was able to explain
the spatial variability in LAl (Table A2). In contrast to the compensation point parame-
ter which drives leaf gain across the globe, ¢ mainly determines leaf loss in temperate
and boreal regions which are light and temperature limited (Caldararu et al., 2014).
This result shows that leaf loss within a given PFT across temperate and boreal forests
can be predicted well from environmental factors alone, without any inherent trait vari-
ation within a PFT. This could result either from the real trait variation being low, or, the
real trait variation having such a strong correlation with environmental factors that the

16861

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/12/16847/2015/bgd-12-16847-2015-print.pdf
http://www.biogeosciences-discuss.net/12/16847/2015/bgd-12-16847-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

effects of the trait variation cannot be separated from the effects of the environment.
More ground measurements could resolve between these two possibilities.

Leaf longevity is one of the main parameters used in vegetation models which em-
ploy plant traits (e.g. Sakschewski et al., 2015) as well as in the analysis of the leaf trait
spectrum (Wright et al., 2004). The second local parameter used in the combination
model, the leaf age limit age,;; does not have the same meaning as leaf lifespan, as
in high latitude systems it is never reached and in tropical systems it is the critical age
where leaves start ageing so that the effective lifespan can be much larger. However,
according to our model, it is the main driver of leaf loss in tropical systems and thus
a proxy for determining leaf lifespan.

5.2 Model structure

Our results show that allowing two critical traits to vary within a PFT among locations,
provides a superior model performance. It is likely that such traits vary due to un-
derlying factors that are not explicitly included in our model. Two likely candidates for
such hidden factors are nutrient availability and canopy structure. If the effects of these
factors on traits could be understood and modelled explicitly, this could dramatically re-
duce the number of parameters required by the model, without making the assumption
that the traits are constant within any PFT.

Leaf photosynthetic capacity is a function of leaf nitrogen content (Farquhar et al.,
1980; dePury and Farquhar, 1997; Hikosaka, 2003), a factor which has not been in-
cluded in our model. According to current photosynthetic models, a higher leaf nitrogen
content would lead to a higher light limited photosynthetic rate and hence lower com-
pensation point. Figure 9 shows the spatial distribution of the compensation point pa-
rameter as fitted in the combination model. The highest values are observed in grass-
lands, especially in the tropical region. In forest PFTs, the highest compensation point
occurs over tropical forests, followed by temperate deciduous regions. This is sup-
ported by field studies, as higher latitude forests are generally more nitrogen limited
while tropical and temperate grasslands are one of the most nutrient poor systems in
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terms of phosphorus (Bustamante et al., 2006; Elser et al., 2007). To explore the intra-
PFT distribution of nitrogen availability and fully explain the locality of our compensation
point parameter we would need either a global data set of nitrogen availability such as
the nutrient limitation index derived as a function of evapotranspiration and ecosys-
tem production (Fisher et al., 2012) or coupling the phenology model with a full scale
vegetation model with an explicit representation of the nitrogen cycle (e.g. Zaehle and
Friend, 2010).

Canopy structure determines the light environment in the canopy and controls the
actual amount of light that reaches the leaves for a given light intensity above the
canopy. This means it can be an important value in determining the compensation
point, both through model structure and long term impact on plant behaviour. Within
the model used in this study, we assume a homogeneous canopy, with a random distri-
bution of leaf angles and no clumping, assumptions which can be considered valid at
very large scales, but can potentially introduce errors for certain forest structure types.
It has been shown (Chen et al., 2012) that including leaf clumping in a carbon assimi-
lation model has a major impact on resulting global gross primary productivity values.
A leaf clumping factor would be used to adjust the attenuation coefficient a (Eq. 2) to
improve the description of light transmission through the canopy. It is possible that the
compensation point parameter Cy; artificially accounts for this variation in canopy
structure, which explains its observed spatial variability. Further information such as
the leaf clumping index map developed by Chen et al. (2005) would be needed to dis-
tinguish between the actual compensation point and canopy structure. This relationship
is further complicated by the fact that plants adapt to their light environment, so that
leaves in closed canopies will be better adapted to shaded conditions and will have
lower compensation points so that tropical forests, which are highly stratified, have
a much lower compensation point than other systems. The question is further compli-
cated as canopy structure itself can be an adaptation to the available resources such
as light, water or nitrogen making it difficult to distinguish between all possible factors
in the absence of further data.
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5.3 Model parametrisation

One of the main possible sources of error in our conclusion is the way we have
parametrised the PFT model. In most models which use the PFT concept, grid cells are
represented as a mix of PFTs, with PFT specific parameters assigned to each fraction
(e.g. Stockli et al., 2008), while we have chosen, in order to reduce the computational
effort necessary for a global data constrained model, to only use the dominant PFT in
each grid cell. This approach, together with the low resolution that the model is run at
could mean that the poor fit shown by the PFT model is due to a poor representation of
PFTs rather than the unsuitability of the concept in vegetation models. If this was the
case, we would expect high model errors in grid cells with a larger mix of vegetation
types. However, the high errors in the PFT model are consistent throughout and do not
show a significant correlation with the grid cell PFT heterogeneity (Fig. 6), indicating
that the mix of vegetation types within grid cells cannot be the only explanatory factor.
For a more robust conclusion, we would need to re-run the analysis with either a higher
spatial resolution or with a PFT mix in each grid cell.

We use space borne vegetation data from the MODIS Terra sensor, as satellite mea-
surements are one of the only sources of data for constraining global level vegetation
models, but does suffer from instrument error and atmospheric contamination. We have
attempted to filter the data robustly using data quality flags, as discussed in Sect. 2.1
and previous studies (Caldararu et al., 2012, 2014) and the fitting procedure contains
a parameter o, which accounts for error in the observations (Sect. 3.2). The largest
possible source of error is the seasonality shown by the MODIS data in the Amazon
basin and other tropical regions, which is most likely to determine the spatial distri-
bution of the age.,; parameter. Initial studies have shown that there is an increase in
satellite observed LAI during the dry season over the Amazon (Myneni et al., 2007;
Huete et al., 2006), but more recent studies have argued that the observed change in
LAl is due to sun-sensor geometry (Morton et al., 2014). This finding has been con-
tradicted by subsequent papers (Bi et al.,, 2015) and we do not attempt to give an
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answer to this debate. For the purpose of this study, we assume that this observed
change in LAl is a reflection of actual changes in leaf cover, an assumption backed by
observed changes in gross primary productivity (GPP) and litterfall (da Rocha et al.,
2004; Goulden et al., 2004; Hutyra et al., 2007).

5.4 Method generality

As more studies begin to acknowledge that the PFT concept is not necessarily the best
approach to vegetation modelling, we need to quantify the extent to which the inclusion
of spatially distributed parameters or plant traits improve our predictive capability and
to identify the optimal number of parameters that both give a good model fit and min-
imise computational cost. In this study we have attempted to not only build a model
with locally distributed parameters but also to quantify the extent to which a model with
local parameters and one with PFT level parameters can capture the spatial variability
in global LAl observations. Furthermore, we quantitatively identified which parameters
need to be local to improve model performance with a view to reduce data and compu-
tational needs. We believe that the method used here for investigating the use of PFT
level parameters has a high degree of generality and can be applied to a large variety
of models and input datasets.

6 Conclusions

In this paper we explored the extent to which plants within the same PFT exhibit the
same phenological characteristics using a process-based global phenology model. We
showed that a model with PFT wide parameters cannot explain the observed spatial
variation in seasonal cycles, but that an intermediate model with two location specific
parameters gives a good overall model fit and can reliably be used for phenological
studies. The spatial patterns of these local parameters, the light compensation point
and leaf age limit, might be explained by species adaptation to the local climate or nu-
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trient and water availability and further data is needed to fully understand the observed
distribution. The modelling approach used to determine the validity of PFT level mod-
els can provide further insight for global vegetation models which use plant functional
types as a basis for upscaling measured or fitted parameter values and can hence
improve global simulations of ecosystem processes.

Appendix: Preliminary analysis for the combination model parametrisation

Table A1 shows results from the principal component analysis (PCA) performed to iden-
tify parameters in the combination model and Table A2 shows fits for the preliminary
analysis for the combination model.

Acknowledgements. We would like to thank the developers of the MODIS LAI product for pro-
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Table 1. Model parameters for leaf gain and loss processes.

Symbol  Units Description

Cgirect Wm™ Leaf level light compensation point for direct PAR
Cittuse Wm™ Leaf level light compensation point for diffuse PAR
P days Lag in response to incoming light

gainay m?m™2 Maximum gain

(0] pmol s'w! Photosynthetic efficiency

q pumolm=2s™'  Canopy level compensation point

Sy - Plant water uptake parameter

S5 - Plant water uptake parameter

e mm Evapotranspiration per unit leaf area

u mm Plant water use per unit leaf area

Ayt years Age after which leaves start ageing

u years_1 Decay constant of photosynthesis with age

Anin umolm™s™"  Assimilation rate equal to leaf maintenance costs
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Table 2. Goodness of fit metrics for all five model parametrisations: root mean square error
(RMSE) normalised by mean LAl value, difference in observed and predicted mean LAl and
difference in observed and predicted annual amplitude. All metrics here are median values
across the globe and the two difference values are shown as absolute values.

Model

RMSE Mean difference Amplitude difference

Global
PFT
Regional
Combined
Local

1.21
0.52
0.46
0.39
0.24

0.73
0.45
0.38
0.23
0.12

1.01
0.51
0.31
0.33
0.16
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Table A1. Results of principal component analysis performed for parameters obtained from the
local model. The table shows correlation coefficients between the two principal axes of variation
and each parameter. The first two axes of variation explain 95 % of the spatial variation in

parameters.

First axis R Second axis R?
Cirect 0.869 0.131
Citiuse 0.046 0.010
p 0.005 0.011
gaiNay 0.016 0.102
[0)) 0.004 0.006
q 0.004 0.001
Armin 0.000 0.008
S4 0.002 0.010
S, 0.000 0.017
e 0.011 0.000
u 0.004 0.003
g 0.216 0.784
u 0.016 0.012
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Table A2. Model goodness of fit for preliminary model runs. The parameter name shows which

parameter was made local for that particular run.

RMSE Mean difference Amplitude difference Mean R? Amplitude R?
Cirect 0.85 0.17 0.32 0.57 0.49
Cittuse 0.80 0.30 0.36 0.04 -0.01
p 0.75 0.28 0.28 0.09 0.17
gain,,  0.98 0.18 0.32 0.50 0.33
(0] 0.73 0.27 0.57 0.57 -0.01
q 0.71 0.24 0.33 0.39 0.01
Sy 1.00 0.17 0.25 0.58 0.33
Sy 0.75 0.27 0.33 0.01 0.06
e 0.76 0.26 0.39 0.26 0.03
u 0.78 0.23 0.37 0.38 0.07
Agit 0.72 0.20 0.21 0.56 0.58
u 0.73 1.00 1.00 0.31 0.04
A 0.86 0.10 0.36 0.60 0.35

min
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Figure 1. Root mean squared error (RMSE) of predicted LAI over the model study period for
the local, PFT and combined models. All values have been normalised to the mean observed

LAI at all locations.

RMSE
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Figure 2. Difference between predicted and observed annual mean LAl (left) and seasonal
amplitude (right) for the local, PFT and combined models. All values have been normalised to

the mean observed LAI at all locations.
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Figure 4. Comparison of predicted and observed mean LAl and seasonal amplitude for the
local, PFT and combined models for tropical (green), temperate (red) and boreal (blue) grass

PFTs.
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Figure 5. LAl timeseries for all models for tropical evergreen forests, TEF (6°S, 55° W), sa-
vanna, S (14° S, 20° E), temperate deciduous forests, TDF (46° N, 15° E) and boreal evergreen
forests, TEF (54° N, 120° E). Blue line shows observed MODIS LAI at each location.
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Figure 6. Correlations between model error and fraction of each grid occupied by the dominant
PFT as a proxy for grid heterogeneity. (a) Model RMSE, (b) bias in LAl mean and (c) bias in

LAl amplitude.
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Figure 7. Parameter distributions for the light compensation point and age limit in three repre-
sentative forest PFTs, tropical evergreen forest (TEF), temperate deciduous forest (TDF) and
boreal evergreen forest (TEF). Parameter values are the mean of the fitted posterior distribu-
tions and the represented values reflect the variation in space within one PFT, for the local (top)
and combined (bottom) models, as well as for the fitted PFT (black line).
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Figure 8. Parameter distributions for the light compensation point and age limit in three rep-
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mean of the fitted posterior distributions and the represented values reflect the variation in
space within one PFT, for the local (top) and combined (bottom) models, as well as for the fitted

PFT (black line).
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Figure 9. Posterior parameter means for the compensation point C, and the leaf age limit

a.q resulting from the combination model.
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