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The pteropod Cuvierina constructs very lightweight, thin, flexible and resistant shells, 

with the most unusual microstructure: densely packed, continuous crystalline aragonite 

fibers which coil helically around axes perpendicular to the shell surface. The high 

degree of fiber intergrowth results in a particular interlocking structure. The shell is 

constructed by guided self-assembly, outside the animal’s soft body. A prerequisite to 

understand its formation is to resolve the underlying crystallographic building principle. 

This is basic in order to use this hierarchically structured and highly functional 

biomaterial as inspiration for the production of new materials. It teaches us about the 

optimization of structures over millions of years of evolution under strict consideration 

of energetic costs and efficient use of available resources and materials. By using a 

combination of spatially resolved diffraction and imaging techniques, which 

complement at different levels of resolution, we were able to describe how helical 

coiling proceeds. Despite their curling, the fibers are continuously crystalline and show 

a preferred crystallographic growth direction. When the latter can no more be 

maintained due to the imposed curving, abrupt changes across twins permit to continue 

growth in the desired direction. This is a nice example of how crystallographically 

continuous fibers can grow helically.  

 

1. Introduction 

Mollusks are unrivaled masters in calcification among metazoans. Partly thanks to this 

ability they have become the second most diverse group of invertebrates within the 

marine realm.[1] The microstructures making up their shells are particularly interesting 

as hierarchically-ordered functional materials due to their excellent properties, such as 

toughness, elasticity, lightweight and softness. Although the mechanical properties of 
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the constituting materials (calcium carbonate crystals, organic matter) are relatively 

weak, their combination and optimization of synergistic effects give rise to outstanding 

properties of the hybrid material. Unravelling the growth mechanism and deciphering 

the biological strategies that lead to such sophisticated, hierarchically structured 

biocomposites is not only of interest for the development of new functional materials, 

but might help to find energy- and resource-efficient synthetic routes built on principles 

of self-assembly. 

Among the different microstructures that have been described in the literature,[2,3] 

there is renewed interest in the so-called aragonitic helical fibrous microstructure 

(AHFM).[2,3] It is the most unusual of all molluscan microstructures, since it is made of 

very thin aragonite fibers which coil helically for several turns along an axis 

perpendicular to the shell’s surface. The AHFM has been reported in species of the 

eight genera belonging to the Cavolinioidea (Table S1, Supporting Information), coiling 

being invariably dextral or right-handed.[4,5] Therefore, the AHFM is a trait 

characteristic to this superfamily.[6] 

This microstructure has only recently attracted the attention of materials scientists 

because of its unusual organization, crystallography and biomechanical performance. 

However, the only three studies concerned with the crystallographic structure of the 

material [7-9] agree solely on the fact that the c-axes of fibers are parallel to the coiling 

axis, whereas there is big disparity between results with respect to the rest of the 

crystallographic directions. There is uncertainty, first, about the exact relationship 

between the crystal axes and the fiber morphological axes, and, second, regarding 

crystallographic continuity of fibers. In particular, Li et al. [9] concluded that the fibers 

consist of two families of curved fibrous blocks stacked together along the shell 
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thickness and which complete the helical assembly. This is in contrast to the continuity 

of individual fibers observed with scanning electron microscopy (SEM).  

Part of the disparity of the results can be attributed to the methods employed, which 

provide a too wide (X-ray diffraction, XRD) or too local (transmission electron 

microscopy, TEM) view of the aggregate. We have carried out an in depth study of the 

crystallography of the fibers making up the AHFM of two species of the genus 

Cuvierina using two high resolution techniques, electron back-scatter diffraction 

(EBSD) coupled to SEM, and TEM, which cover the micro- and the nanoscale, 

respectively. By integrating data coming from the two techniques, a coherent 

crystallographic model is aimed to be arrived at. In particular, our aim is to answer 

questions such as: do fibers have a preferred growth direction? are they 

crystallographically continuous? and, if so, do their crystal axes twist during coiling? 

otherwise, how do they manage to twist?  

 

2. Results 

2.1. Morphology of Fibers 

The shells of Cuvierina are small (<1.2 mm), vase-shaped, and thin (Fig. 1a). Inspection 

of extensive longitudinal (Figure 1b) and transverse fractures reveals that, as in all the 

specimens of cavolinioideans examined, the fibers invariably coil dextrally and 

complete up to three and a half turns (Figure 1c). The axes of the spirals are invariably 

perpendicular to the shell surface and the morphological (not crystallographic) 

orientation of fibers is exactly the same at a particular depth within the shell[2,8] (Figure 

1c, d). The latter is specifically evident from an inspection of the internal shell surfaces, 

where the exposed fibers have exactly the same orientation (Figure 1e). When the fibers 
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can be seen curving in horizontal fractures (Figure 1f), it is because the fracture in fact 

has gone through increasingly deeper planes within the shell. 

The helix lead (or pitch) and angle increase towards the shell interior (Figure 1c). 

Our estimations range from 12° for the outermost turn to almost 30° for the most 

internal turns (Figure 1c), the latter figure being well above previous values.[2] The 

helix radius (~10-12 μm in the specimen of Figure 1c) is similar for the different 

helices and remains more or less constant throughout the shell thickness 

Given the extensive vertical dimensions of their cross sections (Figure 1g to i), 

fibers at a distance <2 radii should intersect twice per turn, which is particularly evident 

in horizontal fracture (Figure 1f). After crossing, both fibers reappear and continue to 

grow (Figure 1g, h). This process accounts for the complex angular cross-sectional 

outlines of fibers (Figure 1i) [see also [2,8,9]] and, at the same time, implies that the 

outlines are permanently changing during growth. No interruption of fibers has been 

observed. 

 

2.2. EBSD Data 

All the EBSD maps obtained on inclined sections (Figure 2a) are characterized by 

broad horizontal bands composed of laterally imbricated green arches, scattered with 

small blue patches which correspond to areas where the fibers have been cut in parallel 

(b1 bands in Figure 2a, b; Figure S2, Supporting Information). The arches reflect the 

orientation of the sectioned fibers. Between the green bands there are areas with oblique 

series of blue dots, which are a continuation of the green arches and which converge 

towards the center of the intermediate bands between the green ones (b2 bands in 

Figure 2a). These correspond to fibers cut at an angle close to the leading angle (b2 in 

Figure 2b).  
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The 001 pole maximum (Figure 2b) shows an extremely reduced spread (<10°), 

which is placed at 30° to the center of the diagram (i.e., the inclination of the cutting 

plane). This implies that all fibers have a common c-axis, which coincides with the 

coiling axis of the spirals, and which is exactly perpendicular to the shell surface. The 

100 and 010 pole figures show a clear arch-like distribution (Figure 2b), which would 

give the false impression of a continuous (i.e., non-preferred) distribution for both the a- 

and b-axes. According to the 010 pole figure, the b-axes of the fibers sectioned in 

parallel (b1 fibers in Figure 2a, b) are at an inclination of ~30° to the cutting plane, 

whereas the a-axes are perpendicular to the fiber axes. The (mainly light) blue areas 

scattered within the green bands correspond to crystals which are in a different 

orientation (up to some 60° to the fiber axes). According to their position in the pole 

figures, the distribution of crystallographic axes for the dark blue fibers (b2 in Figure 

2b) is identical to those for the fibers in green (b2 in Figure 2b). Fibers cut at very high 

angles (cutting plane inclination + lead = ~60⁰; Figure S1, Supporting Information; b3 

in Figure 2b) are very rarely recorded in the map because the cross sections of their 

constituent crystallites (see below) are too small to provide indexable patterns. The 

distribution of crystal axes is consistent with those of the previous cases (b3 in Figure 

2b). 

In the maps on sections at a low angle to the surface the fibers are exposed to a large 

extent, which permits an easy recognition of their orientation (Figure 2c). The spread of 

the 001 maxima is similar to those on inclined sections. The distributions of the 100 and 

010 pole figures are again arch-like. By comparing the orientation color maps with the 

corresponding color pole figures, a consistent correspondence between the elongation of 

fibers and the orientation of the b-axes is evident. Occasionally some grains display two 
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or even three orientations (indicated in Figure 2c), with a common c-axis and with the 

b-axes at ~60°, which is strongly suggestive of internal {110} twinning. 

 

2.3. TEM data 

In TEM sections fibers appear elongated when cut close to their long axis. One of the 

cut fibers was oriented along a zone axis and is thus highlighted by a strong diffraction 

contrast (Figure 3a). The lattice fringes reveal that the [001] axis points towards the 

shell surface, in agreement with previous descriptions,[8,9] while the [010] is in plane 

and offset by approximately 15° with respect to the long axis of the fiber (i.e., the 

helical lead angle) (Figure 3b, c). Images taken further down along the helical axis from 

the same sample display fibers that were cut transversally (Figure 3d), thus 

demonstrating the interlocked fiber cross-sections.[2,8,9] The inset in Figure 3d shows 

three neighboring fibers oriented with their respective [100], [110] and [010] 

orientations parallel to the viewing direction. While the [100] and [110] can be related 

by twinning, the [010]-oriented fiber is rotated along the c-axis by 31.9° with respect to 

the [110] oriented fiber. The varying contrast (Figure 3a, d-f) demonstrates that even 

similarly aligned fibers can show different crystallographic orientations. This confirms 

the EBSD observations that morphologically aligned fibers can grow along different 

crystallographic orientations. Different contrast between neighboring fibers is also 

evident from the plane view images (Figure 3g, h). The annular dark field STEM image 

shown in Figure 3g reveals identically oriented fibers in similar contrast and fibers with 

slightly different orientation and different contrast between them. 

The question that remains to be answered is how continuous crystalline aragonite 

fibers can grow helically. Evidence for a variation in growth direction along individual 

fibers is provided by TEM images of fibers that were cut close to their long axis. In the 
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example shown in Figure 3e and f, the respective bright- and dark-field images contain 

contrast variations that are caused by twinning, but also due to misalignment of small 

crystallographic domains (several tens of nm in diameter). Due to the twinning, the 

projected growth direction in this fiber switches between <010> and <110>. Twinning 

therefore seems to play a role in enabling the curved growth of crystalline helical fibers.  

More insight on this aspect is obtained by looking at the fibers in top-view. The 

respective TEM and STEM views reveal a high density of twinning planes at various 

directions, frequently along or close to the fiber axis (see Figure 4a-d). Figure 4e 

shows a crystallographically continuous, curved section of a fiber. Lattice fringe 

analysis reveals that it extends along the <110> direction at the top right side and along 

the <020> direction at the bottom left side. It is therefore evident that the change in 

growth direction is related to twinning. Indeed, not only polysynthetic twinning, but 

also polycyclic twinning is observed within individual fibers, such as in Figure 4f. 

Finally, fiber intergrowth (Figure 4a, b, e), as described in the SEM part, is regularly 

observed in the TEM plane views, as well as some more rare instances of splitting 

(Figure 4g).  

 

3. Discussion 

3.1. Crystallography of Helical Fibers 

The AHFM of the shell of Cuvierina is composed of thin fibers which show an 

astounding degree of regularity in orientation, in which all fibers in a same depth plane 

within the shell are oriented exactly in parallel. This morphological degree of order is to 

some point a reflection of the crystallographic order that characterizes this material. 

According to EBSD data, the c-axes of fibers are highly co-oriented in parallel to the 

axes of the helices and strictly perpendicular to the shell surface, something which was 
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previously recognized.[9] With regards to the a- and b-axes, the latter are in the 

projection of the fiber axis onto the plane parallel to the shell surface; that is, fibers tend 

to grow along the projected b-axis (bP), whereas the a-axis is perpendicular to the fiber 

in the same plane (Figure 5). Nevertheless, for these axes, there is a certain degree of 

scattering, as the horizontal projections of some fibers are deviated from the preferred b-

axis orientation for up to ~60⁰ (e.g., Figure 2c, bottom map). EBSD data also imply 

that deviated fibers commonly consist of crystals twinned on {110} (Figure 2). TEM 

sectioned fibers commonly orient with the b-axis in the growth direction and show a 

high incidence of twins, either of the polycyclic or polysynthetic kind. This causes 

frequent changes in orientation of the b-axes, but, in general, these remain at a relatively 

low angle to the growth direction (ca. <30⁰). Generally, TEM data match EBSD data, 

although the former qualitatively show a higher incidence of fibers aligned along 

<110>. The cases for fibers growing along the bP-axis and in the direction of the {110} 

plane are sketched in Figure 5. 

Taking into account the constancy in the orientations of crystal axes and the increase 

observed in the lead angle towards the shell interior (Figure 1c), the planar upper and 

lower faces of the fibers cannot correspond to particular crystallographic planes. 

 

3.2. Fiber Growth 

On the basis of the combined SEM, TEM and EBSD observations, the following model 

for the formation of crystalline twisted fibers is derived. Due to the spiral trajectories of 

fibers and assuming invariant crystal orientations, growth along the b-axis projected on 

the fiber axis (bP; Figure 5, left) can only be maintained for reduced angular distances 

until the growth direction becomes markedly deviated from the preferred crystal axes. 

Then, new directions for bP, which are more conveniently oriented with respect to the 
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spiral path, have to be selected. Imagine a fiber whose bP -axis is oriented exactly in the 

growth direction (1 in Figure 6a); after 30⁰ of angular movement along the spiral path, 

the different orientation of its bP-axis becomes ~30⁰ (2 in Figure 6a); from here on, a 

crystal (obtained by a single twin operation) whose bP-axis is at ~60⁰ to the bP-axis of 

the previous crystal, becomes more conveniently oriented with respect to the helical 

path. After another 30°, the new crystal will have its bP-axis parallel to the growth 

direction (3 in Figure 6a). In this way, along a complete turn, the orientation of the bP-

axis in or close to the fiber axis can be maintained by shifting the orientation of the bP-

axis every ~60⁰ due to twinning. This process can easily result from the observed high 

frequency of twins of different kinds (Figure 4). Along the spiral path, intervals in 

which growth is mainly along bP will alternate with others in which fibers are mainly 

oriented along {110} twinning planes (Figure 6b) or intermediate directions. Twinning 

allows the formation of helically twisted fibers with preferential growth along the bP-

axis (as shown by EBSD), while at the same time retaining morphological (as observed 

by SEM; Figure 1) and crystallographic continuity (as observed by TEM; Figures 3 

and 4). This is in contrast to the recent claim that fibers must be discontinuous since 

they have two different growth directions (010 and 110) in different sectors of the 

helices.[9] Note that these observations can be fully explained by our model of growth 

by periodic shifting from a <010> to a <110> direction (Figure 6b).  

 

4. Conclusions 

The AHFM microstructure of cavolinioideans is unique in being composed of helical 

fibers which run from the external to the internal shell surface at the same time that they 

coil helically. This implies that in these gastropods calcification of the shell necessarily 

proceeds from the external to the internal shell surface, where the mantle is adhered. 
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This is clearly unlike in trochospiral gastropods in which calcification is in the adoral 

growth direction.  

Our study provides a consistent picture of the crystallography of this sophisticated 

material for the genus Cuvierina, but which we believe is general for the Cavolinioidea, 

given the homogeneity of the microstructure across the group. 

Preferential growth direction along bP in the AHFM is unique. Other types of 

aragonitic microstructures show preferred growth directions along either the c-axis 

(fibrous prismatic),[10] the a-axis (foliated aragonite)[11] or the projected <110> 

directions (crossed-lamellar).[12] Except for the first case, which is also the common 

case in inorganic fibrous aragonite (e.g. [13]), preferential growth results from the action 

of particular organic molecules, which are able to promote/prevent growth by adhering 

to particular crystal faces. 

The above described growth strategy harnesses the peculiar crystallographic 

characteristics, in terms of preferred growth directions promoted by particular proteins 

and twinning development, of aragonite. Although this is hypothetical, it is doubtful that 

a microstructure similar to the AHFM could be constructed with e.g. calcite. Whatever 

the process is, it is clear that it follows a non-classical crystallization (as it is built from 

small units forming a meso-crystal [14,15] (Figure S2; Supporting Information). 

Olson et al. [16] showed that in biogenic aragonite (nacre) tilting of the c-axis occurs 

across superposed tablets. This feature is much more intense in biogenic prismatic 

calcite.[17,18] The small spread of the 001 pole figure maxima in the AHFM of Cuvierina 

(Figure 2) suggests that no appreciable tilting of crystal axes occurs in this material.  

Although helical coiling can be related to screw dislocation-driven in the case of 

helical nanowires,[19] the dislocation core is absent in the fibers composing the AHFM. 

A comparable mechanism is known in nacre [20] and in biogenic calcite (semi-nacre[21] 
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and foliated calcite [22]), although, in these cases, the step size of the dislocation is the 

thickness of one tablet or lath, and not one atomic plane, as in nanowires. As with 

crystal lattice tilting (see above) no evident influence of such mechanisms have been 

found. 

Although overall, the b, and, secondarily, the <110> directions, are dominating as 

growth directions, it is evident that spiral growth is not guided by crystallographic 

growth directions, which conversely have to adapt to the changes in curvature imposed 

by helical growth. Hence, it can be assumed that the helical growth has to be achieved 

by some form of unveiled templated growth. The only aspect left to solve is how the 

templating of the structure works, for which we envisage two alternative possibilities: 

(1) helical growth is under strict biological control, i.e. growth is guided by an 

underlying genetic programming mediated by cellular secretion; (2) calcification 

happens around a self-organized biological scaffold, i.e. the twisted plywood chitin 

scaffold found in arthropod exoskeletons [23,24], this usually being interpreted as a liquid 

crystalline cholesteric phase.[25,26] Whatever the case, nature demonstrates how to grow 

continuous helically twisted crystalline fibers, which is something challenging for 

material science.  

 

4. Experimental section 

Material: Dead shells of Cuvierina columnella (Banc Atlantis, N-O. "le Suroit" 

Seamount 2, Atlantic Ocean, 34º 22,4'N, 30º27,8'W, dredged from 1340 m),acquired on 

loan from the Muséum National d'Histoire Naturelle, Paris, were well preserved enough 

for crystallographic studies. Specimens of Cuvierina urceolaris from Olango Island 

(dredged from 150 m), Balicasag Island (180 m) and Mactan Island (200 m), the 

Philippines, were purchased from Conchology Inc.  



13 
 

Scanning Electron Microscopy (SEM): Five specimens (three of C. columnella and 

two of C. urceolaris) were fractured, ultrasonicated and coated with carbon (Hitachi 

UHS evaporator) for SEM observation (Zeiss Leo Gemini 1530 and Zeiss Auriga 

Cross-Beam Station) at the Centro de Instrumentación Científica (CIC) of the 

Universidad de Granada (Spain). Specimens of other cavoliniodeans (Cavolinia inflexa, 

Cavolinia longirostris, Diacria trispinosa, Diacria quadridentata and Clio pyramidata) 

were also examined for comparison. 

Electron Backscatter Diffraction (EBSD): This is a SEM-based method for local 

measurements of crystal orientations. Initially developed for the study of metals, it is 

increasingly applied to biominerales. The EBSD technique analyzes the diffraction 

pattern produced when backscattered electrons are diffracted by the most superficial 

lattice planes of a crystalline material. The diffraction patterns are captured and 

transferred from the charge coupled device (CCD) camera of the detector to the 

computer. Once indexed, the patterns provide information about the the space group of 

the crystal structure and the orientation of the crystal lattice. Data can be obtained in the 

form of orientation maps or pole figures. The colors in the EBSD maps correspond to 

the color coded orientations in the inverse pole figure map. This technique provides 

resolution on a sub-µm scale (see below) and is therefore a good complement to the 

broader scale, X-ray-based techniques. 

One complete specimen of Cuvierina columnella was fractured and cleaned from 

organic matter (particularly the external cuticle) with commercial bleach (4% active Cl) 

for 3 min; the concave shell surface was analyzed without further polishing, although 

this procedure proved unsuccessful. In addition, two shells of Cuvierina columnella and 

one of C. urceolaris were sectioned and polished along three directions: parallel to the 

shell surface, perpendicular to the shell axis, and at ~ 30⁰ to that axis. A longitudinal 
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section of the fibers along a certain angular distance was exposed to the electron beam 

by sectioning the shell at the latter angle. In particular, along a single turn, each fiber 

was cut at a variable angle from the lead angle minus the sectioning angle to the lead 

angle + the sectioning angle (Figure S1, Supporting Information). Accordingly, the 

fibers were cut in parallel when the lead angle-sectioning angle = 0 (once per turn). The 

30° angle was chosen because it agrees with highest estimated lead angle of the internal 

turns (25-30°; see below). Polishing was carried out on horizontal diamond-impregnated 

discs (Struers Planopol 2 polishing machine) with grit sizes 3, 1 and 0.25 µm. A final 

polishing with colloidal silica was conducted. We used two equipments. First, we used 

an Inca Crystal (Oxford Instruments) detector coupled to a Gemini-1530 (Carl Zeiss) 

Field Emission SEM (FESEM) from the Center for Scientific Instrumentation 

(Universidad de Granada), operated at 20 kV and with a beam diameter ~1 μm. To 

avoid excessive charging, samples were coated with 2 nm of carbon in a Baltec MED 

020 electron beam evaporator. The second equipment was a Hikari EDAX detector 

coupled to a FEI FESEM Quanta 3D at the Institute of Metallurgy and Materials 

Science of the Polish Academy of Sciences (IMIM, Krakow, Poland). Operation in low 

vacuum mode (0.45 Torr) made coating unnecessary. A special X-ray cone was attached 

to the SEM pole piece to minimize the so-called "skirt effect" of the primary electron 

beam by reducing the gas-path length. The microscope operated at 15 kV with a beam 

current of 5.7 nA and the beam diameter was 25 nm. Analysis softwares HKL 

CHANNEL5 (Oxford Instruments) and TSL OIMTM (version 5.3) were used to post-

process the EBSD measurements. By far, the most informative and complete maps (i.e., 

with a higher percent of indexable analyses) were those in which the shells were 

sectioned either at 30°or parallel to the shell axis, which were performed at the IMIM 

with a with a very small beam size. In all cases, the percent of indexable patterns was 
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relatively low due to the small crystallite size. The width of fibers is only 200-300 nm 

and due to the abundant twinning (see TEM results), the actual single crystalline 

domains are much smaller than that.  

Transmission electron microscopy: Cross section and plane view samples for TEM 

analysis were prepared by cutting embedded shell pieces of Cuvierina columnella 

perpendicular and parallel to the shell surface, respectively. Thin cuts were first 

mechanically polished and subsequently thinned down to electron transparency with a 

GATAN precision ion polishing system (PIPS) at the Fritz-Haber Institute of the Max 

Planck Society in Berlin. TEM analysis was carried out using an image Cs corrected 

FEI Titan microscope that was operated at 300 kV. 

 

Supporting Information 

Supporting Information is available from the Wiley Online Library or from the authors. 
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Figure captions 

 

Figure 1. Optical (a) and SEM (b-i) observations of Cuvierina shells. (a) View of a 

complete specimen of C. columnella, with anatomical directions indicated. (b) Fragment 

showing a longitudinal fracture through the shell of C. columnella. The boxes show the 

positions equivalent to those of other panels in this figure. (c). View of a longitudinal 

fracture through the shell of C. urceolaris showing perfectly arranged helices coiling for 

about 3.5 whorls (indicated). The pitch increases from the outer to the inner whorls. (d) 

Longitudinal fracture through the shell of C. columnella, showing the external helices. 

The orientations of some fibers is indicated with arrows. (e) View of the internal shell 

surface of C. columnella, showing the even orientation of the fibers. The sample has 

been slightly bleached. (f) Surface view of a fracture through the shell of C. columnella. 

The fracture runs roughly parallel to the outer surface of the shell and exposes fibers at 

different depths. It shows the high frequency of interpenetration between fibers. (g, h) 

Two views of the twisting fibers of C. columnella, showing the high degree of 

interpenetration. This is particularly evident where the fibers are seen in lateral view 

(arrows). (i) Transversely fractured fibers of C. columnella, showing the complex 

outlines obtained by interpenetration. 

 

 

Figure 2. EBSD Inverse pole figure maps. (a) Inverse pole figure map of a section 

through the shell of Cuvierina columnella, inclined at 30° to the coiling axis (see Figure 

S1, Supporting Information). The inset is the color key (valid also for (c)). The labels to 

the right of the figure refer to the different orientations of the fibers with respect to the 

sectioning plane shown in (b). (b) Pole figures for the same map. The position on the 
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pole figures and the inferred distribution of axes for three differently oriented and/or 

inclined types of fibers (b1, b2, b3) are indicated below. (c) Image quality (gray scale) 

and inverse pole figure maps (color), and corresponding pole figures for the whole 

maps, performed on sections at a low angle to the shell surface. The orientation of 

crystals at particular positions are indicated with parallelepipeds on the quality maps. 

The longest dimensions of their grey faces ({001} faces) are the b-axes and the shortest 

dimensions, the a-axes.  

 

 

Figure 3. TEM views of fibers in vertical and horizontal sections. (a) Longitudinally cut 

fiber with a strong diffraction contrast. (b, c) Progressively higher resolution images and 

deduced crystallographic orientation. The Fast Fourier Transform of the lattice fringes is 

shown as an inset in (b). The c-axis points in the direction of the helical axis and 

perpendicular to the shell surface. The b-axis is at an angle of ca. 15° with respect to the 

long axis of the fiber. (d) Fibers were cut transversally, exposing their interlocked cross-

sections. The inset shows the respective orientations of the fiber sections (false colors 

correspond to the indicated orientations). (e, f) Bright- (e) and dark-field (f) images of 

longitudinally cut fibers. Twinning planes can be identified by thin streaks along the c-

axis direction in (e) (some are indicated with arrows). The dark field image highlights 

differently oriented crystalline domains along the fiber section. (g, h) Diffraction 

contrast in annular dark field STEM (g) and TEM (h) images recorded from plane view 

samples. The red line in (h) indicates a possible plane and viewing direction for a TEM 

image recorded from a cross section sample, such as the one shown in (d).  
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Figure 4. TEM views of fibers in plane sections. (a-d) TEM images, demonstrating that 

the {110} twinning planes can be oriented at different angles with respect to the long 

axis of the fiber section. The insets in (d) show the Fast Fourier Transform (FFT) of the 

lattice fringe for the two fibers; the right fiber consists of two polycyclically twinned 

crystals (upper right inset). (e) Progression of the growth direction from <110> to [020] 

within a continuous fiber. The inset correspond to the FFT of the small box. (f) Presence 

of polycyclic twinning in a single fiber; f1 shows the orientations (in different colors) 

for the two areas framed in (f); f2 is the FFT of the lattice fringes of the small box. (g) 

Example of fiber splitting (arrows) and intergrowth.  

 

 

Figure 5. Crystallographic model for the fibers of Cuvierina. The c-axis is always 

strictly parallel to the coiling axis. In the preferred growth direction (left sketch) the b-

axis is at the lead angle to the fiber local axis, and the a-axis is perpendicular to the fiber 

axis. In some instances, fibers have been observed growing along a <110>direction, 

contained within a {110} twinning plane (right sketch). bP is the projection of the b-axis 

onto the fiber axis. 

 

 

Figure 6. Model for the crystallographic changes during rotation of fibers. (a) Detail of 

the change in orientation with the angle of rotation. At position 1, the b-axis of the 

orange crystal is parallel to the growth direction, but deviates progressively with the 

angle of rotation; at position 2, the angle of deviation of the b-axis of the orange crystal 

is exactly the same as that of a new crystal obtained by a {110} twin (green crystal); 

from here on, the deviation of the b-axis of the green crystal becomes progressively 
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reduced until becoming 0° at position 3 (at 60° from position 1). (b) Theoretical changes 

expected during an incomplete turn; growth direction shifts from being along the b-axis 

to being along <110> and back every 60°. Colors indicate similar orientations of 

crystallites. The actual relationship between spiral radius (~21 μm) and fiber width 

(~300 nm) has been observed. 


