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Ordering structured populations in
multiplayer cooperation games

Jorge Peña, Bin Wu and Arne Traulsen

Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2,
Plön 24306, Germany

Spatial structure greatly affects the evolution of cooperation. While in two-

player games the condition for cooperation to evolve depends on a single

structure coefficient, in multiplayer games the condition might depend on

several structure coefficients, making it difficult to compare different popu-

lation structures. We propose a solution to this issue by introducing two

simple ways of ordering population structures: the containment order and

the volume order. If population structure S1 is greater than population struc-

ture S2 in the containment or the volume order, then S1 can be considered a

stronger promoter of cooperation. We provide conditions for establishing the

containment order, give general results on the volume order, and illustrate

our theory by comparing different models of spatial games and associated

update rules. Our results hold for a large class of population structures

and can be easily applied to specific cases once the structure coefficients

have been calculated or estimated.
1. Introduction
The evolution of cooperation is a fascinating topic that has been studied

from different perspectives and theoretical approaches [1–5]. An issue that has

led to considerable interest is the extent to which spatial structure allows

cooperation to thrive [6–28]. Spatial structure can both enhance cooperation by

inducing clustering or assortment (whereby cooperators tend to interact more

often with other cooperators [11,29,30]) and oppose cooperation by inducing

increased local competition (whereby cooperators tend to compete more often

with other cooperators [31]). For two-player games or multiplayer games with

similar strategies, the balance between these two opposing effects is captured

by the ‘scaled relatedness coefficient’ of inclusive fitness theory [15,19,27,28] or

the ‘structure coefficient’ of evolutionary game theory [6,16,22]. These coefficients

are functions of demographic parameters, and take into account the degree of

assortment, the effects of density dependence and the strength of local compe-

tition resulting from spatial interactions [10,15,22]. Two different models of

spatial structure and associated evolutionary dynamics can be unambiguously

compared by ranking their relatedness or structure coefficients: the greater the

coefficient, the less stringent the conditions for cooperation to evolve. Hence,

different models of population structure can be ordered by their potential to

promote the evolution of cooperation in a straightforward way.

Despite the theoretical importance of models leading to a single relatedness

or structure coefficient, many examples of social evolution ranging from

microbial cooperation [32–34] to collective action in humans [35–37] involve

games between more than two players with distinct strategies [38,39]. In

these cases, the effects of spatial structure cannot be captured by a single coeffi-

cient, as higher degrees of association (e.g. ‘triplet relatedness’ [17,40]) are

required to fully describe the condition under which cooperation is favoured

[27,41,42]. The need to account for several structure coefficients has so far pre-

cluded a simple way of comparing population structures independently of the

particular game used to model cooperation.
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Figure 1. Containment and volume orders of cooperation. The set of d-player
cooperation games is defined by a set of linear inequalities (dashed lines)
defining a polytope in a 2d-dimensional space. A given population structure
(e.g. S1 or S2) is characterized by a selection condition defining a further
linear inequality (solid lines). Here, we show a pictorial representation of the
projection of such multidimensional objects to the plane, where polytopes are
polygons. (a) The set of games for which cooperation is favoured under S2 is
contained in the set of the games for which cooperation is favoured under
S1: Hence, we say that S1 is greater than S2 in the containment order (and
write S1�con S2). (b) S1 and S2 cannot be ordered in the containment
order as there are both games for which S1 favours cooperation but not
S2 ( purple polygon), and games for which S2 favours cooperation but
not S1 (orange polygon). In both panels, S1 favours cooperation for
more games than S2 does. Hence, we say that S1 is greater than S2 in
the volume order (and write S1�vol S2).

rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20150881

2

 on February 25, 2016http://rsif.royalsocietypublishing.org/Downloaded from 
Here, we propose a framework to order population struc-

tures by their potential to promote cooperation that is also

valid in the case of games between multiple players with

distinct strategies. Our framework allows the comparison of

two population structures without referring to any concrete

game. We will distinguish two cases, depending on the

inclusion relation between the sets of games for which

cooperation is promoted under each population structure.

(i) The set of games for which the second population structure

promotes cooperation is fully contained in the set of games

for which the first population structure promotes coopera-

tion (figure 1a). In this case, we say that the first population

structure is greater than the second in the containment order,

and hence a stronger promoter of cooperation. (ii) The set

of games for which one population structure promotes

cooperation is not fully contained in the set of games for

which the other population structure promotes cooperation

(figure 1b). In this case, we say that the population structure pro-

moting cooperation for a larger volume of games is greater in the

volume order, and hence a stronger promoter of cooperation.

So far, the structure coefficients for general multiplayer

games have been calculated only for a few population structures,

as such calculations often represent a technical challenge [43].

However, once the structure coefficients are known, the contain-

ment and volume orders we propose here enable assessment of

the consequences of population structure on the evolution of

cooperation independently of the game at stake. This way,

our approach can help to organize myriads of results on the

promotion of cooperation in spatially structured populations.
2. Methods and results
2.1. Cooperation games and polytopes
We consider symmetric games between d players with two

strategies, A and B. A focal player’s pay-off depends on the
player’s own strategy and on the strategies of its d – 1 co-

players. If j co-players play A, a focal A-player obtains aj,

whereas a focal B-player obtains bj: These interactions are

represented by the following pay-off table:
opposing A-players
 0
 1
 � � �
 j
 � � �
 d – 1
pay-off to A
 a0
 a1
 � � �
 aj
 � � �
 ad�1
pay-off to B
 b0
 b1
 � � �
 bj
 � � �
 bd�1
It follows that a game is determined by 2d real numbers and

can thus be considered as a point in a 2d-dimensional space.

In which sense can we say that one population structure

favours cooperation more than another? To answer this ques-

tion precisely, we first need to specify what we mean by

‘cooperation’, as this could refer to different social beha-

viours, in particular if we move beyond two-player games

[44]. We are interested in a particular subset of games that

we call ‘cooperation games’. In these games, players decide

whether to cooperate (play A) or defect (play B), and pay-

offs are such that: (i) players prefer other group members to

cooperate irrespective of their own strategy and (ii) mutual

cooperation is favoured over mutual defection. In terms of

our pay-off parameters, these conditions imply

a jþ1 � aj and b jþ1 � bj for j ¼ 0, 1, . . . , d� 2, ð2:1Þ

as well as

ad�1 . b0: ð2:2Þ

The above conditions are often used to characterize the

benefits of cooperation in multiplayer social dilemmas [44],

such as the provision of collective goods [19]. However, our

conditions do not specify individual costs associated with a

decision to cooperate, and hence our class of cooperation

games includes not only social dilemmas, but also mutualis-

tic games in which individual and group interests are

aligned. If we further restrict pay-offs to values between

zero and one,

0 � aj � 1 and 0 � bj � 1 for j ¼ 0, 1, . . . , d� 1, ð2:3Þ

then the set of all cooperation games with d players is given

by a (convex) polytope [45] in a 2d-dimensional space, which

we denote by P: A polytope is a geometric object with

flat sides, the generalization of a polygon (which is a two-

dimensional polytope) to higher dimensional spaces. See

the electronic supplementary material for further details.

We need to specify precisely what we mean by ‘favour-

ing’ cooperation. For our purposes, we say that cooperation

is favoured if a single cooperator in a population of defectors

has a higher probability of eventually reaching fixation than a

single defector in a population of cooperators [46]. This also

means that cooperation is more abundant than defection in

a mutation-selection process in the limit of low mutation

[47]. For weak selection on homogeneous populations of

constant size, strategy A is favoured over B if [42]

Xd�1

j¼0

sjðaj � bd�1�jÞ . 0, ð2:4Þ

where s0, . . . , sd�1 are the d structure coefficients. These are

independent of pay-offs aj and bj, but dependent on the type

of spatial structure (for instance, where the co-players of a

given focal individual are located) and update rule used to

model the evolutionary dynamics. In table 1, we provide

http://rsif.royalsocietypublishing.org/


Table 1. Structure coefficients for some population structures. Parameters d and N refer to the number of players and population size, respectively. In the
group splitting model, m is the number of groups and n is the group size. The structure coefficients shown here are not normalized; for our purposes it is
useful to normalize them so that

P
j sj ¼ 1:

model structure coefficients references

Moran process in a well-mixed population

sj ¼
1 if 0 � j � d � 2
N � d

N
if j ¼ d � 1

8<
:

[38]

aspiration dynamics in a well-mixed population

sj ¼
d � 1

j

� � [48]

death – birth process in a cycle (d � 3)

sj ¼

1 if j ¼ 0
2N

N þ 1
if 1 � j � d � 3

2N � 1
N þ 1

if j ¼ d � 2

3ðN � dÞ
N þ 1

if j ¼ d � 1

8>>>>>>>><
>>>>>>>>:

[49]

Moran process in a group splitting model (rare group splitting)

sj ¼
1 if 0 � j � d � 2

1þ dðm� 2Þ
n

if j ¼ d � 1

8<
:

[50]
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examples of population structures and their corresponding

structure coefficients (see the electronic supplementary

material for a derivation).

The structure coefficients are uniquely determined up to a

constant factor. Setting one of them to one thus gives a single

non-trivial structure coefficient for two-player games [22]. We

use the sequence s to collect the coefficients and note that, if

sj � 0 for all j and sj . 0 for at least one j, we can imposePd�1
j¼0 sj ¼ 1 without affecting the selection condition (2.4).

For our purposes, this normalization turns out to be more

useful than setting one coefficient to one. In particular, such

normalization allows us to understand the (normalized)

structure coefficients as describing a probability distribution,

and to make a straightforward connection with the concept of

assortment as developed for the case of linear public goods

games [30,51]. To do so, let us rewrite the selection condition

(2.4) as

Xd�1

j¼0

sjaj .
Xd�1

j¼0

sd�1�jbj: ð2:5Þ

Here, sj plays the role of the ‘effective’ probability of interact-

ing with j individuals of the own type (and d – 1 – j of

the other type). As given by (2.5), the selection condition

states that A is favoured over B if the expected pay-off of an

A-player is greater than that of a B-player when the ‘interaction

environments’ [30] are distributed according to s:

A given population structure will favour cooperation only

for a subset of cooperation games. More precisely, for a popu-

lation structure Si with structure coefficients si, the set of

cooperation games for which Si favours A over B is given

by adding the selection condition (2.5) to the inequalities

defining the polytope of cooperation games, P, i.e. (2.1)–

(2.3). The selection condition (2.5) defines a hyperplane and

thus divides the space of games into two: those for which
cooperation is favoured and those for which defection is

favoured. This shows that our problem is equivalent to a geo-

metric problem in 2d dimensions. In the following, we denote

by Qi the polytope containing the cooperation games for

which cooperation is favoured under population structure

Si (see the electronic supplementary material).
2.2. Containment order
If the set of games Q2 for which cooperation is favoured

under population structure S2 is contained in the set Q1 for

which cooperation is favoured under population structure

S1, then we say that S1 is greater than S2 in the containment

order [52], and we write S1�con S2: The ordering S1�con S2

implies that cooperation cannot be favoured under S2

without also being favoured under S1:

Establishing the containment order is equivalent to a ‘poly-

tope containment problem’ [53], consisting of determining

whether or not a polytope is contained in another. Polytope

containment problems can be solved numerically by linear

programming [54]. Here, we describe an alternative and sim-

pler approach borrowed from the literature on stochastic

orders [55]. First, assume that the structure coefficients sj are

non-negative and normalized, so that they define a probability

distribution over j ¼ 0, 1, . . . , d� 1: In this case, the left-hand

side of the selection condition (2.4) can be interpreted as the

expected value E½f ðJÞ�, where f ðjÞ ; fj ¼ aj � bd�1�j, and J is

the random variable associated with the probability distri-

bution s: Consider now two population structures S1 and S2

with structure coefficients s1 and s2, and associated random

variables J1 and J2, respectively. A sufficient condition leading

to the containment order S1 _�con S2 is hence that

E½f ðJ1Þ� � E½f ðJ2Þ� ð2:6Þ

for all cooperation games.

http://rsif.royalsocietypublishing.org/
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Figure 2. Comparability in the containment order. The structure coefficients s1

and s2 cross exactly once, implying that S1 and S2 are comparable in the
containment order. Moreover, s1 crosses s2 from below; hence S1 is greater
than S2 in the containment order ðS1�con S2Þ: Likewise, S1�con S3: Con-
trastingly, the structure coefficients s2 and s3 cross exactly twice, implying that
S2 and S3 are incomparable in the containment order ðS2 kcon S3Þ, i.e.
neither S2�con S3 nor S2�con S3: For such cases, the volume order pro-
vides an alternative way to order these structures. Here, S1 is a group
splitting model with m ¼ 10 groups of maximum size n ¼ 6 and rare prob-
ability of splitting (q� 1), S2 is a cycle of size N ¼ 60 and S3 is a group
splitting model with m ¼ 6, n ¼ 10 and q� 1:
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In order to evaluate this condition, we make use of the

usual stochastic order [55]. A random variable J1 is said to

be greater than J2 in the stochastic order if and only if

E½fðJ1Þ� � E½fðJ2Þ� for all increasing functions f: This is

denoted by J1�st J2: Conveniently, and by (2.1), the sequence

fj is always increasing in j, allowing us to apply this idea

directly (see Proposition 1 in the electronic supplementary

material for details). One advantage of expressing the contain-

ment order in terms of the stochastic order is that we can

transform our original polytope containment problem into

the problem of finding conditions under which random vari-

ables can be stochastically ordered. Some of these conditions

follow from a simple inspection of the sequences of structure

coefficients. For instance, a sufficient condition leading to

the stochastic order J1�st J2 (and hence to the containment

order S1�con S2) is that s1 � s2 has exactly one sign change

from – to þ [55]. As we show in §2.4, this simple condition

allows us to order different existing models of population

structure in a straightforward way.

For the linear public goods game (i.e. a game with pay-

offs aj ¼ bðjþ 1Þ � c and bj ¼ bj for some b . g . 0 where

b is the marginal benefit from the public good and g is the

individual cost of contributing), the selection condition (2.5)

can be put in a form reminiscent of Hamilton’s rule with

ðeA � eBÞ=ðn� 1Þ playing the role of a measure of assortment

(or relatedness), where eA ¼
P

j sjj (resp. eB ¼
P

j sd�1�jj) is

the mean number of cooperators among the d – 1 interaction

partners of a cooperator (resp. defector) [51]. For more gen-

eral cooperation games, the selection condition depends not

only on the mean but also on higher moments of the prob-

ability distribution given by s: The stochastic order we

have used for establishing the containment order is a way

of measuring the association between strategies in this gen-

eral case. Hence, it can be said that population structures

greater in the containment order are those characterized by

greater ‘effective assortment’ and thus more conducive to

the evolution of cooperation. In the extreme case where

sd�1 ¼ 1 (and sj ¼ 0 for j = d� 1), we have the case of a

completely segregated population where As only interact

with As and Bs only interact with Bs. In this case, the selec-

tion condition reduces to (2.2), and cooperation is always

favoured by definition.

It can happen that neither Q1 is entirely contained in Q2

nor Q2 is entirely contained in Q1: In these cases, S1 and

S2 are incomparable in the containment order (i.e. neither

S1�con S2 nor S1�con S2 hold) and we write S1 kcon S2: We

show in Proposition 2 in the electronic supplementary

material that a sufficient condition leading to such incompar-

ability is that the sequences s1 and s2 cross twice (figure 2).

In this case, there exist both a subset of cooperation games

favoured under S1 but not under S2 and a subset of

cooperation games favoured under S2 but not under S1:

For the commonly discussed case of two-player games in

structured populations [22], the sequence s consists of two

elements: s0 (usually set to one) and s1 (usually denoted by

s and referred to as ‘the’ structure coefficient). As two

sequences of two elements can only cross each other at most

once, it follows that any two population structures can be

ordered in the containment order if d ¼ 2, i.e. the containment

order is a total order for two-player games. Moreover, the

containment order is given by the comparison of the structure

coefficients s, with larger s leading to greater containment

order. Contrastingly, for d � 3 two sequences s can cross
twice. In this case, their respective population structures

cannot be compared in the containment order: for multiplayer

cooperation games and for the space of all possible population

structures, the containment order is only a partial order (see

Proposition 3 in the electronic supplementary material).
2.3. Volume order
In order to address the cases for which two population struc-

tures are incomparable in the containment order, we

introduce the ‘volume order’. We say that S1 is greater than

S2 in the volume order, and write S1�vol S2, if

Vol(Q1Þ � Vol(Q2Þ, ð2:7Þ

where Vol(XÞ is the volume of polytope X : In other words,

S1�vol S2 means that for a given d, cooperation is favoured

under S1 for a greater number of cooperation games than

under S2: If two structures are ordered in the containment

order so that S1�con S2, this implies that they are ordered

in the volume order so that S1�vol S2, but the converse is

not true.

We find that the volume of all d-player cooperation games

P is given by (Proposition 10 in the electronic supplementary

material; figure 3):

Vol(PÞ ¼ 1

ðd!Þ2
� 1

ð2dÞ! , ð2:8Þ

which decreases rapidly with the number of players d.

For d ¼ 2, this volume is equal to 5/24. In this case, the

four pay-offs a1, a0, b1 and b0 can be ordered in 4! ¼ 24

possible ways, five of which satisfy inequalities (2.1) and

(2.2), namely (i) b1 � a1 � b0 � a0 (Prisoner’s Dilemma),

(ii) b1 � a1 � a0 � b0 (snowdrift game), (iii) a1 � b1 � b0 � a0

(stag hunt), (iv) a1 � b1 � a0 � b0 (harmony game) and

(v) a1 � a0 � b1 � b0 (Prisoner’s Delight [56]). For large d,

condition (2.2) becomes less important and the volume of

cooperation games is approximately 1=ðd!2Þ, which is the

volume of games satisfying conditions (2.1) and (2.3).

http://rsif.royalsocietypublishing.org/
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emphasizing the importance of cooperation in evolution.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

13:20150881

5

 on February 25, 2016http://rsif.royalsocietypublishing.org/Downloaded from 
For some population structures, such as large well-mixed

populations updated with a Moran process, the structure co-

efficients are symmetric, i.e. sj ¼ sd�1�j for all j. For these

cases, the fraction of cooperation games for which cooperation

is favoured becomes

VolðQÞ
VolðPÞ ¼

1

2

ð2dÞ!
ð2dÞ!� ðd!Þ2

� 1

2
: ð2:9Þ

(Proposition 11 in the electronic supplementary material;

figure 3). This fraction is equal to 3/5 for d ¼ 2, and reduces

to 1/2 in the limit of large d.
2.4. Examples
Let us now illustrate our approach with particular models of

spatial structure and associated update rules. Consider first

the baseline scenario of a well-mixed population of size

N � d updated with a death–birth (Moran) process [38,46].

In the death–birth process, in each time step, one individual

is chosen at random to die and another one is chosen pro-

portional to its pay-off to reproduce by making a copy of

itself. We find that for any d � 2, well-mixed populations

updated with a death–birth process are ordered in the contain-

ment order with respect to the total population size N, such

that larger populations are more conducive to multiplayer

cooperation (Proposition 4 in the electronic supplementary

material). Our result generalizes previous results for two-

player games and multiplayer games with similar strategies

according to which smaller population sizes are less conducive

to cooperation because of the stronger local competition among

cooperators ([22], eqn 22; [28], eqn B.1). In the limit of large N
and by equation (2.9), well-mixed populations updated with a

death–birth process favour cooperation for exactly one-half of

all possible cooperation games.

Consider now the effect of introducing spatial structure

while keeping the same update rule. One of the simplest

spatial models is the cycle [8]. It has been shown that cycles

updated with a death–birth process are better promoters of
cooperation than well-mixed populations in the case of

two-player games [9,57], and for several examples of multi-

player social dilemmas (such as linear public goods games,

snowdrift games and stag hunt games) in the limit of large

population size [49]. Our theory allows us to extend these

results to all multiplayer cooperation games and arbitrary

population sizes. Indeed, we find that cycles are greater

than well-mixed populations in the containment order for

any given population size N (Proposition 6 in the electronic

supplementary material). This implies that cycles are better

promoters of cooperation than well-mixed populations for

any cooperation game, any number of players d and any

population size N.

A second model of spatial structure for which structure

coefficients are readily available is the group splitting model

of [26]. In this model, a finite population of size N is subdivided

into m groups, which can grow in size and split with probability

q when reaching the maximum size n. In the limit of rare group

splitting (q� 1), all groups are typically of the maximum size n
and the structure coefficients can be calculated analytically for

general d-player games [50]. Consider well-mixed and group

splitting populations updated according to a death–birth pro-

cess. If the number of groups is greater than two, the group

splitting model is greater than any well-mixed population in

the containment order (Proposition 7 in the electronic sup-

plementary material). Moreover, in the limit of m� n, the

structure coefficients of the group splitting model become

sd�1 ¼ 1 and sj ¼ 0 for j = d� 1: In this limit, the group split-

ting model is greater in the containment order than any other

population structure. Hence, it is the population structure that

favours cooperation most among all theoretically possible

population structures.

The cycle and the group splitting model are better promo-

ters of cooperation than the well-mixed population. But

which one promotes cooperation under more cooperation

games, the cycle or the group splitting model? Consider

cycles of size N and group splitting models with rare group

splitting ðq� 1Þ consisting of m groups of maximum size

n, so that the total maximum population size is equal to

N ¼ mn. Assuming that the population size N is large, the

containment order depends on the number of groups m of

the group splitting model in the following way (Proposition

8 in the electronic supplementary material). (i) If the

number of groups is small ðm � ðnþ 4d� 6Þ=ð2d� 3ÞÞ the

group splitting model is smaller than the cycle in the contain-

ment order. (ii) If the number of groups is intermediate

ððnþ 4d� 6Þ=ð2d� 3Þ , m , nþ 2Þ the group splitting

model and the cycle are incomparable in the containment

order. (iii) If the number of groups is large ðm � nþ 2Þ the

group splitting model is greater than the cycle in the contain-

ment order. As a particular example, consider a cycle of size

N ¼ 1000 and a group splitting model with m ¼ 10 groups of

maximum size n ¼ 100 (figure 4). In this case, the cycle is

greater than the group splitting model in the containment

order if d � 7, while the two population structures are

incomparable in the containment order if d � 8: Concerning

the volume order, exact computations and numerical simu-

lations suggest that the cycle is greater than the group

splitting model for d � 12, and smaller than the group

splitting model otherwise.

Up until now we have compared different models of

spatial structure (the well-mixed population, the cycle, the

group splitting model) with a single update rule (the

http://rsif.royalsocietypublishing.org/
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Moran death–birth process). However, the structure coeffi-

cients depend both on spatial structure and on the update

rule. For two-player games, different update rules can have

important consequences on the evolutionary dynamics, as

they lead to different ‘circles of compensation’, or how far

the effects of density dependence extend from a given focal

individual [10]. What are the effects of different update

rules on multiplayer cooperation games? As an example, con-

sider well-mixed populations with two different update

rules: the Moran process, where a random individual dies

and its neighbours compete for the empty site, and the

aspiration dynamics, where an individual is likely to switch

its strategy if the current pay-off does not meet an aspiration

level [48,58]. The two update rules can be ordered in the con-

tainment order only if 2d�1ðN � dÞ � dðN � 1Þ (Proposition 9

in the electronic supplementary material). In this case, aspira-

tion dynamics is greater in the containment order than the

Moran process, meaning that if cooperation is favoured

under the Moran process it will also be favoured under

aspiration dynamics, but not necessarily vice versa. If

2d�1ðN � dÞ . dðN � 1Þ the two structures are incomparable

in the containment order. However, for any finite population

size N, aspiration dynamics is greater in the volume order:

overall, cooperation is favoured for more games under

aspiration dynamics than under the Moran process.
3. Discussion
Our approach to compare models of population structure

sheds new light on how to study and analyse the evolution

of cooperation in spatially structured populations. We have

shown how several existing results, obtained under the

assumptions of pairwise interactions, similar strategies or

particular classes of multiplayer social dilemmas, generalize

to the case of multiplayer cooperation games with distinct

strategies that we have considered here. Perhaps more impor-

tantly, one can find two population structures such that there
is a class of cooperation games for which cooperation is

favoured under the first but not under the second, and a

class of cooperation games for which the opposite holds

true (figure 1b). Thus, arbitrarily choosing one or a few

games from the set of all possible cooperation games to com-

pare the effects of population structure on the evolution of

cooperation can be misleading, even when focusing on the

comparison of fixation probabilities under weak selection.

This is different from the case of either two-player games or

multiplayer games with similar strategies, where a ranking of

population structures is always possible in terms of a single

real value, and where it is sufficient to focus on a single

game without loss of generality [15,22].

We made use of the theory of stochastic orders [55] to pro-

vide conditions under which two population structures are

comparable or incomparable in the containment order.

Within social evolution theory, stochastic orders have

recently also been used to tackle the question of whether

variability in group size distribution would lead to less

stringent conditions for the evolution of cooperation in multi-

player social dilemmas [59]. Our use of stochastic orders in

this paper relies on the assumption (fulfilled by all the popu-

lation structures we used as examples) that the structure

coefficients can always be normalized to define a probability

distribution. It would be interesting to investigate under

which general conditions such an assumption is valid.

Another open question is whether two population structures

incomparable in the containment order could favour co-

operation in disjoint subsets of cooperation games. If the

structure coefficients define a probability distribution, this will

never be the case, as it will always be possible to find a

cooperation game for which the selection condition holds for

any two population structures. Consider for instance a game

for which aj ¼ a and bj ¼ 0 for all j, with a . 0 (a mutualistic

gamewhere the group optimal action A is also individuallyopti-

mal). In this case, and provided that the structure coefficients are

non-negative, the selection condition (2.4) is always satisfied.

We considered a very broad definition of cooperation and

a particular measure of evolutionary success, and investi-

gated subset containment relations and volumes of the

resulting polytopes. In this respect, our approach is related

to a classical study by Mattesi & Jayakar [60], who first

defined an ‘altruism domain’ from a set of linear inequalities

involving ‘local fitness functions’ and then investigated the

problem of finding and measuring the relative volume of

the ‘subset of the altruism domain in which A is more fit

than B on average, that is, altruism can evolve’. We note,

however, that our definition of cooperation is different from

the definition of altruism adopted by Matessi & Jayakar:

the ‘multi-level interpretation’ of altruism, in the sense of

Kerr et al. [44]. In particular, we only focused on the group

benefits, not the individual costs, associated with expressing

the cooperative action A. Such costs could be introduced by

adding further sets of inequalities to the ones we used here,

for instance by requiring that aj � bj for some or all j
[19,44]. As we did not specify any costs, our class of

cooperation games contains a relatively large set of mutualis-

tic games for which group beneficial behaviours are also

individually beneficial. Our measure of evolutionary success

is also different, as we focused on the comparison of fixation

probabilities in the limit of weak selection, whereas Matessi &

Jayakar focused on the one-step change in frequency. Finally,

Matessi & Jayakar limited themselves to ‘linear fitness

http://rsif.royalsocietypublishing.org/
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functions’ (equivalent to linear games in our set-up) while we

considered more general multiplayer games. The differences

between our study and the one by Matessi & Jayakar pin-

point possible future work along these lines. For instance,

alternative definitions of cooperation that take into consider-

ation the cost of cooperation [44,61] and exclude mutualistic

games could be explored, possibly together with alternative

measures of evolutionary success [62]. As long as it is poss-

ible to write all conditions as a set of linear inequalities

(and hence as polytopes) involving the pay-offs of the

game, our definitions can be used and adapted to these

cases. It would be interesting to see the extent to which com-

parisons of different population structures based on the

containment and volume orders defined here are robust to

changes in the way cooperation and evolutionary success

are defined and implemented.
 e
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Appendix A. Computing volumes
There are many exact methods for computing volumes of

polytopes, including triangulation methods [63] and signed

decomposition methods [64]. Computing the exact volume

of a polytope is however known to be #P-hard [65], and a

simple task only for low dimensions. In figure 4, the volumes

for d � 6 were calculated exactly using the function volume

of the class Polyhedron of the mathematics software SAGE

(v. 6.5). For d � 7, we used a Monte Carlo method for

approximating the volumes. For each value of d, we ran-

domly generated 106 increasing sequences aj and bj, and

retained only those which fulfilled (2.2). We then checked

how many of these sequences verified the selection condition

(2.4). The fraction of cooperation games was then approxi-

mated by the ratio between these two numbers. Our source

code in Python is publicly available on GitHub (https://

github.com/jorgeapenas/ordering).
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