
Extending the potential of moment analysis in chromatography

Shamsul Qamara,b,∗, Andreas Seidel-Morgensterna

aMax Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Germany
bDepartment of Mathematics, COMSATS Institute of Information Technology Islamabad, Pakistan

Abstract

Essential goal of modeling chromatographic processes is to describe the dynamics of concen-

tration fronts traveling through chromatographic columns. Most of the models developed

originate from differential mass balances for the fluid and solid phases. Model reduction

based on evaluating just a limited number of moments of the profiles is known to be a

powerful tool to simplify the description of band profiles. This review article first de-

scribes the well-established method of moments for different standard models. Then the

method is extended to evaluate more complex and realistic column models. The cases of

applying columns packed with core-shell particles and the quantitative description of radial

concentration profiles are analyzed.

Key words: Dynamics of chromatography, peak shapes, method of moments, Laplace

transformation, finite volume scheme.

1. Introduction

Most of the mathematical models for chromatographic columns originate from differential

mass balances for the fluid and solid phases [1–4]. Information about the column effluent

profiles is the key for a rational process design and optimization. However, often the original

differential mass balances models require the application of time consuming numerical

solution techniques and it is often sufficient to condense the information of the complete

concentration profile into a few characteristic features. Moment analysis (MA) is well-
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established method that provides condense information in the form of relatively small

number of temporal moments. It can be applied a) to describe in a simpler manner

essential feature of the chromatograms, b) to estimate efficiently free model parameters

by matching measured and predicted moments, c) to predict performance parameters of

the separations and, thus, d) to optimize more easily the process [2, 5–10]. In this study,

we address essentially just the aspect a). Regarding the importance of these moments

there is a clear hierarchy about the quality of representing chromatograms. It is more

crucial that there is an agreement between predicted and measured values for lower order

moments than for higher order moments. This is due to the fact that the zeroth moment

describes the sample mass or peak area, the first moment corresponds to the mean retention

time, the second moment quantifies the peak width or column efficiency, and the third

moment represents the peak asymmetry (skewness). The fourth order moment still has

a physical meaning (kurtosis) but is already difficult to measure precisely and because of

that reason is hardly evaluated. Whereas there is a clear integration formula available to

determine the moments from experimentally observed profiles, there is no simple connection

between the thermodynamic and kinetic parameters of the chromatographic models, the

operating parameters of the process and the corresponding theoretical moments. For the

simplified situation of linear distribution equilibria for many of the chromatography models

the moment generating property of the Laplace transform can be efficiently used to derive

analytical expressions for the temporal moments. The method develops a new strategy for

the analysis of chromatographic behavior beyond the ordinary plate and rate theories of

chromatography [5–10].

Moment analysis has been comprehensively elaborated in the chromatographic literature

[2, 7–20]. In these partly classical papers analytical moments were derived for specific chro-

matographic models and boundary conditions. The analysis typically covered just the most

important first and second moments, i.e. retention times and band broadening. Beside

the first and second moments, in a few studies also the third moment, which describes the

peak asymmetry, was derived and evaluated, e.g. in the work of Prof. G. Guiochon [5, 6].

In our recently published couple of papers, we addressed several aspects that have not been
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considered to this depth up to now [21–25]. Apart from considering the three standard

chromatographic models, we derived and compared also the fourth order moment, i.e. the

kurtosis or flatness of the profile. Using low-noise detectors and complete capture of the

responses this moment appears to be still experimentally accessible. As discussion on the

influence of the boundary conditions (BCs) were often ignored in the literature, we com-

pared the moment analysis for Dirichlet and Danckwerts BCs considering both rectangular

pulses and steps as inlet profiles. For quantitative comparison, the first four moments of

the General Rate Model (GRM), the Lumped Kinetic Model (LKM), and the Equilibrium

Dispersive Model (EDM) were derived. With this analysis it was intended to elucidate the

connections between the specific kinetic parameters, including for the first time the results

for the fourth moments. Finally, going beyond previous studies, we provided a comparisons

of the analytically derived moments with moments calculated independently by integrating

numerically calculated effluent profiles. For this purpose advanced high resolution finite

volume scheme was applied, which is capable to treat also the more general case of non-

linear equilibria [26]. We have recently extended the aforementioned analysis to core-shell

particles using the GRM [25]. Core-shell particles were invented and pioneered by Hor-

vath et al. [27] with the specific purpose of preparing columns that could provide highly

efficient HPLC separation of high molecular weight compounds of biological origin. They

are beneficial over fully porous beads in reducing diffusional mass transfer resistances in

particle macropores and separation times. Furthermore, they can be also useful to regulate

bead densities. Several researchers, including Guiochon and his co-authors, worked on the

understanding and improvement of coreshell particles performance [28–35]. The analysis

of one-dimensional (1D) models was recently extended to the analysis of two-dimensional

(2D) models describing the movement of a solute in a two-dimensional chromatographic

column of radial geometry [24]. In this case, the finite Hankel and Laplace transformations

were simultaneously applied to solve the model equations. After eliminating the radial

coordinate by Hankel transformation, the Laplace transformation was applied to solve the

model equations analogously to the solution of 1D models.

In this review article, we provide a summary of the above mentioned instructive solutions
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by focusing on the: a) derivation of analytical expressions of first four temporal moments

for the GRM and LKM using fully porous particles, b) derivation of first three temporal

moments of GRM for core-shell particles, and on the c) derivation of first four temporal

moments for the 2D GRM. To derive analytical moment expressions for the latter case,

the Hankel transformation needs to be applied initially. The analysis is mainly focused on

the derivation of temporal moments for the general rate model (GRM), while the temporal

moments of LKM are derived as limiting cases of the GRM moments. The moments of

simplified Equilibrium Dispersive Model (EDM) can be deduced from the moments of LKM

by considering fast transport.

The structure of the article is as follows. In Section 2, the 1D GRM, 1D LKM and 2D

GRM are briefly introduced. Section 3 presents the moments of 1D GRM and LKM for

fully porous particles using Dirichlet BC. Section 4 presents the temporal moments of the

1D GRM for core-shell particles considering both Dirichlet and Danckwerts BCs. The

first four temporal moments of 2D GRM are presented in Section 5 for Dirichlet BC. A

few selected numerical test problems are presented in Section 6 for illustrating the results.

Concluding remarks are given in Section 7.

2. Mathematical models

This section briefly introduces the two standard models of liquid chromatography consid-

ering fully porous stationary particles, namely the GRM and LKM. These mathematical

models are typically derived using the following general assumptions [1, 2, 4]:

1. The chromatographic process is isothermal.

2. The bed is homogeneous and the packing material used in the stationary phase is

made of porous spherical particles of uniform size.

3. Axial dispersion occurs and causes band broadening.

4. The mobile phase is considered to be incompressible which holds for liquid chro-

matography.

4



5. There is no interaction between the mobile and stationary phases.

In the 1D models the radial concentration gradients in the column are neglected, while in

the 2D models such gradients are also considered.

2.1. The 1D General Rate Model (GRM)

The GRM considers several contributions of mass transfer kinetics occurring in chromatog-

raphy [1, 2, 4, 18]. As there are several ways to describe these effects, there are many ver-

sions of this model. Usually, axial dispersion, mass transfer between mobile and stationary

phases and intraparticle, and pore diffusion are included in the equations. However, the

possible limited rates of adsorption-desorption are often still ignored. The GRM contains

two mass balances for the solute, one for inside the particles, and the other for outside the

particles. The corresponding mass balance for a single-solute fluid percolating through a

bed of spherical particles of radius RP is given as [1, 2, 4]

∂c

∂t
+ u

∂c

∂z
= DL

∂2c

∂z2
−

3

Rp

Fkext
(

c− cp|r=Rp

)

. (1)

In the above equation, c and cp are the concentrations of the solute in the bulk of the

fluid and in particle pores, respectively. The phase ratio F = (1 − ǫ)/ǫ, where ǫ ∈ (0, 1)

is the external porosity. Moreover, u is the interstitial velocity, DL represents the axial

dispersion, kext is the external mass transfer coefficient, Rp is the radius of stationary phase

particle, and t and z denote time and axial coordinate of the column. In addition, r denotes

the radial coordinate along the particle radius.

The mass balance inside the particles is given as [1, 2, 4]

ǫp
∂cp
∂t

+ (1− ǫp)
∂q∗p
∂t

=
1

r2
∂

∂r

(

r2
[

ǫpDp
∂cp
∂r

+ (1− ǫp)Ds

∂q∗p
∂r

])

, (2)

where q∗p is the local concentration of solute in the stationary phase, ǫp is the internal

porosity, Dp is the pore diffusivity, and Ds is the surface diffusivity.

In this model it is assumed that kinetics of adsorption-desorption on the stationary phase

are fast and their contribution to band broadening is negligible compared to the other

contributions [5, 6].
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Only linear adsorption isotherms are considered in this work [1, 2]:

q∗p = acp. (3)

By using Eq. (3), Eq. (2) can be simplified as

a∗
∂cp
∂t

=
Deff

r2
∂

∂r

(

r2
∂cp
∂r

)

, (4)

where

a∗ = ǫp + (1− ǫp)a , Deff = ǫpDp + (1− ǫp)Dsa . (5)

The Eqs. (1) and (4) are also subjected to the initial and boundary conditions. The initial

conditions for an initially regenerated column are given as

c(0, z) = 0 , cp(0, z, r) = 0 , ∀ z ∈ (0, L), r ∈ (0, Rp). (6)

Here, L represents the length of the column. Appropriate inlet and outlet boundary con-

ditions (BCs) are required for Eq. (1). The following two types of boundary conditions

are considered.

Boundary conditions of type I: Dirichlet inlet BCs

In this case, the simpler Dirichlet boundary conditions could be applied at the column

inlet [1, 2, 18]:

c|z=0 =







cinj , if 0 < t ≤ tinj ,

0 , t > tinj ,
(7a)

together with a Neumann boundary condition for a column of hypothetically infinite length,

z = ∞:

∂c(t,∞)

∂z
= 0. (7b)

For sufficiently small dispersion coefficient, this Dirichlet inlet boundary condition is well

applicable.
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Boundary conditions of type II: Danckwerts (or Robin) type inlet BCs

Alternatively, the Robin type boundary condition, known in chemical engineering as Danck-

werts boundary condition, could be applied at the column inlet [2, 36]:

−
DL

u

∂c

∂z

∣

∣

∣

∣

z=0

+ c|z=0 =







cinj , if 0 < t ≤ tinj ,

0 , t > tinj ,
(8a)

where cinj denotes the injected concentration and tinj is the time of injection. At the outlet

of the column of finite length z = L, the following Neumann outflow BCs are used:

∂c(t, L)

∂z
= 0. (8b)

For sufficiently small dispersion coefficient Eq. (8a) reduces to Eq. (7a). For Eq. (4), the

following boundary conditions at r = 0 and r = Rp are assumed [1, 2]:

∂cp
∂r

∣

∣

∣

∣

r=0

= 0 , Deff
∂cp
∂r

∣

∣

∣

∣

r=Rp

= kext(c− cp|r=Rp
). (9)

2.2. The 1D Lumped Kinetic Model (LKM)

The LKM incorporates the rate of variation of the local concentration of solute in the

stationary phase and a local deviation from equilibrium concentrations. The model lumps

the contribution of internal and external mass transport resistances into a mass transfer

coefficient kLKM. The model contains two mass balances, one for the liquid phase and one

for the solid phase. For the liquid phase it can be expressed as [1, 2, 18]

∂c

∂t
+ u

∂c

∂z
= DL

∂2c

∂z2
−
kLKM

ǫ
[q∗ − q] . (10)

For the solid phase it is written as [1, 2, 18]

∂q

∂t
=

kLKM

(1− ǫ)
[q∗ − q] . (11)

The two conservation Eqs. (10) and (11) represent a typical 1D heterogeneous two-phase

flow model. The same initial and boundary conditions can be used as given by Eqs. (6)-

(8b).
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If instead of DL and kLKM, an apparent (lumped) dispersion coefficient Dapp is used

(Dapp(DL, kLKM) > DL), then Eqs. (10) and (11) can be lumped together to obtain the

well-known Equilibrium Dispersive Model (EDM) which is well studied and not considered

here [2].

2.3. The 2D GRM

The 2D GRM describes the movement of a solute in a two-dimensional chromatographic

column of radial geometry as shown graphically in Figure 1. The injected solute moves

in the z-direction by advection and axial dispersion, while it spreads in the ρ-direction by

radial dispersion. To trigger and amplify the effect of possible rate limitations of the mass

transfer in the radial direction, the following particular injection conditions are assumed.

By introducing a parameter ρ̃, the inlet cross-section of the column is partitioned into an

inner cylindrical core and an outer annular ring (see Figure 1). The injection profile is

formulated in a general way allowing for injection either through an inner core, an outer

ring or through the whole cross section. The latter case results if ρ̃ is set equal to the

radius of the column denoted by R. Since in the latter case no initial radial gradients are

provided, the solutions should converge into the solution of the simpler one-dimensional

model.

As both axial and radial dispersion are considered, the 1D mass balance equation in Eq.

(1) is replaced by [2, 23]:

∂c

∂t
+ u

∂c

∂z
= DL

∂2c

∂z2
−

3

Rp
Fkext (c− cp(r = Rp)) +Dρ

(

∂2c

∂ρ2
+

1

ρ

∂c

∂ρ

)

. (12)

In the above equation, Dρ represents the radial dispersion coefficient and ρ is the cylindrical

coordinate of the column of radius R.

However, the structure of mass balance inside the particles (Eq. (2) or Eq. (4)), initial

conditions (Eq. (6)), and boundary conditions (Eq. (9)) remain unchanged and are the

integral parts of the 2D GRM.

For the current 2D model, the Danckwerts BCs in Eqs. (8a) and (8b) are replaced by the

8



following BCs. For injection in the inner circular region, the inlet BC is expressed as [23]

−
DL

u

∂c

∂z
+ c|z=0 =







cinj , if 0 ≤ ρ ≤ ρ̃ and 0 ≤ t ≤ tinj ,

0 , if ρ̃ < ρ ≤ R or t > tinj ,
(13)

while, for injection in the outer annular zone, we have

−
DL

u

∂c

∂z
+ c|z=0 =







cinj , if ρ̃ ≤ ρ ≤ R and 0 ≤ t ≤ tinj ,

0 , if 1 < ρ ≤ ρ̃ or t > tinj .
(14)

At the outlet of the column of finite length L, the same Neumann outflow BC is used, i.e.

∂ci(ρ, L, t)

∂z
= 0 . (15)

When the dispersion coefficientDL is small, the boundary conditions reduce to the Dirichlet

boundary conditions by neglecting the first terms on the left hand sides of Eqs. (13) and

(14) and putting L = ∞ in Eq. (15).

3. 1D Moment equations for fully porous particles

Moment analysis is an effective strategy for extracting condensed information about the

retention and mass transfer kinetics in a chromatographic column [2, 5–20]. The moment

generating property of the Laplace domain solutions can be utilized to obtain moments

[5, 6, 21–23]. The retention equilibrium-constant and parameters of the mass transfer

kinetics in the column are related to the moments of the Laplace domain solutions. In this

section, the temporal moments up to fourth order are derived for the 1D GRM considering

the fully porous particles, the Dirichlet boundary conditions (BCs) (c.f. Eqs. (7a) and

(7b)), and rectangular pulse injections (finite feed volumes) [23, 25]. The moments of 1D

LKM and EDM are derived from those of GRM as limiting cases [21, 22].

In order to calculate analytical temporal moments, the moment generating property of the

Laplace transform is exploited [38]

µn = (−1)n
1

µ0

lim
s→0

dn(c̄(s, z = L))

dsn
, n = 1, 2, 3, · · · . (16)
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The zeroth moment µ0 is expressed as

µ0 = lim
s→0

c̄(s, z = L) , (17)

The first three central moments are deduced from the normalized temporal moments µn

using the expressions [21, 22]

µ′

2 = µ2 − µ2
1 , (18)

µ′

3 = µ3 − 3µ1µ2 + 2µ3
1 , (19)

µ′

4 = µ4 − 4µ1µ3 + 6µ2
1µ2 − 3µ4

1 . (20)

By applying the above definitions on the Laplace domain solutions, we obtain the following

moments [5, 23]

Zeroth moment: For a rectangular profile it is expressed as [5, 6, 23]

µ0,GRM = cinjtinj . (21)

Here, cinj represents the concentration of the injected pulse to the column and tinj is the

total time of injection. For continuous breakthrough curve it simplifies to

µ0,GRM = cinj . (22)

The zeroth moment corresponds to the mass of the elution peak. This moment is the same

for all three models, i.e. µ0,GRM = µ0,LKM = µ0,EDM.

First moment:

The first temporal moment for rectangular profiles is given as [5, 6, 23]

µ1,GRM =
tinj
2

+
L

u
(1 + a∗F ) , a∗ = ǫp + (1− ǫp)a . (23)

The first moment µ1 corresponds to the retention time tR. The value of the equilibrium

constant a can be estimated from the slopes of a straight lines, µ1 = tR over 1/u for

constant column length and porosity. Eq. (23) reduces to the first moments of LKM by

putting ǫp = 0, i.e. a∗ = a. Thus, we obtain

µ1,LKM =
tinj
2

+
L

u
(1 + aF ) . (24)
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Moreover, µ1,LKM = µ1,EDM. For continuous breakthrough curves, the first term on the

right hand size of Eqs. (23) and (24) are zero. The effect of longitudinal diffusion is not

significant with respect to retention time or first moment.

Second central moment:

The second central moment (variance) of the elution profile provides information about the

rate of mass transfer process in the column. The second central moments for a rectangular

profile is given as [5, 6, 23]:

µ′

2,GRM =
t2inj
12

+
2LDL

u3
(1 + a∗F )2 +

2La∗F

u

(

Rpa
∗

3kext
+

R2
pa

∗

15Deff

)

. (25)

Eq. (25) reduces to the second central moment of LKM by using

a∗ = a ,

(

Rpa
∗

3kext
+

R2
pa

∗

15Deff

)

=
1− ǫ

kLKM
. (26)

Here, kLKM is the mass transfer coefficient in the LKM model. Using the above relation in

Eq. (25), we obtain

µ′

2,LKM =
t2inj
12

+
2LDL

u3
(1 + aF )2 +

2LaF (1− ǫ)

ukLKM
. (27)

For kLKM → ∞, Eq. (27) reduces to the second central moments of EDM. For continuous

breakthrough curves, the first terms on the right hand side of Eqs. (25) and (27) are zero.

The first and second central moments can be used to analyze the flow rate dependence

of Height Equivalent to Theoretical Plate (HETP) number. In order to use the moment

expressions to derive the classical HETP-curve, let us consider for the sake of simplicity a

Dirac injection, i.e. tinj = 0. Then, Eqs. (23), and (25) gives [2, 39]

HETPGRM(u) =
Lµ′

2

µ2
1

=
2DL

u
+

2Fa∗2

(1 + a∗F )2

[

Rp

3kext
+

R2
p

15Deff

]

u. (28)

In the above equation, the first term captures the band broadening by dispersion, the

second term describes the contribution of external mass transfer, and the last term provides

the contribution of diffusive migration of sample molecules inside the stationary phase. The

first term is frequently splitted using the following simplifying expression [18]

DL = γ12Rpu+ γ2Dmol . (29)
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Here, Dmol is the molecular diffusivity of the solute in the solvent, while γ1 and γ2 rep-

resent weight factors for the relative impact of the particle size/flow rate dependent and

the molecular diffusion based contributions to band broadening. Thus, Eq. (28) can be

rewritten as

HETPGRM(u) = 4γ1Rp +
2γ2Dmol

u
+ Cu = A+

B

u
+ Cu , (30)

where

A = 4γ1Rp, B = 2γ2Dmol, C =
2Fa∗2

(1 + a∗F )2

[

Rp

3kext
+

R2
p

15Deff

]

. (31)

Eqs. (30) and (31) are the classical van Deemter equation (see [39]), valid only in this form

for the general rate model using the simplifying Dirichlet BC and Dirac pulse injection.

It should be mentioned here, that the BC related effect is often ignored in using and

interpreting HETP-curves for comparing different chromatographic systems. For example

in the case of Danckwerts BC, the A- and B-terms in Eq. (31) change to [25]

A = 4γ1Rp

[

1 +
DL

Lu
(e

−
Lu
DL − 1)

]

, B = 2γ2Dmol

[

1 +
DL

Lu
(e

−
Lu
DL − 1)

]

. (32)

It can be easily observed that for a sufficiently small value of DL, Eq. (32) reduces back to

Eq. (31).

Using Eq. (26) in Eq. (31) one can obtain HETPLKM. In a similar manner, one can obtain

HETPEDM by just letting kLKM → ∞ (i.e. C=0).

Third central moment:

A peak shape is characterized by the third and fourth central moments. The analysis

of peak shapes helps not only to gain qualitative and quantitative data, it explain the

operation of the chromatographic system. Moreover, it could be helpful in investigating the

mathematical parameters and mass-transfer characteristic of the chromatographic system.

The peak skewness and kurtosis can be calculated from them which will be discussed below.

The third central moment quantifies asymmetry of the elution profiles. It is given as
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[5, 6, 23]:

µ′

3,GRM =
12LD2

L

u5
(1 + a∗F )3 +

12LDL(1 + a∗F )F

u3

(

Rpa
∗2

3kext
+
R2
pa

∗2

15Deff

)

+
2La∗F

u

(

2R4
pa

∗2

105D2
eff

+
2R3

pa
∗2

15kextDeff

+
R2
pa

∗2

3k2ext

)

. (33)

Eq. (33) reduces to the third central moments of LKM by using Eq. (26) and

(

2R4
pa

∗2

105D2
eff

+
2R3

pa
∗2

15kextDeff
+
R2
pa

∗2

3k2ext

)

=
3(1− ǫ)2

k2LKM

. (34)

Using Eqs. (26) and (34) in Eq. (33), we obtain

µ′

3,LKM =
12LD2

L

u5
(1 + aF )3 +

12LDL(1 + aF )F (1− ǫ)

u3kLKM
+

6LaF (1− ǫ)2

uk2LKM

. (35)

Note that µ′

3 is the same for rectangular and continuous breakthrough curves. For kLKM →

∞, we obtain the third central moment of EDM.

The second and third central moments can be used to calculate the skewness that measures

the degree of asymmetry of elution profiles. It can be evaluated as

δskew =
µ

′

3

(µ
′

2)
3/2
. (36)

This relation is useful to quantify deviations from Gaussian peak shapes.

As Eq. (36) shows, chromatographic peaks corresponding to GRM have some degree of

asymmetry. Thus, their front and rare parts have not the same shape.

Fourth central moment:

Finally, the fourth central moment for rectangular concentration pulses of finite width is
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given as:

µ′

4,GRM =
t4inj
80

+
t2inj
u3

[

LDL(1 + a∗F )2 + La∗Fu2
(

Rpa
∗

3kext
+

R2
pa

∗

15Deff

)]

+
12L2D2

L

u6
(1 + a∗F )4

[(

1 + 10
DL

Lu

)]

+
24LD2

L(1 + a∗F )2a∗F

u5

(

Rpa
∗

3kext
+

R2
pa

∗

15Deff

)[

6 +
Lu

DL

]

+
4LDLa

∗F

u3

(

2R4
pa

∗2

105D2
eff

+
2R3

pa
∗2

15kextDeff
+
R2
pa

∗2

3k2ext

)[

4 + a∗F

(

6 +
Lu

DL

)]

+
8La∗F

u

(

1

525

R6
pa

∗3

D3
eff

+
3

175

R5
pa

∗3

D2
effkext

+
1

15

R4
pa

∗3

Deffk2ext
+

1

9

R3
pa

∗3

k3ext

)

−
8La∗F

175

FDLa
∗3R4

p

u3D2
eff

(

1 +
Lu

2DL

)

. (37)

Eq. (37) reduces to the fourth central moments of LKM by using Eqs. (26) and (34) along

with

(

1

525

R6
pa

∗3

D3
eff

+
3

175

R5
pa

∗3

D2
effkext

+
1

15

R4
pa

∗3

Deffk2ext
+

1

9

R3
pa

∗3

k3ext

)

−
1

175

FDLa
∗3R4

p

u2D2
eff

(

1 +
Lu

2DL

)

=
3(1− ǫ)3

k3LKM

. (38)

Thus, we obtain

µ′

4,LKM =
t4inj
80

+
t2inj
u3

[

LDL(1 + aF )2 +
LaFu2(1− ǫ)

kLKM

]

+
12L2D2

L

u6
(1 + aF )4

[

1 + 10
DL

Lu

]

+
24LD2

L (1 + aF )2 aF (1− ǫ)

kLKMu5

[

6 +
Lu

DL

]

+
12LDLaF (1− ǫ)2

k2LKMu
3

[

4 + aF

(

6 +
Lu

DL

)]

+
24LaF (1− ǫ)3

uk3LKM

. (39)

The fourth central moment of continuous breakthrough profiles can be obtained from Eq.

(37) by putting all terms containing tinj equal to zero. For kLKM → ∞, we obtain the

fourth central moment of EDM.

The fourth central moment, i.e. kurtosis, measures the profiles peakedness or flatness rel-

ative to a normal distribution. In general, the kurtosis is a descriptor of the shape of a

probability distribution. It is instructive to use an adjusted version of Pearson’s kurtosis,
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the excess kurtosis [40]. The excess kurtosis compares the shape of a given distribution

to that of the normal distribution. Distributions with negative or positive excess kurtosis

are called platykurtic distributions or leptokurtic distributions, respectively. The following

definition quantifies the excess kurtosis [40]

γkur =
µ

′

4

(µ
′

2)
2
− 3 . (40)

A high kurtosis distribution has a sharper peak and a broader tails than the normal dis-

tribution, while a low kurtosis distribution has a more rounded peak and thinner tails.

Distributions with zero excess kurtosis, as the normal distribution, are called mesokur-

tic. The fourth central moment associated with kurtosis is used to study the flatness of

chromatogram elution.

4. Moments of 1D GRM for core-shell particles

The next part of this study is concerned with cored particles of arbitrary inert core radius

Rcore. For fully porous particles r ranges from 0 to Rp, while for cored particles it ranges

from r = Rcore to Rp [25]. The first three moments are derived for GRM considering a

column packed with core-shell particles [25]. The complete derivations of moments are

presented below using the considered two types of boundary conditions.

4.0.1. Type I: Dirichlet BC

In this case, the moments up to third order are given below [25].

Zeroth moment: The zeroth moment for rectangular profiles is given as

µ0,GRM = cinjtinj. (41)

The zeroth moment for continuous breakthrough curves is simply µ0,GRM = cinj. Let us

define

ρcore = Rcore/Rp, P e =
Lu

DL
, Bi =

kextRp

Deff
, η =

DeffL

R2
pu

, ξ = 3F
kext
Rp

L

u
. (42)
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Here, Rcore is the radius of the non-porous core and Rp is the radius of the particle,

Moreover, let us introduce

ã = (1− ρ3core)a
∗ , ρ1 =

ρcore(1 + 3ρcore + 3ρ2core − ρ3core)

(1 + ρcore + ρ2core)
2

, (43)

ηmod =
η

ρmod

, ρmod = (1 + ρ1)(1− ρcore) =
1 + 2ρcore + 3ρ2core − ρ3core − 5ρ4core

(1 + ρcore + ρ2core)
2

. (44)

Then, the remaining temporal moments are given below.

First moment: The first temporal moment for rectangular profiles is given as

µ1,GRM =
tinj
2

+
L

u
(1 + ãF ) . (45)

Second central moment: The second central moment is given as

µ′

2,GRM =
t2inj
12

+
2LDL

u3
(1 + ãF )2 +

2LãF

u

[

Rpã

3kext
+

R2
pã

15Deff
ρmod

]

. (46)

Eqs. (45) and (46) for ρcore = 0 and ρmod = 1 are identical to the moments of fully porous

particles given by Eqs. (23) and (25).

To analyze breakthrough curves the first right hand side term in Eq. (46) needs to be set

to zero.

In this case, the HETP can be obtained from Eq. (45) and (46) as given below:

HETPGRM(u) =
Lµ′

2

µ2
1

= 4γ1Rp +
2γ2Dmol

u
+ Ccoreu = A+

B

u
+ Ccoreu , (47)

where

A = 4γ1Rp, B = 2γ2Dmol, Ccore =
2Fbã

2

(1 + ãFb)
2

[

Rp

3kext
+

R2
p

15Deff

ρmod

]

. (48)

For fully porous particles, i.e. ρcore = 0, ã = a∗, and ρmod = 1, the Eqs. (47) and (48)

reduces to the classical van Deemter equation (see [39]) given by Eqs. (30) and (31), valid

only in this form for the general rate model using the simplifying Dirichlet BC and Dirac

pulse injection.

The minimum of HETP is found at the following optimal velocity:

uopt(ρcore) =

√

B

Ccore
. (49)
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For this velocity the following minimum of HETP results:

HETPmin(uopt(ρcore)) = A+ 2
√

BCcore . (50)

Third central moment: The third central moment is calculated as

µ′

3,GRM =
12LD2

L

u5
(1 + ãF )3 +

6L2DL(1 + ãF )F

u4

[

2F ã2

ξ
+

2ã2

15ηmod

]

+
L3F ã3

u3

[

4

105η2mod

(1 + ρ2)

(1 + ρ1)2
+

4F

5ξηmod
+

6F 2

ξ2

]

, (51)

where

ρ2 =
ρcore(2 + 9ρcore +

35
2
ρ2core +

23
2
ρ3core − 3ρ4core − ρ5core)

(1 + ρcore + ρ2core)
3

. (52)

Moreover, µ′

3,GRM is the same for rectangular and continuous breakthrough curves.

4.0.2. Type II: Danckwerts (or Robin) type BC

In this case, the moments are given as follows.

Zeroth moment: The zeroth moment for rectangular profiles is again given as

µ0,GRM = cinjtinj . (53)

For continuous breakthrough curves, holds µ0,GRM = cinj.

First moment: The first temporal moment from the Laplace transform solution can be

obtained as

µ1,GRM =
tinj
2

+
L

u
(1 + ãF ). (54)

For continuous breakthrough curves, the first term on the right hand side of the above

equation is zero.

Second central moment: The second central moment for a rectangular pulse injection

is given as

µ′

2,GRM =
t2inj
12

+
2LDL (1 + ãF )2

u3

[

1 +
DL

Lu
(e

−
Lu
DL − 1)

]

+
2LãF

u

[

Rpã

3kext
+

R2
pã

15Deff

ρmod

]

.

(55)
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For continuous breakthrough curves, the first term on the right hand side of Eq. (55) is

zero. Eq. (46) results from Eq. (55) if there the term featuring the boundary conditions is

set to 1, which is acceptable only for large DL, i.e. for larger flow rates.

The expressions for first and second central moments can be used to derive the HETP-curve

for the Danckwerts BC, i.e.

HETP(u) =
L(µ′

2)
t2

(µ2
1)
t

=
2DL

u

[

1 +
DL

Lu
(e

−
Lu
DL − 1)

]

+
2F ã2

(1 + ãF )2

[

Rp

3kext
+

R2
p

15Deff
ρmod

]

u.

(56)

Now inserting of expression in Eq. (29) provides a more complicated dependence of HETP

on u and DL. In this case, the A- and B-terms in Eq. (31) change to

A = 4γ1Rp

[

1 +
DL

Lu
(e

−
Lu
DL − 1)

]

, B = 2γ2Dmol

[

1 +
DL

Lu
(e

−
Lu
DL − 1)

]

. (57)

Thus, these terms are not this simple anymore. In contrast to the case of Diriclet BC, the

determination of HETPmin and uopt requires numerical methods. Hereby, HETP-values

corresponding to Dankwerts BC will be always less than the HETP for Diriclet BC.

Third central moment: The third central moment for a rectangular pulse injection is

expressed as

µ′

3,GRM =
12LD2

L (1 + ãF )3

u5

[(

1 +
2DL

Lu

)

e
−

Lu
DL +

(

1−
2DL

Lu

)]

+
ã3FL3

u3

(

4

105η2mod

(1 + ρ2)

(1 + ρ1)2

+
4F

5ξηmod

+
6F 2

ξ2

)

+
6L2DLF (1 + ãF )

u4

(

2F ã2

ξ
+

2ã2

15ηmod

)[

DL

Lu
(e

−
Lu
DL − 1) + 1

]

.

(58)

The third central moment is same for continuous breakthrough curve. Note that, Eq. (51)

is a special case of Eq. (58) valid for large DL numbers for which the Danckwerts BC

reduces into the Dirichlet BC.

5. Moments of 2D GRM for fully porous particles

In the more difficult 2D case, the analytical temporal moments are obtained in the Hankel

domain as functions of the dimensionless radial coordinate ψ = ρ/Rcore [25]. The true
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moments µi(ψ) are generated by using the following expression [24]

µi(ψ) = 2µi,H(λn = 0) + 2
∞
∑

n=1

µi,H(λn)
J0(λnψ)

|J0(λn)|2
, (59)

where λn is the finite Hankel transform parameter as determined by the transcendental

equation dJ0(λn)
dψ

= −J1(λn) = 0. Here, J0(.) and J1(.) are the zeroth and first order Bessel

functions of the first kind. The averaged non-normalized temporal moments Mi,av can be

calculated as

Mi,av = 2

1
∫

0

µi(ψ)ψdψ , i = 0, 1, 2, · · · . (60)

The normalized averaged temporal moments used in chemical engineering are given as [2]:

µi,av =
Mi,av

µ0,av
, µ0,av =M0,av, i = 1, 2, 3, · · · . (61)

The above temporal moments µi,av up to the fourth order are obtained for interpretation of

the solute transport behavior. These moments can be used to obtain the first four central

moments defined in Eqs. (18)- (20).

In the following, the first four dimensionless Hankel domain moments are presented using

Dirichlet BCs. Let us define

Peρ =
R2u

DρL
, τ =

ut

L
, ψ̃ = ρ̃/R . (62)

Zeroth moment: It is given as

µ0,H = τinjF (λn)e
−Pe(w−1

2
) , (63)

where

w =

√

1 +
4λ2n

PePeρ
. (64)

For injection at the inner cylindrical core, F (λn) is given as

F (λn) =







ψ̃2

2
, if λn = 0 ,

ψ̃
λn
J1

(

λnψ̃
)

, if λn 6= 0 ,
(65)
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and for injection at the outer annular ring, we have it as:

F (λn) =







(

1
2
− ψ̃2

2

)

, if λn = 0 ,

− ψ̃
λn
J1

(

λnψ̃
)

, if λn 6= 0 .
(66)

First moment: The First temporal moment is calculated as:

µ1,H =

[

τinj
2

+
1 + a∗F

w

]

µ0,H . (67)

Second moment: The second temporal moment is given as:

µ2,H =

[

τ 2inj
3

+
(1 + a∗F )

w
τinj +

(1 + a∗F )2

w2
+

2 (1 + a∗F )2

Pew3
+

2a∗
2

F (Bi + 5)

15wηBi

]

µ0,H . (68)

Third moment: The third temporal moment is expressed as:

µ3,H =

[

τ 3inj
4

+
(1 + a∗F )

w
τ 2inj +

(

3 (1 + a∗F )2

2w2
+
a∗2F (Bi + 5)

5wBiη

+
3 (1 + a∗F )2

Pew3

)

τinj +
4a∗F

(

35
2
+ 7Bi +B2

i

)

105wB2
i η

2

+
12 (1 + a∗F )3

Pe2w5
+

4a∗2F (1 + a∗F ) (Bi + 5)

5Pew3Biη

+
6 (1 + a∗F )3

Pew4
+

2a∗2F (1 + a∗F ) (Bi + 5)

5w2Biη
+

(1 + a∗F )3

w3

]

µ0,H . (69)
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Fourth moment: The fourth temporal moment is given as:

µ4,H =

[

τ 4inj
5

+
(1 + a∗F )

w
τ 3inj +

(

4 (1 + a∗F )2

Pew3
+

4a∗2F (Bi + 5)

15wBiη
+

2 (1 + a∗F )2

w2

)

τ 2inj

+

(

2 (1 + a∗F )3

w3
+

8a∗2F (1 + a∗F ) (Bi + 5)

5Pew3Biη
+

8a∗3F
(

35
2
+ 7Bi +B2

i

)

105wB2
i η

2

+
24 (1 + a∗F )3

Pe2w5
+

12 (1 + a∗F )3

Pew4
+

4a∗2F (1 + a∗F ) (Bi + 5)

5w2Biη

)

τinj

+
32a∗3F (1 + a∗F )

(

35
2
+ 7Bi +B2

i

)

105Pew3B2
i η

2
+

48a∗2F (1 + a∗F )2 (Bi + 5)

5Pe2w5Biη
+

(1 + a∗F )4

w4

+
8a∗4F 2 (Bi + 5)2

75Pew3B2
i η

2
+

24a∗2F (1 + a∗F )2 (Bi + 5)

5Pew4Biη
+

4a∗4F 2 (Bi + 5)2

75w2B2
i η

2

+
120 (1 + a∗F )4

Pew7
+

8a∗3F (1 + a∗F )
(

35
2
+ 7Bi +B2

i

)

105w2B2
i η

2
+

60 (1 + a∗F )4

Pe2w6

+
12 (1 + a∗F )4

Pew5
+

4a∗2F (1 + a∗F )2 (Bi + 5)

5w3Biη
+

8a∗4F (175 + 105Bi + 27B2
i )

1575wB3
i η

3

]

µ0,H .

(70)

6. Numerical Test Problems

In this section, selected analytical moments are analyzed corresponding to the more general

GRM by considering several test problems. For comparison, a second-order accurate finite

volume scheme (FVS) of Koren was chosen to solve model equations of GRM numerically

and to calculate the moments by integrating the obtained concentration profiles [26]. The

normalized n-th temporal moment of the band profile at the outlet of a column of length

L is given as

µn =

∫

∞

0
c(t, L) tndt

∫

∞

0
c(t, L)dt

. (71)

While, the corresponding n-th central moment is expressed as

µ
′

n =

∫

∞

0
c(t, L) (t− µ1)

ndt
∫

∞

0
c(t, L)dt

. (72)

The trapezoidal rule was applied to approximate the integrals in Eqs. (71) and (72). Eqs.

(71) and (72) were also used to evaluate moments of the solutions obtained by taking

numerical inversion of the analytical Laplace domain solutions.
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6.1. Test cases for fully porous particles

Figure 2 shows a comparison of LKM moments for two different values of kLKM with those

of GRM. It can be seen that for small values of kLKM, the second, third and third central

moments of LKM have large values as compared to GRM. On the other hand, for large

values of kLKM (i.e. for EDM), the central moments of GRM have large values. This

means that for small values of kLKM , elution profiles of LKM are broader. The standard

parameters used in the test problems are given in Table 1.

A quantitative comparison of skewness and kurtosis of GRM and LKM is given in Figure

3 over u using Danckwerts BC. The skewness for a normal distribution is zero, and any

symmetric data should have a skewness near zero. Negative values of the skewness indicate

that data are left skewed and positive values indicate the right skewed data. It can be

observed that the Kurtosis of LKM approaches to that of GRM when kLKM is increased.

Figure 4 shows the comparison of moments obtained from GRM for the considered two

sets of boundary conditions using two different values of DL. It can be observed that

moments of both boundary conditions agree well for small value of axial dispersion, DL =

0.002 cm2/min, but are significantly different for large values of axial dispersion, DL =

1.0 cm2/min. Thus, for large axial dispersion, Danckwerts Bc is more accurate which

accounts for back mixing in the vicinity of column inlet.

6.2. Test cases for core-shell particles

In this section, the effect of ρcore, characterizing the extension of the inert core, on the

the moments is analyzed. The same finite volume scheme is chosen to obtain numerical

moments [26]. The standard parameters used in the test problems are given in Table 1.

A quantitative comparison of analytical and numerical moments for different core radius

fractions is presented in Figure 5 considering considering Danckwerts BCs. As ρcore in-

creases from 0 (fully porous beads) to 0.8 (beads with a thin shell), the values of moments

are decreasing. With an increase of ρcore, the first moment µ1, describing the retention time

of the elution profile, decreases. As ρcore increases, the profiles become sharper, giving a

reduction in the second central moment µ′

2 which quantifies the variance of the concen-
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tration profile. Further, the third moment, which quantifies the asymmetry of the elution

profiles, is also decreasing with increasing ρcore. The good agreement between analytical

and numerical results demonstrates both the correctness of analytical calculations and high

precision of FVS.

Probably as the most interesting result for chromatography petitioners, in Figure 6 are

plotted the plate heights HETP (c.f. Eq. (47)-(50)) and reduced plate heights h as functions

of the velocity u. The illustrating calculations were done for the Dirichlet BC and different

fractions of the nonporous core assuming in all cases a column length of L = 20 cm,

a particle radius of Rp = 2 × 10−4 cm, γ1 = 0.5, γ2 = 1, Dmol = 6 × 10−4 cm2/min,

kext = 5 cm/min, DL = 0.1 cm2/min and Deff = 2 × 10−5 cm2/min. It can be seen that

an increase in ρcore, i.e. a decrease of the thickness of the porous layer, causes smaller

HETP-values. For the conditions chosen, i.e. for a rather efficient column, i.e. not severe

back-mixing, there is no visible difference in using Diriclet (Eqs. (47) and (48)) or the more

realistic Danckwerts boundary conditions (Eqs. (56) and (57)). The optimum velocity

uopt and minima of HETP (c.f. Eqs. (49) and (50)) are also plotted over different core

radius fractions ρcore. For larger ρcore the minima of HETP decrease and the corresponding

flowrates increase. Thus, comparing the conditions offering the highest efficiencies, it can

be concluded that core-shell particles can be operated at larger flow rates. This offers the

attractive option for reducing the analysis times.

In order to quantify the effect of the type of BC on the HETP-values, the following ratio

is introduced:

BCHETP =
HETP for Dirichlet BC

HETP for Danckwerts BC
. (73)

To illustrate differences due to the application of the two types of boundary conditions,

HETP and the ratio BCHETP are plotted in Figure 7 as a functions of the velocity u in a

reduced velocity range before the minimum occurs. In contrast to the calculations presented

in Figure 6 larger γ2 (or B-term) and thus larger DL are used describing the performance

of a less efficient column. For low efficient columns, i.e. small Pe numbers (low flowrates,

short columns, large back-mixing effects), the selection of boundary conditions influences
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the results and the more realistic Danckwerts BC and the corresponding solutions should

be applied. If DL is very small Eq. (56) converges into Eq. (28) and BCHETP becomes unity.

HETP is smaller for the Dankweets BC due to the joint effects of the different inlet and out

boundary conditions. For these rate parameters the core radius fraction ρcore was found to

have no influence on HETP due to the dominance of the extraparticle back-mixing effect.

This situation can change for other relative contributions of the mechanisms accounted for

in the general rate model.

6.3. Test problems for 2D GRM

Figure 8 displays the 2D local moments plotted along the radial coordinate of the column.

The effect of radial dispersion coefficient on the first second, third and fourth moments can

be clearly seen. Here, Pe = 60, Bi = 50 and η = 2 were kept fixed and varied was the ratio

Peratio =
Peρ
Pe

which corresponds. The plots of this figure show that moments approach to

constant values along the radial coordinate for smallest value of Peratio or largest Dr. For

the smallest value of Peratio = 0.025, the results correspond to the 1D results presented

above. Since the concentration is injected via the inner cylindrical core, all moments do

not change close to the column center. The changes clearly occur in the outer section.

Although the trends look similar, on inspecting closer the y-axis, the magnitudes reveal

that higher moment change more significantly with changing the Peratio. Similar trends

were also observed in the case of injection through outer zone.

7. Conclusion

Accurate and quantitative information about the dynamics in a chromatographic columns

could be helpful to design appropriate separation systems and packing materials. In this

review, the moment analysis (MA) method was introduced as an attractive technique

for quantitatively analyzing the chromatographic process. This well-established method

condenses the information provided by a chromatogram into a relative small number of

temporal moments. MA could be an effective techniques to estimate free thermodynamic
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and kinetic model parameters from measured chromatograms. Due to its moment gener-

ating property, the Laplace domain solution can be used as basic tool to derive analytical

expressions of temporal moments. A summary of temporal moments derived just recently

for two standard liquid chromatographic models has been provided. We mainly focused

on the effects of different boundary conditions, on the derivation of moment expressions

up to fourth order for fully porous particles, on the derivation of the first three moments

for core-shell particles, and on the derivation of the first four temporal moments of the 2D

GRM. The derived moments could be a useful tool for understanding the chromatographic

process and to analyze of the retention times and peak shapes. These theoretical moments

could also be very helpful a) to describe in a simpler manner essential feature of the chro-

matograms, b) to estimate efficiently free model parameters by matching measured and

predicted moments and c) to predict performance parameters of the separations and, thus,

d) to optimize more easily the process.
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Table 1: Parameters of the problems.

Parameters values

Column length L = 20 cm

External porosity ǫ = 0.4

Internal porosity ǫp = 0.333

Concentration at inlet cinj = 1.0 g/l

Injection time tinj = 50 min

Adsorption equilibrium constant a = 4.0
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Figure 1: Schematic representation of a cylindrical column of cylindrical geometry [24].
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Figure 2: A comparison of LKM and GRM moments for DL = 0.002 cm2/min, Deff = 10−6 cm2/min,

Rp = 0.002 cm, kext = 0.01min−1, and other parameters are given in Table 1 [23].
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Figure 3: Skewness and kurtosis of GRM and LKM associated with third and fourth central moments

considering different velocities u [23]. Here, DL = 0.002 cm2/min, Deff = 10−6 cm2/min, Rp = 0.002 cm

and kext = 0.01min−1. All other parameters are given in Table 1.
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Figure 4: Moments of GRM for Danckwerts and Dirichlet BCs using two different values of DL [23]. Here,

Deff = 10−6 cm2/min, Rp = 0.002 cm, kext = 0.01min−1 and other parameters are given in Table 1.
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Figure 5: Moments of GRM for core-shell particles using Dankwerts BC [25]. Here, Here, Deff = 2 ×

10−5 cm2/min, Rp = 2× 10−4 cm, kext = 5.0min−1, and DL = 0.1 cm2/min. Other parameters are given

in Table 1.
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Figure 6: Plots of HETP over u and uopt and HETPmin over ρcore using Dirichlet BC (c.f. Eqs. (30),

(49) and (50)) [25]. Here, γ1 = 0.5, γ2 = 1, Dmol = 6 × 10−4 cm2/min, Deff = 2 × 10−5 cm2/min,

Rp = 2× 10−4 cm, kext = 5 cm/min, DL = 0.1 cm2/min, and other parameters are given in Table 1.
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Figure 7: Plots of HETP and BCHETP over u for different values of γ2 [25]. Here, ρcore = 0, γ1 = 0.5,

Dmol = 6 × 10−4 cm2/min, Deff = 2 × 10−5 cm2/min, Rp = 2 × 10−4 cm, kext = 5 cm/min, DL =

0.1 cm2/min, and other parameters are given in Table 1.
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Figure 8: Inner zone injection: Plots of Local moments showing the effects of Peρ [24]. Here, Pe = 60,

η = 2.0, Bi = 50, R = 0.2 cm, ρ̃ = 0.1414 cm, ǫ = 0.4. ǫp = 0.333, τinj = 1.0, and a = 4. Moreover,

Peratio =
Peρ
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.
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