日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

書籍の一部

Optimizing polarization dependent hard X-ray photoemission experiments for solids

MPS-Authors
/persons/resource/persons126904

Weinen,  J.
Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126507

Agrestini,  S.
Stefano Agrestini, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126681

Kasinathan,  D.
Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126881

Tjeng,  L. H.
Liu Hao Tjeng, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Weinen, J., Koethe, T. C., Agrestini, S., Kasinathan, D., Strigari, F., Haupricht, T., Liao, Y. F., Tsuei, K.-D., & Tjeng, L. H. (2016). Optimizing polarization dependent hard X-ray photoemission experiments for solids. In J. C., Woicik (Ed.), Hard X-ray Photoelectron Spectroscopy (HAXPES) (pp. 263-275). Cham: Springer. doi:10.1007/978-3-319-24043-5_11.


引用: https://hdl.handle.net/11858/00-001M-0000-0029-BD5F-7
要旨
Polarization dependent hard X-ray photoemission (HAXPES) experiments are a very powerful tool to identify the nature of the orbitals contributing to the valence band. To optimize this type of experiments we have set up a photoelectron spectroscopy system consisting of two electron energy analyzers mounted such that one detects the photoelectrons propagating parallel to the polarization vector (E) of the light and the other perpendicular. This method has the advantage over using phase retarders (to rotate the E-vector of the light) that the full intensity and full polarization of the light is available for the experiments. Using NiO as an example, we are able to identify reliably the Ni 3d spectral weight of the valence band and at the same time demonstrate the importance of the Ni 4s for the chemical stability of the compound. We have also discovered the limitations of this type of polarization dependent experiments: the polarization dependence is less than expected on the basis of calculations for free atoms and we can ascribe this incompleteness of the polarization dependence to the presence of appreciable side-scattering effects of the outgoing electrons, even at these high kinetic energies in the 6–8 keV range. © Springer International Publishing Switzerland 2016.