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SUMMARY  

Human Ataxin-2 (ATXN2) gene locus variants have been associated with obesity, diabetes 

mellitus type 1 and hypertension in genome-wide association studies, while mouse studies 

showed the knock-out of Atxn2 to lead to obesity, insulin resistance and dyslipidemia. 

Intriguingly, the deficiency of ATXN2 protein orthologues in yeast and flies rescues the 

neurodegeneration process triggered by TDP-43 and Ataxin-1 toxicity. To understand the 

molecular effects of ATXN2 deficiency by unbiased approaches, we quantified the global 

proteome and metabolome of Atxn2-knock-out mice with label-free mass spectrometry. In liver 

tissue, significant downregulations of the proteins ACADS, ALDH6A1, ALDH7A1, IVD, MCCC2, 

PCCA, OTC, together with bioinformatic enrichment of downregulated pathways for branched 

chain and other amino acid metabolism, fatty acids and citric acid cycle were observed. 

Statistical trends in the cerebellar proteome and in the metabolomic profiles supported these 

findings. They are in good agreement with recent claims that PBP1, the yeast orthologue of 

ATXN2, sequestrates the nutrient sensor TORC1 in periods of cell stress. Overall, ATXN2 

appears to modulate nutrition and metabolism, and its activity changes are determinants of 

growth excess or cell atrophy. 
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INTRODUCTION 

Ataxin-2 (ATXN2) is a stress-regulated protein of 124 kDa size, which is expressed in 

specific neuron populations, but also in hepatocytes (1-4). The structure of the human ATXN2 

protein is characterized (1) by the N-terminal polyQ domain (5), (2) by dispersed proline-rich-

domains that mediate association with various SH3-motif containing proteins of the tyrosine 

kinase receptor endocytosis machinery and thus modulate neuro-trophic signaling (6, 7), (3) by 

a C-terminal PAM2 motif that mediates interaction with the poly(A)-binding protein PABPC1 that 

is crucial for mRNA translation (8) and (4) by Lsm and Lsm-AD sequences that mediate the 

association with RNAs (9-11). ATXN2 is normally localized at the rough endoplasmic reticulum 

(12), but it relocalizes during periods of low cell energy together with PABPC1 to stress granules 

where the quality control of RNA occurs (3) and where fasting responses are modulated (13). 

The suppression of Ataxin-2 in mice and flies modulates mRNA translation and circadian clock 

(4, 14-16). 

In human populations, several independent genome wide association studies (GWAS) 

have underlined the importance of variants at the genomic locus of ATXN2. They influence the 

risk for obesity, type 1 diabetes, hypertension and cardiovascular infarction (17-26). Their 

impact is strong enough to stand out as genetic modifiers of human longevity (27, 28). Whether 

additive effects of co-regulated neighbor genes at this locus play a causal role, has been 

discussed in a recent review (29).  

In mice, two independent Atxn2-knock-out (KO) lines confirmed phenotypes of obesity 

(30, 31), with excessive liver fat and glycogen deposits, insulin resistance and dyslipidemia also 

being noted by the age of 6 months. Thus, even in the absence of high-fat-diet and within the 

short lifespan of rodents, the monogenic deficiency of Ataxin-2 is sufficient to trigger important 

features of the human metabolic syndrome.  

Conversely, the overactivity of Ataxin-2 due to polyglutamine (polyQ) expansions 

encoded by unstable (CAG)-repeat expansions in the human ATXN2 gene results in cell 
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atrophy of specific neuronal populations. The polyQ-expansion of ATXN2 leads to a process of 

protein insolubility and aggregate formation with insidious toxicity throughout the nervous 

system, depending on the expansion size and polygenic interactions, possibly also on CAA-

interruptions within the CAG-repeat. Neurodegenerative processes known as Spinocerebellar 

Ataxia type 2 (SCA2), the motor neuron degeneration Amyotrophic Lateral Sclerosis (ALS13), 

Frontotemporal dementia, Supranuclear palsy, or Levodopa-responsive Parkinsonism can be 

triggered by this mechanism (32-39). In Drosophila melanogaster flies, the Ataxin-2 orthologue 

dATX2 was shown to act as a generic modifier gene that affects multiple if not all 

neurodegenerative disorders (40). The protein interactions between ATXN2 and several other 

disease proteins of neurodegenerative disorders (41) and the similarity of atrophy patterns 

between these polyglutamine expansion diseases suggests a common molecular 

pathomechanism among these diverse neurodegenerative disorders (42).  

Interestingly, the deficiency of ATXN2 orthologues was observed to play a beneficial role 

in these neurodegenerative processes, by alleviating or postponing them in microorganism and 

animal models (35, 43). Thus, the elucidation of the molecular effects of ATXN2 deficiency and 

of the physiological roles of Ataxin-2 may help to design neuroprotective approaches that are 

novel. Hence, we chose to document the global proteomic and metabolomic profile of Atxn2-KO 

mice in crucial tissues affected by Ataxin-2 loss- and gain-of-function, the liver and the 

cerebellum, respectively. This effort may provide insights on the target molecules and pathways 

of Ataxin-2 functions.  

 

EXPERIMENTAL PROCEDURES 

Mouse Breeding and Dissection 

Animals were bred and aged in individually ventilated cages with continuous health monitoring, 

4–6 animals per cage, under a 12 h light cycle with food (Ssniff M-Z, calories from protein 36%, 
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fat 11% and carbohydrates 53%) and water provided ad libitum. Mice were housed in 

accordance with the German Animal Welfare Act, the Council Directive of 24 November 1986 

(86/609/EWG) with Annex II and the ETS123 (European Convention for the Protection of 

Vertebrate Animals) at the FELASA-certified Central Animal Facility (ZFE) of the Frankfurt 

University Medical School. All analyses were performed on male mice with a mixed C57BL/6 _ 

129/Ola background. Genotyping was performed with tail biopsies by PCR with three sets of 

primers as previously described (Lastres-Becker-I et al 2008 Hum Mol Genet). 

 

RNA Preparation and cDNA Synthesis 

After cervical dislocation, cerebellum and liver were dissected from homozygous wild-type 

(Atxn2+/+) and knock-out (Atxn2-/-) mice at 4 months (for proteomics and metabolomics) or 6 

months of age (for immunoblots). Total RNA was extracted from these tissues by 

homogenization in 1 mL of Trizol® Reagent per 50 – 100 mg of tissue using a Pellet Pestle® 

Motor tissue homogenizer (Kontes, The Glass Company). One μg total RNA was digested with 

a DNase I Amplification Grade Kit (Invitrogen, Karlsruhe) in a reaction volume of 10 μl per tube 

in order to eliminate DNA during RNA purification prior to reverse transcription (RT-PCR) 

amplification. cDNA synthesis was performed with the Fermentas Life Sciences First Strand 

cDNA Synthesis Kit as instructed in the manual. 

 

Validation of quantitative Real-Time Reverse-Transcriptase Polymerase-Chain-Reaction 

Quantitative Real-Time Reverse-Transcriptase Polymerase-Chain-Reaction (qPCR) was 

performed using a GeneAmp® 5700 Sequence Detection System (Applied Biosystems, CA 

USA) with 96-well Optical Reaction Plates (Applied Biosystems, CA USA). Twenty μl final 

reaction volume per well contained 25-30 ng cDNA, TaqMan® Universal PCR Master Mix, No 

AmpErase® UNG and primers and probes in pre-designed TaqMan® Gene Expression Assays. 

All assays were run in triplicates. The following assays were used: Atxn2 (Mm 01199894_m1) to 
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verify the KO genotype per tissue and Tbp (Mm 00446973_m1) as an endogenous control in all 

experiments, run in wells separate from the target gene assays. The PCR conditions were 

50 °C for 2 min and 95 °C for 10 min followed by 40 cycles at 95 °C for 15 seconds and 60 °C 

for 40 seconds. Analysis of relative gene expression data was performed using the ΔΔCT 

method. 

 

Metabolite Extraction for Metabolome Profiling 

Tissues were dissected, washed in phosphate buffered saline (PBS, pH7.4) and shock frozen in 

liquid nitrogen. About 40-50 mg of each liver tissue and cerebellum was used for metabolite 

profiling, six WT versus six Atxn2-KO, respectively. Cold methanol (1.5 mL, -20°C) and 0.1% 

ammonium acetate (0.2 mL) were added to the frozen tissues and subsequently homogenized 

by FastPrep (settings: 1 x 60 s; 4.5 m/s) with a steel ball. The first set of internal standards was 

added to each sample, containing chloramphenicol and C13-labeled L-glutamine, L-arginine, L-

proline, L-valine and uracil (3.5 µM final concentration). Lysates were transferred to a 15 mL 

tube, 5 mL methyl-tert-butyl ester (MTBE) was added and incubated at RT for 1 h on a rocking 

platform. Afterwards, 1.25 mL MS grade water was added and incubated for additional 10 min. 

After centrifugation at 1000 g at 4 °C for 10 min, organic and inorganic phases were separately 

transferred and combined in three tubes containing the second internal standard set (Avanti 

Polar Lipids, Alabaster, AL, USA), dedicated for subsequent analysis by using methanol, 

acetonitrile, and water as alternative solvents for LC-MS runs. Metabolites were lyophilized and 

stored at -80 °C until needed. The residuals were suspended in 50 µL of ACN with 0.1% FA and 

35 µL of MeOH with 0.1% FA for analysis by HILIC and in 50 µL of H2O with 0.1% FA for RPLC 

and were then sonicated for re-dissolving as needed and centrifuged at 17500 g for 5 min at 

4 °C. The supernatants were transferred to microvolume inserts, and 5 µl per run was injected 

for LC-MS/MS analysis.  
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LC Conditions for Metabolomics 

The target metabolites were selected to cover most of the important metabolic pathways in 

mammals, more than 400 metabolites in total. The chromatographic separations were 

performed on RP, RP-shield and zicHILIC stationary phases. Following columns were used: 

Reprosil-PUR C18-AQ (1.9 µm, 120 Å, 150 x 2 mm ID; Dr. Maisch; Ammerbuch, Germany) 

column, BEH Shield RP18 (1.7 µm, 130 Å, 150 x 2.1 mm ID; Waters; Milford, MA) and a 

zicHILIC (3.5 µm, 100 Å, 150 x 2.1 mm ID; di2chrom; Marl, Germany) A 1290 series UHPLC 

(Agilent, Santa Clara, CA, USA) with six different buffer conditions was used: (A1) 10 mM 

ammonium acetate in LC-MS grade H2O (adjusted with FA to pH 3.5), (A2) 10 mM ammonium 

acetate in LC-MS grade H2O (adjusted with ammonium hydroxide to pH 7.5), (A3) 20 mM 

ammonium formate in LC-MS grade H2O (adjusted with ammonium hydroxide to pH 5.0), (B1) 

LC-MS grade ACN with 0.1% FA, (B3) LC-MS grade MeOH; B2: LC-MS grade MeOH with 0.1% 

FA. Gradients and flow conditions are described in supplemental Table S1. Columns were run 

under controlled temperature of 30 °C, RP-shield with 80 °C. The columns were equilibrated 

with a blank run in the corresponding buffer system. 

The LC was online coupled to a triple quadrupole hybrid ion trap mass spectrometer QTrap 

6500 (ABSciex, Toronto, Canada). MS settings were reported previously (44), transition settings 

for the MRM’s in supplemental Table S2. 

 

Metabolome Data Analysis 

Relative quantification was performed using MultiQuant software v.2.1.1 (AB Sciex, Foster City, 

CA, USA), as described previously (44). Briefly, the identification of metabolites was based on 

the retention time, three co-occurring transitions and the ion ratio between the transitions, which 

had to match to MRM ion ratios of the corresponding tuned metabolites. Biological replicates 

were normalized for the weighted mg of tissue and internal standards. 
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Sample Preparation for Proteome Profiling 

The same tissues were used as for metabolome profiling. About 10 mg of liver tissue and 

cerebellum was weighted under frozen condition. Samples were lysed and reduced in buffer 

containing 8% SDS, 0.1 M DTT, 0.1 M Tris, pH 8 and subsequently homogenized by FastPrep 

(settings: 3 x 60 s; 4 m/s) with a steel ball. Lysates were sonicated on ice for 1 min and boiled at 

95 °C for 5 min at a rocking platform (750 rpm). Samples were prepared for LC-MS analysis as 

previously (44). In brief, lysates were centrifuged for 5 min at 15.000 g, supernatants were 

reduced in 50 mM DTT for 1 h at 56 °C. Alkylation was done with a final concentration of 

5.5 mM chloroacetamide for 30 min at RT in the dark. Samples were precipitated with 4-times 

excess of acetone overnight at -20 °C. Precipitates were lyophilized and dissolved in 8 M 

urea/10 mM Tris pH 8. Lys-C digestion (1 µg/sample) was performed for 4 h at room 

temperature followed by a trypsin digestion (2 µg/sample) in 2 M urea overnight at 37 °C. 

Peptides were purified with C18 columns (Sep-Pak® Vac, 100mg, Waters, Milford, MA). 1% of 

the total peptides were finally injected and analyzed by liquid chromatography online coupled to 

a nanoHPLC-MS/MS system, after dissolving in 5% ACN and 2% FA. Every sample was run as 

a technical replicate. 

 

LC-MS Settings for Proteomics 

LC−MS/MS was carried out by nanoflow reverse phase liquid chromatography (Dionex Ultimate 

3000, Thermo Scientific, Waltham, MA) coupled online to a Q-Exactive Plus Orbitrap mass 

spectrometer (Thermo Scientific, Waltham, MA). Briefly, the LC separation was performed using 

a PicoFrit analytical column (75 μm ID × 25 cm long, 15 µm Tip ID (New Objectives, Woburn, 

MA) in-house packed with 3 µm C18 resin (Reprosil-AQ Pur, Dr. Maisch, Ammerbuch-

Entringen, Germany). Peptides were eluted using a non-linear gradient from 2 to 40% solvent B 

over 210 min at a flow rate of 266 nL/min (solvent A: 99.9% H2O, 0.1% formic acid; solvent B: 

79.9% acetonitrile, 20% H2O, 0.1% formic acid). 3 kV were applied for nanoelectrospray 
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generation. A cycle of one full FT scan mass spectrum (300−1750 m/z, resolution of 70,000 at 

m/z 200, AGC target 1e6) was followed by 12 data-dependent MS/MS scans (resolution of 

35,000, AGC target 5e5) with normalized collision energy of 25 eV. In order to avoid repeated 

sequencing of the same peptides, a dynamic exclusion window of 30 sec was used and only the 

peptide charge states between two to eight were allowed. 

 

Label Free Proteomics Data Analysis 

Raw MS data were processed with MaxQuant software (v1.5.0.0) (45) and searched against the 

Mus musculus (MOUSE) proteome database UniProtKB with 52.490 entries, released in 2014-

11, respectively. Additionally, the “re-quantify” feature was implemented to increase the number 

of peptides which can be used for quantification. LC-MS runs of technical replicates were jointly 

analyzed. A false discovery rate (FDR) of 0.01 for proteins and peptides and a minimum peptide 

length of 7 amino acids, a mass tolerance of 4.5 ppm for precursor and 20 ppm for fragment 

ions were required. A minimum Andromeda score of 0 and 40 (delta score 0 and 9) for 

unmodified peptides and modified peptides was applied. A maximum of two missed cleavages 

was allowed for the tryptic digest. Cysteine carbamidomethylation was set as fixed modification, 

whereas N-terminal protein acetylation and methionine oxidation were set as variable 

modifications.  

The LFQ, a generic method for label-free quantification (46) within MaxQuant, was used for 

relative quantification. MaxQuant processed output files can be found in supplemental Tables 

S3-S4, showing peptide and protein identification, accession numbers, % sequence coverage of 

the protein, posterior error probability (PEP) values, log2 transformed LFQ intensities and fold 

changes between KO/WT. Contaminants as well as proteins identified by site modification and 

proteins derived from the reversed part of the decoy database were strictly excluded from 

further analysis. The mass spectrometry proteomics data have been deposited to the 
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ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE 

partner repository (47) with the dataset identifier PXD003155. 

 

Statistical, Pathway, and PPI Network Analyses 

Pathway and network analyses are novel methods to understand the complex data sets derived 

from deep omics studies. For the metabolome and proteome data, a two-sample t-test was 

performed within Perseus software (v1.5.0.8, (45). Multiple test correction by Benjamini-

Hochberg (BH) with a FDR of 0.05 was performed after the p-value calculation. Significantly 

regulated metabolites and proteins were marked by an asterisk in the corresponding 

supplemental tables S3-S4. Furthermore, volcano plots and Pearson correlation were created 

within Perseus. Only proteins with valid values in all replicates were used for the above 

mentioned tests.  

For comprehensive proteome data analyses, gene set enrichment analysis (GSEA, v2.2.0) (48) 

was applied in order to see, if a priori defined sets of proteins show statistically significant, 

concordant differences between KO and WT state. Only proteins with at least two valid values in 

each cohort were used for GSEA analysis and the ratios were log2 transformed. GSEA default 

settings were used, except that the minimum size exclusion was set to 5 and KEGG v5.0 was 

used as gene set database. The cutoff for significantly regulated pathways was set to ≤ 0.05 p-

value and ≤ 0.05 FDR. 

For protein-protein interaction (PPI) network analyses, the software tool String v.10 was used to 

visualize networks of significantly regulated proteins of the entire proteome with a confidence 

level of 0.7 (49). The cutoff for significantly regulated proteins was determined using one 

standard deviation from the log2 transformed median by using GraphPad Prism 5.03. Protein 

nodes which were not integrated into a network were removed. 

 

Quantitative Immunoblot Analyses 
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The isolation of total proteins from liver of 7 wild-type and 7 Atxn2-KO mice at the age of 

6 months was performed as described (50) with minor modifications: Prior to gel 

electrophoresis, 20μg samples were heated at 90°C for 2 min, using Precision Plus Protein™ 

Dual Color Standards as size marker. Transfer to nitrocellulose membranes (Protran, GE 

Healthcare) was done at 50 V for 90 min, with blocking in 5% BSA solution in 1X TBS-T for 1 h 

at room temperature (RT). Primary antibodies against β-Actin (1:5000, A5441, Sigma-Aldrich), 

ACADS (1:500, ab154823, Abcam), ALDH6A1 (PA5-34691, Thermo Fischer), ALDH7A1 (PA5-

29974, Thermo Fischer), IVD (1:250, PA5-22342, Thermo Fischer), MCCC2 (PA5-27758, 

Thermo Fischer), OTC (1:500, PA5-28197, Thermo Fischer), and PCCA (1:250, ABIN518660, 

MaxPab®) in 5% BSA solutions initially for 1 h at RT, and then overnight at 4 °C. Fluorescent-

labelled α-mouse (1:15.000, IRDye 800CW, Li-Cor) and α-rabbit (1:15.000, IRDye 680RD, Li-

Cor) were the secondary antibodies. Fluorescence detection occurred on the Li-Cor Odyssey 

Classic Instrument. Statistical significance was assessed using unpaired t-test with Welch’s 

correction.  

RESULTS 

Proteomic Profiling  

In order to determine the molecular effects of the Atxn2-KO in 4-month-old mouse liver 

and cerebellar tissue, we first performed global proteome quantifications by label-free mass 

spectrometry. Atxn2-KO was verified by genotyping of tail biopsies at the DNA level as 

previously described (30) and verified in the tissues under study by real-time qPCR at the 

mRNA level. Additionally, we looked at the proteome level for the evidence of ATXN2 presence 

in all samples, and observed six different ATXN2 specific peptides exclusively in wild-type (WT) 

samples, never in KO samples (data not shown).  

Comparison of the proteome profiles of all six biological replicates of WT and Atxn2-KO 

mice was done by Pearson correlation. The Pearson correlation coefficients were highly similar, 
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ranging from 0.766 to 0.981 in WT and KO liver tissue (supplemental Fig. S1), and from 0.928 

to 0.992 in WT and KO cerebellar tissue (supplemental Fig. S2). These Pearson correlation 

coefficients suggested a very good quality of the proteome data sets. 

The entire list of identified and quantified protein groups can be found in supplemental 

Tables S3 and S4 for liver and cerebellar tissue, respectively. This resulted in 823 protein 

groups in liver versus 999 protein groups in cerebellar tissue, respectively. For pathway- and 

PPI network analyses, we accepted at least 2 valid values per sample cohort, resulting in 1609 

protein groups in liver versus 1982 protein group ratios in cerebellar tissue, respectively.  

 

Proteomic Profiling in Liver Tissue 

To identify significantly (after BH correction) regulated protein groups, the distribution 

between KO and WT cohorts was visualized in a volcano plot (Fig. 1).  

The significantly dysregulated proteins were detailed in Table 1. PCCA, ALDH6A1, IVD 

and MCCC2 are involved in the valine, leucine and isoleucine (branched chain amino acids, 

BCAA) degradation pathway. OTC is part of the arginine biosynthesis pathway, synthesizing L-

citrulline from L-ornithine. ALDH7A1 is a key enzyme in the pathways lysine biosynthesis / 

lysine degradation and ACADS is involved in the pathway mitochondrial fatty acid beta-

oxidation. 

To illustrate the relative protein abundance and the variability of measurements as criteria for 

their relevance, the LFQ ion intensity distributions of every single individual mouse tissue was 

shown for the 7 significant proteins (Fig. 2).  

Applying the STRING software, we visualized the network of molecular interactions 

among downregulated proteins (at least 1 standard deviation from the mean) in Atxn2-KO/WT 

liver tissue (Fig. 3). The most striking pathway within this network was again the BCAA 

metabolism. Furthermore, protein-protein interaction networks involved in the ribosome and 
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cytochrome P450 metabolism, fatty acid metabolism and several amino acid metabolisms were 

downregulated as well (smaller networks in Fig. 3). 

Even more sophisticated ways to analyze the entire proteomics dataset, taking all ratios 

into account without any ratio cutoffs, are assessment methods of pathway enrichment such as 

GSEA (Gene Set Enrichment Analysis). For liver tissue, no significantly upregulated KEGG 

pathway was identified with this approach, but several significantly downregulated KEGG 

pathways were identified. Most striking was the downregulation of the pathway branched chain 

amino acids (BCAA, that is leucine, isoleucine and valine) and several related amino acid 

metabolism pathways. Furthermore, the pathways fatty acid metabolism and the citric acid cycle 

(tricarboxylic acid or TCA cycle) were significantly downregulated (Table 2, supplemental Table 

S5).  

 

Proteomic Profiling in Cerebellar Tissue 

For cerebellar tissue, we used identical approaches for data analysis as for liver tissue. 

On the protein level, no significantly regulated proteins were identified after BH correction 

(supplemental Table S4, volcano plot in supplemental Fig. S3). Compared to the PPI network 

generated for liver tissues, the BCAA pathway could still be identified as a network by applying 

at least one standard deviation (cerebellum 0.06144 ± 0.3175) of down regulated proteins, but 

to a much lesser degree (supplemental Fig. S4).  

GSEA analyses revealed a nominal significance for upregulations of KEGG pathways 

proteasome, purine metabolism, amyotrophic lateral sclerosis and VEGF signaling 

(supplemental Table S5), and nominal significance for downregulations of pathways ribosomes 

and valine, leucine & isoleucine degradation again. In general, the fold changes in cerebellum 

were rather small.  

 

Metabolomic Profiling  
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We applied a targeted LC-MS/MS methodology, based on multiple reaction monitoring 

(MRM) to identify and quantify relative differences in metabolite changes of selected metabolites 

between Atxn2-KO and WT mice in liver and cerebellar tissue. The correct retention time, three 

MRM’s and a matching MRM ion ratio of tuned pure metabolites as a reference were used for 

correct identification of metabolites (44). In total, 176 metabolites could be identified and 

relatively quantified in liver tissue, 204 in cerebellum. The entire lists of all quantified metabolites 

can be found in supplemental Table S6.  

Comparison of the metabolome profiles of all six biological replicates of WT and Atxn2-KO mice 

was done by Pearson correlation. The Pearson correlation coefficients were highly similar, 

ranging from 0.803 to 0.994 in KO and WT liver tissue (supplemental Fig. S5). In cerebellum, 

the range was from 0.83 to 0.985 (supplemental Fig. S6). These Pearson correlation 

coefficients suggested a very good quality of the metabolome data sets. Statistical analyses by 

a two sample t-test with BH correction was visualized by volcano plots and revealed no 

significantly regulated metabolites (supplemental Fig. S7-8), the fold ratios were too small in 

comparison to the variability.  

 

Proteome- Metabolome Integration 

Nevertheless, the fold-changes in the metabolome data fitted the proteome profile closely.  

Within mitochondria, PCCA and PCCB control the conversion between propionyl-CoA and 

methyl-malonyl-CoA, MLYCD converts malonyl-CoA to acetyl-CoA in the ß-alanine metabolism. 

Propionyl-CoA and malonyl-CoA are conjugated to carnitine for elimination from mitochondria. 

Carnitine O-palmitoyltransferase 1 (liver isoform) and 2 (CPT1A, CTP2), catalyzing the transfer 

of the acyl group of long-chain fatty acid-CoA conjugates onto carnitine, an essential step for the 

mitochondrial uptake of long-chain fatty acids and their subsequent beta-oxidation in the 

mitochondrion, were 1.5- and 2.3- fold down regulated in Atxn2- KO liver tissue, respectively. 

Interestingly, acylcarnitines, such as propionylcarnitine, malonylcarnitine and pimelylcarnitine 
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were 2- to 2.5-fold increased. Malonylcarnitine is known to accumulate with specific disruption of 

fatty-acid oxidation caused by impaired entry of long-chain acylcarnitine esters into the 

mitochondria and failure of the mitochondrial respiratory chain (51). Furthermore, medium-chain 

acyl-CoA dehydrogenase deficiency is caused by mutation in the medium-chain acyl-CoA 

dehydrogenase gene (ACADM) (52), which was 2-fold decreased in Atxn2-KO liver tissue. 

The previously reported accumulation of fat droplets in Atxn2-KO liver (30) is in excellent 

agreement with these metabolomics findings and with the proteomic observation of 

downregulated ACADS, which catalyzes the initial step of the mitochondrial fatty acid beta-

oxidation. Furthermore, one of the strongest downregulations in the metabolomics profile of 

Atxn2-KO liver was for biotin (0.54-fold), an important cofactor for the BCAA pathway enzymes. 

The interplay of the key findings in Atxn2-KO liver were displayed in an integrative “omics” figure 

(Fig. 4).  

 

Candidate Protein Validation in Liver Tissue  

So as to assess the main proteomics findings by an independent technique, RIPA-buffer 

extracted proteins from liver tissue of Atxn2-KO/WT mice at age 6 months were analyzed in 

quantitative immunoblots with commercially available antibodies (supplemental Fig. S9). A 

reduced abundance was confirmed for IVD (change to 0,06-fold ± 0,03, p=0,0038), PCCA (to 

0,25-fold ± 0,02, p< 0,0001), ACADS (to 0,16-fold ± 0,018, p<0,0016), OTC (to 0,58-fold ± 0,03, 

p<0,0042), ALDH6A1 (to 0,67-fold ± 0,03, p=0.0006) and MCCC2 (to 0,44-fold ± 0,04, 

p<0.0001). These studies confirm the mass spectrometry data on altered BCAA and fatty acid 

metabolism and should facilitate future mechanistic investigations in vitro. 

DISCUSSION 

Our global proteome quantification and biomathematical enrichment analysis by GSEA 

documented several significant effects. Less impressively, the metabolomics quantification 
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showed several changes above 2-fold, but none of them was significant and sophisticated 

pathway enrichment software tools such as GSEA are unavailable for metabolome data. The 

proteome showed strong downregulations of the KEGG pathways for branched chain amino 

acid (BCAA) metabolism, fatty acid metabolisms and citric acid cycle in liver, an observation that 

was supported with nominal significance and smaller fold-changes in cerebellar tissue for the 

BCAA pathway. Of course, fluctuations in food intake and exercise or stress perturb the leucine 

homeostasis and trophic signaling. Since our analyses started without prior hypothesis, we used 

animals that had been fed at libitum and had been allowed to move freely or fight among 

several siblings per cage, without any standardization effort such as overnight fasting and 

individual cages. Thus, it is understandable that considerable variance was encountered for the 

short-lived compounds in the metabolomic survey, while the variance was milder for the long-

lived proteins. The variance reduced the significance levels of our metabolomics findings, but 

the fold-changes of acylcarnitines and biotin should still be taken into account, given that it is 

well established that acylcarnitines will vary with food intake and exercise and stress (53). 

Biological systems are always balancing their homeostasis and compensating small anomalies, 

obscuring minor metabolic effects of the Atxn2 gene. That might be one reason, why the citrate 

cycle appeared unchanged at the metabolome level while it was detectable as pathway 

enrichment of minor effects in the proteome. Furthermore, many metabolites from different 

pathways are joining or exiting the citrate cycle at different points that can flatten out Atxn2-KO 

specific effects.  

In the proteomics survey, the significant downregulations of the individual proteins 

ACADS (involved in mitochondrial fatty acid beta-oxidation), ALDH6A1 (involved in 

mitochondrial valine and pyrimidine catabolism via malonate-methylmalonate decarboxylation to 

acetyl/propionyl-CoA), ALDH7A1 (involved in mitochondrial lysine catabolism and stress-

protection by metabolizing lipid peroxidation-derived aldehydes), IVD (involved in mitochondrial 

leucine catabolism), MCCC2 (involved in mitochondrial leucine and isovaleric acid catabolism), 
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PCCA (involved in mitochondrial valine/leucine/isoleucine catabolism and lipid degradation) and 

OTC (involved in mitochondrial glutamate degradation) converge to impair the degradation of 

amino acids and fatty acids while altering the generation of methyl-malonyl-CoA, propionyl-CoA 

and malonyl-CoA (Fig. 4). The usage of malonyl-CoA can switch from (1) serving as building 

block for the biosynthesis of larger fatty acids in a process that is insulin-dependent, via (2) 

regulating fatty acid oxidation and neuroprotective ketogenesis with glycogen breakdown in the 

liver during starvation periods, to (3) the conversion to acetyl-CoA as a substrate for the TCA 

cycle (54). A technically independent confirmation of these data, with commercially available 

antibodies being used in quantitative immunoblots, indicated that the strongest effect reduces 

the levels of IVD to less than 10% and suggests that leucine catabolism should be particularly 

affected. 

Thus, our proteomic findings correspond well to the previous documentation of chronic 

accumulation of lipid droplets and glycogen in the liver of Atxn2-KO mice (30). It is known that 

elevated blood plasma levels of BCAAs serve as markers of obesity, insulin resistance and 

diabetes mellitus (55), so they are key indicators of metabolic excess. Conversely, depleted 

plasma levels of BCAA serve as biomarkers of the polyQ-expansion triggered 

neurodegenerative process and weight loss in Huntington’s disease (56, 57). Thus, it will be 

interesting to test whether depleted plasma levels of BCAA are also associated with the neural 

atrophy caused by the polyQ-expansion of ATXN2 in SCA2 and ALS13. It is well established 

now that polyQ-expansions trigger an aggregation process, which is toxic through oligomer 

formation, but also through the longer half-life (35) of the disease protein with a gain in 

physiological functions. This process also sequestrates interaction molecules into insolubility 

leading to partial losses of physiological functions (8). Thus, polyQ-expanded proteins contribute 

to pathogenesis in the context of their cellular function (58-63). Not only polyQ-expansions in 

ATXN2, but also other variants in the ATXN2 gene are associated with ALS risk, presumably via 

altered physiological functions (37). Furthermore, the aggregation process of SCA2 is less 
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conspicuous in cerebellar neurons than in motor neurons, in spite of cerebellar vulnerability to 

SCA2 (64, 65). Therefore, our understanding of the role of ATXN2 in metabolic excess 

syndromes and neural atrophies may be furthered by the identification of downstream effects 

such as BCAA metabolism. 

The accumulation of the Ataxin-2 protein in neurons is thought to occur in insidious 

manner over decades, so the resulting neurotoxicity develops slowly and does not manifest until 

reaching a threshold at advanced ages. For this reason, apparently insignificant 2-fold changes 

in metabolites such as the BCAA pathway intermediates might have cumulative neurotoxic 

effects across the human lifespan. This is relevant, because strongly deficient degradation of 

BCAA is well known to result in childhood-onset diseases summarized under the term 

branched-chain organic acidurias, comprising maple syrup urine disease, isovaleric aciduria, 

propionic aciduria and methylmalonic aciduria, which frequently have delayed 

neurodevelopmental stages or neurodegenerative processes (66). Of therapeutic value may be 

the observation that dietary restriction of BCAAs may mitigate some neurological complaints 

(67). Similarly, the twofold reduction in biotin in the metabolomics survey might be relevant, in 

spite of apparently being insignificant. Biotin levels are mostly derived from protein degradation 

in food uptake and thus vary considerably in animals fed ad libitum. Biotin is relevant as an 

essential factor for amino acid metabolism, gluconeogenesis and fatty acid metabolism. 

Biotinidase (BTD) deficiency leads to ataxia and paresis, a biotin supplementation is used to 

normalize leucine and isoleucine metabolism, and a biotinidase knockout mouse activates AMP 

Kinase while inhibiting mTOR signaling (68). To obtain normal biotin levels from dietary protein, 

not only biotinidase is necessary, but also the transporters monocarboxylate transporter 1 

(SLC16A1) and sodium-dependent multivitamin transporter (SLC5A6) as well as the protein 

ligase holocarboxylase synthetase (HLCS), see Fig. 4 (69). Thus, a mild reduction in biotin 

levels in cumulative manner might contribute to pathogenesis. 
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It is also noteworthy that the availability of branched chain amino acids such as leucine 

is a strong stimulus for mTORC1 signaling and the initiation or mRNA translation and protein 

biosynthesis, while uncoupling the insulin signals (55, 70-72). The mTOR phosphorylation 

pathway directly governs the transcription of ERRalpha-target genes involved in energy 

metabolism including lipogenesis and citric acid cycle (71). Indeed, ATXN2 was found to 

modulate the leucine / mTOR-driven phosphorylation of ribosomal protein S6 and also the 

incorporation rate of radioactive amino acids during mRNA translation (4). Therefore, the 

impairment of BCAA metabolism may be a direct marker of putative effects of ATXN2 deficiency 

on mTORC1 signaling. Recently, the yeast orthologue of ATXN2, PBP1, was shown to 

sequestrate yeast TORC1 to stress granules in times of low cellular energy in a process that is 

regulated through phosphorylation signals by SNF1 - the yeast orthologue of human AMPK1 - 

and PAS kinase (73-75). According to this scenario, deficient TORC1 sequestration in the 

absence of ATXN2/PBP1 would result in unhampered cell growth even in periods of low 

nutrients and energy, while overactive TORC1 sequestration due to gain-of-function mutations 

of ATXN2/PBP1 such as polyQ expansions would result in cellular atrophy in spite of abundant 

nutrients and energy. Thus, the observations of downregulated BCAA, fatty acid and citric acid 

cycle pathways in our global proteome profiling are credible in view of previous reports on 

ATXN2 orthologues and on the pathomechanism of obesity versus polyQ-triggered 

neurodegenerative diseases. 

It is interesting to note that a recent report identifies the branched-chain amino acid 

catabolism to be a conserved regulator of physiological aging (76), while age is of course the 

best-established risk factor for the manifestation of many human diseases such as obesity and 

neurodegeneration. 

Overall, the global proteome and metabolome profiling of Atxn2-KO mouse liver and 

cerebellum indicates that ATXN2 modulates nutrition and basal metabolism. The deficient or 

excessive activity of ATXN2 can plausibly drive growth excess or cell atrophy, respectively. 
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Figure legends: 

Fig. 1.  Volcano plot featuring liver proteome data, with the mean difference of LFQ 

intensities between Atxn2 KO and WT tissues on the x-axis versus statistical significance 

on the y-axis (-log10 of the p-value). Significant regulated proteins are identified in red. 

 

Fig. 2.  Log2 LFQ ion intensities of all six biological replicates in Atxn2-KO/WT liver 

tissues are shown. Red = KO; blue = WT. Error bars are mean values with SD.  

 

Fig. 3. STRING PPI network and pathway analysis of proteins with downregulation at 

least one standard deviations from the log2 transformed median values (0.03227 ± 0.4819) 

in Atxn2-KO/WT liver tissue. Highlighted in red are proteins which belong to the KEGG 

pathway BCAA. Unconnected nodes were removed.  

 

Fig. 4. Metabolomics and proteomics overview of the impact of an Atxn2-KO in liver 

tissue. Indicated are the fold changes of detected proteins and metabolites in KO/WT. 

 

 
Tables: 
 
Table 1: List of significant altered proteins in KO/WT liver tissue. Posterior error probability 
(PEP), MS2 spectral count frequency (MS/MS Count), Benjamini-Hochberg corrected p-values 
and fold changes are shown. 

Protein names 
Gene 

names 

t-test 
Significant 

after BH PEP 
MS/MS 
Count 

-LOG 
t-test 

p- 
value 

fold 
change 
KO/WT 

Propionyl-CoA carboxylase alpha Pcca + 0 454 4,0698 0.55 
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chain, mitochondrial 
Isovaleryl-CoA dehydrogenase, 
mitochondrial Ivd + 0 363 4,0434 0.48 
Alpha-aminoadipic semialdehyde 
dehydrogenase Aldh7a1 + 0 642 3,9197 0.67 
Short-chain specific acyl-CoA 
dehydrogenase, mitochondrial Acads + 0 480 3,7971 0.57 
Ornithine carbamoyltransferase, 
mitochondrial Otc + 0 1476 3,6804 0.61 
Methylcrotonoyl-CoA carboxylase 
beta chain, mitochondrial Mccc2 + 0 308 3,6148 0.61 
Methylmalonate-semialdehyde 
dehydrogenase [acylating], 
mitochondrial Aldh6a1 + 0 1085 3,4525 0.73 

 

 

Table 2. Significantly (p-value and q-value ≤0.05) downregulated KEGG pathways in KO/WT 

liver tissue according to GSEA. Size, number of identified proteins within the pathway; NES, 

normalized enrichment score.    

KEGG pathway SIZE NES NOM p-value FDR q-value 
Valine leucine and isoleucine degradation 36 -2.69 0 0 
Propanoate metabolism 25 -2.36 0 0 
Fatty acid metabolism 25 -2.31 0 0 
Glycine serine and threonine metabolism 21 -2.28 0 0 
Butanoate metabolism 24 -2.17 0 0 
Citric cycle TCA cycle 23 -2.07 0.0024 0.0014 
Beta alanine metabolism 16 -1.98 0 0.0041 
Alanine aspartate and glutamate metabolism 19 -1.88 0 0.0152 
Arginine and proline metabolism 27 -1.85 0.0022 0.0197 
Lysine degradation 18 -1.84 0.0044 0.0201 
Tryptophan metabolism 25 -1.79 0.0023 0.0294 
Limonene and pinene degradation 8 -1.76 0.0177 0.0389 
Pyruvate metabolism 24 -1.73 0.0024 0.0452 
 

 

Figures: 
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