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Proteomic maps of breast cancer subtypes
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Systems-wide profiling of breast cancer has almost always entailed RNA and DNA analysis by

microarray and sequencing techniques. Marked developments in proteomic technologies now

enable very deep profiling of clinical samples, with high identification and quantification

accuracy. We analysed 40 oestrogen receptor positive (luminal), Her2 positive and triple

negative breast tumours and reached a quantitative depth of 410,000 proteins. These

proteomic profiles identified functional differences between breast cancer subtypes, related

to energy metabolism, cell growth, mRNA translation and cell–cell communication.

Furthermore, we derived a signature of 19 proteins, which differ between the breast cancer

subtypes, through support vector machine (SVM)-based classification and feature selection.

Remarkably, only three proteins of the signature were associated with gene copy number

variations and eleven were also reflected on the mRNA level. These breast cancer features

revealed by our work provide novel insights that may ultimately translate to development of

subtype-specific therapeutics.
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B
reast cancer has been extensively studied at the genomic
and transcriptomic levels to attain novel cancer
classification that can alter therapeutic regimens1. The

three main classical subtypes are defined by expression of the
oestrogen receptor (ER), progesterone receptor (PR; ERPR
positive breast cancer) and the epidermal growth factor
receptor ErbB2/Her2 (Her2 positive). The triple negative (TN)
form (where none of the three markers is expressed) has an
especially poor prognosis. More recently, unbiased approaches
such as messenger RNA (mRNA) and gene copy number
variation analyses identified novel classes based on the entire
molecular profile. Initially, Perou et al. profiled gene expression
patterns of dozens of breast tumours and identified the so called
‘intrinsic subtypes’ of breast cancer, which have been reinforced
in multiple studies with some modifications2–4. These subtypes
matured into four accepted subtypes: Luminal A, Luminal B,
Her2-enriched and basal-like breast cancer. While they do not
perfectly reflect the clinical subtypes, most luminal tumours are
ER/PR-positive, most Her2-enriched ones harbour the gene
amplification, and most basal tumours are triple negative.
Recently a large scale, integrated genomic-transcriptomic study
further divided these subtypes into 10 clusters5, however, these
have not yet been clinically accepted.

Taking a protein-based approach, we here use quantitative
proteomics to examine the functional networks within the
established breast cancer subtypes. We reasoned that analysis at
the protein level, rather than genes and transcripts, may more
directly reflect cellular functions. In a comparison to genomic
data, we and others have previously shown a low correlation
between the copy numbers of the gene in the genome and
the relative change at the protein levels, meaning that many
genomic variations are not or only partially translated to the
protein level6,7. In addition, the correlation between mRNA and
protein levels was also found to be far from perfect, thus
examination of the mRNA alone does not necessarily reflect the
active cellular functions8,9. Genome scale quantitative proteomic
analysis is only now becoming possible due to multiple advances
in the underlying MS technology, computational algorithms
and biochemical technologies. For instance, high resolution,
high speed mass spectrometers, in combination with advanced
computational methods can now provide deep proteome coverage
with high confidence in protein identification10. For accurate
quantification we use the Stable Isotope Labelling with Amino
Acids in Cell Culture technology (SILAC)11, which involves
metabolic labelling of cells with lysine and arginine. The peptides
generated by tryptic digestion are labelled in a ‘light’ (normal
isotopic) or ‘heavy’ (stable isotope labelled) form and each of
these peptide doublets contributes to protein quantification. We
have expanded the use of SILAC to tumour tissues with the
development of the super-SILAC technique, in which we use a
combined lysate of different SILAC-labelled breast cancer cell
lines as an internal standard for accurate quantification12. We
further developed a protein extraction method for formalin-fixed
paraffin-embedded (FFPE) tissue samples with little or no effect
on trypsin digestion efficiency and peptide identification13. These
developments now make it realistic to attempt system-wide
quantitative proteomics of archived tumour samples. Here we
applied the unbiased analysis of tumour proteomes to examine
the potential of high-resolution mass spectrometry-based
proteomics to clinical breast cancer research and to discover
novel cancer regulators and subtype-specific biological processes.

Results
Proteomic profiling of breast cancer tumour samples. We
analysed a panel of forty breast cancer samples consisting of 14

oestrogen receptor and/or progesterone receptor positive cases, 15
Her2 positives and 11 TNs. Initial subtype assignment was
performed upon patient diagnosis using immunohistochemistry
and fluorescence in situ hybridization FISH (Supplementary
Table 1). Of the total set, 37 were ductal carcinomas and three
lobular; most tumours were stage I–II, grades 2–3 and none were
treated before tumour excision. Only two tumours expressed both
Her2 and ER, and therefore may be considered luminal B; but since
this number is insufficient to analyse as a separate subtype, we
classified it as ERPR in our downstream analyses. For the pro-
teomic analysis we made use of two recently developed technolo-
gies: the first, FFPE-filter aided sample preparation (FASP), enables
protein extraction from FFPE tissues13. The second, super-SILAC,
uses a mixture of SILAC-labelled cells as a spike-in standard, thus
enabling accurate quantification of the tumour proteomes12. We
macrodissected tumour regions that are rich in cancer cells,
extracted the proteins from the tumours, combined them with the
breast cancer super-SILAC mix and then trypsin digested them
using the FASP protocol14 (Fig. 1a). We wished to obtain a very
deep proteomic coverage at acceptable measurement times and
therefore generated six peptide fractions using strong anion
exchange chromatography in a StageTip format15. Peptides were
then measured on the quadrupole Orbitrap high-resolution mass
spectrometer (Q Exactive)16 followed by data analysis in
MaxQuant17. As previously shown for super-SILAC12, in all
samples 490% of peptide ratios towards the internal standard
were within a fivefold range (Fig. 1b). Technically, these ratios can
be much more accurately determined than large ratios since in
most cases both SILAC partners are well-above the noise level of
the MS spectra. As a result, quantification relative to the super-
SILAC mix provides high accuracy of quantification from the MS
scans. Our analysis provided the largest breast tumour proteomic
data set to date with a total of 157,544 identified sequence-unique
peptides (Supplementary Data 1) and 10,135 identified proteins
with 1% false discovery rate (FDR) both on the peptide-spectrum
match and protein levels (Supplementary Data 2). On average, we
identified 47,000 proteins in each sample (Fig. 1c), spanning 8
orders of magnitude of signal intensity (Supplementary Fig. 1).
Interestingly, 95% of the proteins were within a much narrower
abundance range of four orders of magnitude, and these still
include important transcription factors such as JUN and ATF2
(Supplementary Fig. 1). Our results constitute a systems wide,
quantitative view of the proteomes of the clinical samples, which
served as the basis for further downstream computational analysis
and biological interpretation.

The high quantitative accuracy of the super-SILAC technology12

prompted us to investigate proteome differences within and
between subtypes based on global protein expression levels. We
first examined the correlation between samples to determine
whether simple, unsupervised analysis would be sufficient to
separate the classical breast cancer subtypes. Overall, Pearson
correlations between the tumour proteomes were between 0.41 and
0.86 with an average correlation of 0.66. Unsupervised clustering of
the correlations formed an interesting structure of tumour
similarity at the proteomic level. Similarly to the genomics
case2,4, they did not simply cluster into the three classical
subtypes, but rather formed partial and mixed clusters (Fig. 1d).
These results suggest that the variability among breast cancer
subtypes detected by proteomics is influenced by other factors than
the subtypes. These could for instance be owing to individual
differences in the microenvironment, or heterogeneity among the
cancer cells themselves, which interfere with cancer subtype signals.

Proteomics data cover known mRNA gene sets. We examined
whether the proteomics data captures previously described
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differences between breast cancer subtypes using the molecular
signatures database (MSigDB) resource of gene sets18. For each
protein, we calculated the mean difference of expression between

the subtypes and performed annotation matrix analysis in
Perseus, a statistical module in the MaxQuant software
(http://www.perseus-framework.org/). Using the non-parametric
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Figure 1 | Super-SILAC-based quantitative proteomics of breast cancer clinical samples. (a) Proteomics workflow involved combination of the super-

SILAC mix with FFPE tumour samples, followed by FASP digestion with trypsin, peptide fractionation and analysis on the Q Exactive MS. (b) Ratio

distribution between the tumour proteome (of one representative tumour) and the super-SILAC mix showed overall narrow distribution that enables

accurate ratio determination. (c) Plot shows the number of identified and quantified proteins in each tumour sample. (d) Hierarchical clustering of Pearson

correlations of breast cancer samples shows high diversity between tumour samples, with only partial co-clustering of samples of the same classical

subtype. Two triple-positive tumours are marked with *.
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Mann–Whitney test, the analysis allows for identification of
proteins that belong to the same gene set (for example, associated
with a disease condition) and whose expression is overall higher
or lower in a particular breast cancer subtype as compared with
the others. A total of 706 gene sets were significantly enriched
(P valueo0.5e-2) and we plotted them according to the
quantitative difference of the proteins in each set between the
subtypes (Fig. 2 and Supplementary Data 3). We found clear
enrichment of multiple breast cancer-related gene sets derived
from transcriptomics in the appropriate subtype. For example,
ERPR tumours were enriched in the Doane et al.19, Yang et al.20

and Smid et al.21 gene sets that had been found to be high in
ER-positive or luminal tumours. Furthermore, ERPR tumours
showed low expression of genes that were downregulated by
Tamoxifen according to Bowie et al.22. The Her2 graph showed
the most marked enrichment of the gene set of Farmer-cluster 8
(ref. 23), which refers to the amplicon of Her2 on chromosome
17—providing clear independent validation of our workflow.
In addition, we found high levels of ‘IRF3 targets’24 and
Farmer-cluster 1 (ref. 23) both of which highlight involvement
of interferon signalling and potentially immune response in this
subtype. The gene sets with comparatively high protein
expression in TN tumours included ‘breast cancer relapse in
brain_up’, which is typical of basal tumours, from Smid et al.21

and response to LPS from Seki et al.25. The LPS signature
includes the EGF receptor and CD44, which are known TN
markers and may be associated with increased immune infiltrates,
which are often seen in TN tumours26. Thus, our proteomic
analysis captures known molecular signatures of breast cancer
subtypes, while revealing connections to additional mRNA
signatures.

Next, we examined whether the proteomic data can segregate
the tumour samples into the four intrinsic subtypes that were
established using mRNA data. The PAM50 signature determines
the tumour subtype based on the mRNA expression levels of 50
proteins27. Of the 50 genes in this signature, we identified 41
corresponding proteins, 21 of which had quantitative data in
470% of all samples. Hierarchical clustering of this signature
showed co-expression of proteins representing the same intrinsic
subtype (Supplementary Fig. 2). For example, FOXA1, MLPH,
NAT1, MAPT and BAG1 are expressed in luminal tumours
according to published mRNA profiles and also co-clustered in
our data, with higher expression levels in most ERPR tumours.
Her2 positive tumours were clearly distinguished from the others
based on the high protein expression of the known markers Her2
and Grb7. Overall, these analyses show multiple similarities
between mRNA and protein levels for the PAM50 gene set, and
highlight the potential to distinguish between classical breast
cancer subtypes at the protein level.

Functional discrimination between breast cancer subtypes. We
reasoned that analysis of the proteomic level could unravel
coherent changes in cellular pathways, and identify key networks
associated with each one of the subtypes. To that end, for
each subtype we constructed functional tree-maps of KEGG
pathways according to their inter-subtype differences (Fig. 3 and
Supplementary Fig. 3). The tree-maps were divided into two
hierarchical levels using the KEGG BRITE functional hierarchies.
Each protein was assigned to the next two levels in the hierarchy;
the immediate pathway level is represented in Supplementary
Fig. 3 and the upper level in Fig. 3. Each tree-map includes all
KEGG pathways in that hierarchical level, coloured according to
their enrichment score and sized according to the number of
proteins in that pathway. Highlighted are the pathways that
showed statistically significant differences in their distribution
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and reflect the unique biology of each subtype. As an example, we
found a significant increase in ‘energy metabolism’ in ERPR and
downregulation of this pathway in Her2 tumours (Fig. 3a and
Fig. 3b, respectively). A protein–protein interaction network of
members of this pathway shows higher expression levels of
multiple proteins in ERPR tumours relative to the two other
subtypes (Fig. 4). The network shows mild increase in multiple
components of the electron-transport chain (NDUF, UQCR, SDH
and COX subunits) and the ATP synthase complex (ATP5 and
ATP6 subunits), associated with marked elevation in the cytosolic
carbonic anhydrases 1 and 2 (CA1 and CA2), potentially to buffer
intracellular acidification induced by increased oxidative phos-
phorylation. Interestingly, multiple proteins linked to known
cancer-associated metabolic pathways, such as glycolysis, serine
synthesis (PHGDH), glutamine consumption (GLS), were lower
in the ERPR tumours. In agreement, the most strongly elevated
proteins in the entire network, FBP2 and FBP1, are key enzymes
in gluconeogenesis, which opposes glycolytic flux. Thus, the
‘energy metabolism’ network reveals marked inter-subtype
differences, and points to different metabolite utilization and
synthesis to support the growth and survival of each of the
subtypes.

TN tumours were characterized by elevated ‘replication and
repair’, ‘cell growth and death’ and ‘translation’ (Supplementary
Fig. 4d,e,f). All of these pathways characterize rapidly growing
tumours, one of the key features of TN tumours. The translation
network shows higher levels of ribosomal proteins, ribosome
biogenesis proteins, most markedly of RCL1, and the translation
support machineries of tRNA-synthetases (ARS family) and
nuclear pore complex components. The replication and growth
networks pinpoint the marked increase in multiple cell cycle
regulators and DNA replication proteins, such as MCM complex
proteins, DNA polymerases, DNA damage response proteins,
CDK1, CDK2, CDK6 and PCNA. One of the key regulators, which
is downregulated in this subtype, is the tumour suppressor PTEN
thus supporting activity of the oncogenic PI3K pathway. PTEN is
commonly deleted in TN tumours28, thus the proteomic data
captures this feature and connects the network associated with it
and reflects the known increased proliferative capacity of these
tumours.

The Her2 subtype was characterized by reduced ‘amino acid
and energy metabolism’ (Supplementary Fig. 4c). This category
includes proteins involved in amino acid, fatty acid, alcohol
oxidation and more; and further reinforces the marked
differences between the subtypes in the generation of cellular
energy. For example, alcohol oxidation by alcohol dehydrogenase
(ADH) and the subsequent reactions by aldehyde dehydrogenases
(ALDH) were lower in Her2 tumours. Fatty acid oxidation,
represented by acyl-CoA dehydrogenases (ACAD) was also
reduced. While the pathway was generally lower in Her2
tumours, multiple proteins were actually upregulated. These
upregulated enzymes are involved in diverse functions, such as
proline metabolism (PYCR1,2, PYCRL and PRODH), methionine

(HNMT) and tryptophan metabolism (KMO). The ‘cellular
community’ pathway consists of cytoskeletal proteins,
extracellular matrix and cell adhesion molecules
(Supplementary Fig. 4b). Similar to the metabolic pathways
described above, as a whole, it was significantly downregulated in
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the Her2 subtype, but some of the network proteins were
upregulated. Myosins (MYH) were overall reduced, as well as the
extracellular protein family of laminins. In contrast, several
collagens and fibronectin were upregulated in this subtype. This
network further showed higher levels of thrombospondin (THBS1
and 2), which may mediate cell–matrix interaction. In the Her2
subtype, our most striking finding was the elevation in ‘glycan
biosynthesis and metabolism’, which includes proteins involved
in glycosylation in the golgi, such as fucosyltransferase (FUT8),
acetylgalactosaminyltransferase (GALNT 2, 3, 6), as well as
proteins that are involved in glycan degradation in the lysosome,
such as hexosaminidase (HEXA, HEXB), mannosidases
(MAN2B2, MAN1B1, MAN2A1). All of these changes suggest
marked differences in the glycosylation patterns in the Her2
subtype (Supplementary Fig. 4a). Such alterations have not yet
been thoroughly investigated. Overall, these results highlight the
main functional differences between breast cancer subtypes and
reveal a molecular network associated with these functions.

Next, to address the statistical differences between subtypes we
performed an analysis of variance (ANOVA) test (FDR 5%),
which identified 62 significantly changing proteins between any
of the three subtypes (Supplementary Fig. 5 and Supplementary

Data 4). Hierarchical clustering of these proteins showed
segregation into five main clusters, three of which include
proteins that are specific to only one of the subtypes (more highly
expressed), whereas the two others were shared between two
subtypes. The TN clusters (TN and TNþHer2) include
proliferative proteins (MCM3 and 5), translation related proteins
(RCL1, MRPS27, EIF2S2 and EEF1G) and metabolic enzymes
(glutaminase and hexokinase 2), which reflect the higher
dependence on glutamine and glucose of TN versus the other
tumours. The Her2 clusters primarily show Her2, Grb7 and
CDK12, all of which are amplified on chromosome 17. In
addition, it includes several chaperones (DNAJA1,2) and Golgi
members (FUT8, COG3) that may be associated with the altered
glycosylation patterns discussed above. Last, the ERPR clusters
show significant increase in Erk1 (MAPK3), which is unique to
this subtype; NDUFAB1, a member of the electron-transport
chain, and the transcriptional regulator FOXA1, which shows to
be a major determinant of ER function29.

Supervised identification of discriminative proteins. To
generalize our proteomic findings and enable translation of the
results towards clinical applications, we developed a
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computational framework for cancer subtype classification based
on protein expression (Fig. 5a). It incorporates several machine
learning methods for identification of subtype-specific proteins
and consists of three main parts: classification, feature
selection and cross-validation and is integrated into our Perseus
software for data analysis (http://www.perseus-framework.org/).
We employ Support Vector Machines (SVMs)30,31, a supervised
learning technique in which we train a prediction model from the
protein expression data using the information of the known

subtypes. To apply the SVM algorithm to data sets that contain
more than two classes we implemented a one-vs-rest approach.
This resulted in three separate models, each one separating one
breast cancer subtype from the other two.

Subtype-specific proteins were identified with a feature selection
procedure that ranks the proteins according to their discriminative
power. In the current work, we employed an ANOVA-based
method, which uses univariate P values in the computation of
feature ranks. This method performs well in the determination of
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proteins that are strong discriminators between the subtypes on
their own, and results in small protein signatures.

To avoid overfitting and to ensure maximum generalizability of
our results, we embedded feature selection in a rigorous
cross-validation procedure where we estimated the predictive
strength of the features on only a subset of the entire data. We
ranked the features on a random subset and tested the prediction
accuracy of differently sized sets of these features on the test set.
Repeating this procedure many times on randomly selected
training data increases the confidence in the relevance of the
selected proteins.

A signature of classical breast cancer subtypes. SVM classifi-
cation with ANOVA-based feature selection embedded in a
random sampling cross-validation procedure resulted in a small
signature of 19 proteins (ERPR: 2 proteins, Her2: 2 proteins and
TN: 15 proteins). Among these proteins, Her2 and Grb7 were
positive markers of Her2 positive tumours (highly expressed); for
ERPR tumours, MAPK3 (Erk1) and EEF1G were positive and
negative markers, respectively; and the positive markers of TN
tumours were MCM5, STMN1, GLS, RCL1, C9ORF114
and ENO1. Receiver operating characteristic curves of the
classification showed an area under the curve of 0.94 for Her2
tumours, 0.87 for ERPR and 0.91 for TN (Fig. 5b). As opposed
to simply using the three receptors for classification (ER, PR
and Her2), this classifier identifies positive markers of TN
tumours, which further reflect the proliferative and metabolic
characteristics of this subtype.

Copy number variation and transcription of selected proteins.
Acquired somatic copy number variations contribute to cancer
initiation and progression. They can directly lead to abnormal
protein expression as, for example, in the well-studied case of
Her2, but the extent to which copy number variations affect
corresponding protein levels is not generally known. Therefore,
we investigated the degree to which alterations that are already
encoded at the genome level affect the protein expression of the
predictive signatures. In addition, we examined to what extent the
proteomics differences are reflected at the transcript level.

We mapped the 19 signature proteins to copy number
variation and mRNA expression data from 1,992 breast cancer
patients5 (Fig. 6 and Supplementary Fig. 6). We assigned these
patient samples to one of the three major breast cancer subtypes
based on the expression of the ER, PR and Her2. We then
identified genome regions and transcripts that showed significant
difference between the subtypes (see Methods). As expected, the
two Her2 markers, namely, Her2 and Grb7, which are known to
be co-amplified in Her2 tumours were significantly different on
all three levels. Only one additional marker, NDUFAB1 was
significant altered at the genomic level. Nine markers were found
to change on both the mRNA and protein level (but not the gene
level), including the positive ERPR marker MAPK3 and the
positive TN markers MCM5, STMN1 and ENO1. Five negative
markers showed lower levels in TN tumours on both protein and
mRNA levels, including AGR2, MLPH, HID1, CMBL and,
FOXA1. Beyond those markers, seven of the 19 signature
proteins were exclusively regulated on the protein level.

Altogether, the proteomic results reveal network changes that
are associated with clear functional differences between
the subtypes. Furthermore, we show that the data can serve as
the basis for the development of predictive subtype signatures.

Discussion
This work is the deepest systems-wide quantitative proteomic
study of breast cancer tumours to date and shows how

proteomics can add to our understanding of subtype-specific
key players and driving mechanisms. Accurately quantifying the
patient proteomes was made possible by the development and
combination of several technologies: super-SILAC-based
quantification12, protein extraction from FFPE tissues13 and
improvements in liquid chromatography–mass spectrometry
analysis, which together allowed high proteome coverage with
relatively short acquisition time. Just as importantly, the
development of novel computational tools for the analysis of
large proteomic data sets enabled the extraction of biologically
meaningful differences between the tumour subtypes. Clearly, the
recent advances in proteomics technologies now provide a solid
platform for application of large-scale proteomic research to
cancer subtypes. In the current study, we compared tissue
samples from the three main breast cancer subtypes, ERPR, Her2
and TN. As examples of positive controls, the proteomic analysis
unambiguously detected the high amplification and
overexpression of the Her2 and Grb7 proteins, which are the
known markers of Her2 tumours.

Previously, direct comparisons of mRNA and protein levels at
a large scale have shown overall correlation of B0.6 in cancer cell
lines8,9. While this implies a high level of agreement between
these two levels of gene expression, it also provides evidence that
expression levels of a large number of proteins are not directly
predictable from mRNA levels. Despite these differences, our data
showed enrichment of previously described mRNA-based
signatures of these subtypes at the protein level. In particular,
the proteomic data recapitulated the changes in mRNA levels of
many but not all of the PAM50 genes. Remarkably, four well-
described differentiating proteins in breast cancer subtypes,
namely, Her2, Grb7, FOXA1 and MLPH, were clearly selected
in the PAM50 as well as in the proteomic signatures.

A comparison to publically available CNV data showed that
only three proteins (Her2, Grb7 and NDUFAB1) were regulated
on the genomic level, and seven proteins from our signature were
exclusively significant on the protein level. An important
advantage of our signature is its ability to capture positive
markers of TN tumours. Among those, we identified MCM5,
STMN1, RCL1 and C9ORF114, proteins that reflect the high
proliferation rate of these tumours. Two additional positive
markers, the glycolytic enzyme enolase (ENO1) and GLS reflect
the unique metabolism of this subtype, which relies on glycolysis
and glutaminolysis.

The construction of functional tree-maps revealed entire protein
networks that are unique to each one of the subtypes. One of the
most intriguing networks is related to energy metabolism, and
highilighted the fundamental discrepancy between the subtypes.
Primarily, the ERPR are predicted to have higher oxidative
metabolism while the other subtypes show higher dependence on
glucose and glutamine. One of the key proteins, shown here to be
lower in ERPR, is phosphoglycerate dehydrogenase (PHGDH). A
previous screen showed its importance to breast cancer cell
growth32. Interestingly, that screen was performed in
MCF10DCIS cells, which is a TN cell line. In agreement,
PHGDH mRNA was found to be a marker of basal tumours as a
part of the PAM50 signature. Thus our results further support the
involvement of PHGDH in ER negative tumours. In addition, we
found markedly higher levels of frucose bisphosphatases (FBP1 and
2), which catalyse the rate limiting step of gluconeogenesis in ERPR.
Loss of FBP1 has recently been associated with a ‘stem-cell’
phenotype33, which is associated with TN or basal tumours34. Snail-
induced reduction in FBP1 expression leads to increased glycolysis
and reduced oxidative phosphorylation33. Moreover, our results
agree with previous mRNA studies that showed high FBP1
expression in ERPR tumours35 and importantly, add the entire
metabolic networks that are associated with reduced glycolysis and
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increased oxidative phosphorylation in ERPR tumours. These
marked metabolic alterations are further supported by our previous
metabolic modelling study of breast cancer, which showed that high
PHGDH levels are associated with increased glutamine uptake,
typical of ER negative tumours, while ER-positive ones present
increased glutamine production and secretion36 (presented here by
higher GLUL levels). Our results present for the first time the
molecular evidence for the distinct metbolic paths that are used in
ERPR tumours and in the TN and Her2 subtypes.

Our results also highlighted major signalling and replication
differences between subtypes. In agreement with our findings at
the proteome level, TN tumours commonly present PTEN-loss28,
which leads to constitutive activity of the PI3K pathway. Most
other components of the pathway, such as AKT, PI3K showed
only minor proteomic differences between subtypes. In the future
it would be interesting to investigate to what degree such
alterations could be captured in the analysis of phosphorylation
patterns of breast cancer subtypes. The reduced level of PTEN was

associated with higher levels of multiple components of the cell
cycle machinery, which support the overall higher proliferative
capacity of the cells. Recently loss of PTEN in thyroid cancer been
associated with metabolic remodelling of the cells through
increased glucose addiction37. Further functional investigation
may be able to find the exact mechanisms that link all of these TN
features, namely, PI3K signalling, high ribosomes/translation,
high dependence on glucose and glutamine and high proliferative
capacity in a cancer subtype-specific network.

Interestingly, many of the identified proteomic inter-subtype
differences showed relatively small fold-differences
(below twofold). Presumably, low fold changes result from the
heterogenous nature of breast cancers, which may include cells
with varying receptor expression levels. As a result, analysis of
macrodissected tissue may average cells with distinct phenotypes.
These results highlight the necessity to use a very accurate
quantification approach such as SILAC. Moreover, in the future,
discrimination between the distinct sub-populations within single
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tumours may further shed new light on tumour classification and
response to treatment.

In summary, we have here shown for the first time that global
profiling of breast cancer clinical samples with high quantification
accuracy is now possible and that it allows the attribution of
biological processes to the different breast cancer subtypes. Our
data provide molecular details of the key discriminating pathways
between the subtypes, as well as a predictive signature that may be
translatable towards clinical use, with the distinct advantage of
having positive markers of TN tumours. In the future, analysis of
post-translational modifications could highlight additional levels
of regulation of these subtypes. We view this work as a first step
in the integration of our proteomics technology into translational
cancer research, which may help to develop novel breast cancer
markers and identify potential therapeutic targets.

Methods
Sample assembly. FFPE tumour blocks were obtained from the Turku University
Hospital, Turku, Finland. The use of these samples for research was approved by the
ethical committee of the institute. Forty breast tumour samples were selected for
analysis, including 14 ERPR tumours, 15 Her2 and 11 TN (Supplementary Table 1).
To enrich for cancer cells in the samples and eliminate high concentrations of
stromal proteins, highly cellular regions were selected based on hematoxylin and
eosin staining and after pathological examination, these regions were punched out
from the paraffin block.

Sample preparation. Tumour samples were deparaffinized with two 5 min incu-
bations in xylene, followed by two 5 min incubations with absolute ethanol. After
removal of ethanol, samples were vacuum-dried and resuspended in lysis buffer
containing 100 mM Tris HCl pH 7.5, 4% SDS and 100 mM DTT. Samples were
briefly sonicated, and incubated for 1 h at 95 �C.

The super-SILAC mix was composed of HCC1599, MCF7, HCC1937 cells
(purchased from the German Collection of Microorganisms and Cell Cultures,
DSMZ), HCC2218 (purchased from the American Type Culture Collection,
ATCC) and HMEC (purchased from Lonza). Super-SILAC mix was prepared less
than a year after the purchase of cells. Cells were metabolically labelled with
13C6

15N4-arginine (Arg-10) and l-13C6
15N2-lysine (Lys-8). Labelled amino acids

were purchased from Cambridge Isotope Laboratories. HCC1599, HCC2218 and
HCC1937 cells were SILAC-labelled by culturing them in RPMI in which the
natural lysine and arginine were replaced by Lys-8 and Arg-10 and supplemented
with 10% dialyzed serum and antibiotics. MCF7 cells were grown in DMEM
containing Lys-8 and Arg-10 instead of the natural amino acids and supplemented
with 10% dialyzed serum and antibiotics. Human mammary epithelial cells
(HMEC) were cultured in Gibco Defined Keratinocyte-serum free medium with
Lys-8 and Arg-10 instead of the natural amino acids. Cells were cultured for B8
doublings in the SILAC medium to reach complete labelling. Sub-confluent
cultures of HMEC, HCC1937 and MCF7 were lysed. HCC2218 and HCC1599,
which grow in suspension, were lysed in a state of exponential growth. All cells
were washed with PBS before lysis and lysed with a buffer containing 4% SDS,
100 mM Tris HCl (pH 7.6) and 100 mM DTT. Lysates were incubated at 95 �C for
5 min, and then briefly sonicated. Protein concentrations of cell and tissue lysates
were determined by tryptophan fluorescence emission at 350 nm using an
excitation wavelength of 295 nm. The measurements were performed in 8 M urea
using tryptophan as the standard. Super-SILAC was prepared by combining equal
protein amounts of each of the protein lysates.

Protein and peptide processing. Equal protein amounts of the super-SILAC mix
and each of the tissue samples were combined and trypsin digested using the FASP
protocol12. Briefly, lysates were diluted 1:8 in 8 M urea in 0.1 M Tris HCl pH 8.0
and loaded onto 30 kDa microcon devices (Millipore). FASP procedure included
the following steps: SDS buffer replacement with 8M urea buffer, protein alkylation
with iodoacetamide and replacement of urea buffer with 50 mM ammonium
bicarbonate. Sequencing grade trypsin was then added to the samples at a ratio of
1:50 (mg trypsin: mg protein) and incubated overnight at 37 �C. After digestion
peptides were collected with two washes with 50 mM ammonium bicarbonate.
Peptide concentrations were determined by ultraviolet-light absorption at 280 nm.

We fractionated the peptides of each of the samples into six fractions by strong
anion exchange chromatography in a StageTip format as described previously15.
Briefly, microcolumns were assembled by stacking six layers of Empore Anion
Exchange disk (Varian) in 200-ml pipette tips. Column equilibration and elution
was performed in Britton & Robinson buffer (20 mM phosphoric acid, 20 mM
boric acid and 20 mM acetic acid). The buffer was titrated with sodium hydroxide
to the following pH: 3, 4, 5, 6, 8 and 11 for subsequent elution. Eluted peptides were
purified and concentrated on C18 StageTips. Sample preparation of all samples was
performed simultaneously.

MS analysis. Peptides were eluted from StageTips with 80% acetonitrile and 0.5%
acetic acid (buffer B) and vacuum concentrated to reach a volume of 6ml. Samples
were separated on in-house made 30-cm-reverse phase columns (75mm inner dia-
meter, 1.8mm ReproSil-Pur C18 beads) on an EASY-nLC nano high performance
liquid chromatography system (Thermo Scientific). HPLC was coupled online via a
nano-electrospray ion source to a Q Exactive mass spectrometer (Thermo Scientific).
Peptides were loaded onto the column with buffer A (0.5% acetic acid) and separated
with a 200-min water-acetonitrile gradient. Higher energy collisional dissociation
fragmentation was performed for the top-10 peaks in each MS scan. Resolution of the
MS scans was 70,000 (at m/z¼ 200 Th) and 17,500 for the MS/MS scans. MS mea-
surements for the different samples were randomized to eliminate technical artifacts.

Computational analysis. Raw MS files were analysed with the MaxQuant software
version 1.4.1.4 (ref. 17). MS/MS spectra were searched in the Andromeda search
engine38 against the forward and reverse Human Uniprot database including the
variable modifications methionine oxidation and N-terminal acetylation, and the
fixed modification of carbamidomethyl cysteine. Parent peptide masses and fragment
masses were searched with maximal initial mass deviation of 6–20 p.p.m., respectively.
Mass recalibration was performed with a preceding Andromeda search with a mass
window of 20 p.p.m. A first level of FDR filtration was done on the peptide-spectrum
match level, and this was followed by a second level of FDR control on the protein
level. Both filtrations were performed at a FDR of 0.01. These filtrations were done
using a standard target-decoy database approach. When two proteins (isoforms and
homologues with two Uniprot identifiers) could not be distinguished based on the
identified peptides, these were merged by MaxQuant to one protein group.

Bioinformatic analysis. The bioinformatics analysis was mainly performed using
our in-house freely available software Perseus (www.perseus-framework.org).
Analysis steps that were performed in the statistical analysis environment R
(ref. 39) are described where applicable.

MSigDB analysis. The corresponding molecular signatures from the MSigDB18

were mapped to each protein in our data set. We employed a generalization of the
one dimensional enrichment test40, named here as annotation matrix analysis. In
this analysis, the distribution of mean differences of all proteins in a category is tested
for a significant shift with respect to the global distribution of values in a particular
subtype. The analysis results in the identification of categories (that is, molecular
signatures) that show differential expression in a particular breast cancer subtype.

Tree-maps. KEGG pathway annotations for each protein group in our data set
were inferred from UniProt matching by UniProt id. Using the KEGG BRITE
functional hierarchies, each protein was further assigned to the next two levels in
the hierarchy corresponding to that pathway. The mean difference between one of
the subtypes and the other two was computed for each protein. Enrichment of a
given category in each breast cancer subtype was computed with one dimensional
annotation enrichment test as described above. The analysis employs the non-
parametric Wilcoxon–Mann–Whitney test that uses rank sums and an enrichment
score indicates if a category is enriched for high expression (the score is close to 1)
or low expression (close to � 1). Multiple hypothesis testing is performed using the
Benjamini–Hochberg correction41 at 5% significance level. The R package
‘treemap’42 was used for plotting.

Classification analysis. Feature selection: a computational platform based on
SVMs30,31 was developed and employed for the identification of proteins that
strongly discriminate between three different breast cancer subtypes. The core of
the classification module relies on the libsvm implementation43 and adds on a
complete analysis framework. Before classification, missing values were imputed in
each sample by drawing random numbers from a normal distribution characterized
by a specific downshift with respect to the available values distribution and a fixed
s.d. This approach assumes that the missing values result from low abundant
proteins. To assure maximum generalizability of the results the feature selection
was embedded in a random sampling cross-validation procedure. The total number
of patient samples was divided into train and test sets where the test set comprised
15% of the total data. The random sampling procedure was repeated 250 times. For
each cross-validation run the features in the training set were ranked using
ANOVA-based ranking method. In this method, t-tests were applied to each
feature comparing its expression in each subtype with the rest of the samples and
the resulting P values were used to rank the features.

On ranking different sets of features of increasing size were used to predict the
breast cancer subtype of the samples in the test set. The accuracy for each cross-
validation run and set of ranked features was calculated using SVMs as a classifier
and recorded. The one-vs-rest implementation of the SVMs resulted in three
separate ranked lists—one for each subtype. The optimal number of features, that is,
the minimum number of proteins that classify the samples with the smallest error,
was defined from the final accuracy curve, computed from averaging the accuracies
over all cross-validation runs. Receiver operating characteristic curves were plotted
and the area under the curve was computed with the pROC package44 in R.

Copy number variations and differentially expressed genes. Copy
number variation and gene expression data were obtained from Curtis et al.5 for
1,992 breast cancer patients. To identify differentially expressed genes and genome
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regions with differential copy number variation standard ANOVA tests
implemented in Perseus were employed using permutation-based FDR45 and
significance level of 5%.
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