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Abstract

Simple decision heuristics are models of human and animal behavior that use few
pieces of information—perhaps only a single piece of information—and integrate
the pieces in simple ways, for example, by considering them sequentially, one at
a time, or by giving them equal weight. We focus on three families of heuristics:
single-cue decision making, lexicographic decision making, and tallying. It is
unknown how quickly these heuristics can be learned from experience. We show,
analytically and empirically, that substantial progress in learning can be made with
just a few training samples. When training samples are very few, tallying performs
substantially better than the alternative methods tested. Our empirical analysis is
the most extensive to date, employing 63 natural data sets on diverse subjects.

1 Introduction

You may remember that, on January 15, 2009, in New York City, a commercial passenger plane
struck a flock of geese within two minutes of taking off from LaGuardia Airport. The plane imme-
diately and completely lost thrust from both engines, leaving the crew facing a number of critical
decisions, one of which was whether they could safely return to LaGuardia. The answer depended
on many factors, including the weight, velocity, and altitude of the aircraft, as well as wind speed and
direction. None of these factors, however, are directly involved in how pilots make such decisions.
As copilot Jeffrey Skiles discussed in a later interview [1], pilots instead use a single piece of visual
information: whether the desired destination is staying stationary in the windshield. If the desti-
nation is rising or descending, the plane will undershoot or overshoot the destination, respectively.
Using this visual cue, the flight crew concluded that LaGuardia was out of reach, deciding instead
to land on the Hudson River. Skiles reported that subsequent simulation experiments consistently
showed that the plane would indeed have crashed before reaching the airport.

Simple decision heuristics, such as the one employed by the flight crew, can provide effective solu-
tions to complex problems [2, 3]. Some of these heuristics use a single piece of information; others
use multiple pieces of information but combine them in simple ways, for example, by considering
them sequentially, one at a time, or by giving them equal weight.

Our work is concerned with two questions: How effective are simple decision heuristics? And
how quickly can they be learned from experience? We focus on problems of comparison, where the
objective is to decide which of a given set of objects has the highest value on an unobserved criterion.
These problems are of fundamental importance in intelligent behavior. Humans and animals spend
much of their time choosing an object to act on, with respect to some criterion whose value is
unobserved at the time. Choosing a mate, a prey to chase, an investment strategy for a retirement
fund, or a publisher for a book are just a few examples. Earlier studies on this problem have shown
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that simple heuristics are surprisingly accurate in natural environments [4, 5, 6, 7, 8, 9], especially
when learning from small samples [10, 11].

We present analytical and empirical results on three families of heuristics: lexicographic decision
making, tallying, and single-cue decision making. Our empirical analysis is the most extensive
to date, employing 63 natural environments on diverse subjects. Our main contributions are as
follows: (1) We present analytical results on the rate of learning heuristics from experience. (2) We
show that very few learning instances can yield effective heuristics. (3) We empirically investigate
single-cue decision making and find that its performance is remarkable. (4) We find that the most
robust decision heuristic for small sample sizes is tallying. Collectively, our results have important
implications for developing more successful heuristics and for studying how well simple heuristics
capture human and animal decision making.

2 Background

The comparison problem asks which of a given set of objects has the highest value on an unobserved
criterion, given a number of attributes of the objects. We focus on pairwise comparisons, where
exactly two objects are being compared. We consider a decision to be accurate if it selects the object
with the higher criterion value (or either object if they are equal in criterion value). In the heuristics
literature, attributes are called cues; we will follow this custom when discussing heuristics.

The heuristics we consider decide by comparing the objects on one or more cues, asking which
object has the higher cue value. Importantly, they do not require the difference in cue value to be
quantified. For example, if we use height of a person as a cue, we need to be able to determine which
of two people is taller but we do not need to know the height of either person or the magnitude of the
difference. Each cue is associated with a direction of inference, also known as cue direction, which
can be positive or negative, favoring the object with the higher or lower cue value, respectively. Cue
directions (and other components of heuristics) can be learned in a number of ways, including social
learning. In our analysis, we learn them from training examples.

Single-cue decision making is perhaps the simplest decision method one can imagine. It compares
the objects on a single cue, breaking ties randomly. We learn the identity of the cue and its direction
from a training sample. Among the 2k possible models, where k is the number of cues, we choose
the 〈cue, direction〉 combination that has the highest accuracy in the training sample, breaking ties
randomly.

Lexicographic heuristics consider the cues one at a time, in a specified order, until they find a cue
that discriminates between the objects, that is, one whose value differs on the two objects. The
heuristic then decides based on that cue alone. An example is take-the-best [12], which orders cues
with respect to decreasing validity on the training sample, where validity is the accuracy of the cue
among pairwise comparisons on which the cue discriminates between the objects.

Tallying is a voting model. It determines how each cue votes on its own (selecting one or the other
object or abstaining from voting) and selects the object with the highest number of votes, breaking
ties randomly. We set cue directions to the direction with highest validity in the training set.

Paired comparison can also be formulated as a classification problem. Let yA denote the criterion
value of object A, xA the vector of attribute values of object A, and ∆yAB = yA−yB the difference
in criterion values of objects A and B. We can define the class f of a pair of objects as a function of
the difference in their criterion values:

f(∆yAB) =

{
1 if ∆yAB > 0
−1 if ∆yAB < 0

0 if ∆yAB = 0

A class value of 1 denotes that object A has the higher criterion value, −1 that object B has the
higher criterion value, and 0 that the objects are equal in criterion value. The comparison problem
is intrinsically symmetrical: comparing A to B should give us the same decision as comparing B to
A. That is, f(∆yAB) should equal −f(∆yBA). Because the latter equals −f(−∆yAB), we have
the following symmetry constraint: f(z) = −f(−z), for all z. We can expect better classification
accuracy if we impose this symmetry constraint on our classifier.
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3 Building blocks of decision heuristics

We first examine two building blocks of learning heuristics from experience: assigning cue direction
and determining which of two cues has the higher predictive accuracy. The former is important for
all three families of heuristics whereas the latter is important for lexicographic heuristics when
determining which cue should be placed first. Both components are building blocks of heuristics in
a broader sense—their use is not limited to the three families of heuristics considered here.

Let A and B be the objects being compared, xA and xB denote their cue values, yA and yB denote
their criterion values, and sgn denote the mathematical sign function: sgn(x) is 1 if x > 0, 0 if
x = 0, and −1 if x < 0. A single training instance is the tuple 〈sgn(xA − xB), sgn(yA − yB)〉,
corresponding to a single pairwise comparison, indicating whether the cue and the criterion change
from one object to the other, along with the direction of change. For example, if xA = 1, yA = 10,
xB = 2, yB = 5, the training instance is 〈−1,+1〉.
Learning cue direction. We assume, without loss of generality, that cue direction in the population
is positive (we ignore the case where the cue direction in the population is neutral). Let p denote the
success rate of the cue in the population, where success is the event that the cue decides correctly.
We examine two probabilities, e1 and e2. The former is the probability of correctly inferring the cue
direction from a set of training instances. The latter is the probability of deciding correctly on a new
(unseen) instance using the direction inferred from the training instances.

We define an informative instance to be one in which the objects differ both in their cue values and
in their criterion values, a positive instance to be one in which the cue and the criterion change in
the same direction (〈1, 1〉 or 〈−1,−1〉), and a negative instance to be one in which the cue and the
criterion change in the opposite direction (〈1,−1〉 or 〈−1, 1〉).
Let n be the number of training instances, n+ the number of positive training instances, and n−
the number of negative training instances. Our estimate of cue direction is positive if n+ > n−,
negative if n+ < n−, and a random choice between positive and negative if n+ = n−.

Given a set of independent, informative training instances, n+ follows the binomial distribution with
n trials and success probability p, allowing us to write e1 as follows:

e1 = P (n+ > n−) +
1

2
P (n+ = n−)

=

n∑
k=bn/2c+1

(
n

k

)
pk(1− p)n−k + I(n is even)

1

2

(
n

n/2

)
pn/2(1− p)n/2,

where I is the indicator function. After one training instance, e1 equals p. After one more instance,
e1 remains the same. This is a general property: After an odd number of training instances, an
additional instance does not increase the probability of inferring the direction correctly.

On a new (test) instance, the cue decides correctly with probability p if cue direction is inferred
correctly and with probability 1− p otherwise. Consequently, e2 = pe1 + (1− p)(1− e1).

Simple algebra yields the following expected learning rates: After 2k + 1 training instances, with
two additional instances, the increase in the probability of inferring cue direction correctly is (2p−
1)(p(1− p))k+1 and the increase in the probability of deciding correctly is
(2p− 1)2(p(1− p))k+1 .

Figure 1 shows e1 and e2 as a function of training-set size n and success rate p. The more predictive
the cue is, the smaller the sample needs to be for a desired level of accuracy in both e1 and e2. This is
of course a desirable property: The more useful the cue is, the faster we learn how to use it correctly.

The figure also shows that there are highly diminishing returns, from one odd training-set size to the
next, as the size of the training set increases. In fact, just a few instances make great progress toward
the maximum possible. The third plot in the figure reveals this property more clearly. It shows e2
divided by its maximum possible value (p) showing how quickly we reach the maximum possible
accuracy for cues of various predictive ability. The minimum value depicted in this figure is 0.83,
observed at n = 1. This means that even after a single training instance, our expected accuracy is at
least 83% of the maximum accuracy we can reach. And this value rises quickly with each additional
pair of training instances.
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Figure 1: Learning cue direction.

Learning to order two cues. Assume we have two cues with success rates p and q in the population,
with p > q. We expand the definition of informative instance to require that the objects differ on
the second cue as well. We examine two probabilities, e3 and e4. The former is the probability of
ordering the two cues correctly, which means placing the cue with higher success rate above the
other one. The latter is the probability of deciding correctly with the inferred order. We chose to
examine learning to order cues independently of learning cue directions. One reason is that people
do not necessarily learn the cue directions from experience. In many cases, they can guess the cue
direction correctly through causal reasoning, social learning, past experience in similar problems, or
other means. In the analysis below, we assume that the directions are assigned correctly.

Let s1 and s2 be the success rates of the two cues in the training set. If instances are informative and
independent, s1 and s2 follow the binomial distribution with parameters (n, p) and (n, q), allowing
us to write e3 as follows:

e3 = P (s1 > s2) +
1

2
P (s1 = s2) =

∑
0≤j<i≤n

P (s1 = i)P (s2 = j) +
1

2

n∑
i=0

P (s1 = i)P (s2 = i)

After one training instance, e3 is 0.5+0.5(p−q), which is a linear function of the difference between
the two success rates.

If we order cues correctly, a decision on a test instance is correct with probability p, otherwise with
probability q. Thus, e4 = pe3 + q(1− e3).

Figure 2 shows e3 and e4 as a function of p and q after three training instances. In general, larger
values of p, as well as larger differences between p and q, require smaller training sets for a desired
level of accuracy. In other words, learning progresses faster where it is more useful. The third plot
in the figure shows e4 relative to the maximum value it can take, the maximum of p and q. The
minimum value depicted in this figure is 90.9%. If we examine the same figure after only a single
training instance, we see that this minimum value is 86.6% (figure not shown).
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Figure 2: Learning cue order.
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4 Empirical analysis

We next present an empirical analysis of 63 natural data sets, most from two earlier studies [4, 13].
Our primary objective is to examine the empirical learning rates of heuristics. From the analytical
results of the preceding section, we expect learning to progress rapidly. A secondary objective is to
examine the effectiveness of different ways cues can be ordered in a lexicographic heuristic.

The data sets were gathered from a wide variety of sources, including online data repositories, text-
books, packages for R statistical software, statistics and data mining competitions, research publi-
cations, and individual scientists collecting field data. The subjects were diverse, including biology,
business, computer science, ecology, economics, education, engineering, environmental science,
medicine, political science, psychology, sociology, sports, and transportation. The data sets varied
in size, ranging from 13 to 601 objects. Many of the smaller data sets contained the entirety of the
population of objects, for example, all 29 islands in the Galápagos archipelago. The data sets are
described in detail in the supplementary material.

We present results on lexicographic heuristics, tallying, single-cue decision making, logistic regres-
sion, and decision trees trained by CART [14]. We used the CART implementation in rpart [15]
with the default splitting criterion Gini, cp=0, minsplit=2, minbucket=1, and 10-fold cross-validated
cost-complexity pruning. There is no explicit way to implement the symmetry constraint for deci-
sion trees; we simply augmented the training set with its mirror image with respect to the direction
of comparison. For logistic regression, we used the glm function of R, setting the intercept to zero
to implement the symmetry constraint. To the glm function, we input the cues in the order of de-
creasing correlation with the criterion so that the weakest cues were dropped first when the number
of training instances was smaller than the number of cues.

Ordering cues in lexicographic heuristics. We first examine the different ways lexicographic
heuristics can order the cues. With k cues, there are k! possible cue orders. Combined with the pos-
sibility of using each cue with a positive or negative direction, there are 2kk! possible lexicographic
models, a number that increases very rapidly with k. How should we choose one if our top criterion
is accuracy but we also want to pay attention to computational cost and memory requirements?

We consider three methods. The first is a greedy search, where we start by deciding on the first
cue to be used (along with its direction), then the second, and so on, until we have a fully specified
lexicographic model. When deciding on the first cue, we select the one that has the highest validity
in the training examples. When deciding on the mth cue, m ≥ 2, we select the cue that has the
highest validity in the examples left over after using the first m − 1 cues, that is, those examples
where the first m − 1 cues did not discriminate between the two objects. The second method is to
order cues with respect to their validity in the training examples, as take-the-best does. Evaluating
cues independently of each other substantially reduces computational and memory requirements but
perhaps at the expense of accuracy. The third method is to use the lexicographic model—among the
2kk! possibilities—that gives the highest accuracy in the training examples. Identifying this rule is
NP-complete [16, 17], and it is unlikely to generalize well, but it will be informative to examine it.
The three methods have been compared earlier [18] on a data set consisting of German cities [12],
where the fitting accuracy of the best, greedy, validity, and random ordering was 0.758, 0.756, 0.742,
and 0.700, respectively.

Figure 3 (top panel) shows the fitting accuracy of each method in each of the 63 data sets when all
possible pairwise comparisons were conducted among all objects. Because of the long simulation
time required, we show an approximation of the best ordering in data sets with seven or more cues.
In these data sets, we started with the two lexicographic rules generated by the greedy and the
validity ordering, kept intact the cues that were placed seventh or later in the sequence, and tested
all possible permutations of their first six cues, trying out both possible cue directions. The figure
also shows the mean accuracy of random ordering, where cues were used in the direction of higher
validity. In all data sets, greedy ordering was identical or very close in accuracy to the best ordering.
In addition, validity ordering was very close to greedy ordering except in a handful of data sets.
One explanation is that a continuous cue that is placed first in a lexicographic model makes all (or
almost all) decisions and therefore the order of the remaining cues does not matter. We therefore
also examine the binary version of each data set where numerical cues were dichotomizing around
the median (Figure 3 bottom panel). There was little difference in the relative positions of greedy
and optimal ordering except in one data set. There was more of a drop in the relative accuracy of
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Figure 3: Fitting accuracy of lexicographic models, with and without dichotomizing the cues.

the validity ordering, but this method still achieved accuracy close to that of the best ordering in the
majority of the data sets.

We next examine predictive accuracy. Figure 4 shows accuracies when the models were trained on
50% of the objects and tested on the remaining 50%, conducting all possible pairwise comparisons
within each group. Mean accuracy across data sets was 0.747 for logistic regression, 0.746 for
CART, 0.743 for greedy lexicographic and take-the-best, 0.734 for single-cue, and 0.725 for tallying.
Figure 5 shows learning curves, where we grew the training set one pairwise comparison at a time.
Two individual objects provided a single instance for training or testing and were never used again,
neither in training nor in testing. Consequently, the training instances were independent of each
other but they were not always informative (as defined in Section 3). The figure shows the mean
learning curve across all data sets as well as individual learning curves on 16 data sets. We present
the graphs without error bars for legibility; the highest standard error of the data points displayed is
0.0014 in Figure 4 and 0.0026 in Figure 5.

A few observations are noteworthy: (1) Heuristics were indeed learned rapidly. (2) In the early part
of the learning curve, tallying generally had the highest accuracy. (3) The performance of single-cue
was remarkable. When trained on 50% of the objects, its mean performance was better than tallying,
0.9 percentage points behind take-the-best, and 1.3 percentage points behind logistic regression. (4)
Take-the-best performed better than or as well as greedy lexicographic in most data sets. A detailed
comparison of the two methods is provided below.

Validity versus greedy ordering in lexicographic decision making. The learning curves on in-
dividual data sets took one of four forms: (1) There was no difference in any part of the learning
curve. This is the case when a continuous cue is placed first: This cue almost always discriminates
between the objects, and cues further down in the sequence are seldom (if ever) used. Because
greedy and validity ordering always agree on the first cue, the learning curves are identical or nearly
so. Twenty-two data sets were in this first category. (2) Validity ordering was better than greedy
ordering in some parts of the learning curve and never worse. This category included 35 data sets.
(3) Learning curves crossed: Validity ordering generally started with higher accuracy than greedy
ordering; the difference diminished with increasing training-set size, and eventually greedy ordering
exceeded validity ordering in accuracy (2 data sets). (4) Greedy ordering was better than validity or-
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Figure 4: Predictive accuracy when models are trained with 50% of the objects in each data set and
tested on the remaining 50%.

dering in some parts of the learning curve and never worse (4 data sets). To draw these conclusions,
we considered a difference to be present if the error bars (± 2 SE) did not overlap.

5 Discussion

We isolated two building blocks of decision heuristics and showed analytically that they require very
few training instances to learn under conditions that matter the most: when they add value to the
ultimate predictive ability of the heuristic. Our empirical analysis confirmed that heuristics typically
make substantial progress early in learning.

Among the algorithms we considered, the most robust method for very small training sets is tallying.
Earlier work [11] concluded that take-the-best (with undichotomized cues) is the most robust model
for training sets with 3 to 10 objects but tallying (with undichotomized cues) was absent from this
earlier study. In addition, we found that the performance of single-cue decision making is truly
remarkable. This heuristic has been analyzed [19] by assuming that the cues and the criterion follow
the normal distribution; we are not aware of an earlier analysis of its empirical performance on
natural data sets.

Our analysis of learning curves differs from earlier studies. Most earlier studies [20, 10, 21, 11,
22] examined performance as a function of number of objects in the training set, where training
instances are all possible pairwise comparisons among those objects. Others increased the training
set one pairwise comparison at a time but did not keep the pairwise comparisons independent of each
other [23]. In contrast, we increased the training set one pairwise comparison at a time and kept all
pairwise comparisons independent of each other. This makes it possible to examine the incremental
value of each training instance.

There is criticism of decision heuristics because of their computational requirements. For instance, it
has been argued that take-the-best can be described as a simple algorithm but its successful execution
relies on a large amount of precomputation [24] and that the computation of cue validity in the
German city task “would require 30,627 pairwise comparisons just to establish the cue validity
hierarchy for predicting city size” [25]. Our results clearly show that the actual computational needs
of heuristics can be very low if independent pairwise comparisons are used for training. A similar
result—that just a few samples may suffice—exists within the context of Bayesian inference [26].
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Figure 5: Learning curves.
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