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We investigate chaos in mixed-phase-space Hamiltonian systems using time series of the finite-
time Lyapunov exponents. The methodology we propose uses the number of Lyapunov exponents
close to zero to define regimes of ordered (stickiness), semi-ordered (or semi-chaotic), and strongly
chaotic motion. The dynamics is then investigated looking at the consecutive time spent in each
regime, the transition between different regimes, and the regions in the phase-space associated to
them. Applying our methodology to a chain of coupled standard maps we obtain: (i) that it allows
for an improved numerical characterization of stickiness in high-dimensional Hamiltonian systems,
when compared to the previous analyses based on the distribution of recurrence times; (ii) that
the transition probabilities between different regimes are determined by the phase-space volume
associated to the corresponding regions; (iii) the dependence of the Lyapunov exponents with the
coupling strength.
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I. INTRODUCTION

In weakly chaotic Hamiltonian systems regions of regu-
lar (periodic and quasi-periodic) and chaotic motion typ-
ically coexist in the phase-space [1, 2]. In high dimen-
sions, due to Arnold diffusion, all initial conditions lead-
ing to chaotic motion are connected in the phase-space
building a single chaotic component [1]. Even if the vol-
ume of the regular regions becomes vanishingly small, as
expected for high-dimensional nonlinear systems, the dy-
namics inside the chaotic component of the phase-space
is strongly affected by such regions. This happens be-
cause trajectories approaching non-hyperbolic regions or
regular motion remain a long time close to them before
visiting again other parts of the chaotic component of
the phase-space. This signature of weak mixing (or weak
chaos) is known as stickiness [3–8].

Since Chirikov-Shepelyansky [3], the main quantifi-
cation of stickiness in Hamiltonian systems has been
through the fat-tail distribution of Poincaré recurrence
times (see, e.g., [4, 8, 9]). An alternative approach
is to use finite-time Lyapunov exponents (FTLEs) [10–
12], with recent applications using large deviation tech-
niques [7, 13] and the cumulants [14, 15] of the FTLE
distribution. In area-preserving maps, stickiness generi-
cally occurs at the border of 2-dimensional Kolmogorov-
Arnold-Moser (KAM) island [1] (i.e., at 1-dimensional
tori). The recurrence time is a measure of the time the
trajectory spends around such structures before return-
ing to the chaotic sea (stickiness happens also to one-
parameter families of parabolic orbits [16, 17] and even
to isolated parabolic fixed points [4, 18, 19]). Near the
non-hyperbolic structures, the local instability of chaotic
trajectories is reduced so that FTLEs can be used to char-
acterize phase-space regions of interest [11–13, 20, 21].

Stickiness has been studied also in higher-dimensional
systems [9, 10, 14, 15, 21, 22], long recurrence times can
be due to different non-hyperbolic regions and tori of dif-
ferent dimensionalities [23]. An improved characteriza-
tion of stickiness events (long recurrence time) requires
thus to measure the number of stable and unstable di-
rections in the trajectory during this event. Froeschlé
conjectured that lower-dimensional tori could not ex-
ist [1, 24, 25]. In early studies in the 80’s such events
of stickiness to lower dimensional tori were reported in
some systems [21] but were not found in other exam-
ples [10]. Even if invariant tori do not exist, small lo-
cal Lyapunov exponent could effectively act as a lower-
dimensional trap. This is similar to almost invariant sets
[26, 27], which are regions in phase-space where typical
trajectories stay (on average) for long periods of time.
In this paper we introduce a methodology that uses

time-series of local Lyapunov exponents to define regimes
of ordered, semi-ordered and totally chaotic motion and
obtain an improved characterization of stickiness in high-
dimensional Hamiltonian systems. We illustrate this gen-
eral procedure in a chain of coupled standard maps and
confirm that stickiness events of different times length
are dominated by trajectories with different FTLEs. A
significant improvement of the characterization of sticky
motion in high-dimensional systems is found. We also
characterize the FTLEs for small couplings and compare
them to expected universal properties in fully chaotic sys-
tems [28]. The method proposed here is general and can
be used to investigate Hamiltonian systems in any di-
mension.

The paper is divided as follows. In Sec. II we describe
the Hamiltonian model we use to illustrate our method.
In Sec. III we introduce our method to compute and
analyze time series of local Lyapunov exponents. This
methodology is then applied to the symplectic model of
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coupled standard maps in Sec. IV. Section V summarizes
the main results of the paper.

II. THE COUPLED MAPS MODEL

We use a time-discrete 2N -dimensional Hamiltonian
system obtained as the composition T ◦ M of indepen-
dent one-step iteration of N symplectic 2-dimensional
maps M = (M1, ...,MN ) and a symplectic coupling
T = (T1, ..., TN). As a representative example of 2-
dimensional maps we choose for our numerical investi-
gation the standard map:

Mi

(

pi
xi

)

=

(

pi +Ki sin(2πxi) mod 1

xi + pi +Ki sin(2πxi) mod 1

)

, (1)

and for the coupling

Ti

(

pi
xi

)

=

(

pi +
∑N

j=1 ξi,j sin[2π(xi − xj)]

xi

)

, (2)

with ξi,j = ξj,i =
ξ√
N−1

(all-to-all coupling). The moti-

vation for working with this system is that in the limit
of small coupling ξ → 0 it can be understood looking
at the dynamics of the N uncoupled maps. This system
was studied in Refs. [6, 9] using recurrence time distribu-
tion. This allow us to critically compare the benefits of
our methodology. In all numerical simulations we used
K1 = 0.5214 for the map M1 and K2 = K3 = 0.5108 for
the maps M2 and M3.

III. METHOD

In this section we describe the method proposed in
this work. To be illustrative, we present numerical sim-
ulations for the system defined in Sec. II.

A. Lyapunov spectrum and the classification of

ordered, semi-ordered or semi-chaotic, and chaotic

regimes

Consider a chaotic trajectory in a closed Hamiltonian
system which, after reducing the phase-space dimension
due to global invariant of motion, has N degree of free-
doms. For long times t the trajectory ergodically fills
the whole chaotic component of the phase-space which
is characterized by a spectrum of N Lyapunov expo-

nents {λ
(∞)
i=1...N}, where λ

(∞)
1 > λ

(∞)
2 , . . . , λ

(∞)
N > 0 [29].

The central ingredient of our analysis is the spectrum
of FTLEs computed along a trajectory during a win-
dow of size ω where we obtain a time dependent spec-

trum {λ
(ω)
i }(t) = {λ

(ω)
i }. The window size ω has to be

sufficiently small to guarantee a good resolution of the

temporal variation of the λ
(ω)
i ’s, but sufficiently large in

order to have a reliable estimation (see Refs. [10–12]).

The probability density function of λ
(ω)
i has been exten-

sively studied [7, 10–12]. Here we go beyond the study
of the probability density function and explore temporal

properties in the time series of {λ
(ω)
i }.

Figures 1(a) and (b), for N = 2 and 3 respectively,

show the time series of λ
(ω)
i , (i = 1, . . . , N). The sharp

transitions towards λ
(ω)
i ≈ 0 motivates the classification

in regimes of motion [20, 21] as (a) ordered (λ
(ω)
1,2 ≈ 0);

(b) semi-ordered or semi-chaotic (λ
(ω)
1 > 0;λ

(ω)
2 ≈ 0);

and (c) chaotic (λ
(ω)
1,2 > 0). For a system with N de-

grees of freedom we will say that the trajectory is in a

regime of type S
(N)
M if it hasM local Lyapunov exponents

λ
(ω)
i > εi, where εi ≪ λ

(∞)
i are the small thresholds.

This means that S
(N)
0 and S

(N)
N are ordered and chaotic

regimes respectively. Whenever there is no ambiguity, we

will drop the superscript S
(N)
M = SM to have a simpler

notation.
Practical implementations of the general method de-

scribed above require the choice of a few parameters and
conventions. First of all, the window size ω and the
threshold εi directly affect the classification in regimes.
They can be thought as the phase-space resolution of the
analysis and should be chosen so that it provides max-
imal information about the regions of interest. Unless

stated otherwise, we use ω = 100 and εi ≈ 0.10〈λ
(ω)
i 〉,

where 〈. . .〉 denotes average over t, where t = 1, . . . , tL
(even though the classification in regimes is strongly ω-
dependent, our conclusions are not sensitively affected
by variations around the chosen values). Another impor-
tant choice is the method for computation of the FTLEs.
We use Benettin’s algorithm [30, 31], which includes the
Gram–Schmidt re-orthonormalization procedure. The

decreasing order of λ
(ω)
i is valid on average, but inver-

sions of the order (λ
(ω)
i+1 > λ

(ω)
i ) may happen for some

times t and we have chosen to impose the order of λ
(ω)
i

for all t. Finally, it is possible to decide how to sample

the time series λ
(ω)
i . While the FTLEs are defined for

all t, there is a trivial correlation between the values of
FTLEs inside a window of size ω because they are com-
puted using the same points of the trajectory. In order

to avoid this trivial correlation the series of λ
(ω)
i can be

computed using non-overlapping windows, i.e. plotting

λ
(ω)
i only every ω time steps (a choice we adopt in our

simulations).

B. Identifying phase-space regions

In order to understand the properties of the time se-

ries {λ
(ω)
i } it is useful to consider the phase-space regions

associated to each regime SM . We denote by µ(A) the
phase-space volume (Liouville measure) of regionA in the
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Figure 1. (Color online) Illustration of the method proposed to define the regimes SM . Time series of the spectrum of FTLEs

{λ
(ω=100)
i }, with i = 1, . . . , N , for the map (1)-(2) with ξ = 10−3. Panel (a): Case N = 2 and the thresholds ε1 = 0.1 and

ε2 = 0.05 are represented by dash-dotted and dotted lines respectively. Panel (b): Case N = 3 and the thresholds ε1 = 0.1,
ε2 = 0.08 and ε3 = 0.06 are represented by dash-dotted, dotted and dashed lines respectively.

bounded phase-space Γ, i.e. µ(Γ) ≡ 1. The most impor-
tant distinction is between the regions of regular Γregular

and chaotic Γchaos motion. In Hamiltonian systems, typ-
ically µ(Γchaos) > 0 and µ(Γregular) > 0. In principle,
the regular region Γregular can be subdivided according
to the dimensionality of the tori. However, according
to Froeschlé’s conjecture, in a 2N -dimensional phase-
space, tori with dimension N have positive measure and
thus µ(Γregular) = µ(Γtori) [1, 24, 25]. For N > 1, the
chaotic region Γchaos is expected to build a single ergodic
component because tori of N dimension do not parti-
tion the 2N -dimensional phase-space in different regions
and therefore any chaotic trajectories eventually explores
(through Arnold Diffusion) the whole Γchaos. Our inter-
est is not to test the Froeschlé conjecture or Arnold diffu-
sion, but to show the insights about the chaotic dynam-

ics we can obtain using the time series of {λ
(ω)
i } together

with the definition of the regimes SM . One application is
to use the regimes SM to split the chaotic component of
the phase-space in meaningful components. This is done

by considering the set of points X
(N)
M in the phase-space

leading to each regime SM as

X
(N)
M = lim

tL→∞
xt(xt ∈ SM ), (3)

where tL is the total length of the trajectory and xt ∈ SM

indicates that at time t the trajectory at xt had {λ
(ω)
i } ∈

SM .
Figure 2 shows numerical estimates of the phase-space

regions obtained for each regime SM in the chain of cou-
pled maps defined in Sec. II. The regime S0 (or the or-
dered regime) is associated to region localized close to the
border of the KAM island of the uncoupled case (com-
pare to Fig. 2a). Points which belong to the regime S1 are
closer to the center of the torus from the uncoupled case.
This suggests that when trajectories are inside the region
related to regime S1, they more likely penetrate inside the

torus from the uncoupled case. In the chaotic sea both
regimes S1 and S2 are visible. These results are natu-
rally understood in the perturbative limit (small coupling

ξ ≪ 1). The regime S0 corresponds to λ
(100)
i ≈ 0 for ev-

ery i = 1, . . . , N , which is expected when the trajectory
is stuck close to the N -dimensional tori built as the prod-
uct of the 1-dimensional tori of the uncoupled maps. In
contrast, SM for M > 0 implies that at least one FTLE

λ
(ω)
i ≫ 0 and therefore the trajectory projected in one

map can be both in the chaotic and regular regions (e.g.,

S1 for N = 2 can be obtained from λ
(ω)
1 ≫ 0, λ

(ω)
2 ≈ 0

or from λ
(ω)
1 ≈ 0, λ

(ω)
2 ≫ 0). Altogether, these obser-

vations confirm that our method allows for a meaningful
division of the chaotic component of the phase-space and
can thus be used to identify regions of interesting dynam-
ics. In the case partial barriers exist inside the chaotic
component – such as in area-preserving maps with mixed
phase space [2] – we expect the regions obtained through
our method to depend weakly on ω and to coincide with
those obtained from the partial barriers.

IV. RESULTS

In this Section we apply the Lyapunov time-series
methodology described in Sec. III to the 2N -dimensional
system defined in Sec. II. We compute and interpret four
basic properties of the method: the total time spent
in each regime (residence time), the transition between
regimes, the consecutive time in each regime, and the
scaling of Lyapunov exponents.

A. Residence time in each regime

The first and most basic quantity we measure is the
probability P (SM ) of finding the trajectory in each
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Figure 2. (Color online) Phase-space projected in (x1, p1) for different configuration of the N-coupled standard maps defined in
Sec. II. (a) N = 1 (uncoupled case), showing 102 randomly started initial conditions and plotting as dots 104 iterations of each
of them. A large KAM island can be seen at the center of the plot; (b) N = 2 and coupling strength ξ = 10−3; (c) N = 3 and
ξ = 10−3. Symbols with different colors in (b,c) show points xt ∈ SM belonging to regimes S0 (blue circles), S1 (red points),
and S2 (green points). These points were computed starting a single trajectory in the chaotic region of all maps and iterating
it 5× 106 times.

regime, defined as the fraction of the total time tL
that xt ∈ SM (i.e. P (SM ) =

∑tL
t=0 δt∈SM

/tL, where
δt∈SM

= 1 if t ∈ SM and δt∈SM
= 0 otherwise).
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M
)

ξ

M = 0
M = 1
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M = 3
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10-2

10-1

100
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M
)

 

M = 0
M = 1
M = 2

(a)

Figure 3. (Color online) Residence time in each regime SM .
(a) N = 2 with ε1 = 0.1 and ε2 = 0.05. (b) N = 3 with
ε1 = 0.1, ε2 = 0.08, and ε3 = 0.06. In (a) the values obtained
with ω = 100 are compared (gray curves) with results for
ω = 50 and ω = 500. Only for the case M = 1 the gray
curves (right for ω = 50 and left for ω = 500) show a shift in
the x-axis ξ. Estimations for each ξ are based on a trajectory
with length tL = 1010.

Figure 3 shows the probabilities P (SM ) for the map
with N = 2, 3 as a function of the coupling strength
ξ. We now explain the behavior of P (SM ) with ξ by
discussing the effect of coupling ξ on the phase-space re-
gions associated to SM , as defined in Sec. III B. By the
ergodicity of Γchaos, P (SM ) corresponds to the (normal-
ized) volume of the region related to regime SM in the
phase-space

P (SM ) =
µ(SM )

µ(Γchaos)
=

µ(SM )

1− µ(Γtori)
. (4)

The results of Fig. 3 show that the chaotic region is the
largest region in phase-space for any coupling, while the
region associated to S1 has a larger volume than S0 for
couplings ξ . 1.3× 10−1. For larger ξ we see oscillations
with a local maximum close to ξ ∼ 2× 10−1 for the cases
M = 0 and M = 1.
We now interpret the ξ dependence observed in Fig. 3

by arguing how the different terms in Eq. (4) vary with
ξ. We denote by µ(Uj) the measure of tori for the j-th
map with control parameter Kj in the uncoupled case
ξ = 0 (which we assume to be approximately equal to
the measure of the KAM islands). For small coupling
ξ ≈ 0 we expect that most tori of the uncoupled maps to
survive and therefore:

• µ(Γtori) ≈
∏N

j=1 µ(Uj), which in the simple case of

µ(Uj) = µ for all j reduces to µ(Γtori) ≈ µN .

• µ(SM=0) corresponds to a small volume around
Γtori, i.e. µ(SM=0) ∼ µ(Γtori) ≈ P (S0)/(1 +
P (S0)).

• For µ(SM 6=0) we have that N − M maps are in
their corresponding KAM island (with probability
µ(Uj)) and M maps in the chaotic area (with prob-
ability 1 − µ(Uk)). For example, for N = 3 and
M = 2 we have that

µ(SM=2) = µ(U1)[1− µ(U2)][1 − µ(U3)]
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+ µ(U2)[1− µ(U1)][1− µ(U3)]
+ µ(U3)[1− µ(U1)][1− µ(U2)].

In general this leads to

µ(SM ) ≈
∑

j1

. . .
∑

jM

∏

j∈{j1,...,jM}
(1− µj)

∏

j /∈{j1,...,jM}
µj ,

where the last product is over all j = 1, . . . , N
except j ∈ {j1, . . . , jM}. In the simple case of

µ(Uj) = µ, it reduces to µ(SM ) ≈
(

N
M

)

µN−M (1 −

µ)M .

We now consider the effect of growing ξ. In the spirit
of the KAM theorem, the tori of the coupled maps (gen-
erated as the product of the N maps) are expected to be
robust to small couplings ξ, which act as a perturbation.
This explains why the curves in Fig. 3 are essentially
flat for small ξ. Increasing ξ even further, the nonlin-
earity of the system increases and therefore µ(Γtori) is
expected to decrease (µ(Γtori) → 0 for ξ ≫ 0). This
reduction of the tori leads to an increase in the denom-
inator of Eq. (4) and explains the observed tendency of
reduction of P (SM ) for all regions related to stickiness
(M < N). Indeed, for ξ > 0.5 no signature of tori or
stickiness was detected numerically and P (SM=N ) = 1.
The nontrivial dependencies of P (SM<N ) in Fig. 3 ap-
pear at ξ ∼ 2 × 10−1 values, close to the values of ξ for
which the last tori disappear (see also Fig. 7.2 in Ref. [6]).
In this regime the volume of the tori is already negligible
µ(Γtori) & 0 but stickiness is still effective (notice that
even zero measure non-hyperbolic sets can lead to stick-
iness [7, 17]). The denominator in Eq. (4) is therefore
1 − µ(Γtori) ∼ 1, not significantly affected by further in-
creases of ξ, and therefore not driving the reduction of
P (SM<N ). Small variation of a control parameter of the
system (in this case ξ) are known to lead to sensitive
creation and destruction of tori, with non-trivial depen-
dencies on the stickiness [5]. We can thus expect that –
close to the disappearance of the tori – the small volume
of stickiness regions µ(SM<N ) to fluctuate with ξ lead-
ing even to an increase with ξ. It is interesting to note
that this non-trivial increase with ξ appears for P (SM=0)
in Fig. 3 precisely when the curves P (S0<M<N ) show a
sharp decreasing fluctuation. This suggests an exchange
between measure of different sticky regions associated to
regimes SM<N , without interference of the much larger
fully chaotic component SM=N .

B. Transitions between regimes

We now focus on the transition between regimes. The
simplest analysis correspond to the two-time (joint) prob-
ability P (SM → SM ′), computed as the fraction of the
total trajectory time tL that xt ∈ SM and xt+1 ∈ SM ′ .
The probabilities considered in the previous section can
be obtained as

∑

SM
P (SM → SM ′) = P (SM ′) and

∑

S
M′

P (SM → SM ′) = P (SM ). Figure 4(a) shows the
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S0 → S2

S2 → S0
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Figure 4. (Color online) Transition between regimes SM as a
function of the coupling strength ξ. (a) Transition probability
P (SM → SM′); (b-d) Conditional probability PM,M′ defined
in Eq. (5) of moving to M ′ given that the trajectory was at
M . Estimations for each ξ based on a single trajectory with
length tL = 1010 in the case of N = 2 coupled maps and
ε1 = 0.1 and ε2 = 0.05.

dependence of P (SM → SM ′) on ξ for our model. We
notice that P (SM → SM ′) is equal to P (SM ′ → SM ).
This is expected considering that the system is ergodic,
volume preserving, and time-reversible. The dependence
of P (SM → SM ′) on ξ follows a similar pattern observed
for P (SM ) in Fig. 3. More information is obtained from
the conditional probability

PM,M ′ ≡ P (SM → SM ′ |SM ) ≡
P (SM → SM ′)

P (SM )
, (5)

which quantifies the probability that trajectories at SM

will move to SM ′ . The results shown in Fig. 4(b-d) show
for all SM that (i) persistence in the same SM (P (SM ↔
SM |SM )) is dominant and (ii) the most likely transitions
occur between neighboring regimes (e.g., P2,1 > P2,0).
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The only (slight) deviations of this picture happen for
large values of ξ, close to the disappearance of the KAM
island. Altogether, these results confirm that in the per-
turbative regime (ξ ≪ 1) stickiness happens approaching
the region of regular motion of different maps one after
the other (in opposite to a direct approach from S0 to
SM=N ).

C. Consecutive time in each regime

The results of the previous section confirm that resi-
dence in the same regime is the dominant behavior. This
motivates us to study the time τM spent consecutively in
a regime SM (i.e., τM is the time between two consec-
utive transitions between different regimes, the first to
SM and the second out of SM ). In a trajectory of length
tL we collect a series of τM . We are mainly interested in
the probability distribution P (τM ) (or, equivalently its
cumulative Pcum ≡

∑∞
τ ′

M
=τM

P (τ ′M )) for different SM ’s

in the limit tL → ∞. These distributions should be com-
pared to the distribution of recurrence times τ , defined as
the time between two successive entries to a pre-defined
recurrence region (usually taken in the fully chaotic com-
ponent of the phase-space). Events in the tails of P (τ)
are associated to times for which the trajectory is stuck
to the non-hyperbolic components of the phase-space and
P (τ) is the traditional method to quantify stickiness in
Hamiltonian systems [3, 4, 8, 9].

The numerical simulations in Fig. 5 confirm that the
distribution obtained summing Pcum(τM ) for ordered
and semi-ordered regimes (or SM<N ) is equivalent to
cumulative distribution Pcum(τ) obtained using recur-
rences. This is in agreement with the association of
long consecutive times in regimes of ordered and semi-
ordered motion to long recurrence times. Looking at
the individual distributions Pcum(τM ) provide valuable
additional information on the sticky motion. For semi-
ordered motion (when 0 < M < N) we observe an ex-
ponential tail after an intermediate decay with scaling
β ≈ 0.5. This behavior confirms the interpretation given
in Ref. [9]. More interestingly, the M = 0 case shows
an asymptotic algebraic decay which characterize stick-
iness. While the scaling is compatible with the results
obtained using recurrence time, Pcum(τM=0) obtained in
our methodology provides a better characterization of
the scaling (over several orders of magnitudes) and al-
lows for an independent analysis of the different regimes.
These properties are essential when dealing with high-
dimensional systems (which may contain different pre-
asymptotic regimes) and for an accurate estimation of
the stickiness exponent γ. Finally, panel (a) in Fig. 5
shows that all decays discussed above remain (qualita-
tively) the same for different choices of ω, with the curve
for M = 1 showing the largest sensitivity on ω (as in
Fig. 3(a).
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Figure 5. (Color online) Comparison between our method
and the analysis based on recurrence time. The cumulative
distribution Pcum(τM ) of times τM is shown for each regime
SM<N for ω = 100 and (a) N = 2 and (b) N = 3. In
(a) the gray curves show results for ω = 50 and ω = 500.
Only for the case M = 1 the gray curves (left for ω = 50
and right for ω = 500) show a shift in the x-axis ξ. The
cumulative distribution Pcum(τ ) for recurrence times τ to a
region in the chaotic component of the phase-space (in SM=N)
for (c) N = 2 and (d) N = 3. For comparison, in panels
(c) we show the results obtained combining the normalized
curves for M0+M1 (blue dotted line: divided by 1.7×103 for
convenience of scale) of panel (a), and in (d) the normalized
curves for M0 +M1 +M2 (blue dotted line: divided by 103)
of panel (b). Results obtained using maps of Sec. II with
ξ = 10−3, ε1 = 0.1 and ε2 = 0.05 for the case N = 2 and
ε1 = 0.1, ε2 = 0.08 and ε3 = 0.06 for the case N = 3.

D. Scaling of Lyapunov exponents

So far we have focused at the temporal properties of

the time series of FTLEs λ
(ω)
i and how they change with

the coupling strength ξ. We now consider how the value
of the Lyapunovs respond to an external perturbation,
which in our case is the coupling to the other maps. It

is known that the largest exponent λ
(∞)
1 is extremely

sensitive to perturbation. More specifically, Daido’s rela-
tion [28, 32] states that for small couplings ξ to another
chaotic system, a universal logarithmic singularity is ob-
served,

λ
(ω→∞)
i − Λ

(ω→∞)
i ≈

c

| ln(ξ)|
, (6)
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where Λ
(ω→∞)
i are the unperturbed Lyapunov exponents

and c is a constant and i = 1, . . . , N . This relation is
valid for totally chaotic systems and a small mismatch
between Lyapunov exponents of the uncoupled systems
compared to their fluctuations [32]. Here we investigate

the relation λ
(ω)
i − Λ

(ω)
i as a function of ξ, for distinct

values of ω and different regimes SM . To this end we

compute the temporal averages of the FTLEs 〈λ
(ω)
i 〉 for

times t such that {λ
(ω)
i } ∈ SM .
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Figure 6. (Color online) Sensitivity of the FTLEs for small
couplings. The difference between the finite-time Lyapunov

exponent in the coupled (〈λ
(ω)
i 〉) and uncoupled (〈Λ

(ω)
i 〉) maps

as a function of | ln(ξ)|−1, where ξ is the coupling strength.
Results are shown for N = 2 (i = 1, 2) and different time
windows ω (a)-(b) 102, (c)-(d) 104, and (e)-(f) 106. Black
dashed lines in (c)-(f) are the expected linear behaviour, con-
sistent with Eq. (6). Panels in the left column (ace) were
computed for the full time series, while on the right column
(bdf) only FTLEs in the regime S2 were used. The different
colors correspond to different choices of threshold imposed to

define the FTLE: 〈λ
(ω)
i 〉ε1 uses ε1 = 0.1〈λ

(ω)
i 〉 while 〈λ

(ω)
i 〉ε2

uses ε2 = 0.9〈λ
(ω)
i 〉, where 〈λ

(ω)
i 〉 is computed over the full

time series (left column).

Our numerical simulations reported in Fig. 6 show
that small values of ω lead to a situation in which
〈λ

(ω)
i 〉 ≈ 〈Λ

(ω)
i 〉 at a finite value of ξ (Figs. 6(b) and

(d)), while larger values of ω lead to situations in which

〈λ
(ω)
i 〉 6= 〈Λ

(ω)
i 〉 for any ξ. These results depend cru-

cially on our choice to impose the order of λ
(ω)
i for all t,

as discussed in Sec. III A. This makes the average over

the trajectory time 〈λ
(ω
i 〉 to be ω-dependent and differ-

ent from the average over the Lyapunov time λ
(ω→∞)
i .

Applying the analysis without the division in regimes

SM leads to strongly fluctuating results (Figs. 6(a,c,e)).
Much smoother results (Figs. 6(b,d,f)) are obtained when

we apply our method and compute 〈λ
(ω)
i 〉 only for t in

the fully chaotic regime SN . Looking at these smoother
results we observe that the difference in Lyapunovs scales
as 1/| ln ξ|, but that even for ω → ∞ the sticky motion
leads to a deviation from Daido’s relation (6) (curves are
shifted vertically).

V. CONCLUSIONS

In summary, we have proposed a method to charac-
terize the dynamics of Hamiltonian systems with mixed
phase-space based on time series of finite-time Lyapunov
exponents. Using this method it is possible to define and
study with high accuracy the time evolution of regimes of
ordered, semi-ordered, and totally chaotic motion. This
allows for an individualized characterization of the differ-
ent stickiness mechanisms, improving alternative meth-
ods based on the statistics of recurrence times or on the
distribution of finite-time Lyapunov exponents.
We applied our method to a chain of coupled stan-

dard maps and showed how the frequency of different
regimes – and the transition probabilities between them
– are related to the volume of different phase-space re-
gions. Using the consecutive time in distinct regimes
we have reproduced previous results obtained using re-
currence times and showed that our method allows for
a significant improvement in the characterization of the
sticky motion (e.g., in the determination of the scaling
exponents). This indicates that our method can be used
to characterize stickiness in general high-dimensional sys-
tems and is particularly suited for cases in which different
regions of sticky motion coexist. We have also shown that
the dependence on the coupling strength of the largest
Lyapunov exponents, after conveniently using our proce-
dure, tend to follow only the qualitative universal prop-
erties of fully chaotic system.
Results obtained in a simple chain of standard maps

confirm that our methodology can be applied to high-
dimensional systems and problems of current interest,
such as controlling Fermi acceleration [33], galactic mod-
els [34], and plasma physics [35]. Another example of
application is to associate each regime SM with effective
Hamiltonian functions, a procedure used to reproduce
the complicated dynamics of kicking electrons [36] or the
high harmonic generation in laser-assisted collisions [37].
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