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We study a disordered classical Heisenberg magnet with uniformly antiferromagnetic interactions
which are frustrated on account of their long-range Coulomb form, i.e. J(r) ∼ −A ln r in d = 2
and J(r) ∼ A/r in d = 3. This arises naturally as the T → 0 limit of the emergent interactions
between vacancy-induced degrees of freedom in a class of diluted Coulomb spin liquids (including the
classical Heisenberg antiferromagnets on checkerboard, SCGO and pyrochlore lattices) and presents
a novel variant of a disordered long-range spin Hamiltonian. Using detailed analytical and numerical
studies we establish that this model exhibits a very broad paramagnetic regime that extends to very
large values of A in both d = 2 and d = 3. In d = 2, using the lattice-Green function based
finite-size regularization of the Coulomb potential (which corresponds naturally to the underlying
low-temperature limit of the emergent interactions between orphan-spins), we only find evidence
that freezing into a glassy state occurs in the limit of strong coupling, A = ∞, while no such
transition seems to exist at all in d = 3. We also demonstrate the presence and importance of
screening for such a magnet. We analyse the spectrum of the Euclidean random matrices describing
a Gaussian version of this problem, and identify a corresponding quantum mechanical scattering
problem.

PACS numbers: xx

I. INTRODUCTION

The appearance of novel magnetic phases1–3 generally
contains as one ingredient the ability of the system to
avoid conventional (semi-)classical ordering. In this con-
nection, the role of several factors has been extensively
explored. These include low dimensionality and the re-
sulting enhancement in the effects of quantum and en-
tropic fluctuations, geometrical frustration, whereby the
leading antiferromagnetic interactions compete with each
other on lattices such as the kagome and pyrochlore lat-
tice, and the presence of quenched disorder, which dis-
rupts any residual tendency to conventional long-range
order. Each of these has given rise to research efforts
spanning decades of work.

Here, we study a model with a new combination of
some of these ingredients. The focus of our study is
a disordered classical Heisenberg magnet with antifer-
romagnetic interactions which are frustrated on account
of their long-range Coulomb form at long-distances, i.e.
J(r) ∼ −A ln(r/L) in d = 2 (where L is a length-scale
of order the system-size) and J(r) ∼ A/r in d = 3. This
Coulomb form of the Heisenberg couplings arises natu-
rally as the T → 0 limit of the emergent entropic ex-
change interactions4 between vacancy-induced “orphan-
spin” degrees of freedom5–8 in diluted Coulomb spin liq-
uids, and presents a novel variant of a disordered long-
range spin Hamiltonian with connections to Euclidean
random matrices. The coupling constant A is determined
in any given system by the microscopic details of the un-
derlying Coulomb-spin liquid, while the spin degrees of

freedom in the model we study are related to the physi-
cal orphan-spins of the underlying diluted magnet. Our
focus here is on studying the range of behaviours possible
in the T → 0 limit by mapping out the phase diagram of
our Coulomb antiferomagnet as a function of A. Frustra-
tion arises naturally in the model under consideration, as
any triplet of spins are mutually coupled antiferromag-
netically but without the randomness in sign of, say, the
Sherrington-Kirkpatrick model9. Also, unlike the latter
case, the interactions are long-ranged but not indepen-
dent of distance.

Our motivations for studying it include having been
led to this model in a previous investigation10 of diluted
frustrated magnets exhibiting a Coulomb spin liquid at
low temperature. The model is in this sense natural,
appearing as the zero-temperature limit of a disordered
frustrated magnet. The corresponding experiments are
on the material known as SCGO, which triggered the in-
terest in what we now call highly frustated magnetism in
the late 80s11. Its behaviour at very low temperatures is
still not very well understood, e.g. the observed glassiness
even at very low impurity densities12,13, which appears
to involve only the freezing of a fraction of its degrees of
freedom. We will return to this point in Sec. VII B. While
exhibiting a classical Coulomb spin liquid regime, the dis-
order in this system leads to the emergence of new, frac-
tionalized, degrees of freedom, the so-called Orphans5,6,
which interact via an effective entropic long range inter-
action mediated by their host spin liquid4.

We believe that as such, it can be of interest as a
generic instance of the interplay of strong interactions
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and disorder in magnetism. In particular, it develops the
strand of thought of how disorder in a topological sys-
tem characterised by an emergent gauge field can nucle-
ate gauge-charged defects, with the pristine bulk medi-
ating an effective interaction between them. Long-range
Coulomb interactions like the one studied here are then
as natural as the algebraically decaying RKKY interac-
tions in metallic spin glasses.

Our central results are the following. First we use the
results of previous work4, to work out in detail the key
features of this T → 0 limit, and demonstrate that this
limit is characterized by a single coupling constant A,
which is, in principle, determined by the geometry of
the underlying spin-liquid. Second, our extensive Monte
Carlo simulations for d = 2 reveal no sign of any freezing
or ordering transition up to very large coupling strengths.
At the same time, within a self-consistent Gaussian ap-
proximation, we find that there does appear such a tran-
sition at infinite coupling in d = 2 but not in d = 3.
This transition is very tenuous, in that it is replaced by
a more conventional ordering transition in a finite system
depending on the choice of how to regularize this long-
range interaction in a finite lattice: the finite-size lattice
regularization that is most natural from the point of view
of the T → 0 limit of the underlying diluted magnet gives
rise to freezing into a glassy state at A−1 = 0, while other
regularizations replace this glassy state by a conventional
ordering pattern. The Coulomb antiferromagnet there-
fore remains highly susceptible to perturbations, just like
many other frustrated magnets1.

We also study the spectrum of the interaction matrix
of this random Coulomb antiferromagnet, which provides
an instance of an Euclidean random matrix14,15, in that
its entries are obtained as a distance function between
randomly chosen location vectors. We find two qualita-
tively distinct regimes. On one hand, at low energies in
the low-density limit, eigenfunctions are localised, with
the lowest energy states as pairs of neighbouring spins
the probability distribution of which we compute. Be-
yond this extreme low-density limit, more complex lat-
tice animals appear in this regime. On the other hand, at
high energies, the modes correspond to long-wavelength
charge density variations with superextensive energy. In
between, we find no clear signature of a well-defined mo-
bility edge in this Coulomb system.

Another interesting aspect of the uniformly antiferro-
magnetic interactions is that they permit a variant of
screening to appear in this Coulomb magnet, which has
no correspondence with other long-range magnets such as
the Sherrington-Kirkpatrick model. Our analysis of this
screening further leads us to an identification of the cor-
relations of the random Coulomb antiferromagnet with
the properties of the zero-energy eigenstate of a quan-
tum particle in a box with randomly placed scatterers.

Returning to experiments, we note that the uniform
magnetic susceptibility of SCGO will of course be dom-
inated by the Curie tail (∼ 1/T ) produced by these or-
phan spins at low temperature. Both in d = 2 and d = 3,

the full susceptibility, when vacancies are placed at ran-
dom, is that of independent orphans to a good approx-
imation despite the long-ranged interaction present be-
tween them. This persists down to the lowest temper-
atures not only because of the screening of the interac-
tions at finite physical temperature, and because the size
of the Coulomb coupling derived from the entropic inter-
action is comparatively weak, but also because the phys-
ical orphan spins are related to the degrees of freedom in
the Coulomb antiferromagnet via a sublattice-dependent
staggering transformation, so that the uniform suscep-
tibility of the physical orphan-spins corresponds to the
staggered susceptibility of the degrees of freedom of our
Coulomb antiferromagnet, and therefore remains largely
unaffected by the fact that the total (vector) gauge charge
of our Coulomb antiferromagnet vanishes.
The remainder of this paper is structured as follows. In

Section II, we first provide a self-contained review of ear-
lier work on vacancy-induced effective spins in a class of
classical antiferromagnets on lattices consisting of “cor-
ner sharing units”, and then build on this to provide a
careful derivation of the T → 0 limit of the emergent en-
tropic interactions between orphan spins and use this to
define our model Coulomb antiferromagnet. After outlin-
ing our analytical and numerical approaches in Sec. III,
we present the results obtained in d = 2 and d = 3
(Sec. IV). Sec. V contains the analysis of the problem
in terms of a Euclidean random matrix while the role of
screening and the connection to a scattering problem are
discussed in Sec. VI. We conclude with a discussion of
these results, and relegate sundry details (such as dicus-
sions of the fully occupied lattice and the ordered state
seeded by a certain finite-lattice regularization of the two-
dimensional Coulomb interaction) to Appendices.

II. THE RANDOM COULOMB
ANTIFERROMAGNETIC HAMILTONIAN

We thus study a classical Heisenberg model

H =
1

2

∑

i,j

Jij~ni · ~nj . (1)

where Jij takes on a Coulomb form,

Jij = −A log(rij/L) (d = 2) (2)

= A/rij (d = 3). (3)

This form with L larger than any rij has the property
that the interactions are uniformly antiferromagnetic as
well as long-ranged.
We need to supplement this by defining the degrees of

freedom, unit vectors ~ni, appearing in Eq. 1. We con-
centrate on the case where their locations, denoted by i
are chosen randomly on a square (cubic) lattice in d = 2
(d = 3), at a dimensionless density of x spins per lattice
site.
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FIG. 1: Illustration of the Orphan spin arising from the in-
troduction of non-magnetic impurities. Its effective moment
is half of that of a free spin.

For long-range interactions like this Coulomb inter-
action, choices about boundary conditions or ensemble
constraints can be considerably less innocuous than for
short-range systems. In order to illustrate this, and to
make natural choices for these items, as well as for moti-
vation of our study, we discuss the derivation of a random
Coulomb antiferromagnet as an effective Hamiltonian of
a diluted Coulomb spin liquid next.

A. Orphan spins and their interactions in diluted
Heisenberg antiferromagnets

We thus begin by providing a self-contained review of
earlier work on vacancy-induced effective spins in a class
of classical frustrated antiferromagnets on lattices con-
sisting of “corner sharing units”. The centers of these in
turn define a so-called premedial lattice, which is bipar-
tite in practically all instances of popularly studied clas-
sical Heisenberg spin liquids8. A simple model of nearest
neighbour antiferromagnetically interacting spins on such
lattices can be written as

H =
J

2

∑

i,j

~Si · ~Sj =
J

2

∑

4

(
∑

~l∈4

~S~l)
2, (4)

where the summation in the alternate form of the Hamil-
tonian is carried over the corner sharing simplices 4,
which might be tetrahedra, as e.g., in a pyrochlore lattice,
triangles in a Kagome lattice, or a combination of both
as in the case of SCGO, and the spins of the frustrated

magnet are now labeled by ~l, the links of the bipartite
pre-medial graph (whose sites correspond to the centers

of the simplices 4 of the original lattice, and links ~l cor-
respond to sites of the original lattice). When written in
this form, it is clear that ground-states are characterized
by the constraints:

∑

~l∈4

~S~l = 0, ∀4, (5)

These local constraints lead to an effective description in
terms of a theory of emergent electric fields that obey a
Gauss law. To see this, we define electric fields Eα

~l
= ǫ~lS

α
~l

on links ~l, where ǫ~l is a spatial unit vector that points
from the A- to the B-sublattice of the premedial lattice
end of this link. The ground-state condition then trans-
lates to the statement that the lattice-divergence of this
electric field vanishes at each site 4 for each α. The key
idea of this effective description is that the coarse-grained
(entropic) free energy density depends quadratically on
the local electric field, and deviations from the vanishing
divergence condition amount to the appearance of vector
Coulomb charges4. These emergent gauge charges are de-
fined for each lattice point 4 of the bipartite premedial
lattice:

~Q4 = η(4)
∑

~l∈4

~S~l, (6)

and the staggering factor, η(4) = +1 if 4 is an A-
sublattice site of the premedial graph and −1 otherwise.
Since each microscopic spin contributes with opposite
signs to the vector charge on two neighbouring simplices,
the total gauge charge of a system without boundaries
must vanish in every configuration of the system

∑

4

~Q4 = 0. (7)

This very natural condition–akin to the charge-neutrality
of the full universe, and in our case unavoidable due to
the microscopic origin of the emergent gauge charge – will
be explicitly imposed in our Monte Carlo simulations of
the system.
The mapping of the pure system to an emerging gauge

field theory at low temperatures makes clear that gener-

alized “vector charges”, ~Q4, are generated thermally as
a consequence of the violation of the ground state con-
straints. The constraint Eq. 5 is also unavoidably vio-
lated in the presence of non-magnetic impurities (Fig. 1)
whenever all but one spin of a given simplex are sub-
stituted for by vacancies (simplices containing at least
two spins can in general satisfy the zero total spin condi-
tion and such simplices do not host a vector charge in the
T → 0 limit). Indeed, when all spins but one in a simplex
are replaced by vacancies, the result is a paramagnetic
Curie-like response4,6,10, which dominates the suscepti-
bility response at low temperatures. The lone spins on
these defective simplices, which serve as the epicenter of
this paramagnetic response, were baptized Orphans (Ref.
5) in the first studies of this effect.
The field theory developed in Refs. 4,10 extends the

self consistent gaussian approximation (SCGA)16, a the-
ory successful in describing low temperature correlations
on the undiluted systems, to incorporate the effects of
dilution and study the physics of these orphan spins at
non-zero temperature in a manner that treats entropic
effects on an equal footing with energetic considerations.
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In its original form the SCGA replaces the hard con-

straint on the spins norm, ~S2
i = S2, by the relaxed soft

spin condition on their thermal average 〈~S2
i 〉 = S2. The

key insight of Refs. 4,10, that led to the detailed analyti-
cal understanding summarized below, was the following:
While it is sufficient to treat in this self-consistent Gaus-
sian manner all spins other than the lone orphan spin in
a simplex in which all but one spin has been replaced
by vacancies, this is much too crude an approximation
for the orphan-spin itself, which must be treated with-

out approximation as a hard-spin obeying ~S2
orphan = S2.

Remarkably, the resulting hybrid field theory continues
to be analytically tractable when the number of orphan
spins is small4,10. With just one orphan present in a sam-
ple with an external magnetic field of strength B along
the z axis, the theory predicts that this orphan spin sees
a magnetic field B/2, with the other half of the exter-
nal field screened out by the coupling to the bulk spin-
liquid. The resulting polarization of the orphan serves as
a source for an oscillating texture that spreads through
the bulk. The net spin carried by the texture cancels
half the spin polarization of the orphan-spin, resulting
in an impurity susceptibility corresponding to a classi-
cal spin S/2. With more than one orphan present, the
spin-textures seeded by each orphan mediate an effective
entropic interaction between each pair of orphan spins.
The effective action for a pair of orphans is predicted

in this manner to have the form

−βJeff(~r, T )~n1 · ~n2, (8)

where ~n are unit-vectors corresponding to the directions
of the orphan-spins in a given configuration. The ex-
change coupling has a particularly simple form in the
large separation limit

βJeff ≈ −η(~r1)η(~r2)
〈 ~Q4(~r1) · ~Q4(~r2)〉

〈 ~Q4 · ~Q4〉2
(9)

which involves only “charge-charge” correlations calcu-

lated in the pure system:

〈 ~Q4(~r1) · ~Q4(~r2)〉 ∼ − T 2T d/2−1

×
∫ Λ/

√
T

ddq
exp(i~q · (~r1 − ~r2))

∆cq2 + κ
.

(10)

The denominator of Eq. (9), behaves at low temperatures

as 〈 ~Q4 · ~Q4〉 = T/J from equipartition.
For orphans in d = 2, one finds:

Jeff(~r1 − ~r2, T ) = η(~r1)η(~r2)TJ (|~r1 − ~r2|/ξent) (11)

with an entropic screening length ξent = 1/κ ∼ 1/
√
T

separating two regimes for J (κr). For κr ≪ 1 a logarith-
mic one, J (κr) ∼ − log(κr); and for κr ≫ 1 a screened
regime, J (κr) ∼ 1√

κr
exp(−κr). Analogously in d = 3,

Jeff(~r1 − ~r2, T ) = η(~r1)η(~r2)T
3/2K(|~r1 − ~r2|/ξent) (12)

the entropic screening length ξent = 1/κ ∼ 1/
√
T sepa-

rates two regimes, algebraic K(r) ∼ −1/r and screened
K(r) ∼ exp(−κr).
In the physical system, at any nonzero temperature,

this is thus a ‘short-ranged’ interaction on account of the
finite screening length which, however, diverges as 1/

√
T .

In this article, we are interested in the limit of T = 0,
where the interaction takes on the novel – for magnetic
systems – long-range Coulomb form.

B. Model Hamiltonian

In the limit of T → 0, we are thus led by these con-
siderations to Coulomb interactions between the vector
orphan spins, which we here study in detail. For simplic-
ity, we consider unit-vector spins ~n at random locations
in a periodic hypercubic lattice of linear size L with oc-
cupancy probability x, corresponding to an underlying
spin liquid on the checkerboard and “octochlore” lattices
of corner-sharing units involving 2d spins in d dimension.
In what follows, we will get rid of the sublattice factors

that affect the sign of the effective interaction by invert-
ing all unit-vectors placed on the B sublattice. In other

words, we identify S~ni with ηi~Sorphan,i, where ~Sorphan,i

is the orphan spin on the simplex labeled by i in the
underlying diluted frustrated magnet.
This gives us a “random Coulomb antiferromagnet” in

which unit-vector spins interact with an exchange cou-
pling that is always antiferromagnetic but of a long-range
Coulomb form at large distances. For a classical system,
this transformation is innocuous, but note that natural
observables cease to be so under this mapping – e.g. the
orphan spin contribution to the uniform susceptibility of
the underlying diluted magnet is now given by the stag-
gered susceptibility of our Coulomb antiferromagnet.
As is usual for entropic interactions in the limit of

T → 0, the strength of their coupling, A, is fixed by the
microscopics of the model from which they have emerged.
In this work, we are interested in exploring the generic
behaviour of such models – in particular, identify possi-
ble phases – and thus allow the coupling A to be vari-
able. For completeness, we mention that A = 1

4π for the
checkerboard lattice.
This therefore leads to the form of H at the begin-

ning of this section, Eq. 1. To make Eq. 2 dimensionally
unambiguous we write:

Jij = −A log(rij/L) (d = 2)

with L conveniently set to a value of order the system size
L so that Jij > 0 always. In the above language, with
sublattice factors η absorbed into the definitions of ~ni,
the zero gauge-charge constraint imposed by the micro-
scopic origin of this effective model now translates to the
constraint that

∑

i ~ni = 0 in every allowed configuration
of our Coulomb antiferromagnet. This constraint in fact
can also be imposed by adding an infinitely strong inter-
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action acting equally between all spins. This equivalence
renders the detailed choice of L immaterial.
We note an interesting scale-invariance of this model in

the limit of small densities of spins. This scale invariance
is inherited from that of the logarithmic function under
scaling transformations: J(κr) = log(κ) + J(r), together
with net charge neutrality Eq. (7):

∑

i

~ni = 0, (13)

implies that the extra term log(κ) gives a temperature-
independent contribution to the action determined by
1/2

∑

i6=j ~ni · ~nj = −N/2. The partition function thus
only picks up a constant factor:

Z ′ = e−β
∑

i,j
J(κrij)~ni·~nj = eβ log(κ)N/2Z, (14)

It also means that, rather unusually, in the continuum
limit x → 0 the partition function is a scaling function
depending on the randomly chosen orphan locations only
scaled by their mean separation. Lattice discretisation
effects at finite x break this equivalence. The scaling
transformation for the model in three dimensions gives
J(κr) = J(r)/κ, what implies for the partition function
a rescaling of β:

Z ′(β) = e−β
∑

i,j
J(κrij)~ni·~nj = Z(β/κ). (15)

For Coulomb interactions in a finite-size system, var-
ious choices of the interaction yield the same large-
distance form in the limit L → ∞. The most natural
form from the point of view of the effective field the-
ory predictions for emergent interactions between orphan
spins is the Fourier transform of the inverse of the lattice

Laplacian, d−
d
∑

i=1

cos ki:

J(rij) =
π

L2

∑

~q

ei
~k·~rij

d−
d
∑

i=1

cos ki

. (16)

This we call the lattice Green function (LGF), and our
most detailed studies are carried out with this form of
the interaction.
Alternatively, one can work directly with the Coulomb

form, e.g. for d = 2:

J(rij) = − log
(rij
L
)

. (17)

with L = L/
√
2. This form agrees with the LGF inter-

actions at short distances (see Fig. 2).
The issue of how to impose the boundary conditions,

and therefore how to compute rij , turns out to make
much difference on the results for a finite system, as we
shall see. The choices of either

rij = |~ri − ~rj | =
√

x̃2
ij + ỹ2ij , (18)

 0

 1

 2

 3

 4

 5

 6

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

J
(x

,y
)

r / L

Log, y = 0
Smoothed Log, y = 0

LGF, y = 0
Log, y = x

Smoothed Log, y = x
LGF, y = x

FIG. 2: J(x, y) used in the simulations in d = 2.

with x̃ij = min(|xi − xj |, L− |xi − xj |) or

rij =
L

π

√

sin2
(

π(xi − xj)

L

)

+ sin2
(

π(yi − yj)

L

)

,

(19)

result in different behavior for the system, which will be
explained in more detail in the results section. We refer
to these choices as periodised, and smoothed, logarithms,
respectively. The latter is very close to the LGF, while
the former maintains a finite difference to it at the pe-
riodic boundary, where it is not differentiable for any L
(Fig. 2). It is easily seen why this finite difference is in-
dependent of L, if one compares the smoothed log to the
periodized Log, approximatelly equivalent to comparing
the LGF with the Log. Looking, e.g., at the midpoint of
one edge (xij = L/2, yij = 0) one finds:

(JLGF
L − JLog

L )(L/2, 0) ≈ log(π/2), (20)

where the subindex L emphasizes that we are looking at
the respective forms of the interactions in a finite system
of size L.
Note, again, that adding a constant to the interaction

(in d = 2), e.g., by changing the denominator of Eq. (17),
leaves the interaction unchanged due to the global charge
neutrality constraint.

III. METHODS

The analysis of spin systems with the potential for
glassy phases is a delicate endeavour as equilibration
of large systems is elusive. Existence and determina-
tion of a transition temperature is usually a controversial
issue17,18. Since our system has long ranged interactions,
boundary effects can cause yet more trouble. This is why
we combine analytical with numerical methods, as well
as mappings to other problems which have received at-
tention in a different context previously.
Numerically, we study the behaviour of this model

through Monte Carlo (MC) simulations, and analyti-
cally in the self-consistent Gaussian (“large-m”, also de-
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noted in the following as LM approach19–21) approxima-
tion, where the parameter A mimics an inverse tempera-
ture. Our MC simulations directly impose the constraint,
Eq. (7). For that we initialize the system in a random
configuration of vanishing total spin, and the update
movements on the system consist of selecting an arbi-
trary pair of spins, and rotating them around the axis
determined by their vectorial sum. A MC simulation of
the same system with strictly positive interactions, with-
out this constraint on the total spin has been also inves-
tigated, and the conclusion is that while the relaxation
time increases, the system still prefers to stay close to
the manifold of vanishing total spin.
The LM approach consists of considering spins with m

components and letting m → ∞. This is formally equiv-
alent to the soft spin approximation and it only gives in
principle information about the infinite number of com-
ponents limit, but this can be understood as the 1st term
in an expansion of the O(m) model. It has been very suc-
cessful in the analytical study of correlations in highly
frustrated spin systems16, being able to reproduce the
main features of the on-going phenomena, such as exis-
tence of long range dipolar correlations at T = 0, charac-
terized by the presence of “pinch points” in the structure
factor22.
The LM approach allows an analysis of the system both

at finite coupling strengths A < ∞, and at A = ∞. The
study of glassiness with this approach has been already
undertaken in a variety of models21,23, and we will be
following a similar methodology. Correlations are com-
puted through the matrix:

Bij = Jij + hiδij , (21)

and are given by:

Cij =
1

m
〈~ni · ~nj〉 =

1

A
(B−1)ij . (22)

These can be computed once the Lagrange multipliers,
hi, are determined through the set of nonlinear equations:

Cii = 1. (23)

For comparison between LM and MC, we scale observ-
ables and couplings with m so that their small-coupling
(“high-temperature”) forms agree.
The point A = ∞ is treated within the LM approach

by determining the (unique19) ground state through a
local field quench algorithm24. This algorithm is based
on the fact that if the number of spin components, m,
is large enough (larger than

√
2N19), then a system of

spins with m components is effectively equivalent to the
corresponding system in the limit m → ∞. The algo-
rithm then consists of taking a system of N spins with
m >

√
2N components initially randomly oriented, and

then iteratively aligning each spin with its local field.
This procedure is expected to converge to the unique
ground state, from which all the quantities of interest
can be computed.

A fundamental quantity at A = ∞ within the LM
approach is the number of zero eigenvalues, m0, of the
matrix Bij = Jij + hiδij ; it can be shown19 that the
ground state spin vectors span an m0 dimensional space.
This quantity should scale with the number of particles
in the system as m0 ∼ Nµ. Furthermore, as was shown
in Ref. 21, the same exponent controls the scaling of the
spin glass susceptibility for the ground state configura-
tion: χSG ∼ N1−µ.
The main quantity of interest in our study will be

the spin glass susceptibility (square brackets here and
throughout indicate the disorder average),

χSG(~k) =





1

N

∑

i,j

〈~ni · ~nj〉2 cos~k · (~ri − ~rj)



 , (24)

obtained in the MC simulations through the overlap ten-
sor3:

Qα,β
~k

=
1

N

∑

i

nα
i,1n

β
i,2e

i~k·~ri , (25)

where greek indices refer to the spin components, while
the indices 1, 2 refer to two independent replicas of a dis-
order realisation. This might be interpreted as the over-
lap of a spin configuration with itself after an infinitely
long time. Since the onset of glassiness can be also un-
derstood as a divergence of the equilibration time, the
nonvanishing of this order parameter signalizes the tran-
sition.
The spin glass susceptibility in terms of this tensor is:

χSG(~k) =



N
∑

α,β

〈

∣

∣

∣
Qα,β

~k

∣

∣

∣

2
〉



 . (26)

We follow the usual practice to determine the spin glass
transition by computing a finite system correlation length
associated to the susceptibility above. The Ornstein-
Zernike form for correlations gives:

ξL =
1

2 sin(kmin/2)

(

χSG(0)

χSG(~kmin)
− 1

)1/2

, (27)

and near the transition, the finite size scaling prediction
is expected to be:

ξL
L

= X(L1/ν(1/A− 1/Ac)), (28)

while the susceptibility should follow:

χSG

Lγ/ν
= Y (L1/ν(1/A− 1/Ac)), (29)

Notice that these scaling relations only hold if there
exists a crossing of finite size correlation length curves
for different system sizes at an unique finite coupling
strength value. The absence of such a crossing at a finite
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FIG. 3: Spin glass susceptibility (top) and correlation length
(bottom) for the LGF interaction. Several system sizes are
indicated by different colours. Circles indicate (error bars
are of the order of the circles size) MC simulations, while
lines are from the LM approach–correlations are stronger for
Heisenberg spins than the ’soft’ LM spins throughout. The
insets show scaling collapse for LM for 1/Ac = 0.

Ac indicates the absence of a phase transition. Nonethe-
less a phase transition at Ac = ∞ cannot thus be ruled
out and the LM approach allows an analysis in this situ-
ation. The scaling relations predicted to hold in this case
(Ac → ∞) are:

χSG = Ld(1−µ)Y (L1/ν/A), ξL/L = X(L1/ν/A). (30)

The exponent µ here is the one previously introduced
for the scaling of the number of zero eigenvalues of the
matrix B with the number of particles in the system.

IV. RESULTS

A. Two dimensions

The two approaches (MC and LM) yield a broadly con-
sistent picture for each of the interactions studied. We
conduct an analysis of a possible freezing transition in the
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FIG. 4: Scaling of the number of zero eigenvalues (m0) of the
matrix B defined in the text and of the spin glass susceptibil-
ity (insets) with the number of particles for the LGF (top),
and Log (bottom) interactions.

model by measuring the spin glass susceptibility and try-
ing to identify the transition through a finite size scaling
of its associated correlation length. Other observables
such as the specific heat or the uniform susceptibility
were also studied, though these do not indicate any of
the conventional orderings.
The results from MC simulations and LM calculations

are shown on Fig. 3 for the system with LGF as interac-
tion for a fixed density x = 0.10 of particles. In each case
the number of disorder realisations simulated was 200.
Globally, correlations are stronger for the MC simula-

tions on Heisenberg spins compared to the LM results.
This is in keeping with the general lore that a lower num-
ber of spin components is conducive to spin freezing, as is
well known from the comparison of Ising and Heisenberg
spins.
In the broad range of coupling strengths considered by

our analysis, no unique crossing for the different system
sizes of the correlation length curves can be identified.
The LM analysis at A = ∞ yields the exponent µ as

indicated in Fig. 4. This seems to have the same value,
µ ≈ 0.3 for both the LGF and Log interactions.
The exponent value µ = 0.3 is used as input, together
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FIG. 5: Spin glass susceptibility (top) and correlation length
(bottom) for the Log interaction, as computed on the MC
simulations (points) or with the LM approach (lines). The
insets show the corresponding scaling collapses.

with the assumption that Ac = ∞ for the LGF, in at-
tempting a scaling collapse of the LM data. The expo-
nent ν was determined by a fitting procedure with the
scaling relation, Eq. (30), only using data for the corre-

lation length. The resulting scaling collapse is shown on
the inset of the lower panel of Fig. 3, where ν = 0.68(1)
is obtained. Finally, we use all these exponents on the
predicted scaling relation for the susceptibility (the re-
sult is shown on the inset of the upper panel of Fig. 3).
The available data from the LM calculations indicates
therefore a freezing transition at Ac = ∞ for the diluted
model with LGF as interaction in two dimensions.

The Log interaction turns out leads to a dramati-
cally differing behaviour! This is a surprising result, as
the interactions only differ appreciably at large distances
(Fig. 2). Fig. 5 shows the results for the observables of
interest as obtained from MC simulations and LM cal-
culations, respectively. Here again we fix the density of
particles x = 0.1, and consider 200 disorder realisations.
A clear crossing of the correlation length curves for differ-
ent system sizes occurs and scaling collapses of the data
are possible, which are shown together with the corre-
sponding critical exponents as insets.
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FIG. 6: Disorder-averaged pair correlations with a spin at the
origin as a function of relative coordinates, centers of circles
indicate the position of the spin, its radius gives the mag-
nitude, with red (black) denoting positive (negative) correla-

tions. The central red circle thus reflects 〈~S2

i 〉 = 1. The upper
panel indicates the result for the LGF with A = 100, while
the lower corresponds to the Log with A = 20. Data shown
from MC is in agreement with LM (not shown).

To study more closely this effect, we consider the pair
correlations as a function of the relative coordinates of
the pairs, averaged over disorder realisations (Fig. 6).
The profile is isotropic for the LGF with only the 1st few
nearest neighbors significantly antiferromagnetically cor-
related. On the other hand, the Log interaction yields
strongly anisotropic behavior (the interaction itself is
anisotropic) and this seems to be responsible for what
we see as a “glassy phase transition” emerging from the
“splaying out” of the susceptibility curves. The absence
of glassiness is explained in more detail on Appendix A,
where we expose how the pair correlation profile helps us
in defining an appropriate susceptibility for the case at
hand, which is shown to diverge in the thermodynamic
limit. It turns out that this reflects not the existence of
true glassiness but a transition closer to conventional or-
dering. Note that the gross features of the correlations
(Fig. 6 lower panel) follow if one frustrates the pairs at
the kink (Fig. 2) of the Log interaction, which form a
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frame at half the system size. The set of points which in
turn are on the “frames” of O(L) points on the first frame
yield the cross shaped set of ferromagnetically correlated
sites centred on the origin.
Note that such finite-size differences appear to be ab-

sent in previous studies in d = 125; they appear to
be a consequence of the anisotropic nature of our peri-
odised Log interaction with its non-analytic minimum at
maximum separation. By contrast, the “smoothed Log”
(Fig. 2) that also respects the periodic boundary condi-
tions essentially reproduces the LGF interaction results.

1. The fully covered square lattice

For completeness, we have also analysed the situation
for a fully occupied lattice. In this case we observe that
the LGF interaction leads to conventional (Néel) anti-
ferromagnetic order, while the Log leads to a “striped”
phase. This can be understood from a theorem in Ref. 26
which states that the ground state of the system is de-
termined by the minimum of the Fourier transform of
the interaction. This is explained in more detail on Ap-
pendix B.

B. Three dimensions

We analyse the diluted cubic lattice considering a den-
sity of particles x = 0.0625, and again considering the
model Hamiltonian of Eq. (1), with interactions now re-
stricted to be the LGF as given by Eq. (16). Both Monte
Carlo simulations and LM calculations cover several sys-
tem sizes with 100 distinct disorder realisations each.
The main focus is on the possibility of a glassy phase
and the spin glass susceptibility and corresponding cor-
relation length are computed. Our prior discussion of the
finite size scaling relations still holds, and one determines
the transition as an unique crossing of the finite size cor-
relation length curves. Instead of this we observe (Fig. 7)
a trend for the crossings to shift towards larger values of
A as the system size increases, similar to the situation in
two dimensions.
No good scaling collapse was obtained. A freezing tran-

sition in this system at a finite coupling strength therefore
appears unlikely, though a more careful finite size scaling
analysis of the crossings is necessary to give a definitive
answer.
A LM study at A = ∞ reveals that the exponent for

the scaling of zero eigenvalues of the matrix B with sys-
tem size yields µ = 0.33, in agreement with the predic-
tion in 3 dimensions for a short ranged interacting sys-
tem21. Using of this exponent and the scaling relations
at A = ∞ does not lead to a good scaling collapse of
our LM data, reinforcing the conclusion that this system
does not present any freezing transition at A = ∞.
The pair correlations exhibit the same sort of behav-

ior as in the 2d case: only the 1st few nearest neighbors
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FIG. 7: Spin glass susceptibility (top) and correlation length
(bottom) as computed from the LM approach (lines) or mea-
sured in the MC simulations (points), for the LGF interaction
on the cubic lattice.

tend to be strongly antiferromagnetically correlated, but
no correlations develop at large distances as the coupling
strength is increased, and the system remains paramag-
netic.

V. SPECTRAL PROPERTIES

The A−1 = 0 transition can be considered from the
point of view of the interaction matrix Jij (16) and (17),
as an example of euclidean random matrix (ERM):14 un-
like the traditional random matrices, where different en-
tries of the matrix are uncorrelated, ERM’s are defined
by a function of the distance between two points f(r),
where the randomness in the entries is induced by the
randomness of the underlying point pattern {ri}. These
random matrices have been studied for certain classes of
functions f15, and some classical results are available.
Our degree of understanding of this subject is not com-
parable to that of the classical (e.g. GOE,GUE, Wishart)
ensembles27 with most results coming from exact diago-
nalisation and approximations14,15,28.
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FIG. 9: Ground state eigenvector showing a trimer for a par-
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circles, which are centered on the corresponding spin position.
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Unfortunately due to the long-range nature of the log-
interaction, many of the methods to analyse the spectral
properties presented in Ref. 15 do not apply directly to
our case. However, a phenomenological picture of the
low- and high-lying eigenstates of the matrix Jij can be
established transparently.
Let us start from the large positive eigenvalues. Since

Jij is constant in sign, the Frobenius-Perron theorem
states that a highest eigenvector is nodeless. To a rea-
sonable approximation, it is fully delocalised,

φ(N) ≃ (1/
√
N, ..., 1/

√
N). (31)

The associated eigenvalue is

λmax ∼ N

2
lnN. (32)

with an inverse participation ratio of 1/N .
The second-to-highest eigenvalue is also associated to

a delocalised eigenvector, which is now a wave with wave-
length . L. At these length scales the randomness of the
point process plays little role. A finite fraction (possi-
bly all) of the eigenstates containing the largest eigenval-
ues are delocalised, they correspond to long-wavelength
charge-density variations. The average spectral density
(DOS) of the LGF (16) interaction matrices is shown on
top panels of Figs. 10 and 11, in the limits of high (x =
0.125) and low density (‘continuum limit’, x = 2−13),
respectively.
Guided by the numerics, we see that the eigenvectors

corresponding to the most negative eigenvalues are lo-
calised eigenvectors: most of the weight is concentrated
on O(1) spins. This leads us to consider isolated perco-
lation animals.
The simplest (and, for small x, the most abundant) of

these is the dimer. A well-isolated dimer supports two
eigenvalues: an antisymmetric and a symmetric one. The
antisymmetric one,

φ(0) = (1/
√
2,−1/

√
2, 0, ..., 0) (33)

corresponds to the smallest eigenvalue. In fact, since the
closest pair is located one lattice spacing away J12 ∼ lnL
and the lowest eigenvalue is

λmin ≃ − ln(L) +O(1) ≃ 1

2
ln(N/L2)− 1

2
ln(N) +O(1).

(34)
At fixed density, N/L2, the lowest eigenvalue depends
logarithmically on the system size.
For a well isolated dimer, say at distance r from the

closest spin, the effect of neglecting the rest of the spins
appears as a correction O(1/r).
We now consider how big this isolation distance r is.

By the usual arguments of percolation theory, one can
estimate the expected number of isolated dimers as

nd(r) = L22x2(1− x)πr
2

, (35)

where we have approximated the number of lattice sites
in a circle of size r with πr2. Therefore the most iso-
lated dimer (the solution of the equation nd(r) = 1) is
surrounded by an empty area of size

r(L) =

√

2 ln(xL
√
2)

√

π ln(1/(1− x))
. (36)

Note the extremely slow dependence r(L) ∼
√
lnL.

Inserting L = 120 and x = 0.1, which is about the
largest sizes considered in our numerics, r = 4.13, which
can hardly be called isolated.
The isolation effect would be much more pronounced

for x = 10−3, L = 1, 200, for which r = 18.4. Other-
wise, one needs to consider the ground states of more
complicated lattice animals, like trimers, snakes, squares
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using Jij as defined in (16), the LGF interaction. The inset
shows the fluctuations of Y .

etc. As an example, a ground state eigenvectors for one
disorder realisation is shown on Fig. 9.
This problem becomes quickly analytically prohibitive.

However the fact that the ground state is localised on
some lattice animal appears robust: on the graphs we
consider, the smallest eigenvalue is ∼ − lnL and the IPR
is O(1).
With the lower end of the spectrum localised and the

high-end delocalised, it is a natural question whether
there exists a mobility edge separating the two limits.
In order to study the transition we have looked at the
inverse participation ratio as a function of the eigenvalue
λ:

IPRα =
∑

i

v4αi

Y (λ) =
1

ρ(λ)

∑

α

IPRαδ(λ− λα), (37)

where λα and vαi are eigenvalues and normalized eigen-
vectors of Jij respectively. We consider the average
[Y ](λ) and fluctuations σ(Y )(λ).29 Amobility edge would
be signaled by the divergence of the fluctuations of Y (λ)
at a certain λc. Numerical diagonalization of Jij does not
indicate such a transition: the two limits appear to be
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FIG. 11: Spectral density (top) and average Y (bottom) for
a fraction of x = 2−13 occupied sites in the lattice, using Jij

as defined in (16), the LGF interaction. The inset shows the
fluctuations of Y .

separated by a crossover. The bottom panels on Figs. 10
and 11 show, respectively for a high and low density of
particles, the average Y (λ), while the insets display the
fluctuations of Y (λ). The spectral properties of the LGF
in d = 3 turn out to be very similar to the d = 2 case
(not shown).
A detailed study of this ERM ensemble would be de-

sirable and is left for future work.

VI. PAIR CORRELATIONS AND SCREENING

A. Analytical theory of screening

Away from the T → 0 limit of the microscopic model,
excitations of the non-orphan tetrahedra out of their mo-
mentless state carry gauge charge, which leads to a vari-
ant of Debye screening, with the special feature that the
gaplessness of the charge excitations leads to a some-
what unusual temperature dependence of the screening
length30.
In addition to this, even in the limit T → 0 studied

here, we encounter an additional type of screening. This
occurs on account of the long-range uniformly antiferro-
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magnetic Coulomb interaction between the orphan spins,
whose existence is the distinguishing property of the ran-
dom Coulomb antiferromagnet. It again exhibits a Debye
form, although distinct from the setting of mobile charges
in which Debye screening is normally considered, as here
it is the (continuous) flavour of the charges – the orien-
tation of the orphan spin whose orientation is free but
whose location is fixed – which is the dynamical degree
of freedom.
This can be seen directly in a weak-coupling expan-

sion, which in Coulomb systems has a vanishing radius
of convergence in the thermodynamic limit, as is easily
verified in our simulations, Fig. 12.
To elucidate the role of screening, we compute the dis-

order averaged correlator between two spins at ra and rb.
Consider the Hamiltonian

H =
α

2

∑

i,j

Jij~ni · ~nj , (38)

where Jij are given by either the Log or the LGF and
we will eventually set α = 1. The correlation function
between two spins, for fixed disorder is:

Cab = 〈~na · ~nb〉 =
= 1

Z

∫

d3Nn
∏

i δ(1− n2
i )(~na · ~nb)e

−α
2

∑
i,j

Jij~ni·~nj .(39)

As it is not the hard spin constraint which is central
to the physics of screening, we substitute it with some-
thing more manageable (analogously to the LM method,
but without imposing self-consistency). Representing the
delta function with a Gaussian term

δ(1− n2
i ) →

1

(2π/3)3/2
e−3

n2

i
2 (40)

(with a factor of 3 to guarantee that 〈nx2
i +ny2

i +nz2
i 〉 =

3/3 = 1). Thus

Cab = δab − 〈a|
1
3αJ

1 + 1
3αJ

|b〉 (41)

where we use a matrix notation 〈a|J |b〉 = Jab. For sim-
plicity we will not write the δab term, which only affects
the result for the self-correlation (it will return to be
important when we discuss the LM approximation again
later). The correlation function between a and b depends
also on the positions of all the other points x2, ..., xN so
it should be written as C(xa, xb|x2, ..., xN ).
This Gaussian approximation is equivalent to the re-

summation of a set of diagrams in which there are no
internal loops, dubbed “chain diagrams.” This approxi-
mation is justified in the limit of small α, in which spins
are rarely polarized along some direction and the hard-
spin constraint is not so important.
This result holds for each disorder realization. We now

take the average over realizations (leaving the question
of whether this is representative of the distribution or
not for later) keeping fixed the position of the two spins
a, b. For doing this, it is convenient to go back to the
geometric expansions and define

E [Cab] ≡
∫

dN−2x

SN−2
C(xa, xb|x1, ..., xN−2) (42)

where xi are the locations of the other N − 2 spins and
S = L2. We have relaxed the constraint that points be
located on a square lattice, which is immaterial in our
high temperature, low-dilution expansion.
Unfortunately it is difficult to see what the distribution

of J induced by the random positions is, but we can
expand the Gaussian result in powers of α and do the
average term by term.
We get

E [Cab] = −1

3
αJab +

∑

i

(

1

3
α

)2

E [JaiJib]

−
(

1

3
α

)3
∑

ij

E [JaiJijJjb] + ... (43)

Now, term by term we obtain objects like

E

[

∑

i

JaiJib

]

= (N − 2)

∫

d2x

S
J(xa − x)J(x− xb)

= ρ

∫

d2xJ(xa − x)J(x − xb) (44)

where ρ = (N − 2)/S ≃ N/S is the density of points.
Fourier transforming,

ρ
∫

d2xJ(xa − x)J(x − xb)

= ρ

∫

d2x
d2q

(2π)2
d2q′

(2π)2
JqJq′e

iq(xa−x)+iq′(x−xb)(45)

= ρ

∫

d2q

(2π)2
J2
q e

iq(xa−xb). (46)
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The geometric series obtained thus for E [Cab] yields

E [Cab] = −
∫

d2q

(2π)2
eiq(xa−xb)

(α/3)Jq
1 + (αρ/3)Jq

. (47)

Now, for both Log and the LGF, Jq ≃ c/q2 (c is a con-
stant of O(1))31 so that at small α we have approximately

E [Cab] ≃ −
∫

d2q

(2π)2
eiq(xa−xb)

(cα/3)

q2 + (cαρ/3)
. (48)

This leads to

E [Cab] ≃ (−2α/3)K0(r
√

cαρ/3) (49)

which exhibits a screening length

ξ = 1/
√

cαρ/3. (50)

As both α and c are O(1) this shows (not surprisingly)
that the screening length is proportional to the 1/

√
ρ.
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FIG. 13: Correlation function exhibiting screening: numerical
results (for a single disorder realization with N = 200 points
on a square of unit size) compared to the predicted analytical
form from the chain diagrams.

Note that in this approximation, for ra,b ≪ ξ the cor-
relation function C(r) ≫ 1, which is not physical for unit
length spins. This is an artefact resulting from substitut-
ing the hard spin constraint with a quadratic confining
potential. Therefore this approximation is internally con-
sistent only for ra,b & ξ, where it predicts an exponential
damping of the correlations but we note that the large
anticorrelations at short distance due to strongly coupled
spins close to one another put these into a state with van-
ishing total spin, which – physically correctly – screens
their joint field at larger distances.

B. A random scattering picture

The final question we address concerns the fluctuations
of the random quantity (41) and whether these may sig-
nal any phase transition even when the mean does not.

To gain some insight into this, we develop an analogy
with wave propagation in disordered media, which sug-
gests that no transition exists. The basic observation is
that the interaction is simply related to the inverse of the
Laplacian, the propagator of a free particle on the lattice:
Considering that

Jij = 〈i| 1

−∇2
|j〉 (51)

properly regularized (particularly important is the con-
dition that Jii = 0), we can rewrite the expression (41)
as

Cab = δab −
α

3
〈a| 1

−∇2 + V − E
|b〉, (52)

where E = 0 and

V (x) =
α

3

∑

i

δ(x− xi) (53)

is a random potential. This can be established by ex-
panding in powers of α.
Thus C is (proportional to) the propagator for a wave

in a two-dimensional box with randomly placed point-like
scatterers32,33, at energy E = 0.
The precise form of the mapping is the following: the

correlation function

− 3

α
〈nanb〉, (54)

is the amplitude of a signal sent from the scatterer a to
the scatterer b, considering all order processes bouncing
over all the N scatterers. In case a = b the direct path
from a to b needs to be neglected. This is a form of
renormalization of the scattering problem which is always
necessary in the point-like (or s-wave) scattering limit34.
Once the renormalization procedure is done, the prob-

lem we are left with corresponds to the propagation of
a scalar wave, damped by a scattering section for every
typical realization of disorder. Without repeating the
classical treatment of this phenomenon we can say that
the signals (spin-spin correlations) must be screened for
any α, the screening length (measured in units of 1/

√
ρ)

being a decreasing function of α. Even if not precisely of
the form (50) for small-α, it seems to diverge like 1/

√
α.

This is valid both for the coherent field E [Cab] and the

incoherent field E
[

C2
ab

]

−E [Cab]
2
, although the scatter-

ing sections (and hence the damping/correlation lengths)
might have different values. This analogy makes us re-
alize that in this approximation there is no transition

irrespective of the value of α or ρ, and this is consistent
with numerical results.
This analogy extends also to the LM limit. Consid-

ering a small-α series expansion for the spin correlation
function:

haCabhb = δabha−αJab+α2Jai
1

hi
Jib−α3Jai

1

hi
Jij

1

hj
Jjb+...

(55)
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(recall that in LM α is scaled by a factor 1/m, hence
the factor of 3 of the previous paragraphs is absent here)
where the extra factors of ha need to be chosen in such
a way that

Cii = 〈nini〉 = 1. (56)

Cab is then proportional to the propagator

Gab = h̃ab − α〈a| 1

−∇2 + V − E
|b〉, (57)

where h̃ is the diagonal matrix with diagonal entries
{hi}i=1,...,N , E = 0 and

V (x) = α
∑

i

1

hi
δ(x − xi), (58)

where the renormalized value 〈i| 1
−∇2 |i〉 = 0 is intended.

This is a scattering problem over point-like scatterers,
where now each scatterer has different scattering ampli-
tude. This modification should not change the physi-
cal analogy of the problem. This is again a scatter-
ing problem of a scalar wave over point-like scatterers.
The propagation of the wave is attenuated over distance
in the usual exponential fashion. Therefore, if a phase
transition exists, it is not mirrored in the divergence of
the correlation length. Conversely, as this treatment is
closely related to the LM one (rather than the Heisenberg
model), on account of the softening of the hard constraint
to a Gaussian one, we would not expect a transition at
finite value of α.

VII. DISCUSSION

We have studied the effective theory describing disor-
der in the form of quenched non-magnetic impurities, in
the topological Coulomb phase, on a lattice with bipar-
tite dual. Interactions in the effective picture are long-
ranged, and to the best of our knowledge this is the first
study available of such a model.

A. A freezing transition?

Our results show that any freezing transition, if it ex-
ists, is extremely tenuous. In d = 2, for LM there does
not appear to be freezing for any finite coupling, with
a nice scaling collapse of the data at A = ∞ indicating
freezing to take place in this limit.
The relation of this result to a finite number of spin

components is the following. Firstly, our Heisenberg sim-
ulations cannot access a freezing transition, but they do
show a greater tendency towards glassiness than LM,
with both a larger spin-glass correlation length and an
enhanced tendency for the curves to cross.
This is in keeping with the general expectation21 for

the more constrained Heisenberg model to freeze before

the soft spins do (anf after an Ising model might). If there
is a freezing transition at Ac < ∞, it will still be at phan-
tastically large coupling Ac > 100. The delicate nature
of all of these phenomena is further underscored by the
dependence on finite-size choices, which may lead to an
entirely different set of instabilities. Similarly, the analyt-
ical approaches, in particular the mapping to a quantum
scattering problem, see little indication of a transition.
The tendency towards freezing seems to be even weaker

in d = 3, perhaps surprisingly so, given the freezing tran-
sition is more robust in higher dimension for the instances
of canonical spin glasses. However, unlike in these cases,
our distribution of the intersite couplings is dimensional-
ity dependent, and in particular becomes ’shorter-ranged’
as the power law of the decay of the Coulomb law grows
with d (while, of course, the power law with which the
number of distant spins grows, increases).
The weak tendency towards freezing is in keeping with

the fact that our model is not easily deformed into one
of the standard spin glass models. On one hand, in-
creasing the range of the interaction towards the extreme
of doing away with any notion of distance and assign-
ing equal coupling between all the spins yields simply a
global charge-neutrality constraint (which, at any rate, is
already enforced microscopically) and therefore preserves
a microcanonical version of a perfect paramagnet. If the
coupling is restricted to nearest-neighbours only, we in-
stead get a combination of percolation physics and that of
the standard Néel state for a bipartite antiferromagnets,
where any tendency towards disorder is a dimensionality
effect, and glassiness is nowhere to be seen.
The tendency towards glassiness is therefore necessar-

ily due to a combination of the non-constancy of the log-
arithmic interaction – which, helpfully, is not bounded
as r → ∞, along with its long range. Studying mod-
els exhibiting this pair of ingredients more systemati-
cally is surely an interesting avenue for future research.
We would like to emphasize, in particular, that the phe-
nomenon of screening we have discussed has no counter-
part in the literature on conventional spin glasses, where
the random choice of the sign of the interactions does not
allow the identification of an underlying charge structure.
In this sense, our model is much closer to those fa-

miliar from the study of Coulomb glasses, although the
differences here are again considerable. We have vector
charges rather than Ising (positive or negative) ones; dis-
order appears in the form of random but fixed locations

rather than fixed on-site potentials for charges not bound
to a particular site. It is intriguing that such a variation
of a classic Coulomb glass appears entirely naturally in
frustrated magnetism.

B. Freezing in frustrated magnetic materials

With Heisenberg spins placed at random sites of the
pyrochlore-slab lattice (also known as the SCGO lattice)
and a particular, microscopically determined value of A,
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the d = 2 case of our Coulomb antiferromagnet corre-
sponds, up to the sublattice-dependent inversion factor
mentioned earlier, to the T → 0 limit of the physics of
orphan-spins created when a pair of Ga impurities substi-
tutes for two of the three Cr spins in a triangular simplex
of this lattice. Although experimental interest in SCGO
dates back to the 80s and played a key role in stimulat-
ing experimental and theoretical interest in the area of
highly frustrated magnetism11, the behaviour of SCGO
is reasonably well-understood in theoretical terms only in
the broad Coulomb spin-liquid regime down to about a
hundredth of the exchange energy scale (of order 500K)
between the Cr spins. The magnetic response in this
regime can be modeled in a rather detailed way as being
made up as the response of a pure Coulomb spin-liquid
superposed with the Curie-tails associated with vacancy-
induced “orphan-spin” degrees of freedom5–8 that carry
an effective fractional spin4,10 and leave their imprint
on NMR lineshapes10 and bulk-susceptibility5,6,10 in the
Coulomb spin-liquid phase. In contrast, the physics at
very low temperatures (of order 5K or lower) is still not
very well understood, with intriguing but largely unex-
plained reports of observed glassy behaviour even at very
low densities of Ga impurities12,13, which appears to in-
volve only the freezing of a fraction of its degrees of free-
dom.

Our model retains the key feature of the T → 0 limit of
the effective model, namely the long-range Coulomb form
of the effective exchange couplings, but does not retain
the detailed geometry of these orphan-spins in SCGO, ex-
cept for the sublattice-dependent inversion that connects
the degrees of freedom of our Coulomb antiferromagnet
with the underlying physics of these orphan-spins.

Bearing all this in mind, the usual caveat about ide-
alised models for frustrated systems applies to our study
as well: Our starting Hamiltonian of a classical nearest-
neighbour Heisenberg model does not include a num-
ber of aspects – further-neighbour interactions, single-
ion anisotropies, non-commutation of spin components –
all of which give rise to interesting, generally non-glassy,
physics of their own. If and when these energy scales
dominate over our the instabilities of the idealised model,
it is the former which will likely show up more promi-
nently in experiment.

In addition, in our case, the critical coupling Ac, even
if it is not infinite, is hard to attain in any microscopic
model. Indeed, for the checkerboard lattice, one obtains
A = 1/4π from a microscopic calculation, easily within a
very short-range correlated regime.

At any finite temperature, which is all that can be ac-
cessed experimentally for the time being, the Coulomb
interactions obtain a finite-screening length due to the
thermal excitation of charges even in non-orphan tetrahe-
dra. Following the general lore on spin freezing, this pre-
cludes even canonical Heisenberg spin glassiness. For this
reason, the abovementioned A-independence of a freez-
ing transition in d = 2 is not going to carry over directly
to the experimental compound.

 0

 10

 20

 30

 40

 50

 0  10  20  30  40  50

y

x

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 4.4  4.8  5.2  5.6  6  6.4

lo
g

(χ
)

log(N)

Slope = 0.66(3)

A = 10
    12
    14
    16
    18
    20

FIG. 14: (Left)The sign function on the 1st quadrant for a
lattice of side L = 100 used to resum the correlations. (Right)
The scaling of the new susceptibility proposed to describe the
ordering occuring with the Log interaction.

-0.05

 0

 0.05

 0.1

 0.15

 10  15  20  25  30  35  40  45  50
J
(k

)
n

LOG, Edge
     Diag.

LGF, Edge
     Diag.

-0.055

-0.05

-0.045

-0.04

-0.035

 40  42  44  46  48  50

FIG. 15: Numerically obtained Fourier transform of Log (red)
and LGF (blue) for a lattice of size L = 100. Circles connected
by lines indicate the edge ky = 0, while squares indicate the
diagonal kx = ky . The index n labeling the x axis indicates
the index of the wave vector: kx = 2π

L
n. The inset shows in

more detail the region near the global minimum.

However, real systems will only be quasi-2d, with resid-
ual couplings between the two-dimensional layers. In-
deed, for the case of SCGO, dilution also breaks up the
tightly bound singlets of the dimers of Cr ions which iso-
late the kagome-triangle-kagome trilayers from one an-
other. The consequences of coupling in the third dimen-
sion remain an interesting yet completely open topic for
future study.

C. Connection to other models

More broadly, perhaps the most pleasing aspect of this
work is how it naturally connects (with) a number of de-
formations of well-known problems–the scattering prob-
lem, Coulomb glass physics, or random matrix theory.
In particular, we have identified a straightforward way
of obtaining a Euclidean random matrix problem from
a simple magnetic model where long-range interactions
emerge naturally. We hope that this will motivate fur-
ther work on any (and perhaps all) of these problems.
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Appendix A: Non-Glassiness for the Log Interaction

The pair correlation profiles for the Log interaction
exhibit a structure hinting on the way pair correlations
should be summed in order to define a generalized suscep-
tibility describing the order present on this system. This
order reflects the symmetry of the interaction, which is
anisotropic, but has the symmetries of the square lattice.
We define a sign function, θ(x, y), which on each quad-

rant has alternating values ±1 on suscessive “square
frames” of fixed width of 2 lattice sites for any L. As-
suming (x, y) on the 1st quadrant, this function has the
profile pictured on the left panel of Fig. 14.
The corresponding susceptibility reads:

χ =





1

N

∑

i,j

θ(~rij)
〈

~Si · ~Sj

〉



 . (A1)

Square brackets denote as usual disorder average. This
susceptibility diverges with system size, and its scaling in
MC simulations is shown on the right panel of Fig. 14;
the same behavior is found in the LM.

Appendix B: Fully Occupied Lattice

Proposition 1 in Ref. 26 states that if Ĵ(k) is the
Fourier transform of the interaction matrix J , then a

minimizer ~k0 for Ĵ(k) determines a modulated ground
state for the system with that wavevector.
The Fourier transform of the LGF at nonzero wavevec-

tor is readily read from its definition, Eq. (16):

ĴLGF(k) =
1

2− cos(kx)− cos(ky)
(B1)

which has a minimum at ~k = (π, π), thence we find “con-
ventional” antiferromagnetic order.

For the Log interaction, we are not able to find an
analytical expression for its Fourier transform, but nu-
merical results show that the global minima happen at
~k = (π, 0) or (0, π), which explains the striped phase for
the fully occupied lattice. The non-analyticity of the dis-
tance function periodized by the functions min(x, L− x)
or min(y, L − y) (which is seen as a discontinuity in the
derivative along the lines x = L/2 or y = L/2) gives rise

to “ringing” in ĴLog(k), a line of alternating local max-
ima and minima appear along kx = 0 or ky = 0. The
new global minimum is shifted from (π, π) to the edges
of these lines, as shown in Fig. 15.

Appendix C: Verifying Equilibration

Our simulations require exploring a region of very
high coupling, A. In this case it is important to en-
sure that equilibrium is attained. To test this, we bin
the data for the spin glass susceptibility. This bin-
ning consists of subdividing the total number of mea-
surements, Nm, in contiguous bins of successive sizes:
1, 1, 2, 4, 8, . . . , Nm/4, Nm/2. The average for each bin
is then plotted against the logarithm of the bin size
(Fig. 16). Equilibrium is diagnosed by at least the last
3 bin averages agreeing within the interval set by their
error bars.

The final equilibrium values used consist of the average
of the last half of the measurements made in the simula-
tion, Nm/2.
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