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Abstract: 

It is a common feature of proteins to bind to other ligands like nucleic acids, peptides, 

metals and a wide range of small molecules. The prediction and detection of these 

binding sites is a major step in order to guide wet-lab experiments and ultimately 

determine the function of a protein. While a proteins function can sometimes be 

identified by sequence homologs, the prediction of binding sites based on a proteins 

structure is another major approach in order to overcome this task. Binding sites are 

often closely linked to structural binding motifs, which are specific three-dimensional 

arrangements of amino acids within a protein. Other than sequence motifs, functional 

structural motifs occur in space without close proximity of participating residues on 

sequence level. Thus, they are extremely difficult to detect. So far we know very little 

about the features of functional structural motifs. Are there for instance recognizable 

short sequence motifs in the vicinity of motif residues? What is the typical spatial and 

sequential distance of motif residues? Are there any preferences of amino acid types 

forming structural motifs? These and other questions will be answered in this thesis in 

order to get a comprehensive understanding of functional binding motifs for different 

ligands. Following that we developed a novel prediction algorithm combining structural 

information with statistics evaluated from significant datasets. This algorithm is not 

only able to detect already known structural motifs but also has the potential to detect 

yet unknown binding sites formed by novel motifs. 
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Zusammenfassung: 

Proteine sind in der Lage eine Großzahl verschiedener Liganden wie etwa Nucleinsäuren, 

Peptide, Metalle oder verschiedenste kleine Moleküle zu binden. Die Vorhersage und 

Identifizierung solcher Bindestellen ist fundamental, um weiterführenden 

Laboruntersuchungen die Richtung zu weisen und letztlich die Funktion eines Proteins 

zu ergründen. In einigen Fällen lässt sich die Funktion mithilfe eines homologen Proteins, 

sprich einem Protein mit ausreichend ähnlicher Aminosäuresequenz, ermitteln. Häufig 

lassen sich Bindestellen aber auch anhand der Proteinstruktur vorhersagen. Bindestellen 

werden häufig von sogenannten strukturellen Motiven gebildet, sehr spezifischen, 

dreidimensionalen Anordnungen von Aminosäuren innerhalb eines Proteins. Im 

Gegensatz zu Sequenzemotiven können Aminosäuren, welche sich in einem 

Strukturmotiv in räumlicher Nähe befinden, über einen großen Sequenzbereich des 

Proteins verteilt sein. Aus diesem Grund ist ihre Identifikation schwierig. Zum jetzigen 

Zeitpunkt sind nur sehr wenige Strukturmotive und die von ihnen geformten Bindestellen 

eingehend untersucht worden. Lassen sich zum Beispiel kurze, erkennbare 

Sequenzähnlichkeiten innerhalb der Strukturmotive erkennen? Befinden sich die 

Aminosäurereste innerhalb von typischen räumlichen oder sequenziellen Distanzen? Sind 

bestimmte Aminosäuren häufiger vertreten und welche Rolle kommt ihnen innerhalb der 

Motive zu? Dies sind nur einige Fragen, welche in dieser Arbeit beantwortet werden 

sollen, um ein umfassendes Verständnis von funktionalen Strukturmotiven zu erlangen. 

Basierend auf diesem Wissen wurde ein neuer Algorithmus, welcher strukturelle 

Informationen und Statistik kombiniert, entwickelt. Dieser ist nicht nur in der Lage, 

bereits bekannte Motive zu erkennen, sondern auch bisher unbekannte Bindestellen und 

die damit einhergehenden Motive zu entdecken. 
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1 Introduction 

 

Up to this date the number of solved protein structures has by far surpassed the 

corresponding evaluation of their function. While structure determination by x-ray 

crystallography, NMR or electron microscopy have advanced rapidly, the function of 

many proteins remains unclear (1). It is now in the hand of computational biology to guide 

the often time-consuming and expensive wet-lab experiments into the right directions. 

Predicting the possible function of a protein based on sequence or structure is still a 

challenging task. Many different methods have been developed making use of the fact 

that proteins with comparable sequence or structure quite often show similarities in 

function (2, 3). By using information gathered from these so called homologues proteins, 

conclusions can be made to predict the function of an uncharacterised protein. 

 

1.1 Conservation in sequence and structure 

 

The detection of reoccurring patterns is one major approach of today’s cooperative 

biochemistry field in order to establish relations between different genes, proteins or even 

whole organisms. In the cases of proteins and nucleic acids, a pattern of nucleotides or 

amino acids that appears very frequently and therefore has a biological significance is 

referred to as a motif (4). Genes and proteins are conserved on several levels throughout 

evolution. It needs to be pointed out that there are motifs in sequence and in structure, 

thus called “sequence motif” or “structural motif” accordingly. Sequence motifs are very 

common in nucleic acids and proteins, whereas structural motifs appear in proteins, 

although some structural motifs in RNA molecules have been also observed (5, 6). 

Sequence motifs can be identified by aligning sequences. Structural motifs are three-

dimensional arrangements and are much more difficult to identify. Given the strong 

linkage of sequence and structure, a sequence motif of sufficient length will most likely 

result in a structural motif, whereas some structural motifs show no sequence 

conservation at all (6-8).  

Most proteins of related function show sequence motifs as well as similarities on 

structural level (3, 9).  While close sequence homologs can easily be detected by aligning 

their amino acid sequence with such popular methods as BLAST or FASTA, this gets 
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more and more challenging with decreasing sequence identity (10, 11). More advanced 

sequence based methods use predefined patterns, like PROSITE, or apply complex 

mathematical models like Hidden Markov models to identify sequence motifs with very 

weak similarities (12, 13). Nevertheless, due to insertions and deletions it can become 

impossible to find significant matches on sequence level. At this point it can often be 

useful to look at the proteins structure instead of its sequence, since structure is 

evolutionary much more conserved than sequence. Even proteins with far less than 20 % 

of sequence identity can share common fold elements (14, 15). Since the relationship 

between structure and function has been well established during the last few years, this 

approach can give good insight into a proteins function inside the so called “twilight 

zone” of sequence similarity (16, 17). One of the most impressive examples to 

demonstrate structural similarity in absence of sequence similarity are the proteases of 

the PA clan. They all share a chymotrypsin like fold and a similar mechanism of 

proteolysis. But their overall sequence identity can be lower than 10 % (18, 19). The 

important role of the spatial arrangements of amino acids has been demonstrated for 

several other biological processes besides catalytic activity (20, 21),  namely DNA/RNA 

interaction (22, 23), ion fixation (24), antigen-antibody-interaction (25) and structural 

stabilization (26).  

 

1.2 Structural motifs and their role in binding mechanisms 

 

One very important property of proteins is the ability to bind a wide variety of other 

molecules. This feature is often closely related to a proteins function. For example, most 

transcription factors bind to nucleic acids while many proteins, which are associated to 

the membrane, can bind lipids. But these are only two of many different binding partners. 

Other binding sites can for example bind to metals, peptides, small molecules like ATP 

or sugars as well as other proteins in the formation of protein-protein complexes. This 

very common trait can have many different forms, from a general binding mechanism for 

binding partners belonging to a whole group (e.g. metals, nucleic acids) to selective 

binding to only one very specific molecule or nucleic acid sequence. The detection of 

possible binding sites is therefor on major step towards the understanding of a proteins 

function. The fact that most binding sites are closely linked to a structural motif can be 

exploited to detect possible binding sites if a proteins structure is known (6, 7, 27). 
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Before an approach can be made to predict binding motifs, it is first necessary to learn 

more about the features of the different binding mechanism in detail. What are the main 

forces involved in the binding mechanisms, how do binding sites differ and what do they 

have in common? Are they very diverse within a single binding type and what are their 

most outstanding features? These are only a few questions, which need to be addressed 

beforehand. In order to do so, reliable sources of protein – ligand complexes and their 

interfaces are required.  

A wide variety of databases and datasets can be found, but a database only containing 

interactions establishes by already known structural motifs is not available. Instead many 

databases contain protein – ligand complexes based on the evaluation of the Protein Data 

Bank. They differ strongly in size, content, up-to-dateness, redundancy and the definition 

of ligand – protein interface. The simplest way to classify a residue as an interface residue 

is by distance. If any atom of a residue is within 3-5 Å of the ligand, most databases define 

it as an interface residue. In addition to distance, rule-based definitions are sometimes 

used to identify and also to describe the interaction in more detail as Van-der-Waals, 

hydrogen-bonding, hydrophobic or electrostatic interactions. This can go even further and 

consider water bridged interactions (28-30). This definitions already display the main 

forces involved in binding mechanisms. Many publications tried to point out the 

characteristics of different protein – ligand complexes. A more consistent picture 

comparing different mechanisms with structures and interfaces originating from one 

source has yet to be drawn (31-33).  

One of the most comprehensive databases up to this date is BioLiP. The database is 

updated weekly. It contains 331,591 entries (11.12.2015), separated into DNA/RNA 

ligands, peptide ligands, metal ligands and other regular ligands. In addition, BioLiP uses 

a composite automated and manual procedure for examining the biological relevance of 

ligands in the PDB database. Each entry in BioLiP contains a comprehensive list of 

annotations on: ligand-binding residues, ligand binding affinity (from the original 

literature, plus Binding MOAD, PDBbind-CN, BindingDB), catalytic site residues 

(mapped from Catalytic Site Atlas), Enzyme Commission numbers, Gene Ontology 

terms, cross-links to the PDB, UniProt, PDBsum, PDBe, and PubMed databases. 

Interface residues defined by a cut-off which is set to be 0.5 Å plus the sum of the Van–

der-Waals radius of the two atoms under investigation (30, 34).  

Other databases worth mentioning and used in this work are: epitome (35) and AgAbDb  

for antigen-antibody complexes (36), 3d-footprint for protein-DNA interactions (29) and 
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PRIDB for protein-RNA interactions (37). To gather data on druggable small molecule 

binding sites scPDB (28) can be used. 

 

1.3  DNA/RNA binding motifs 

 

Proteins binding to DNA is a fundamental biologic process. Nearly every mechanism 

involved in the regulation of gene expression can be related to a protein binding to DNA. 

This can be as simple as in the case of prokaryotic operons, where s single protein can 

repress or activate gene expression. In most eukaryotic organisms the process is much 

more complex and many different proteins can be involved. Nevertheless, binding of 

proteins to DNA is a common, very important process. While unspecific binding can be 

achieved with a wide variance of proteins, the binding to a specific side usually is 

achieved by DNA binding motifs. There is a wide range of DNA binding motifs known. 

The most common ones are discussed in the following section to give insight into the 

overall diversity, the concept of structural motifs and to stress important points regarding 

this topic (38, 39). 

 

Helix-turn-helix 

One of the first motifs to be observed was the helix-turn-helix (HTH). Consisting of two 

α - helices connected by a short strand of amino acids, it appears in transcription 

regulatory proteins like Cro, CAP, and the λ repressor. It binds to the mayor groove of 

the DNA double helix through several hydrogen bonds and Van-der-Walls interactions. 

The recognition is achieved by one of the two helices, while the other one is required for 

the stabilization of the interaction (40-42). 

The so called homeodomain proteins are a specific class of proteins containing the HTH. 

They were first discovered in Drosophila and led thereby to the important conclusion that 

principles of gene regulation established in bacteria are relevant to higher organisms as 

well. In the so called homeodomain, the HTH motif is always surrounded by the same 

structure. In bacteria the helix-turn-helix can be found embedded in many different 

structural contexts.  Since then, structural studies have shown that a yeast homeodomain 

protein and a Drosophila homeodomain protein have very similar conformations and 

recognize DNA in almost exactly the same manner, although they are identical at only 17 
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of 60 amino acid positions (43). This fact stresses two important points. First, like 

mentioned before, we see that structure is much more conserved than sequence. In 

addition the important difference between the term “structural motif” and “domain” can 

be observed, although they are quite often falsely used in a likewise fashion in literature. 

A domain is independently stable, can fold autonomously, and a very specific function 

can be assigned.  A structural motif is very unstable and will not or can’t fold on its own. 

Some structural motifs are only established after the whole protein is folded, consisting 

residues from several different regions of the protein. Nevertheless, the confusion about 

the terminology is not very surprising, since at some point the transition becomes fluid. 

Some zinc finger motifs for example are stable on their own and can, like a domain, be 

used to create fusion proteins resulting in engineered zinc finger transcription factors and 

zinc finger nucleases. By doing so, a desired genomic DNA sequence can be target (44). 

 

Basic helix-loop-helix 

The basic helix-loop-helix (HLH) motif should not be confused with the former helix-

turn-helix, although it can also be found in transcription factors. While the helix-turn-

helix contains two helices of equal length, the HLH motif consists a short helix connected 

by a very flexible loop to a longer alpha helix. Due to this flexibility, one helix can fold 

back and pack against the same helix in another protein. This motif therefor binds to the 

DNA and always against another HLH motif of a second protein to establish specific 

binding. Therefore, other than for the HTH motif, dimerization is required for DNA 

binding (45).  

 

Helix-hairpin-helix 

A quite similar to the helix-turn-helix, but much less common and rather newly reported 

motif is the helix-hairpin-helix (HhH). Like the HTH it has two helices connected by a 

short turn. But while the HTH binds very specific to the major groove, this is not the case 

for the HhH. Here the interaction with the DNA is established by a conserved loop at the 

N-terminal end of the second helix via hydrogen bonds between the protein backbone and 

the DNA phosphates. This difference then also reflects back to the functional level. While 

HTH establishes a very sequence specific interaction for gene regulatory proteins, HhH 
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motifs can for example be found in enzymes which bind to DNA, but show no sequence 

specificity (46, 47).  

This fact stresses on important point. Even through the fold in the HTH and HhH can be 

classified as similar and is most likely found in a direct structural comparison, the function 

differs. Therefor also structural comparison has its limitations when similar folds are 

established by different compositions of amino acids.  

 

Zinc finger 

Like the name states, the zinc finger includes a zinc ion to stabilize its fold. The term was 

first used in relation to the Xenopus laevis transcription factor IIA (48). The zinc ion is 

essential for the structural integrity of the fold and thereby for the gene regulatory 

function of the protein. The classical zinc finger consists of an α – helix and an antiparallel 

β – sheet. The zinc ion is most often coordinated by two cysteines and two histidines. 

Besides this so called Cys2His2 zinc finger, many other zinc finger like motifs are known. 

These include the Gag-knuckle zinc finger (49), treble-clef zinc finger (50), zinc ribbon 

(51) and a Zn2/Cys6 which can for example be found in the Gal4 protein (52). 

Despite this variety, proteins containing zinc finger motifs mostly bind to DNA or RNA 

(53-55). Nevertheless some zinc finger proteins binding other proteins or lipids have also 

been observed (56, 57). Given that it is not beside the point to assume that there might be 

very general concepts underlying even very distantly related binding mechanisms.  

 

Leucine zipper 

The leucine zipper contains one long α – helix (60-80 amino acids) with the name giving 

trait that it shows a leucine at every 7th amino acids. Like the HLH, two zipper find each 

other and form the basic leucine zipper (bZIP). The leucine zipper is very well studied 

and shows a high binding affinity for certain DNA sequence motifs. The helices sit in the 

major groove of the DNA and basic amino acids establish contact to the sugar-phosphate 

backbone. The array of periodic leucine residues are the one facilitating dimerization. The 

mechanism of dimerization to homo -  or also heterodimers is a very common feature of 

binding motifs in general, which makes it even more difficult to identify them, due to the 

fact that a novel protein structure might only contain the monomer when crystalized 

without ligand (58). 
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DNA recognition β-sheet 

So far the motifs we looked at established binding to DNA by a helical structure. But β - 

sheets are also able to recognize DNA. Here the interaction is maintained by residues 

extending from a two-stranded β-sheet. The recognized sequence depends on the amino 

acid composition of the sheet. An example for the β - ribbon motif is the bacterial met 

repressor (59). 

In addition to the once mentioned above, there are some other, rare binding motifs like 

the HMG-box, the Wor3 domain and the OB-fold. 

 

RNA binding 

Like DNA also RNA can be bound by structural binding motifs, although less binding 

motifs are known. The most common one is simply called RNA-recognition motif (RRM) 

consisting a four stranded β-sheet and two α – helices. The main processes involving the 

RRM are mRNA/rRNA processing, splicing, translation regulation, RNA export, and 

RNA stability. Up to this date around ten different RRMs are known. Despite their 

different target sequences they all share common features. The interaction is established 

via residues of the β-sheets. Variation is achieved by the interaction between different 

RRM motifs, which are connected by a linker. This linker can then also be involved in 

the RNA binding itself.  

Further a double-stranded RNA-binding motif is known. It is involved into RNA 

processing, RNA localization, RNA interference, RNA editing, and translational 

repression. This very rare motif has only been observed in up to three structures, but the 

feature that it binds only to dsRNA instead of ssRNA is unique (60). 

Last but not least some zinc finger motifs can be used to bind RNA. Normally DNA 

binding mediated by zinc fingers is a cooperative process involving several fingers, which 

are combined in modular fashion. It has been discovered that binding to RNA can be 

achieved via zinc fingers by intermolecular hydrogen bonds and the Watson-Crick edges 

of the single stranded RNA bases. By this binding mode a sequence specific binding can 

be achieved (61). This shows again, that although the fold might be the same, the 

interaction partner can differ based on the exact amino acid composition of the motif. 
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1.4  Binding of peptides  

 

Another important interaction can be found between peptides and proteins. It needs to be 

distinguished from large protein-protein interfaces found in protein complexes. 

Interactions with peptides normally involve only a short protein stretch (3-10 amino 

acids). This kind of binding is normally low-affinity or related to post-translational 

modification events like phosphorylation. The short peptide often contains a short linear 

motif, a short type of sequence motif, while the binding site more often can be described 

as a structural motif. Examples are RG-rich peptides with SMN domains, the Epstein-

Barr virus LMP1 with TRADD domains, DBC1 with Sir2, and the Ago hook with the 

argonaute PIWI domain (32, 62, 63).  

Antibody-Antigen interaction 

One interaction closely related to the interaction between a protein and a peptide is 

antigen-antibody interaction. The most interesting property of antigen-antibody 

interaction is the fact that an antibody can quite often bind to a range of antigens while 

showing little cross-reactivity. The interaction is achieved by six hypervariable loops 

which can be very different in sequence and are very flexible. This is also one of the 

biggest differences to peptide interactions which involve much more stable secondary 

structures. It has been shown that the interaction mostly involves aromatic residues (25). 

To get further insight in the differences between protein - peptide interactions and 

antigen-antibody interactions we will also investigate this kind of interaction in this work. 

 

1.5  Small molecule binding 

 

The biggest and probably most diverse category of binding sites are those involved in 

small molecule binding. Proteins can bind a huge variety of small molecules. The BioLiP 

database lists over 53 000 of its over 90000 binding sites as small molecule binding sites. 

Since some sites are able to bind different ligands, this yields a total of 183 014 different 

small molecules. Small molecule binding sites are probably most difficult to detect due 

to their diversity and the rather small interface area, but are of major interest since they 
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are very often also binding sites for possible drugs. Identifying those sites thereby is one 

major step in drug development (64). 

 

1.6  Metal binding sites 

 

Another very important mechanism is metal binding. It is estimated that over half of all 

proteins contain a metal ion (65). Metal binding in proteins can have very different roles. 

Often the binding of a metal ion has mostly structural reasons. Electrostatic interactions 

between charged residues and metal ions can give rise to a very distinct motif, like the 

zinc finger. Other binding sites are more functional and are involved in processes like 

metal storage or enhance certain properties of a protein. The metal ions most frequently 

found in proteins are Na+, K+, Mg2+, Ca2+, Zn2+, Mn2+, Ni2+, Cu+/2+, Fe2+/3+, and Co2+/3+. 

There are several processes directly or indirectly involving metal binding like catalytic 

reactions, signal transduction, metal-induced protein folding and aggregation as well as 

heavy metal poisoning and metal-based therapy (66-68). The prediction of metal binding 

sites is therefore crucial but also very difficult since it involves only a few residues of the 

whole protein. 

 

1.7  Catalytic binding sites: Enzymes  

 

One type of binding which is very common but will not be further investigated in this 

work is the binding of enzymes to their substrate. Many enzyme – substrate complexes 

are well characterized and their specific binding pocket is well conserved through their 

enzyme family. If a similar pocket can be found in a protein, it is very likely be a related 

enzyme itself (69). Enzymes – substrate interactions are also the only type of binding 

mechanism for which a very detailed interface database is available, the Catalytic Site 

Atlas (70).    

 

1.8 Characteristics of structural binding motifs 
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Although many methods have been developed to predict binding motifs, very little effort 

has been put in the evaluation of their features and the comparison of the binding to 

different ligands. Therefor we first need to define what the relevant features to look at are 

and what their role is in the binding process. Especially machine learning approaches 

often use a huge amount of different classifiers like charge, hydrophobicity, hydrogen-

bond-tendency, bulkiness etc. Many of these values are closely related.  

Logically all binding reactions involve an area on the proteins surface. But which residues 

are actually part of the proteins surface is a much more complicated question. In the case 

of macromolecules like proteins, the surface of interest is normally called solvent-

accessible surface, since only the parts, which can be accessed by the solvent, are also 

accessible for a ligand. There are many applications to calculate the solvent accessible 

surface area, normally based on the Shrake-Rupley algorithm which simulates a ball with 

the size of a water molecule rolling over the surface (71). Although this method can tell 

if a residue has any contact with the surface, it is not suitable to include or exclude a 

residue from a possible binding site. Most of a side chain can still be buried by other 

residues and will most likely not be able to participate in any binding mechanisms, if only 

a small portion of atoms is actually located at the surface. Due to the fact that residues 

differ in size, the absolute SAS value for a residue needs to be normalized. Doing so 

results in the so-called relative solvent accessible surface area, first defined as: 

 

𝑅𝑆𝐴𝑆 =
𝑆𝐴𝑆

𝑆𝐴𝑆𝑀𝑎𝑥𝑖𝑚𝑢𝑚
 (1) 

 

 

Given this formula the easiest two-state definition stated that a residue below 16 % RSAS 

is buried, while every residue with a RSAS equalling or above 16% is exposed to the 

solvent (72). The publication first introducing the RSAS also lists many other possible 

multi-state definitions. Up to this date, other publications have shown the flaws in this 

method with regard to the cut-off and the calculation method itself. Nevertheless it 

remains the used approach. The cut-off of 16 % is strongly discussed, varying from as 

little as 5 % to up to 32 % in literature (73-75). Some publications even state that with a 

cut-off as low as 5 %, important surface areas might get lost. Further bias is caused by 

the maximized SAS for the residue. It is calculated based in a simulated tripeptide 

containing the residue within two glycine. Recently it has been shown to be often much 
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higher in actual structures than in the simulated tripeptide resulting in an RSAS above 

100 % (73). 

Besides all these difficulties the RSAS is still a very interesting value regarding binding 

sites. Regardless which exact values or calculation method is used, it still will reveal if a 

specific type of binding happens more often in a cavity-like fashion or by a rather exposed 

area off the surface.  

The most important feature are the different amino acids, which make up the interface 

and interact with the ligands. The types of amino acids located at the interface are closely 

linked to other biochemical features like charge, hydrophobicity, bulkiness, aromaticity 

or flexibility. In order to find areas on a proteins surface different from what would be 

expected, a reference is needed. The general composition of amino acids within all known 

proteins is quite well established and stabile, since it can be calculated simply based on 

sequence information. Although it is variable between proteins and also protein families, 

the general means are quite well established (76, 77). It is shown by a histogram in Figure 

1. 

 

Figure 1: distribution of amino acids in known protein sequences. Exact values of each bar are shown in red. Different 

sources can list slightly different values. 

Since we only look at the surface of the protein this doesn`t help much in order to find 

significant differences for the interface area. The distribution between amino acids buried 

or exposed differs quite strongly based on their hydrophobicity. Unluckily, mostly caused 

by the difficult definition of a proteins surface, there is much less information about the 

distribution of amino acids on protein surfaces. Most publications simply rely on a 

distribution based on their own definition of protein surface and the dataset in hand. This 

can lead to over or underestimation of the relevance of certain amino acids, since the 
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distribution of surface residues can also be different for a class of proteins in general (63, 

75, 78). In addition to this, protein structures found in the Protein Data Bank often contain 

only a part of the protein or protein complex. Given that, the surface of a particular 

structure might quite well be buried in vivo by some other structure. The frequency of 

surface residues therefore will always be a rough approximation, changing based on 

dataset and definition of protein surface. 

One of the most important structural features to look at in the analysis of structural motifs 

is the distance in space between interface residues. Certain arrangements of amino acids 

show a quite distinct pattern for the distance between residues. Some methods related to 

protein threading for example try to identify similar folds by calculating distances 

between all residues and then try to find a similar pattern of distances in other proteins 

(79). The disadvantage of this methods is the high computational effort required. In the 

case of binding sites, the reoccurrence of a specific distance could give a very strong value 

to identify certain motifs or even in more general a type of binding. For example it can 

easily be expected that the distance in space for metal binding might be very small, while 

it can be quite big for the binding of DNA (31).  

Even if close in spatial distance, residues making up the interface in the case of structural 

binding motifs can be very distant in sequence or even can be located on different chains. 

Therefor the distribution of sequence distance might give a good indication for a certain 

motif. This might be particularly useful when searching for a distinct motif or 

substructure. Although it hast to be considered that same binding site might be achieved 

by residues with a very different sequence distance as well. 

The secondary structure can also be a very good hint for certain binding types. The 

binding reactions involving antigen-antibody interactions for example are mostly 

established by residues inside a loop, while binding of nucleotides is involving α-helices 

and very rarely a β-sheet like structure. 

 

1.9  Side chain flexibility on binding sites 

 

One major challenge when working with structural information is the question how to 

handle structural flexibility. This becomes even more relevant while looking not only at 

the proteins backbone but also considering structural information given by the side chain 
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conformation. An x-ray structure is only a “snap-shot” of one possible conformation. In 

addition to this, the side chain conformation observed is also depended on the crystal 

packing of the protein. Information gathered by this method can be quite different from 

what could be found in solution or in vivo (80). Nevertheless, most methods still are 

developed and evaluated based on x-ray structures, since for a long time, it was the most 

reliable experimental source. While big structural changes in a proteins backbone can 

occur, they are rather rare compared to the huge conformational space a side chain can 

occupy. When we consider spatial distances between side chains not only by a Cβ-Cβ 

distance, which will be quite steady regardless of conformational changes, but also by 

last-non-hydrogen to last-non-hydrogen atom, the changes can be very big. The question 

of how flexible side chains are is still very controversially discussed (81, 82). While many 

publications state, that for surface residues the changes in conformation happen quite 

often and rapidly, they are considered as fixed into on state in method development.  

Since the amount of NMR structures in the Protein Data Bank has recently increased very 

fast, this question can now be addressed in more detail than ever before. Since NMR 

results contain multiple models for one structure they can display regions with high 

flexibility. This can be a very useful information source in the case of binding sites (83). 

It could be expected that the side chains inside a binding site are more flexible in order to 

bind to a ligand or sometimes need to be found in one specific conformation in order for 

binding to happen. An analysis of surface residues based on NMR results can therefore 

not only be helpful in a predictive approach, but also might lead to a better understanding 

of protein flexibility. 

   

1.10 Prediction methods of structural motifs and binding sites 

 

Up to this date, many different methods have already been developed to predict different 

structural motifs or binding sites. Some have a rather limited field of application, 

predicting only certain interactions or are limited by the usage of strict prior knowledge.  

The most common approach to identify areas of similar structure is the so called fold 

matching (or motif matching). Like mentioned before, proteins sharing similar function 

often share a similar fold. Nevertheless, function may alter during evolution, resulting in 

proteins sharing a fold but showing different functions. One of the best known methods 

is DALI (84). Other popular methods are SSM, GRATH or VAST. A newer, very fast 
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method is FAST. They differ in the underlying algorithm and also speed but most often 

give rise to the same results (8, 27, 85). Although these methods are very reliable today, 

they depend on strong prior knowledge and are limited to very close matches, therefor 

prohibiting the discovery of new structural motifs.  

While these methods consider mostly the overall fold, other methods try to identify 

surface clefts or specific binding pockets on the proteins surface to assign a specific 

function. This can either be done template-based using a known surface cleft or use a 

more generic approach. A well-established web server to compare binding sites to known 

clefts is pvSOAR or SURFACE (86). Since binding sites can undergo conformational 

changes leading to differences between the proteins and the complex structure, this kind 

of approach might have problems recognizing the binding site. 

The strictest approach, which can be used, are residue template-based methods. Most 

functions are carried out by only a few amino acids (e.g. in enzymes). Often a very 

specific arrangement is necessary to carry out the function correctly. These arrangements 

are highly conserved and even if the rest of a protein might undergo severe changes during 

evolution, these arrangements most likely will remain stable in space. If scanning a 

template of a crucial arrangement of amino acids against a structure of unknown function 

gives a genuine match, the function of the protein is probably found. The templates can 

have different origins like literature searches, manual construction or can even be 

automatically generated. The Catalytic Site Atlas for example is one well-known source 

for catalytic centres of enzymes, which could be used as templates (87). Methods which 

use user-defined patterns are for example ASSAM or RIGOR/SPASM, which search 

through structures for user-defined patterns of residues or residue properties. PINTS is a 

newer method, which detects the largest common three-dimensional arrangement of 

residues between any two structures (27, 88). All these methods are well established. 

Which one to use depends on the specific task. Nevertheless all of them strongly depend 

on prior knowledge and structural information of different levels. This strongly limits 

their ability to discover distant relationships or identifying proteins with novel folds. 

First approaches, which do not rely on the comparison of structures, are those based on 

machine learning. Like stated before, structural comparisons strongly prohibits the 

detection of proteins with novel folds. Therefor more general rules are necessary. Many 

different approaches using machine learning have been published. Nevertheless only very 

few of them have been pursued further. The major problem is that these approaches 

mostly work well on the data they are trained on, but are less successful on unseen data. 
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Comparing the approaches is very difficult, also due to the absence of good benchmark 

datasets. In addition, due to their high complexity they are difficult to adapt to other tasks. 

An end-user friendly integration into a user-interface is also lacking for most of the 

published methods (89-92).   

Besides these two main approaches, there are those, which are more based on statistics. 

These approaches are in between the complex machine learning approach and the purely 

structure based methods. They try to use generic features, while also giving insight into 

the process itself. The most often used feature is the search for unusually high residue 

frequencies on the surface. Finding areas of a certain surface area with very unusual 

distribution of specific amino acids can be good predictive hints for binding sites (33, 93). 

Nevertheless no recent method so far is known to combine the abundancy of amino acids 

with structural information like distances and accessibility. 

  

1.11 Goal of this project 

 

This thesis project consists of two parts. First we wanted to understand more about the 

general features of structural binding motifs. Although many structural motifs and 

binding sites are known, very little work focuses on comparing their overall features, as 

well as their similarities and differences. We compared the binding of different ligands to 

each other, unravelling, what distinguishes them from each other and show, what they 

have in common. This might lead to a deeper understand of binding mechanism in 

general, while obvious differences are useful for a predictive approach. On the other hand, 

it is also important to learn about the difference between binding motifs, which bind the 

same ligand but show very different structural features. Only then we will be able to get 

insight into the overall concepts underlying these diverse mechanisms. We also 

demonstrate how crucial such approaches also depend on definitions of surface and 

interface residues. 

In the second part we built a novel prediction method, based on the previously identified 

features. The idea was to combine structural information with statistics in order to develop 

a method which can not only find known motifs, but also is able to discover possible new 

binding sites and their motifs. The method aims for the following: 
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- Recognition of known motifs: given data from a set of known motifs the method 

should be able to identify the motif afterwards 

- Prediction should be not limited by geometry but rely on more general features to 

identify unknown binding sites: Methods using strict structural features are good 

if an exact match can be found but otherwise give very little information. By using 

only very generic structural information it might be possible to find more 

unknown binding sites or distant relationships. In addition, the difficulty caused 

by side chain flexibility is less severe. 

- High flexibility and fast calculation: especially methods bases only on machine 

learning approaches are only developed for one type of binding and a very specific 

problem in hand, making it very difficult to adapt to problems other than the one 

designed for. This makes the comparison to other methods very difficult. In our 

approach, we develop a general method, which can not only be used to find 

binding motifs, but can easily be transferred to other problems where a certain 

similarity between two proteins surfaces might be of interest.  

After method development a brief assessment was performed resulting in a proof-of-

concept. If successful, further work can be invested into method optimization as well 

as end-user fitness. 
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2 Methods 

 

2.1 Datasets 

 

A database offering protein complexes separated by already known structural binding 

motifs is not available. Therefore we used interaction databases to extract different 

datasets. The datasets available differ in size, redundancy and definition of interface 

residues. To guarantee comparability between the different analyses, we mostly stick to 

one main dataset originating from BioLiP.  

Features and reduction of BioLiP dataset: 

BioLiP is the main source we used in this work. BioLiP defines interface residues purely 

by distance. Interface residues are defined by a cut-off, which is set to be 0.5 Å plus the 

sum of the Van-der-Waals radius of the two atoms under investigation. Compared to other 

definitions, this definition might be the most restricted one resulting in lesser interface 

residues. For all calculations, the offered non-redundant dataset was used (ligand-protein 

interaction sites with binding site residues identity > 90% and receptor sequence identity 

>90% are removed) and separated into the four different binding types: DNA/RNA 

binding, peptide binding, metal binding and small-molecule binding. 

To further reduce the amount of structures, the dataset was cross-referenced with the 

PROSITE database. For DNA/RNA binding, only structures, which are also found via 

the search term “dna-binding” or respectively “rna-binding” are considered. This 

approach can also be used to later extract structural motifs from the dataset, which are 

annotated in PROSITE by searching for the motif in the PROSITE database. The same 

reduction was done for peptide binding and metal binding. The final amount of structures 

in each dataset is represented in Table 1. 

Table 1: size of the used BioLiP datasets after cross-referencing with PROSITE 

Binding type Number of structures 

DNA/RNA 2017 

Peptide 1665 

Metal  2003 

 

Since proteins in BioLiP often contain multiple structural binding motifs within the same 

chain, but are listed as one interface (e.g. several zinc finger motifs within on chain), it is 
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difficult to get reliable information on spatial distances for the separate motifs, since it 

will result in very long distances for interface residues located on different structural 

motifs. Therefor the information extracted from PROSITE was also used to calculate only 

the distance between residues, which are also part of the same structural motif. This was 

done by restricting distance calculations to residues, which are inside the same motif 

given in PROSITE. 

 

Non redundant Antibody-Antigen-Dataset from literature 

To evaluate a more specific case of protein peptide interaction, a non-redundant dataset 

was generated from two sources of literature containing 166 structures of antibody-

antigen structures (see Table 10, appendix). The corresponding interface residues where 

extracted from two databases (epitome and AgAbDB) (35, 36, 94, 95).  

 

2.2 Surface amino acid frequency  

 

In order to get a comprehensive reference for the frequency of surface amino acids a non-

redundant form of the pdb database (nr-PDB) was used from NCBI/VAST. It is filtered by 

a BLAST sequence alignment with a cut-off of a BLAST p-value of 10-7 resulting in 

13467 structures. The representatives are picked by a number of priority measures (96). 

As definition for surface residues, the original definition was used, defining any residue 

with an RSAS above 16 % as exposed.  

 

2.3 Statistics on binding motif characteristics 

 

A series of python scripts based on Biopython were developed to generate statistics on 

any given set of pdb files and a corresponding list of interface residues (97, 98). The 

scripts can be used to evaluate the following features of the interface residues averaging 

over the whole dataset: 

- Interface residues frequency: the frequency of each interface residue in 

dependency of its type is calculated. Only standard amino acids are taken into 

account.  
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- Next-in-sequence frequency: for each interface residue the type of the next and 

after-next residue in sequence is determined, if possible. The frequency is 

calculated over the whole dataset. This is also done dependent on the type of the 

interface residue itself. Residues further away in sequence can be also calculated 

if required. 

- Relative surface accessibility of interface residues: for each interface residue the 

RSAS is calculated. To do so the residue needs to be complete (no missing atoms) 

in the pdb file. The RSAS calculations are done by DSSP (99). A density 

distribution is calculated by Gaussian kernel density estimation. 

- Secondary structure: for each residue the secondary structure the residue is located 

in is determined from the structure via DSSP prediction. The possible structural 

elements are: G = 3-turn helix (310 helix), Min length 3 residues; H = 4-turn helix 

(α helix). Min length 4 residues; I = 5-turn helix (π helix). Min length 5 residues; 

T = hydrogen bonded turn (3, 4 or 5 turn); E = extended strand in parallel and/or 

anti-parallel β-sheet conformation. Min length 2 residues; B = residue in isolated 

β-bridge (single pair β-sheet hydrogen bond formation); S = bend (the only non-

hydrogen-bond based assignment); - = other (residues which are not in any of the 

above conformations). 

- Sequence distance between interface residues: the sequence distance between 

each interface residue and the nearest interface residue up and downstream in the 

protein sequence is calculated 

- Spatial distance between interface residues: for all interface residues in one 

structure, the spatial distance is calculated. This can either be done using Cβ to 

Cβ (simulated Cβ for glycine) or from the last-non-hydrogen atom to last-non-

hydrogen atom. A density distribution is calculated by Gaussian kernel density 

estimation. 

- Side chain angles χ1 and χ2: for each interface residue the side chain angles χ1 

and χ2 are calculated 

The output of the statistics is given as a plain text files. For visualisation purposes, “R” 

was used (100). Probability density distributions where calculated by kernel density 

estimation with a Gaussian kernel (Python SciPy Package). 

2.4 Evaluation of side chain flexibility on binding sites 
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In order to evaluate the flexibility of side chains in the binding sites, information from 

NMR structures was obtained. From the DNA/RNA binding dataset from BioLiP 

(before cross-referencing), all structures based on solution NMR were extracted. Since 

the BioLiP data only contains the first model of an NMR structure, the corresponding 

full PDB files were collected from the Protein Data Bank. If only one NMR model was 

submitted the corresponding entries were excluded from the dataset. For the remaining 

proteins, a protein-protein blast search of the Protein Data Bank was performed to find 

homologs with 98 % or more sequence identity. All homologues structures were 

received and if the source was solution NMR, no DNA/RNA ligand was present and 

more than one model was submitted, the file was kept. The result was a dataset of 65 

DNA/RNA binding proteins with a NMR structure in the bound state and one to six 

NMR structures in the unbound state (Table 11, see appendix). Under consideration of 

the different numbering of the residues in the pdb files, the side chain flexibility and 

rotameric state of each interface residue was evaluated based on the side chain torsion 

angle χ1 (for definition of χ1 for each amino acid type see appendix, Table 12 ). 

The following methods were used to evaluate side chain flexibility: 

- Distribution of angles: the rotameric state of the side chains can be displayed in 

the bound and the unbound state by a histogram. A distribution clustering 

around the preferred states of the amino acid indicates less flexibility, while an 

unusual or broadened distribution can either indicate higher flexibility or an 

enforced conformation by ligand binding. 

- Average deviation from preferred state: The preferred states for the side chain 

torsion angles can be received from well-established rotamer libraries (see 

appendix, Table 13). By calculating the average deviation from the closest 

preferred state, a one-value measurement can be calculated for each amino acid 

indicating higher occurrence of unusual states. This value nevertheless doesn’t 

give any information if, an unusual state is caused by high flexibility and 

represented transition states or is established by force.  

- Distribution of deviation from preferred state: By creating a distribution over all 

recorded deviations from the preferred state, flexibility and forced states can be 

distinguished. A very broad distribution indicates several different states due to 

force, while more discrete deviation values and peaks can account for transition 

states between preferred rotamers. 
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2.5 Prediction method and training procedure  

 

Based on the results found for the different datasets, a general prediction method was 

developed to identify possible interface residues based on a set of statistic files originating 

from a variable number of pdb files and interface residues. Following files are required:  

Frequency of interface residues by amino acid type, frequency of next residue by amino 

acid type, frequency of after next residue by amino acid type, list of RSAS of interface 

residues, list of spatial distance of interface residues, frequency of secondary structure 

elements, and frequency of sequence distances between interface residues. The general 

workflow is represented in Figure 2. 

 

Figure 2: overview of the overall prediction method. Green area – Initial score: Each surface residue is considered 

separately considering its frequency relative to the frequency of surface residues, the frequency of its neighbours 

dependent on its own type and the secondary structure represented by a normalized value between zero and one 

multiplied by a weighting factor. The relative surface accessibility is given by a probability density function. Threshold 

after one round of training is determined by the average over all lowest scoring interface residues. Blue area – Final 

Score: Surface residues have to have an initial score above threshold to enter final score calculation, which considers 

surrounding surface residues and surface residues in sequence. Their score is weighted according to the distance 

probability function or distance in sequence fraction respectively and added to the initial score. Final threshold is 

determined by ROC analysis.  

The prediction method can easily be separated into two different parts. In the first scoring 

cycle (shown in green) each surface residue is considered separately and scored after the 

following pseudo-code: 
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Therefore, the features, which are taken into account are: 

- the frequency relative to surface residue (weighting factor 1.0) 

- frequency of next and after-next residue relative to general amino acid distribution 

(weighting factor 1.0) 

- RSAS given by a density function calculated via Kernel density estimation 

(weighting factor 0.1) 

- Secondary structure the residue is located in (weighting factor 0.1) 

RSAS and secondary structure are less important, therefore a weighting factor needs to 

be applied. The performance seems to mostly depend on the type of the residue itself and 

its direct neighbours in sequence. 

After this first cycle all surface residues, which surpassed a certain threshold enter a 

second scoring cycle, which is based on the surrounding residues, described in the 

following pseudo-code: 

check if residue X is exposed (RSAS>16), standard amino acids and is not missing any atoms: 

determine residue type, secondary structure, type of next and after next amino acid up 

and downstream, relative surface accessibility. 

Initial score = normalized residue frequency [range 0-1] * 1.0 

+ normalized residue frequency next residue up and downstream [range 0-1] * 1.0  

+ normalized residue frequency after-next residue up and downstream [range 0-1] 

* 1.0  

+ probability of RSAS(X) given by probability density function * 0.1  

+ normalized frequency of secondary structure element [range 0-1] * 0.1 

else: 

initial score = 0 
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Therefore, the features, which are taken into account in this part are: 

- Clustering of interface residues in one area with a characteristic with regards to 

their preferred spatial distance. If a residue is surrounded by many residues with 

a high initial score, its own final score will increase, dependent on the distance 

distribution. 

- Specific, characteristic sequence distances. If for a residue other high scoring 

residues can be found in a specific, very frequently appearing sequence distance, 

the final score of this residue increases. 

After a first test, it quickly emerged that the sequence distance seems to be much less 

important, so a much lower weighting factor needs to be applied. The clustering of 

For each residue X if initial score residue X > threshold: 

Determine all residues Y with spatial distance of residue X below the mean given by 

the distance distribution 

 For each residue Y with initial score > threshold: 

score (Y) = initial score (Y) * distance probability (distance X-Y) 

spatial distance score (X) =  spatial distance score (X) + score (Y) 

spatial distance score (X) = spatial distance score (X)/number of residues Y 

 final score (X) = initial score (X) + (spatial distance score (X) * 100) 

 

Determine all residues (Y) 20 amino acids up and downstream of residue X. 

For each residue Y with initial score of residue Y > threshold: 

score (Y) = initial score (Y) * sequence distance fraction (X-Y)  

sequence distance score (X) = sequence distance score (X) + score (Y) 

final score (X) =final score (X) + sequence distance score (X) * 0.1 

else: 

final score = initial score 
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residues within a certain distance is the important value, although excluding the sequence 

distance results in a small drop in performance. 

 

Overall training procedure on datasets: 

In order to get ready for prediction, two rounds of training on the training set are required. 

In the first round, only the first cycle of the scoring is needed, resulting in determination 

of the first threshold. This threshold is given by an average over the lowest scoring 

interface residue for each structure in the dataset. By choosing the threshold this way we 

make sure to exclude the lowest scoring residues and therefore statistically most irrelevant 

ones in the first round without losing too much information in the first scoring cycle. If a 

higher specificity is aimed for, also another approach like a ROC analysis can be used to 

determine a suitable threshold. Nevertheless this seems to result in a strong lose in 

sensitivity after the second cycle, since more interface residues will already be excluded 

from further evaluation. 

The second, optimized threshold is then calculated by a ROC analysis (for further 

explanation on ROC calculations see 2.6).  

 

2.6 Assessment of prediction method 

 

Several calculations to evaluate the predictive power of the approach were performed. 

The most direct approach is to check, if the prediction method is able to identify interface 

residues correctly. This is also the most difficult approach since the number of interface 

residues is utterly small compared to the number of surface residues for most proteins. 

Single surface residues can also possess features, which resemble the ones found for 

interface residues. Second, and for our approach most relevant is the assessment by a so 

called patch, an area in the proteins surface. This method tries to check, if the algorithm 

is able to find the right area inside a protein and therefor to assign the right binding site. 

Last but not least, an assessment by protein can be done, checking if the method is able 

to assign the right function to a certain protein within a test set of functionally different 

proteins.  
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Assessment by surface residue 

For assessment by residue for each structure in the dataset, the number of true positives 

(TP), true negatives (TN), false positives (FP) and false negatives (FN) are calculated like 

the following: 

TP  surface residue with a score above the final threshold, which is an interface residue 

TN  surface residue with a score below the final threshold, which is not an interface 

residue 

FP  surface residue with a score above the final threshold, which is not an interface 

residue 

FN  surface residue with a score below the final threshold, which is an interface residue 

Based on this values, measurements for statistical analyses are used to assess the 

predictive value of the method. This is done for each structure in the dataset 

independently. The final value is an average over all structures. 

Sensitivity (or true positive rate, TPR): Ability of the method to identify positives 

correctly. 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 

 

Specificity (or true negative rate, TNR): Ability of the method to identify negatives 

correctly. 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (3) 

 

 

Precision (or positive predictive value): Fraction of positive identified value. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4) 

 

 

Accuracy: level of measurement that yields true (no systematic errors) and consistent (no 

random errors) results. 
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𝐴𝑐𝑐 =
TP + TN

TP + FP + FN + TN
 (5) 

 

 

FMeasure: The FMeasure (also F1 Score) is a way to test for accuracy without 

considering true negatives, resulting in a value between 0 for the worst outcome and +1 

for the best. 

𝐹1 =
2 ∗ TP

(2 ∗ TP +  FN +  FP)
 (6) 

 

 

Matthews correlation coefficient: The Matthews correlation coefficient is a measure for 

the predictive power of a method resulting in a value in-between -1 (total disagreement 

between prediction and observation) and +1 (perfect prediction). A value of 0 would equal 

a random prediction. 

𝑀𝐶𝐶 =
TP ∗  TN –  FP ∗  FN 

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
 (7) 

 

 

ROC Curves: 

Since our results are threshold dependent, a ROC analysis is also a very good way to 

assess the predictive power. Therefore many different, final thresholds (step size 0.1) are 

applied and the TPR and the FPR (1-TNR) are calculated for each threshold. When 

plotting the TPR against the FPR, the predictive value can be evaluated and illustrated by 

a ROC curve. Curves above the diagonal have a positive predictive power, below a 

negative. By calculating the so called Youden-Index, which is given by 

𝑌 − 𝐼𝑛𝑑𝑒𝑥 = TPF +  TNR − 1 (8) 

 

 

an optimized threshold can be determined. An idealized picture of a threshold dependent 

ROC curve is shown in Figure 3. The more ideal the method, the more the values are 

located towards the upper left corner with a high TPR and a low FPR. 
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Figure 3: representation of a threshold dependent ROC analysis (101). The diagonal equals a random guess. The 

best threshold is found for the maximum distance from the diagonal towards the upper left corner, with a FPR of 0.0 

and a TPR of 1.0. 

By patch assessment: 

For the assessment by patch, several surface patches are generated by scanning over the 

proteins surface. A surface patch contains a central residue and all the surrounding surface 

residues within a cut-off of 10 Å spatial distance (Cβ-Cβ). This size was chosen since 

most interfaces are around 20 Å in size, but other sizes could also be applied. The average 

of the final score for all residues within the patch is than calculated by summarizing the 

individual residue scores and dividing them by the number of residues contributing to the 

patch. All patches generated for one protein are ranked by this average to find the highest 

ranking one. The highest ranked patch should be the one most likely to be part of the 

binding site and therefor contain also many interface residues. The highest ranked patch 

can then be compared to the patch with the highest hits by following definitions: 

Hits: Number of interface residues within a patch. 

Highest hits patch: Patches, which show the highest hits possible for this structure given 

a certain patch size. Can be more than one. 

Highest ranked patch: Patch with the highest score. 

Hits percentage: Comparing the maximum amount of hits possible with the number of 

hits within the highest ranked patch. This is relevant for very big interfaces, where many 

potential patches are possible. 
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Overlap: Fraction of atoms which are in the highest scored patch and appear also in a 

patch with the highest hits. If several patches with the same amount of hits are found, the 

highest overlap is calculated. 

Average rank: The rank after scoring at which the first patch appears reaching the 

maximum amount of hits possible. If the method is ideal, the highest ranked patch would 

always be one with the highest hits possible. Can be compared to the average number of 

patches. 

Correlation between number of hits and score: A good predictive power can be 

assumed if the number of hits within a patch correlations with the score. The Pearson 

correlation coefficient can be used in order to evaluate for that. 

 

2.7 Method flexibility and application 

 

In cooperation with results from another group (Dr. Martin Steger, Group of Prof. Dr. 

Mann, MPI Biochemistry, Munich) the method was already used in an applicative manner 

to assess reliability, flexibility and end-user value. The group recently discovered human 

Rab proteins, a class of highly conserved GTPases, as a substrate for the kinase LRKK2 

in vitro and in vivo (not yet published). LRKK2 is of huge scientific interest since 

mutations of the LRKK2 gene are closely related to the Parkinson disease. Surprisingly, 

the specificity of this reaction is limited to a subgroup of Rab proteins. All Rab proteins 

contain a region referred to as switch2. In contrast to the rest of the Rab proteins structure, 

switch2 is a rather flexible region containing a short α – helix followed by a loop, shown 

in Figure 4. 
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Figure 4: switch2 region of human Rab43 (yellow). The central threonine which is phosphorylated by TRKK2 is 

shown in red. 

Switch2 is highly conserved among the different Rab proteins on sequence level, 

demonstrated by sequence alignment displayed in Table 2. The group observed that 

phosphorylation only takes place, if the sequence shows a threonine at a very specific 

position within the sequence of switch2. Although many kinases phosphorylate threonine 

and serine, no reaction could be observed, if this position is occupied by a serine in vivo 

and only a much weaker reaction in vitro. In addition, the phosphorylation is only 

observed in the GDP bound state, not the GTP bound state. Nevertheless, for a linear 

peptide of switch2 no phosphorylation can be observed at all. This led to the conclusion 

that the recognition is not only sequence based, but also depends on more general surface 

features around the binding site. In order to find other suitable targets for substrate testing 

our new algorithm was adapted and used to find possible candidates.  
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Table 2: alignment of switch2 region in human Rab proteins (Source: Mann Group, MPI Munich) 

UniProt ID Protein Start Sequence Stop 

P61026 Rab10 54 

 

88 

P61006 Rab8A 53 87 

Q92930 Rab8B 53 87 

P20339 Rab5A 65 99 

Q6IQ22 Rab12 87 121 

P51153 Rab13 53 87 

P62820 Rab1A 56 90 

Q9H0U4 Rab1B 56 90 

Q92928 Rab1C 56 90 

Q86YS6 Rab43 63 97 

A4D1S5 Rab19 62 96 

Q15286 Rab35 53 87 

P20336 Rab3A 67 101 

P20337 Rab3B 67 101 

Q96E17 Rab3C 75 109 

O95716 Rab3D 75 109 

Q15771 Rab30 54 88 

Q9NP72 Rab18 53 87 

Q14964 Rab39A 58 92 

P59190 Rab15 53 87 

Q96DA2 Rab39B 54 88 

P20338 Rab4A 58 92 

P61019 Rab2B 51 85 

Q8WUD1 Rab2A 51 85 

Q96AX2 Rab37 75 109 

Q9ULW5 Rab26 109 143 

Q8IZ41 Rab45 586 620 

Q13636 Rab31 50 84 

Q5JT25 Rab41 76 110 

P51159 Rab27A 64 98 

O00194 Rab27B 64 98 

P61020 Rab5B 65 99 

P51148 Rab5C 66 100 

P51151 Rab9A 52 86 

Q9NP90 Rab9B 52 86 

Q7Z6P3 Rab44 581 615 

P20340 Rab6A 58 92 

Q9NRW1 Rab6B 58 92 

Q9H0N0 Rab6C 58 92 

P51149 Rab7A 53 87 

Q96AH8 Rab7B 53 87 

O14966 Rab29 52 87 

 

Since it is unknown how exactly the kinase binds to the Rab protein as substrate, the 

interface and the contributing residues are unknown. The approach therefor differs 

slightly from the original method, demonstrating the high adaptive features of the method 

in practical application, a feature often lacked by the stricter machine learning based 

approaches. The adapted workflow is visualised in Figure 5. 
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Figure 5: workflow to generate statistics without known interface. After picking a suitable set of structures a round 

surface patch is created for each of them (yellow) around the central residue (red). All residues inside the patch are 

considered interface residues.  

At first, a suitable set of Rab proteins was chosen. They needed to possess the threonine 

at the right sequence position. A high resolution structure in the GDP bound state needed 

to be available with structural information in the switch2 region present. Due to the fact 

that switch2 is highly flexible, some structures actually lack this region within their x-ray 

structure, since they cannot be solved properly. Some complexed structures were 

therefore also taken into account. A set of seven Rabs with threonine were chosen (see 

Figure 5). As a control, also a dataset containing eleven Rab proteins with a serine at the 

same sequence position was constructed. For each Rab protein, a surface patch was 

generated containing all surface residues within a cut-off of 10 Å (Cβ-Cβ) of the serine 

or threonine. 10 Å was chosen the maximum distance between interface residues is 

around 20 Å. All surface residues within this area are considered an interface residues. In 

the same fashion as for the original method, a profile is generated based on this interface. 

A dataset of 9733 non redundant human proteins (less than 30 % sequence identity) was 

retrieved from the pdb database. For each protein structure, every possible surface patch 

around an accessible threonine (and serine in case of the control set) was generated and 

the average score for the patch was calculated. In contrast to the original method, a residue 

is only considered in the second scoring cycle if it’s part of the patch, not if they are 

located outside of the patch. The highest scoring patch was considered the site with most 

similarities to the switch2 site for this structure. The same scoring procedure was also 

performed on the two datasets of Rab proteins and compared with the results from the 
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search. The proteins with the most similar patches should rank close to the training set 

and higher than the control set.  
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3 Results and Discussion 

 

3.1 Surface composition compared to the normal composition of proteins 

 

Before we discuss the different features for the binding mechanisms, the distribution of 

surface amino acids in the non-redundant pdb set will be analysed and compared to the 

well established distribution of amino acids within proteins in general. A histogram of the 

distribution of surface amino acids compared to the average composition of proteins is 

shown in Figure 6. 

 

Figure 6. Histogram of the composition of the proteins surface (red) calculated based on nr-PDB compared to the 

general composition of proteins (blue). All residues with an RSAS > 16 % are considered to be surface residues.  

Like expected the hydrophobic amino acids isoleucine, leucine, valine and phenylalanine 

are underrepresented on the surface and most likely buried in the hydrophobic core. 

Although alanine, proline and glycine also belong to the group of hydrophobic amino 

acids, the difference between the surface and the average value is insignificant. This can 

very easily be explained by their small size which makes it quite easy to shield them from 

the proteins surface, resulting in a RSAS close or below the cut-off of 16 %. The surface 

of a protein is dominated by the charged amino acids lysine, glutamic acid, aspartic acid 

and arginine. Most polar amino acids show no tendency towards the surface, although 

cysteine is strongly underrepresented. This is due to its role in disulphide bridges. In this 

specific structural arrangement they will normally not be surface accessible.  
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Interesting facts can be observed when comparing these results with related calculations 

for surface residues in literature, demonstrating how crucial this kind of statistics depends 

on the chosen definitions of surface residues. Several publications have created statistics 

of surface residues and their corresponding RSAS distribution (73). For some residues 

like tryptophan or tyrosine the major portion is located within a window of a RSAS of 5-

20 %, indicating that the cut-off of 16 % will miss many of these residues despite the fact 

that they might still be relevant. We also calculated this statistics for our interface residues 

in particular and can observe similar situations for several residues, like demonstrated in 

Figure 7, showing the results for three amino acids from the DNA/RNA binding dataset. 

Especially if the binding site is not an exposed area of the protein but a cavity, this might 

lead to misinterpretation. For example, tryptophan, which, like we will later show plays 

a significant role in DNA binding, quite often shows an RSAS < 20 %. Most of these 

residues will therefore not be taken into account when using the 16 % cut-off value, 

although they might be quite relevant in the binding mechanism. Lysine and arginine on 

the other hand show a very broad distribution and a higher accessibility in general. 

 

Figure 7: RSAS of the amino acids arginine (blue), tryptophan (red) and lysine (green) when present in a DNA/RNA 

binding site. 

Nevertheless we decided to stick with the cut-off of 16 % for most calculations since there 

is no reliable information yet available clarifying, which cut-off would be most suitable 

for binding site residues. Further work could evaluate the performance change of our 

method in dependency of the definition of surface residues, therefore not only improving 

the prediction method, but also demonstrating, which cut-off would be most suitable for 

binding sites. The amino acid type specific RSAS distributions are not yet included in the 

calculation, mostly because for rare interface residues, there are too few values to 

calculate a statistical significant distribution. Nevertheless a type-specific distribution 
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could be used for the most abundant residues in future. Therefore we first would need to 

check, if the accessibility of this specific interface residues shows distinct differences 

from surface residues in general. 

All frequencies regarding surface residues from here on will be represented normalized 

to the frequencies shown above if not stated otherwise. 

 

3.2 Statistics on DNA/RNA binding  

 

Since most, well defined structural motifs are known for DNA/RNA binding mechanism, 

they will be discussed first. We will have a look at the BioLiP data for nucleotide binding 

proteins, which contains several structural motifs but also some other unusual DNA/RNA 

binding interfaces, resulting in a very diverse set. Following that, we will investigate 

different motifs on their own in order to demonstrate the high diversity within this one 

group. 

 

Distribution of surface amino acids 

Figure 9 shows a histogram of the distribution of interface residues in the DNA/RNA 

binding dataset based on BioLiP with absolute frequencies before normalization based on 

the surface composition. To check if the calculated data is statistical relevant and stable, 

the average standard deviation was calculated by a bootstrap procedure (random 10 % of 

the dataset, calculated 50 times). The values are very stable and only a very small standard 

deviation can be reported. On first glance arginine and lysine seem to be the most 

important participants. But like mentioned before, this statistics needs to be normalized 

by the distribution for surface amino acids shown in Figure 6. The result after 

normalization is shown in Figure 9, revealing which amino acids are enriched compared 

to what would be expected to be found on the surface.   
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Figure 8: distribution of interface residues in the DNA/RNA binding dataset based on BioLiP with absolute frequencies 

before normalization based on the surface composition. The error bars for standard deviation were calculated by a 

bootstrap procedure (random 10 % of the dataset, calculated 50 times). 

 

 

Figure 9: composition of the interface residues of DNA/RNA binding sites extracted from BioLiP. The frequency is 

relative to the surface residue frequency calculated on the nr-PDB dataset. 

The main interactions in this type of binding seems to be established by arginine, which 

appears over 2.5 times more often at an interface than it should appear on the surface, and 

tyrosine, which appears more than twice as often on an interface. Other important amino 

acids are tryptophan, lysine, phenylalanine and histidine. This result is not very 

surprising. The main force establishing interaction between nucleic acids and proteins is 

charge, mainly delivered by arginine. The preference of arginine above lysine is most 

likely caused by the longer side chain and thereby higher flexibility of arginine. The 

second important interaction type is a so called stacking interaction between aromatic 

amino acids and the nucleic acids bases. It can be established by tyrosine and tryptophan. 
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It is less often caused by phenylalanine and histidine. In addition to charge interactions 

and stacking interactions, hydrogen bonding is the third force establishing the interaction 

between nucleic acids and proteins. Interesting results can be observed when looking at 

the amino acids surrounding the surface residues. Figure 10 shows a histogram of the next 

and the after next amino acids up and downstream of an interface residue in sequence. 

 

Figure 10: next and after next amino acid in nucleic acid binding proteins. The next and after next amino acid are 

evaluated in both directions, up and downstream the protein sequence. 

Arginine and lysine again play a major role, indicating that most charged residues 

participating are also very close together in sequence. The aromatic residues need more 

space and will not be next to another interface residue in sequence. This can be easily 

demonstrated in detail, when separating this kind of statistics by the interface residue 



 
38 

 

itself, creating neighbour statistics for each amino acid type. This is shown for arginine 

and tryptophan in Figure 11 and Figure 12. 

 

Figure 11: next (blue) and after next (red) amino acid of arginine. An interface arginine is very likely neighboured by 

another charges residue. 

 

Figure 12: next (blue) and after next (red) amino acid of tryptophan. 

Arginine is quite likely followed by another arginine or a lysine. The high frequency of 

cysteine and histidine is probably caused by zinc fingers in the dataset, which will bind 

the zinc ion with histidine and/or cysteine. For tryptophan, we observe a very different 

profile. The probability to find a tryptophan on the interface followed by another one is 

very low, but it will most likely be neighboured by a phenylalanine. For easier comparison 

this is shown again in Figure 13 for the next amino acid in sequence for arginine and 

tryptophan in one histogram combined.  
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Figure 13: next amino acid for arginine (blue) and tryptophan (red) in DNA/RNA binding proteins combined on 

histogram.   

This kind of statistics can be very useful to predict structural motifs with a very weak 

underlying sequence conservation. In more general it can also be interesting to just look 

at the sequence distance of the interface residues. Since most of the interface residues are 

still close together, it is closely related to the next and after next amino acid statistics. 

Figure 14 shows a histogram of the sequence distance to the next interface amino acid. 

 

Figure 14: distance in sequence for interface residues in nucleic acid binding proteins. The absolute values are shown 

in read. A distance of one equals neighbouring amino acids. 
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Quite obviously, most interface residues are still very close in in sequence with a distances 

between one (neighbouring) and 18 amino acids distance. For such a big dataset a lot of 

noise above 20 amino acids distance is retrieved, resulting in values of up to 177 amino 

acids sequence distance. This shows already how far apart the interface residues can be 

in sequence. 

The next logical step is to look at what defines in particular structural motifs moving away 

from sequence related information to the spatial arrangement. Figure 15 shows a density 

distribution based in the BioLiP dataset for the Cβ – Cβ distance. 

 

Figure 15: spatial distance distribution for nucleic acid binding proteins calculated by Kernel density estimation. 

Most structural motifs for DNA/RNA binding cover an interface area of around 25 Å. 

The two peaks above five and ten angstrom are caused by interface residues which are 

next or after next in sequence in an α-helix, resulting in a very specific distance for their 

Cβ distance. Besides this a broad distribution of different distances can be found. In 

general they will not come each other closer to each other than five angstrom, which is 

not surprising, given the fact that most of the residues will be charged or aromatic. 

A similar distribution can be calculated for the surface accessibility (shown in Figure 16). 

It results in a very broad distribution although a median accessibility seems to be most 

favoured. A very low accessibility would support the idea of a cavity, which is normally 

not the case for nucleic acid binding, while an accessibility close to the maximum of 1.0 

would be caused by highly isolated side chains emerging from the surface. Since the 

charged side chains are packed against each other, but the overall motif is exposed to 

create a charged surface patch, a medium accessibility of broad variety is exactly what 
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would be expected. On the other hand, such a broad distribution doesn’t contain much 

informative value in sense of predictive power.  

 

Figure 16: surface accessibility distribution for interface residues in nucleic acid binding proteins 

Last but not least we can have a look at the secondary structure elements which are 

involved in the binding mechanism.  

 

Figure 17: secondary structure elements involved in nucleic acid binding 
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Quite obviously the 4-turn helix is the most common structural element among all the 

elements. This can easily be explained by the fact that most DNA binding motifs consist 

helical structures. Nevertheless, also β-sheets and bends/turns occur as structural 

elements.  

 

Diversity of structural binding motifs on the example of DNA/RNA binding 

 

The statistics on the huge dataset shown above can easily be separated into smaller 

datasets containing only one specific structural motif if the information is available (see 

methods). By doing so, we can demonstrate the diversity of structural motifs even within 

one binding type, in this case DNA/RNA binding. This is also the main reason why it’s 

very difficult to predict new structural motifs de novo. Due to their diversity it is difficult 

to define their most important feature. Even if they could be defined it would not be 

sufficient to predict them correctly. In the following we will show the statistics for three 

different structural DNA binding motifs to underline this. The helix-loop-helix motif and 

the helix-turn-helix motif, which both consist of two helices, but still show distinct 

differences in the interacting amino acids, and the leucine zipper motif. 

 

Figure 18: Interface residue frequency for the helix-loop-helix motif (blue), the helix-turn-helix motif (red) and the 

leucine zipper motif (green). All frequencies are normalized against the general surface residue frequency. 

Figure 18 shows the frequency of interface residues. Again arginine is the most abundant 

amino acid for the HLH motif and the LZ motif, but is much less important in the HTH 

motif. For the HTH motif the so called stacking interactions by aromatic residues seem 

to be much more important. In addition, the HLH motif and the LZ show a high 
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occurrence of asparagine. This seems illogical first, since asparagine carries no charge 

und should therefore should interact weakly with the negative charge of the DNA 

backbone. Closer investigation shows that these residues are located at the outskirts of 

the motifs and the interface area, forming hydrogen bonds and, therefore basically locking 

the ligand within the positively charged area in the desired position. The high amount of 

cysteine in the interface of the leucine zipper on the other hand plays an important role 

during dimerization of the two leucine zipper motifs. Again located at the edge of the 

interface area, this cysteines promote a stabile dimerization of the two leucine zippers 

upon interaction. 

In case of spatial distances the motifs demonstrate the strong informational value of 

distance distributions in order to identify structural motifs.   

 

Figure 19: spatial distribution between interface residues in three DNA binding motifs, the helix-loop-helix motif 

(blue), the helix-turn-helix motif (red) and the leucine zipper motif (green). 

As is shown in Figure 19, the leucine zipper shows a very distinct distribution of 

distances. This is due to the fact that it is basically a very straight helix with the interface 

residues in an even distance to each other. Such a distinct pattern of distances in 

combination with residue frequencies could therefor already be a good indicator for the 

motif itself or motifs with another underlying secondary structure but the same spatial 

arrangement 
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The same can be done for the surface accessibility. Again, the HLH motif shows more 

similarity with the LZ motif than with the HTH.   

 

Figure 20: RSAS distribution for three DNA binding motifs, the helix-loop-helix motif (blue), the helix-turn-helix motif 

(red) and the leucine zipper motif (green). 

Although the HLH and HTH might seem more related when it comes to their structural 

elements, their binding mechanism is quite different. The binding mechanism of the HLH 

resembles the one of the leucine zipper, often also including dimerization of two HLH 

motifs to form a scissor like arrangement. In this HLH and LZ show very similar features, 

although structurally different. This already shows that direct structural comparison not 

always will give good results, since the same situation could apply to yet unknown motifs. 

Our results towards the binding of nucleic acids are conform to the results reported 

previously in literature, claiming arginine as the major participant. This is true in general, 

but other motifs or unknown binding sites might only rely very little on arginine or charge 

in general, but focus much more on stacking interactions. Therefore, searching only for 

charged patches on a proteins surface might be able to find some binding sites but will 

still miss those where charge is not the main force involved. In addition, very little 

information was gathered about the size of binding sites. We now know that most of these 

interactions take place within a window of 30 angstrom, with a mean around 15 angstrom. 

The area has to be highly exposed, but the single residues show a median exposure to the 

surface, since the charged residues seem to cluster together while stacking interactions 

need more space. 
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3.3 Statistics of peptide binding 

 

Next we will have a look at the interaction of proteins with small peptides. Figure 21 

shows the distribution of interface residues as well as the next and after next amino acid 

in sequence. In contrast to nucleic acid binding, the main interaction seems to be 

established by Van-der-Waals forces of aromatic residues. Although an interaction 

between a protein and a peptide could also be established by charge if complementary 

residues are used on the peptide, it makes more sense to establish this kind of interaction 

by a different force in order to limit cross-reactivity.  

 

Figure 21: interface residue frequency (blue), next (red) and after next (yellow) residue frequency of peptide binding 

proteins 

Tyrosine and tryptophan are the main amino acids involved in this reaction with a 

frequency six respectively four times higher on the interface than on the surface on 

average. Cysteine, probably due to its metal binding or its ability to build disulphide 

bridges and phenylalanine also seem to be relevant in this interaction type, but are 

negligible compared to the overwhelming enrichment of aromatic residues. Charge 

coupled mechanism seem to be totally irrelevant, the interfaces even seems to be charge 

reduced compared to a normal surface. In addition, the amino acids which are relevant 

don’t seem to bulk together as is the case for nucleic acid interactions. This is not very 

surprising, since the aromatic amino acids need more space, especially when they pair 

with an interaction partner. This can be explained in more detail by Figure 22 and Figure 

23. Although tryptophan is still quite often followed by another tryptophan, the amino 

acids tyrosine, methionine, isoleucine and aspartic acid are also quite frequent 

neighbours. Interestingly the after next amino acid of tryptophan is statistically never 
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another tryptophan so they never appear in more than a pair before another amino acid 

follows. This is most likely due to steric reasons. There would be simply not enough space 

for another tryptophan in between the two aromatic residues. Nevertheless histidine and 

aspartic acid as well as aspartate itself are very frequent as after next amino acids. 

 

Figure 22: next (blue) and after next (red) amino acid of tryptophan involved in peptide binding reactions.  

For tyrosine the situation is quite similar.  

 

Figure 23: next (blue) and after next (red) amino acid of tyrosine involved in peptide binding reactions. 

The distribution of amino acids can be complemented by the distance in sequence for the 

interface residues, pictured in Figure 24. While half of the residues are direct neighbours, 

several other sequence distances are more present and more frequent than for a 
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DNA/RNA binding motif. An addition, the highest observed sequence distance in the 

whole dataset was 203 amino acids.  

 

Figure 24: distance in sequence for interface residues involved in peptide binding. Absolute values are shown in red. 

 

Again we can estimate the size of the interface by the distance between the interface 

residues, like shown in Figure 25. The interfaces seem to be smaller than for DNA 

binding, which is also to be expected, since the peptides are small compared to the big 

nucleic acid molecules some motifs bind to. In addition, the peaks for the residues in a 

specific sequence distance are much less prominent. This underlines that the variation in 

sequence distance is much higher in peptide binding motifs than in the ones that bind to 

DNA. But this is not the only reason for the smoother distribution of distances. Figure 26 

shows the secondary structure elements involved in peptide binding. While DNA binding 

is established by very stable helixes, peptide binding involves mostly flexible loops and 

sheets.   
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Figure 25: spatial distance between interface residues involved in peptide binding. 

 

Figure 26: secondary structure elements involved in peptide binding reactions 

Helices are irrelevant in the process of peptide binding. This leads to the conclusion that 

peptide binding involves more protein flexibility. This could raise the question if peptide 

binding in general is less specific than nucleic acid binding. We will confirm this 

observation in the next subchapter on the example of antigen-antibody interaction. 

Last but not least we also want to examine the surface with respect to accessibility.  The 

distribution shown in Figure 27 is comparable to the distribution for DNA/RNA binding 
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proteins. Although a broad range of RSAS can be observed, more low RSAS values are 

reported, supporting a more cavity-like arrangement of residues. This is in fact true. 

Peptide fragments, stretching out from a protein, often bind inside a pocket.  

 

Figure 27: solvent accessibility in the case of peptide binding proteins  

Antigen-Antibody interaction: 

One specific kind of complex formation we will now look at is Antigen-Antibody (AG-

AB) interaction. Figure 28 shows the results for the amino acid frequencies in a non-

redundant AG-AB dataset. The distribution is quite similar to the one for peptide 

interactions in general. Differences can be found for cysteine, which is in fact logical 

since these interactions are non-covalent and the formation of disulphide bonds is 

unusual. Besides that, serine seems to be involved in the process of AG-AB interaction, 



 
50 

 

which is not the case for peptide binding in general. This interaction could be hydrogen-

bond related. 

 

Figure 28: interface residue frequency (blue), next (red) and after next (yellow) residue frequency of AG-AB 

interactions 

 

The spatial distances get even higher for AG-AB interactions and are more evenly 

distribuited. The peak for neighbouring amino acids nearly dissapears and has changed 

into a flat tray, represented in Figure 29  

 

Figure 29: spatial distance between interface residues involved in AG-AB interaction 

 

Interstingly this change can not be explained by the distance in sequence since most 

interface residues seem still to be neighbouring each other, as is shown in Figure 30. 

There are two other possible reasons. First, the secondary structure involved in this kind 
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of interaction is very flexible. Figure 31 shows this statistic, identifieyng turns, bends and 

sheets as the main elements, resulting in a much less even arrangement of amino acids.  

 

Figure 30: distance in sequence between interface residues involved in AG-AB interaction 

The even more important factor cannot be evaluated from the statistics. While most 

previous motifs where limited to a single chain of amino acids, the motifs of antibodies 

are formed by two different chains. For these residues, a distance in sequence can of 

course not be calculated, while their spatial distance is still part of our statistics. This is 

one very important feature also our prediction method will incorporate. Many methods 

are limited to single chains, while our approach is not restricted by the number of chains 

but includes all residues regardless of the chain they are located on. 
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Figure 31: secondary structure contributing to AG-AB interaction 

For completion we can examine the RSAS, which is not considerable different from the 

general peptide interaction. 

 

Figure 32: solvent accessibility in the case of AG-AB interaction 

 

3.4 Statistics of Calcium and Magnesium binding 
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The last statistical analysis will point out the differences and similarities in two very 

similar mechanism, the binding of Magnesium and Calcium. Both metals are very 

frequent ligands and identifying metal binding sites inside proteins can be very useful. 

The main amino acid involved in binding of calcium as well as magnesium is aspartic 

acid. The histogram of the amino acid frequency is shown in Figure 33. Other 

participating amino acids can be glutamic acid, aspartate and cysteine. At first glance the 

distribution for both metals seems to be nearly the same, which would make it difficult to 

distinguish between those two.  

 

Figure 33: interface residue frequency in proteins binding calcium (blue) and magnesium (red) 

This problem can be tackled when looking at the distance between the amino acids in 

sequence, as well as the distance in space between the residues. In case of magnesium 

binding, the interface residues, quite often neighbour each other, but can also be up to 22 

amino acids apart. For calcium binding, the next interface residue often appears with one 

other residue in between (see Figure 34 and Figure 35). This fact is also observed in the 

distance distribution, with the distribution of calcium shifted to higher values, like 

visualized in Figure 36. Interestingly, although for calcium binding some residues do not 

seem to be direct neighbours, the characteristic peak in the distance distribution can’t be 

reported. This indicates that the residues, even though they are not direct neighbours, 

come quite close to each other. Since the calcium ion is a single interaction point, this is 

logical. The reason for this differences between magnesium binding and calcium binding 

are obviously the size of the metal ion, with calcium being bigger than magnesium and 

therefore requiring a bigger cavity. In this case we can quite certainly speak of a cavity 

like illustrated by the RSAS distribution (see Figure 37 and Figure 38). Here we also see 

a major problem with the definition of surface residues. For metal binding the 
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accessibility falls below 16 % for a major portion of the amino acids. Following this, a 

much smaller cut-off value has to be chosen, otherwise many relevant residues will get 

lost during the calculations. For further calculations regarding metal binding, we therefor 

apply a cut-off value of 3 %. 

 

Figure 34: distance in sequence for magnesium binding sites 

 

 

Figure 35: distance in sequence for calcium binding sites 
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Figure 36: spatial distribution of interface amino acids in calcium binding (blue) proteins and magnesium binding 

proteins (red) 

 

Figure 37: surface accessibility for calcium binding sites (blue) and magnesium binding sited (red)  

Calcium and magnesium binding also differ quite strongly in the participating secondary 

structure. While bends are the major structural element in involved in calcium binding, 

most residues for magnesium binding are located within a β-sheet.  
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Figure 38: secondary structure involved in calcium binding 

 

Figure 39: secondary structure involved in magnesium binding 
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3.5 Excursion: Side chain flexibility in DNA/RNA binding sites evaluated by 

NMR structures 

 

In this excursion the flexibility of side chains and changes in the distribution of rotamers 

in the binding site of nucleic acid binding proteins will be discussed. Many methods using 

structural information consider side chains to be fixed in one conformation which is in 

fact not true. Side chains have many preferred conformations, between which they can 

switch very rapidly. This is especially true for unbound surface residues. Considering the 

atomic information based on the side chains can therefore be misleading.  

This fact can easily be demonstrated by the three histograms shown in Figure 40, 

representing the three cases we can observe for most residues on the binding sites after 

calculation of all χ1 angles. For the very relevant, charged residue arginine the differences 

between the bound and unbound state are rather small, displayed in first histogram. In the 

bound state, the distribution is a little more spread towards unusual states, nevertheless in 

general the distribution is in general quite similar. Since the side chains are long and quite 

flexible in the unbound state, the conformational space is quite big. The occupation of 

more unusual states in the bound state is most likely caused by the attraction between the 

charged residue and the interaction with the DNA backbone, forcing the side chain into 

these states. The same was observed for lysine.  
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Figure 40: side chain angle distribution. Top: distribution of rotamers for arginine in the bound (red) and unbound 

state (blue). The preferred states of arginine are 62°, -177°, -67°, and -62°. Middle: distribution of rotamers for 

histidine in the bound (red) and unbound state (blue). The preferred states of histidine are 62°, -177°, and -65°. Bottom: 

distribution of rotamers for glutamic acid in the bound (red) and unbound state (blue). The preferred states of glutamic 

acid are 62°, 70°, -177, -65°, and -67°.  

 

Due to the high flexibility of the long arginine side chains this is rather unsurprising to 

occur. Nevertheless it indicates structural changes during binding. For aromatic residues 

involved in the binding, like histidine or tryptophan, we can report quite the same but in 

a much severe fashion. The unbound and bound state differ strongly. While the unbound 

residue shows a rather limited flexibility, therefore occupying mainly the preferred 

rotameric states, the bound states shows a broad distribution. Moreover, it contains 

residues in states, which are not reported at all for the unbound mode. This might quite 

likely be due to the stacking interactions. For this kind of interaction to occur the aromatic 

residues has to show a certain spatial arrangement towards the base pairs (102). Since the 



 
59 

 

base pairs themselves are inflexible, the only way to establish the interaction is due to 

changes in the amino acid conformation, as is reported here.  

The opposite behaviour can be observed for most residues, which are rather unlikely to 

be present in the binding site like glutamic acid. In an unbound state, many different states 

can be reported, most likely indicating a high amount of flexibility. Interestingly also a 

high amount of uncommon states can be reported. Glutamic acid shows a cluster of states 

around 40° for χ1. This might be caused by reciprocal action with residues of the opposite 

charge on the binding site. Upon binding, the states shift to more discrete values and often 

preferred values. For example in the case of Glutamic acid, which carries a negative 

charge, this might be due to the repulsive forces, resulting in a more limited 

conformational space, basically locking the residues in one or two preferred 

conformations. This could even be a possible binding concept. In the unbound state parts 

of the charged patch might be neutralized by opposite charged residues in a less preferred 

conformational state. If ligand and protein come in close contact, the repulsive forces can 

easily force these residues into a more preferred conformational state, exposing the 

binding site fully in order to establish contact. A concept quite similar to the so-called 

induced fit in the case of enzymes.  

The result can be confirmed by the average deviation from the preferred side chain angles 

shown in Table 3. Lysine and Arginine show higher deviation in the bound state than in 

the unbound state although the difference is not that severe, while for tryptophan and 

histidine very high values can be reported. For cysteine and, as mentioned before, 

glutamic acid, the deviation from the preferred states is much higher in the unbound state 

than in the bound state. 

Table 3: deviation from preferred state for χ1 

 Average deviation in degree 

from closest preferred state 

amino acid bound unbound 

ARG 15.60 13.54 

ASN 15.41 13.11 

ASP 13.06 11.87 

CYS 12.12 23.30 

GLN 15.15 9.40 

GLU 14.94 27.17 

HIS 16.36 10.61 

ILE 12.91 13.76 

LEU 13.46 7.52 

LYS 13.52 9.42 

MET 13.80 11.66 
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PHE 14.23 15.27 

PRO 7.27 8.07 

SER 16.52 10.73 

THR 20.76 20.05 

TRP 19.54 13.48 

TYR 14.59 19.75 

VAL 15.09 12.35 

 

By creating a distribution over the deviation instead of calculation an average, the 

behaviour can be described in more detail. This type of distribution is shown in Figure 

41. A peak close to zero is caused by all rotamers in a conformation close to a preferred 

state.  

A broader peak in this area in the unbound state might indicate more flexibility in general, 

while a broader distribution over several values quite likely can be interpreted as residues, 

which are forced into unfavourable states. It needs to be considered that in an NMR 

structure, the models submitted are still filtered, containing only these with the lowest 

energies.
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Figure 41: Top: distribution over the deviation from the preferred states for arginine. Middle: distribution over the 

deviation from the preferred states for tryptophan. Bottom: distribution over the deviation from the preferred states for 

glutamic acid.  

For arginine the bound and unbound state don’t differ much and most rotamers are close 

to the preferred states. Nevertheless in the bound state the distribution shows several 

peaks. The first broad peak close to zero can be assigned to residues in the preferred state. 

The two smaller peaks around 30° and 55° are caused by transition states of one preferred 

rotamer into another. This peaks disappear in the broader distribution of the bound state. 

Here many more states seem to be present due to interaction with the ligand. The same 

can be reported for tryptophan, where the bound residue shows a very broad distribution 

with states deviating up to 30° from the preferred state in order to establish stacking 

interactions. We see quite the opposite we see for glutamic acid. The unbound residue 
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very often occupies unusual rotamer states, while in the bound state it shifts strongly 

towards the preferred states. 

In summary, this small excursion shows that the consideration of atomic coordinates of 

the side chains is very challenging. The changes in conformation are quite frequent, 

especially for residues involved in the interaction. A previously rather flexible residue 

can be found in a rather unusual conformation upon binding. These changes show the 

difficulty of purely geometry based approaches. A certain arrangement of amino acids 

might not be present in the unbound protein. Since the prior knowledge is mostly based 

on bound structures, many possible binding sites might be missed. This disadvantage is 

not present in methods which rely on more general features. In addition, it also needs to 

be mentioned, that most assessment and benchmarking is done on datasets containing 

already bound structures. A much more accurate approach would be to use data as a 

benchmark, which is available in an unbound and a bound state. Only then the true 

predictive power of a method can be assessed. Our results are in line with the very few 

results given in literature, also reporting changes in structure and side chains upon 

binding, although they are based an X-Ray structures and account only for protein – 

protein interactions (103).  

Given our results, it might be the best approach to only consider low structural 

information like the Cβ – orientation for accessible side chains, which will still give a 

good impression of the orientation of the chain regardless of changes in the rotameric 

state and which should not change much upon ligand binding. With the rapidly growing 

amount of NMR structures available the demonstrated approach can be used for much 

more detailed analysis of side chain flexibility, also covering the χ2 angle or a direct 

structural comparison of atomic coordinates including changes in backbone 

conformation. Knowledge about this topic is not only relevant in the shown context of 

prediction methods, but also plays a major role in protein modelling and docking 

approaches. 

 

3.6 By residue assessment  

 

ROC curves: 
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To determine score performance and the optimal threshold ROC curves where calculated. 

For the for complete BioLiP datasets the ROC curves are shown in Figure 42.  

 

Figure 42: ROC analysis for nucleic acid binding (red), peptide binding (black), calcium binding (blue) and magnesium 

binding (green). Since the ROC analysis follows the first scoring cycle, the curves never reach an FPR of 1.0. The 

threshold was increased in steps of 0.1.   

For all four datasets a positive predictive value can be observed in the ROC curve. The 

prediction of the Magnesium and Calcium binding residues seems to work much better 

than for the DNA/RNA and peptide data. This is due to the high diversity in the latter 

two, which makes it more difficult to achieve a more accurate prediction.  

Table 4: ROC analysis of the four main datasets DNA/RNA, peptide, magnesium and calcium binding 

Dataset Y-Index Threshold 

DNA/RNA 0.337 9.1 

Peptide 0.240 10.5 

Magnesium 0.724 2.2 

Calcium 0.596 7.0 

 

Table 5: statistical measurements for the four main datasets DNA/RNA, peptide, magnesium and calcium binding 

Dataset Sensitivity  Specificity  Precision Accuracy FMeasue MCC 

DNA/RNA 0.742 

(0.197) 

0.596 

(0.252) 

0.261 

(0.142) 

0.632 

(0.142) 

0.363 

(0.162) 

0.244 

(0.151) 

peptide 0.451 

(0.373) 

0.789 

(0.122) 

0.108 

(0.114) 

0.761 

(0.097) 

0.151 

(0.121) 

0.117 

(0.153) 

MG 0.788 

(0.300) 

0.911 

(0.023) 

0.103 

(0.082) 

0.909 

(0.0.23) 

0.174 

(0.121) 

0.251 

(0.137) 

CA 0.790 

(0.100) 

0.806 

(0.261) 

0.223 

(0.139) 

0.794 

(0.089) 

0.330 

(0.173) 

0.340 

(0.166) 
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All four datasets perform very well in case of sensitivity and specificity. Nevertheless, 

precision is a huge problem. Due to the overwhelming amount of residues compared to 

the very few interface residues, the number of false positives can be quite high. 

Nevertheless this is not an unexpected problem. Other methods based on machine 

learning approaches report values in a comparable range for a residue based assessment, 

although direct comparison is difficult due to the different datasets and definitions (89, 

104, 105). In addition, a residue based assessment is not the main goal of the method, 

which does not aim to identify discrete residues, but a specific area in the protein.  

 

Isolated DNA motifs: 

To check how performance changes when working with more distinct, smaller datasets 

the similar assessment method was performed on the DNA binding motifs with the 

corresponding profiles. The ROC curves can be found in Figure 43. 

 

Figure 43: Roc analysis for the six different DNA binding motifs. Since the ROC analysis follows the first scoring cycle, 

the curves never reach an FPR of 1.0. The threshold was increased in steps of 0.1.   

Table 6: ROC analysis for isolated DNA binding motif datasets 

Dataset Y-Index  Threshold 

HLH 0.693 3.0 

HTH 0.513 9.5 

HhH 0.380 7.2 

LZ 0.804 7.6 

ZF 0.260 5.7 

HB 0.484 6.1 
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The performance on the motif datasets is much better than on the unspecific datasets. 

Especially the LZ, the HLH and HTH motif dataset perfom very well. This might be due 

to the fact that these sets are the most distinct ones with very little differences within the 

structures, creating a very significant profile. This can also be confirmed when locking at 

statistical measurements 

Table 7: statistical measurements for isolated DNA binding motif datasets (standard deviation) 

Dataset Sensitivity  Specificity  Precision Accuracy FMeasure MCC 

HLH 0.881 

(0.145) 

0.811 

(0.070) 

0.438 

(0.158) 

0.818 

(0.063) 

0.564 

(0.157) 

0.528 

(0.149) 

HTH 0.767 

(0.236) 

0.746 

(0.137) 

0.342 

(0.170) 

0.758 

(0.100) 

0.443 

(0.172) 

0.378 

(0.159) 

HhH 

 

0.509 

(0.285) 

0.871 

(0.033) 

0.160 

(0.100) 

0.853 

(0.028) 

0.235 

(0.138) 

0.219 

(0.158) 

LZ 0.954 

(0.062) 

0.849 

(0.046) 

0.496 

(0.130) 

0.863 

(0.039) 

0.642 

(0.118) 

0.622 

(0.101) 

ZF 0.816 

(0.213) 

0.443 

(0.221) 

0.242 

(0.128) 

0.526 

(0.160) 

0.358 

(0150) 

0.205 

(0.131) 

HB 0.759 

(0.169) 

0.725 

(0.262) 

0.489 

(0.154) 

0.742 

(0.100) 

0.562 

(0.154) 

0.446 

(0.168) 

 

For the specific motifs, the method achieves very good performance values. This confirms 

what we already expected from the analysis. Structural binding motifs are very diverse 

and prediction from a general set of features is challenging. Assuming that most 

interactions are established by either a known motif or a structure with very similar 

features to one of the known ones, it could be useful to rely on smaller, more precise 

datasets for training instead.   

 

3.7 By patch assessment 

 

The assessment by patch is in fact much more relevant to our approach, but also more 

difficult to realize. In our case, we use a very rough approximation in form of a circle 

shaped patch of a fixed size. This is of course not accurate, since the real interface can be 

shaped quite differently. The difficulty of patch assignment has already been discussed 

in literature and it was shown that finding the right patch size and shape can very strongly 

influence performance (33). Given that it would be worthwhile to develop a method 

which assigns the patches more dynamically and also is able to recognize clustering of 

high scoring residues. First calculations regarding this process have already been 
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performed during this work was written. Nevertheless, the approximation of a round patch 

gives as a first impression if our method is able to identify the right binding area. 

Table 8: assessment values per patch (standard deviation) 

Dataset Hits 

percentage 

overlap Rank correlation 

RNA/DNA 41 % (33 %)  30 % (33 %) 28/129 0.29 (0.24) 

Peptide 27 % (30 %) 29 % (39 %) 28/155 0.22 (0.18) 

Calcium 42 % (37 %) 45 % (36 %) 11/153 0.51 (0.24) 

Magnesium 46 % (46 %) 45 % (47 %) 15/299  0.250 (0.17) 

     

HLH 84 % (20 %) 86 % (15 %) 2/65 0.77 (0.11) 

HTH 53 % (30 %) 46 % (30 %) 12/116 0.40 (0.20) 

HhH 48 % (34%) 30 % (33 %) 65/322 0.31 (0.25) 

LZ 79 % (19 %) 72 % (23 %) 3/65 0.81 (0.11) 

ZF 37 % (32 %) 31 % (32 %) 19/90 0.27 (0.29) 

HB 61 % (27 %) 41 % (37 %) 19/67 0.48 (0.23) 

 

Like we can see, the average values are promising, although we report a rather high 

standard deviation, indicating that for some structures, a faulty patch is assigned, most 

likely due to a very different shape. Correlation between the hits and the score of a patch 

seems to be good, as is displayed in Figure 44 for the HLH motif.  

 

Figure 44: Correlation between number of hits and the score for the HLH motif, both values normalized between zero 

and one. Low quality patches should be located in the left lower corner, high quality patches in the upper right.  

The assessment of the developed method shows that the approach in general works, 

although it differs strongly between the datasets. What exactly influences this is up to 

discussion and could be further investigated by using smaller datasets and analysing 

individual cases. In summary the more specific approach using small datasets seems to 
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work much better. This is not surprising given the fact that the big datasets result in a 

quite broad average over all containing binding sites. Further assessment is required 

especially by independent datasets, which were not part of the training procedure. Up to 

this date only for DNA and RNA binding some benchmark datasets are available. Other 

publications have shown that the comparison of such approaches is very difficult, mostly 

caused by the many different ways to define interface residues (89). The most interesting 

assessment way is a more advanced patch analysis, assigning non spherical patches. The 

only method using a rather similar approach in order to predict protein-protein binding 

sites also states patch assignment as one main difficulty and reports comparable values 

for overlap of patches (33). 

 

3.8 Method flexibility and application 

 

In this last chapter of the results we will demonstrate our methods flexibility and 

reliability based on actual application. Like discussed in the methods, we adapted our 

algorithm towards a more generic surface comparison in order to identify proteins with a 

surface patch similar to the switch2 region in Rab proteins. Table 9 shows the top results 

of the calculations done on a non-redundant dataset of 9733 human protein structures, as 

well as on a dataset of seven Rab proteins with a threonine in the centre (RabT – set ) of 

switch2 and 11 Rab proteins with a serine in the centre of switch2 (RabS – set).  

Table 9: top results of the patch search for 9733 human proteins. The proteins of the RabT – Set in green, the RabS – 

set in red and the RabS – set with inclusion of serine as patch centre in orange. 

# pdbID found 
residue 

centre score ΔÅ Short description 

0 4lhw T72.C   4.85    rab8 in its active gppnhp-bound form 

1 4LHY T72.A T72.A 4.17 0.0 gdp-bound rab8:rabin8 

2 2HUP T82.A T82.A 3.96 0.0 rab43 in complex with gdp 

3 3DZ8 T86.A T86.A 3.8 0.0 rab3b gtpase bound with gdp 

4 3NKV T72.A T72.A 3.73 0.0 rab1b covalently modified with amp at y77 

5 2GF9 T86.A T86.A 3.7 0.0 rab3d in complex with gdp 

6 3TW8 T74.B T72.B 3.13 6.2 dennd 1b in complex with rab gtpase rab35 

8 1X3S T72.A T72.A 2.87 0.0 rab18 in complex with gppnhp 

9 1qmn T366.A   2.67   alpha1-antichymotrypsin serpin 

10 5dj4 T480.A   2.66   leucine-bound sestrin2 from homo sapiens 

11 2yd0 T886.A   2.41   aminopeptidase 1 erap1 

12 3rjo T886.A   2.36   erap1 peptide binding domain 

13 4pa0 T786.B   2.36   human beta-cardiac myosin motor domain 

14 4a82 T303.A   2.24   transmembrane conductance regulator 
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15 4pbx T371.A   2.18   receptor protein tyrosine phosphatase sigma 

16 1zzj T15.C   2.12   kh domain of hnrnp k in complex with ssdna 

17 4x9r T517.A   2.12   plk-1 polo-box domain 

18 2yd9 T151.A   2.04   receptor protein tyrosine phosphatase sigma 

19 4dur T581.B   2.02   full-length type ii human plasminogen 

20 4ri0 T342.C   1.99   serine protease htra3, mutationally inactivated 

21 4cim T55.A   1.96   complex of a bcl-w bh3 mutant with a bh3 domain 

22 1w9e T198.B   1.95   pdz tandem of syntenin 

23 4px9 T201.B   1.93   dead-box rna helicase ddx3x 

24 4acq T346.A   1.92   alpha-2 macroglobulin 

25 2xsz T248.E   1.91   dodecameric human ruvbl1:ruvbl2 

26 4urj T156.D   1.9   crystal structure of human bj-tsa-9 

27 2F7S S83.A   1.9 0.0 human rab27b bound to gdp 

28 1hy7 T230.A   1.89   inhibitor in complex with mmp3 

29 2xb2 T276.A   1.88   core mago-y14-eif4aiii-barentsz- upf3b 

30 2y0n T173.B   1.88   dosage compensation factors msl1 and msl3 

31 1hap T74.H   1.86   alpha-thrombin 

32 4ft2 T340.B   1.86   mays zmet2 in complex h3(1-15)k9me2 peptide 

33 2a55 T19.A   1.85   n-terminal ccp modules of c4b- binding protein 

34 2yd6 T140.A   1.85   receptor protein tyrosine phosphatase delta 

35 1yrv T142.A   1.84   novel ubiquitin-conjugating enzyme 

36 4rdu T142.D   1.84   homeobox protein 5 (dlx5) from homo sapiens 

37 2da3 T23.A   1.83   homeobox of atbf1 

38 4cca T572.A   1.83   structure of human munc18-2 

39 3ex7 T276.C   1.82   ejc in its transition state 

40 3n7q T133.A   1.82   mitochondrial mterf fragment 

41 4j1v T76.A   1.82   mobkl1b 

42 4uml T139.A   1.82   gdap2 macro domain 

43 2F7S T40.A   1.82   rab27b bound to gdp 

44 2FE4 SS77.A S77.A 1.82 0.0 neuronal rab6b in its inactive gdp-bound form 

45 1upk T112.A   1.81   mo25 in complex with c-terminal peptide of strad 

46 1khm T15.A   1.8   c-terminal kh domain of hnrnp k (kh3) 

47 1wlj T54.A   1.8   human isg20 

48 4jj7 T390.A   1.8   caspase-3 amino acid-based peptides 

49 1mgx T38.A   1.78   coagulation factor, mg(ii) 

50 1r6j T198.A   1.77   syntenin pdz2 

51 1rgo T152.A   1.77   tandem zinc finger domain of tis11d 

52 4u1r T103.A   1.77   platelet phosphofructokinase 

53 1qtn T390.B   1.76   complex of caspase-8 with tetrapeptide inhibitor 

54 1tr2 T8.B   1.76   full-length vinculin (residues 1- 1066) 

55 1xf7 T24.A   1.76   wilms' tumor suppressor protein (wt1) finger 3 

56 2dal T24.A   1.76   human fas associated factor 1 protein 

57 5dot T1214.B   1.75   human carbamoyl phosphate synthetase i (cps1) 

58 4zg7 T608.A   1.74   human autotaxin 

59 4iyp T78.C   1.73   structure of the npp2ac-alpha4 complex 

60 1hao T74.H   1.71   lpha-thrombin 

61 3pcv T145.A   1.71   leukotriene c4 synthase 
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62 4ifs T385.A   1.7   hssrp1 middle domain 

63 4r2q T404.A   1.7   wilms tumor protein (wt1) zinc fingers 

64 1r74 T7.A   1.69   human glycine n-methyltransferase 

65 1zzi T15.A   1.69   the third kh domain of hnrnp k 

66 3fk2 T1416.D   1.69   glucocorticoid receptor dna-binding factor 1 

67 3qu6 T32.B   1.69   irf-3 dbd free form 

68 4gv1 T448.A   1.69   pkb alpha in complex with azd5363 

69 4nzq T389.A   1.69   prothrombin deletion mutant residues 146-167 

70 3r8q T151.A   1.68   structure of fibronectin domain 12-14 

71 3trt T317.A   1.68   stabilised vimentin coil2 fragment 

72 4i7y T74.H   1.68   human alpha thrombin 

73 3dd2 T74.H   1.67   rna aptamer bound to human thrombin 

74 3g07 T630.F   1.67   human bicoid-interacting protein 3 

75 3lru T1970.B   1.67   hprp8 non-native subdomain 

76 4bq6 T942.A   1.67   rgmb-neo1 complex form 1 

77 4lt6 T411.B   1.67   human poly(a) polymerase gamma 

78 4uz1 T157.A   1.67   wnt deacylase notum - crystal form iii - 1.4a 

79 1qub T168.A   1.66   human beta2- glycoprotein i 

80 3l4g T183.M   1.66   cytoplasmic phenylalanyl-trna synthetase 

81 4eut T333.A   1.66   human tbk1 kinase- uld domain 

82 4oo6 T28.A   1.66   kap-beta2 bound to the nls of hcc1 

83 1j5k T15.A   1.65   hnrnp k 

84 1zzk T15.A   1.65   hnrnp k at 0.95a resolution 

86 3BC1 S83.A S83.A 1.61 0.0 complex rab27a-slp2a 

87 1S8F S1071.A S1071.A 1.51 0.0 rab9 complexed to gdp 

88 4DKX S77.A S77.A 1.3 0.0 rab 6a'(q72l) 

89 4DKX T27.A S77.A 1.26 22.4 rab 6a'(q72l) 

90 3BC1 T40.A S83.A 1.24 17.2 rab27a-slp2a 

91 2A5J S75.A S75.A 1.19 0.0 human rab2b 

93 2BMD T76.A S74.A 1.16 6.8 gdp-bound human rab4a 

94 2FE4 T54.A S77.A 1.15 32.7 neuronal rab6b in its inactive gdp-bound form 

95 2A5J T77.A S75.A 1.14 7.2 human rab2b 

97 1Z0A T72.A S70.A 1.09 7.6 gdp-bound rab2a gtpase 

98 1S8F T1039.A S1071.A 1.05 14.5 rab9 complexed to gdp 

99 1Z0D T53.A S85.A 1.04 19.9 gdp-bound rab5c gtpase 

101 2HEI S84.A S84.A 0.94 0.0 human rab5b in complex with gdp 

102 1TU4 T52.A S84.A 0.87 16.9 structure of rab5-gdp complex 

104 2HEI T166.A S84.A 0.74 35.8 human rab5b in complex with gdp 

 

Several remarkable points can be observed regarding our method and the adaption to this 

task. First of all, only very few proteins even score close to the values achieved for the 

Rab proteins from which the statistics were generated on (green). As expected, among 

the high scoring proteins several Rab related structures can be found, but also other 

proteins. For all of the structures in the RabT– set except for one, we can identify the 
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centre of switch2 and the corresponding surface patch. The one faulty result is another 

threonine close to switch2. This might be caused by the fact that it is not a single protein 

structure but a complex with a GEF domain. Nevertheless we still have identified the 

correct site. For the Rab proteins with a serine at switch2, we mostly identify threonines 

close to the switch2 region. If none is available there, a more or less random threonine on 

the surface which is accessible will be the highest scoring one, but with a very low score 

(red). If we do not restrict the method to a threonine but instead allow to use a serine as 

the centre of the patch, we will in many cases actually identify the serine in the centre of 

switch2, even thorough the profile was generated on the RabT– set. Nevertheless the 

scores of the RabS– set stay low compared to the RabT – set. This is a good indication that 

the method actually scales with the similarity of the surface area. The switch2 region of 

the RabS– set might be the most similar one to the site in the RabT – set, but still different 

enough to result in a low score. In addition, since the switch2 sequence is very well 

conserved, the low scores of the RabS – set indicates, even though the method 

incorporates some sequence information, the main information is contributed by surface 

structure similarity. This can also be shown by looking at the structures directly, 

comparing their biochemical features. Since the interaction of kinases is often related to 

hydrophobicity and charge, we will analyse the proteins in case of their hydrophobicity 

(based on Kyte and Doolittle scale, see appendix, Table 14 (106)) and their charge. 

Demonstrated in Figure 45, the central threonine in Rab8 is highly exposed, emerging 

from the proteins surface.  The area seems to be only slightly charged, with a rather 

positive charged area on the one side and a more negative area on the other side of the 

central threonine, resulting in an area of low charge. In case of hydrophobicity, we can 

observe a small but very hydrophilic charged patch on one side of the central threonine, 

while most other areas are hydrophobic. For Rab2A, which contains a serine in the centre, 

we observe a very different surface configuration. First of all the serine is much less 

accessible, located in a sink like part of the protein. The whole area is negatively charged 

in general. Only the hydrophobicity arrangement resembles slightly the one of Rab8. 



 
71 

 

 

 

Figure 45: Upper left: Charge distribution (based on Coulomb's law)  of the surface patch around the central threonine 

in switch2 of Rab8. Upper right: Hydrophobicity of the surface patch around the central threonine (in green) in switch2 

of Rab8. Lower left: Charge distribution of the surface patch around the central serine in switch2 of Rab2A. Lower 

right: Hydrophobicity of the surface patch around the central threonine (in green) in switch2 of Rab2A. Images were 

created using the software Chimera (107).  

 

The same analysis can and should be done, if a protein is picked from the results given in 

Table 9. A good candidate might be α-thrombin (PDB-ID: 4I7Y, Figure 46), appearing 

several times in the medium range of the upper field, always with the same central residue 

although it is in fact represented by slightly different structures from different 

publications.  
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Figure 46: Left: Charge distribution (based on Coulomb's law)   of the surface patch around a threonine in α-thrombin. 

Right: Hydrophobicity of the surface patch around the central threonine (in green) in α-thrombin. Colour scales are 

the same as in Figure 45. 

Again we can observe a highly exposed threonine (green). The area is more positively 

than negatively charged and evenly hydrophilic and hydrophobic.  A similar arrangement 

could be found also in other proteins picked from the list. In addition to the surface 

similarity, also the underlying protein structure shows similarities. The main residues are 

in general located on a loop or helical structure, while residues located at a β-sheet 

underneath contribute to the distal areas of the patch. 

Although these results are very promising in terms of method performance and reliability, 

they might not give relevant results towards the actual problem of finding possible kinase 

substrates. Kinases often have several mechanisms to achieve specificity. Among these 

are also very distal binding sites (21). In addition we also used the approximation of a 

round surface patch of a fixed size and assumed that the threonine is located in the centre 

of the interface, which might also not be the case. An analysis on known kinase interfaces 

similar to the one performed on binding motifs in this work might lead to much better 

insight. For now, since the exact interface is unknown, the predictive value of this results 

is rather low. But the structural analysis and investigation of literature gave some other 

insight into the possible underlying mechanisms. The fact that the switch2 region is rather 

disordered in the GDP-bound state and stabilizes upon binding of a factor or GDP-GTP 

exchange, supports the concept of an induced fit for the phosphorylation reaction. The 

flexibility therefor could be a requirement for the reaction to occur. In addition the fact 

that some phosphorylation occurs for Rab proteins with serine in switch2 in vitro but not 

in vivo, supports a competition between the two substrates in the organism. This situation 

is quite common among kinases (21). Given this, a distal binding site in the Rab proteins 
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leading to a preference towards one type of Rab proteins as substrate seems to be quite 

likely. This idea is also in agreement with the fact that linear peptides are not 

phosphorylated, lacking any distal sites. Discovering this binding site could be one major 

step in substrate identification and could be achieved by the shown approach. In the next 

step, many differently sized or even differently shaped surface patches could be used, 

preforming the same calculations many times. Proteins which appear in the results more 

often or disappear for a certain shaped patch might be more suitable for further 

investigation. Although this will not be part of this thesis, the application towards this 

problem shows that the method itself is reliable. Even more, this approach could be one 

major field for such applications to be used in.  

 

4 Conclusions 

 

This work can be used as a basis for further development in many different directions. 

One of the most promising applications might be to use general surface features instead 

of limiting results by a structural arrangement to compare surfaces. Since the number of 

spatial arrangements of amino acids, which could achieve a characteristic surface area is 

virtually endless, this might lead at some point to another level of conservation within 

proteins (sequence  structure  surface).  

Before this can be achieved, a more detailed understanding of the proteins surface is 

necessary. This is a very difficult task, which could also be supported in further work with 

the same approach. By comparing different definitions and cut-offs while using our 

approach, it might be possible to identify a more reliable value, which a surface residue 

has to pass to be not only accessible but able to participate in a functional manner. This 

could also help to identify, which residues are actually crucial for binding and which are 

not. Mutation experiments determining crucial residues as well as energy calculations are 

very time consuming. By analysing the performance of a prediction method in 

dependency of different cut-off values, a more detailed picture of interface residue 

relevance could be drawn.  

For the prediction method itself it was shown that, even though we are in an early stage 

of optimization, we could demonstrate reliability and user-orientated value. Nevertheless 

we expect that much improvement can be achieved by further assessment and 
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optimization. At the moment, the weighting parameters underlying the different parts of 

the scoring method are chosen manually. By optimizing those using for example artificial 

neural networks, much better and more consistent results could be expected. Further 

assessment is necessary in order to understand the performance dependencies. Therefore, 

reliable benchmark datasets need to be created and individual cases of good and bad 

performing benchmark structures need to be evaluated. Also a non-static patch 

assessment method could improve the results quite strongly, since a round shaped patch 

of fixed size is a rough approximation. 

Ultimately it would be constructive to integrate this approach into a user friendly 

interface. It might even be useful to include basic tools for statistical surface analysis, 

which is missing in many structural biology applications. 

By exploiting the methods high flexibility many different final applications are 

imaginable such as protein classification and function discovery on several levels, protein 

surface analysis,  comparison of user-defined surface areas or the discovery of yet 

unknown structural motifs. 
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6 Appendix  

 

Table 10: structures in the non-redundant antigen-antibody dataset 

2NY7 2IGF 1FNS 1EO8 1DEE 1HI6 2JEL 3LEY 1FJ1 

1KTR 1NAK 1OAZ 2BRR 3MNZ 1C08 1YQV 1LK3 1I9R 

1JPS 3G5Y 3L5W 1IQD 3CXD 1W72 3NGB 1KCS 1OB1 

2WUC 2ZPK 3NH7 1BVK 1SM3 1PZ5 2QHR 1KCR 3I50 

2HRP 1OTS 2H1P 1KC5 1QFU 1NMC 1FRG 1FBI 3LIZ 

3FFD 1MPA 3HR5 1H0D 1FE8 2BDN 1JRH 1ZEA 3MXW 

3KR3 3NFP 1ORS 1MVF 1QFW 2OTW 1AI1 3GO1  

1FPT 1KXQ 1OSP 2B1H 1JTO 3D9A 1IKF 3GI8  

1NSN 1A14 2VIR 3LEX 3IDG 3BKY 2XRA 1TJI  

3DVG 1F90 1ZTX 1UWX 1TZH 1WEJ 3MLY 1A2Y  

2DD8 2CK0 1DQJ 1MVU 3MLR 1NCA 1E6J 1EJO  

1KEN 2W9E 2B2X 1P2C 1YY9 1S78 1N8Z 2AEP  

1E4W 1RJL 2XTJ 3IFO 1AHW 1CU4 2VXT 3O41  

2J4W 2UZI 1UJ3 1QKZ 3AB0 1KXT 1A3R 3IET  

1RVF 3GHE 1V7M 3IFL 2XQY 1F58 1EZV 1BJ1  

1E4X 1GGI 1TQB 2OSL 1I8K 1NL0 1DZB 1NBY  

3BGF 3IDX 1G6V 3O0R 1TZG 2A6I 1KXV 3L95  

1JHL 1EGJ 3LD8 3GBN 3IFP 3LZF 2VXS 3C2A  

3KJ4 3L5X 1IFH 3G6D 2XQB 1P4B 1CE1 3IXT  

3N85 3MLW 3IU3 1MLC 1FDL 1NDG 1BQL 1N0X  

 

 

Table 11: bound and unbound NMR structures with nucleic acid binding sites 

Bound structure Unbound homologs 

2lbsB 2luqA 1t4nA     

1f4sP 3alcA      

1oslB 1lqcA      

1t4lB 2luqA 1t4nA     

2exfA 1eskA 2l44A     

2lebA 2leaA 2kn4A     

2kejA 1lqcA      

2jzwA 1eskA 2l44A     

2eseA 2es6A 2fe9A     

2jp9A 1xf7A      

1cjgB 1lqcA      

1rcsA 1wrtR 1wrtS 1wrsR 1wrsS 2xdiA 2xdiB 

1rcsB 1wrtR 1wrtS 1wrsR 1wrsS 2xdiA 2xdiB 

1cjgA 1lqcA      

1co0B 1wrtR 1wrtS 1wrsR 1wrsS 2xdiA 2xdiB 
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2k1nA 1z0rA 1z0rB 2ro4A 2ro4B 1ysfA 1ysfB 

1co0A 1wrtR 1wrtS 1wrsR 1wrsS 2xdiA 2xdiB 

2lupB 2luqA 1t4nA     

1msfC 1idzA 1mbhA 1mbkA    

1l1mB 1lqcA      

2sttA 1r36A      

2kn7A 1z00B 2aq0A 2aq0B 2mutB   

2k1nC 1z0rA 1z0rB 2ro4A 2ro4B 1ysfA 1ysfB 

2l3jA 2b7tA 2b7vA     

2kn7D 1z00B 2aq0A 2aq0B 2mutB   

1t2sA 1vynA      

1bj6A 1eskA 2l44A     

1wtbA 1iqtA      

1l1mA 1lqcA      

1dz5A 1fhtA      

1dz5B 1fhtA      

2lecA 2leaA 2kn4A     

2jpaA 1xf7A      

2k1nB 1z0rA 1z0rB 2ro4A 2ro4B 1ysfA 1ysfB 

1a1tA 2m3zA 1mfsA 2l44A    

2o9lA 2ahqA      

2kxnB 2rrbA 2cqcA     

2lexA 1wj2A      

2kekB 1lqcA      

1audA 1fhtA      

2kekA 1lqcA      

2li8A 2cqfA      

2l3cA 2b7tA      

2keiA 1lqcA      

2keiB 1lqcA      

1x0fA 1iqtA      

2l5dA 2l5cA      

2l4lA 1eskA 2l44A     

2jx1A 2jydA      

2k1nD 1z0rA 1z0rB 2ro4A 2ro4B 1ysfA 1ysfB 

1nk2P 1vndA 1qryA     

2lttB 2ltdA 2ltdB     

2lttA 2ltdA 2ltdB     

2ko0A 2jtgA      

1f6uA 2m3zA 1mfsA 2l44A    

1oslA 1lqcA      

1t2rA 1vynA      

2o8kA 2ahqA      

2kejB 1lqcA      

2rraA 2cqcA      

2l2kB 2b7vA      

2xfmA 2l5cA      
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1tn9A 1bb8A      

2l1gA 2jtgA      

1lcdA 1lqcA      

 

Table 12: definition of χ1 side chain angles based on amino acid type 

Side chain Axis Atoms used to define angle Zero value Formal range 

ARG CA-CB N-CA-CB-CG CG cis to N from -180 to +180 deg 

ASN CA-CB N-CA-CB-CG CG cis to N from -180 to +180 deg 

ASP CA-CB N-CA-CB-CG CG cis to N from -180 to +180 deg 

CYS CA-CB N-CA-CB-SG SG cis to N from -180 to +180 deg 

GLN CA-CB N-CA-CB-CG CG cis to N from -180 to +180 deg 

GLU CA-CB N-CA-CB-CG CG cis to N from -180 to +180 deg 

HIS CA-CB N-CA-CB-CG CG cis to N from -180 to +180 deg 

ILE CA-CB N-CA-CB-CG1 CG1 cis to N from -180 to +180 deg 

LEU CA-CB N-CA-CB-CG CG cis to N from -180 to +180 deg 

LYS CA-CB N-CA-CB-CG CG cis to N from -180 to +180 deg 

MET CA-CB N-CA-CB-CG CG cis to N from -180 to +180 deg 

PHE CA-CB N-CA-CB-CG CG cis to N from -180 to +180 deg 

PRO CA-CB N-CA-CB-CG CG cis to N CA-CB is part of ring 

SER CA-CB N-CA-CB-OG OG cis to N from -180 to +180 deg 

THR CA-CB N-CA-CB-OG1 OG1 cis to N from -180 to +180 deg 

TRP CA-CB N-CA-CB-CG CG cis to N from -180 to +180 deg 

TYR CA-CB N-CA-CB-CG CG cis to N from -180 to +180 deg 

VAL CA-CB N-CA-CB-CG1 CG1 cis to N from -180 to +180 deg 

 

 

Table 13: preferred rotamers for χ1  as listed in the Penultimate Rotamer Library (108) 

Side chain Preferred rotamers 

ARG 62°, -177°, -62, -67° 

ASN 62°, -177°, -70° 

ASP 62, -174, -177 

CYS 62°, -177°, -65° 

GLN 62°, 70°, -177°, -65°, -67° 

GLU 62°, 70°, -177°, -65°, -67° 

HIS 63°, -177°, -65° 

ILE 62°, -177°, -65°,-57° 

LEU 62°, -177°, -172°, -85°, -65° 

LYS 62°, -177°, -90°, -67°, -62° 

MET 62°, -177°, -67°, -65° 

PHE 62°, -177°, -65° 

PRO 30°, -30° 

SER 62°, -177°, -65° 

THR 62°, -175°, -65° 
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TRP 62°, -177°, -65° 

TYR 62°, -177°, -65° 

VAL 63°, 175, -60° 

 

Table 14: Hydrophobicity based on Kyte and Doolittle scale (106) 

R K N D Q E H P Y W 

-4.5 -3.9 -3.5 -3.5 -3.5 -3.5 -3.2 -1.6 -1.3 -0.9 

S T G A M C F L V I 

-0.8 -0.7 -0.4 1.8 1.9 2.5 2.8 3.8 4.2 4.5 

 


