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Background:	
Two	pivotal	factors	regulating	gene	expression	are	transcription	factors	and	
epigenetic	processes	like	histone	modifications.	ChIP-Seq	is	a	powerful	technique	for	
cell	specific	detection	and	understanding	of	these	regulatory	interactions.	Most	of	the	
previous	studies	in	this	regard	have	focused	on	single	tissue,	ignoring	binding	across	
multiple	tissue	types.	In	order	to	completely	understand	the	transcriptional	network,	
we	need	to	focus	studies	on	transcription	factor	(TF)	binding	events	across	cell	
types/time	points.	For	this	purpose	technologies	like	ChIP-Seq	&	DNase-seq	are	
monumental	in	studying	binding	of	these	TFs.	Extending	analysis	across	multiple	
species	will	help	resolve	evolutionarily	constraint	TF	binding	regions.	It	will	also	help	
delineate	species-specific	TF	binding	patterns.	

Method:	
Most	of	the	tools	available	to	date	fail	to	consider	replicates	and	control	samples	for	
accurate	peak	comparison.	This	study	utilized	EpiCenter,	an	algorithm	for	
comparative	profile	analysis,	which	employs	3	independent	statistical	tests	and	
sequence	coverage	normalization,	along	with	a	sliding	window	approach	to	detect	
differential	binding	events	across	samples	REFERENCE!.	EpiCenter	was	employed	to	
study	ChIP-Seq	profiles	of	two	transcription	factors:	MYC	&	GATA1.	The	binding	
events	were	studied	across	two	different	kinds	of	cell	types:	K562	&	GM12878	both	
os	which	are	immortalized	cell	lines	derived	from	Human.	Two	different	cell	types	
from	mouse	MEL	&	CHX12	were	also	studied	for	TF	binding.	These	profiles	for	MYC	
and	GATA1	were	also	compared	between	Human	and	Mouse.		

Results:	
EpiCenter	is	a	comparative	profile	analyzer	for	detection	of	differential	binding	
events	across	a	whole	genome.	Since	it	performs	three	different	statistical	tests,	it	
exhibits	higher	precision	in	detection	of	differential	binding	events	across	samples.	
This	study	further	tested	its	robustness	in	predicting	differential	TF	binding.	Gene	
ontology	and	KEGG	was	used	to	gain	information	about	the	function	of	genes	
targeting	by	MYC	Comparison	of	enriched	pathways	provided	information	regarding	
tissue	specific	functionality	of	MYC.	Finally	comparison	across	species	helped	
delineate	the	conserved	binding	domains	for	MYC	and	the	species	specific	regions.	
Similar	studies	could	turn	out	to	be	a	big	step	towards	understanding	genome	wide	
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TF	regulation	of	complex	transcriptional	networks.		
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1.1 ChIP-Seq		

	
DNA-binding	proteins	are	molecules	that	play	a	role	in	cellular	processes	like	
transcription,	translation,	splicing,	replication	and	DNA	repair.		One	major	class	are	
transcription	factors,	which	bind	specifically	to	motifs	in	DNA	and	regulate	gene	
expression.	Identifying	the	binding	regions	of	these	transcription	factors	is	necessary	to	
understand	the	regulatory	functions	carried	out.	Chromatin	Immunoprecipitation	
coupled	with	oligonucleotide	hybridization	tiling	array	(ChIP-chip)	(Kharchenko,	
Tolstorukov,	and	Park	2008;	Valouev	et	al.	2008)	and	with	ultra	high-throughput	
sequencing	(ChIP-Seq)	has	become	a	widely	used	technology	to	study	transcription	factor	
binding	for	the	entire	genome	as	well	as	the	chromatin	state	of	a	cell	(Histone	
modifications).	ChIP-Seq	is	the	most	efficient	way	to	identify	binding	sites	for	a	single	
transcription	factor	or	the	location	of	histones(Furey	2012).		
	
In	a	ChIP-Seq	experiment	the	cells	are	initially	treated	with	formaldehyde	in	order	to	
cross-link	proteins	(transcription	factors	or	histones)	associated	with	DNA.	The	DNA	is	
then	sheared	randomly	(using	endonucleases	or	sonication)	in	order	to	generate	sub-kilo	
base	double	strands.	A	specific	antibody	directed	towards	the	protein	of	interest	is	
collected	using	the	immunoprecipitation	(IP)	process	Followed	by	amplification	of	
selected	fragments	using	PCR.	These	are	called	ChIP-fragments.	In	the	ChIP-Seq	protocol,	
adapters	are	ligated	to	both	sides	of	these	ChIP	fragments	to	produce	a	library,	which	are	
then	sequenced	using	massively	parallel	manner	by	next-generation	sequencing	
machines.	

ChIP-Seq	offers	multiple	advantages	over	other	techniques	such	as	ChIP-chip.	It	has	
capability	of	single	nucleotide	resolution,	higher	coverage,	exponentially	reducing	costs,	
relatively	low	amount	of	DNA	requirement	and	has	the	possibility	of	multiplexing	(Park	
2009)	(Ho	et	al.	2011).	The	biggest	advantage	of	ChIP-Seq	is	that	it	provides	the	
possibility	of	high-resolution	profiling	on	a	genome-wide	level.	Due	to	these	reasons	it	
has	become	a	principle	tool	for	gene-regulatory	network	profiling	and	the	interaction	
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between	transcriptome	and	the	epigenome.	
	

																										 	
	
Figure	1.1	Experimental	protocol	for	ChIP-Seq.	Experimental	procedures	to	detect	DNA-binding	proteins	
(transcription	factors	&	histone	modifications)	are	shown.	a|	Chromatin	immunoprecipitation	followed	by	sequencing	
(ChIP-Seq)	for	transcription	factors.	Many	recent	advances	in	the	technology	have	made	this	technique	more	robust	
and	less	prone	to	contaminating	DNA.	b|	ChIP-Seq	for	histone	modification	uses	the	same	strategy	as	ChIP-Seq	for	
transcription	factors	except	using	micrococcal	nuclease	(MNase)	ro	fragment	DNA.	Image	courtesy:	(Furey	2012).	

	

	

1.1.1	ChIP-Seq	data	analysis		
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Analysis	of	ChIP-Seq	data	requires	computational	tools,	which	can	identify	the	differences	
in	peaks	accurately	across	samples.	This	can	be	challenging,	given	the	fact	that	multiple	
biases	arise	from	factors	like	sequencing	depth,	background	normalization	and	proper	
statistics.	Multiple	tools	have	been	developed	recently,	which	interpret	ChIP-Seq	data	
like	MACS	(Feng,	Liu,	and	Zhang	2011),	MMDiff	(Schweikert	et	al.	2013),	diffReps	(Shen	et	
al.	2013).	The	primary	aim	of	these	tools	is	to	predict	the	genomics	regions	that	contain	
enriched	read	counts	(“peaks”),	where	more	sequences	have	been	aligned	than	would	be	
expected	by	chance.	Many	of	these	programs	also	used	control	normalization	to	remove	
background	noise.	However,	the	primary	goal	of	ChIP-Seq	studies	is	to	compare	data	or	
binding	across	multiple	conditions:	for	example	assaying	the	binding	of	a	transcription	
factor	across	two	different	samples	to	study	cell-type	specific	response.	Simply	
comparing	the	reads	from	two	samples	can	be	inaccurate	due	to	inherent	sequencing	
biases.	
	
EpiCenter	(Huang	et	al.	2011)	aims	to	remove	the	sequencing	biases	while	reporting	
regions	differing	across	conditions	in	in	the	density	of	protein	bound	DNA	while	keeping	
the	false	discovery	rate	(FDR)	at	minimum.	EpiCenter	claims	to	perform	multiple	
normalizations	using	their	novel	“parsimony”	method	for	adjusting	read	coverage	depths	
between	samples.	In	order	to	achieve	this,	EpiCenter	performs	a	series	of	statistical	tests	
starting	from	filtering	out	the	background	regions,	followed	by	two	tests	(exact	ratio	test	
and	Z-test)	for	detecting	significant	changes.	This	makes	EpiCenter	efficient	and	robust	in	
detecting	differential	peaks	across	samples.		
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1.2	Transcription	factor	binding		
	

Cell	fate	and	complex	body	functions	are	carried	out	by	a	succession	of	signals	that	are	a	
part	of	complex	and	precise	pattern	of	gene	expression.	Transcription	factors	are	one	of	
the	major	components	of	this	process.	Transcription	factors	along	with	co-factors	form	
complexes	that	regulate	the	transcription	of	genes.	Transcription	factors	that	are	
sequence-specific	identify	consensus	sequences	on	DNA	(enhancer	or	promoter	regions)	
for	binding	and	initiating	transcription.		

Numerous	diseases	arise	from	the	disruption	of	the	transcriptional	regulatory	machine.	
For	example,	the	overexpression	of	certain	transcription	factors	can	cause	cancer	(Furney	
et	al.	2006).	Moreover	OMIM	suggests	that	more	than	one	third	of	all	diseases	have	
dysfunctional	transcription	factors	associated	to	them	(Hamosh	et	al.	2005).	
Furthermore,	tissue	specific	binding	of	transcription	factors	and	other	binding	variation	
might	be	a	source	of	phenotypic	diversity	and	evolutionary	adaptation	(De,	Lopez-Bigas,	
and	Teichmann	2008)	(Lopez-Bigas,	De,	and	Teichmann	2008).			

In	order	to	model	and	construct	transcriptional	regulatory	networks,	we	need	to	study	
genome	wide	binding	sites	of	transcription	factors.	ChIP-Seq	has	been	extensively	used	
for	this	purpose.	Comparison	between	ChIP-Seq	experiments	can	provide	insights	into	
differences	in	protein	binding	and	histone	modifications	(Ji	et	al.	2013)	(Ross-Innes	et	al.	
2012).	(Follows	et	al.	2003)	recently	carried	out	a	comparison	of	chromatin	structure	and	
transcription	factor	occupancy	at	the	human	and	mouse	c-FMS	loci.	They	showed	that	
even	though	the	distribution	of	chromatin	modification	and	chromatin	remodeling	across	
both	loci	is	highly	similar,	the	transcription	factor	composition	at	the	two-gene	locus	is	
different,	suggesting	a	conservation	of	regulatory	features	between	the	mouse	and	
human	c-FMS	locus.		
Tissue	specific	transcription	factor	binding	seems	to	be	essential	in	regulating	the	
temporal	and	spatial	expression	of	genes.	Integrating	information	from	various	studies	of	
transcription	factor	binding	will	help	shed	light	on	specific	transcriptional	factor	
occupancy	in	different	cell	types	or	developmental	stages.		
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1.2.1 C-MYC		
	

The	MYC	family	of	proteins	are	basic-helix-loop-helix-leucine	zipper	transcription	factors	
(Lüscher	and	Larsson	1999).	They	are	one	of	the	most	studied	proteins	and	are	involved	
in	cancer	(Dang	2012).	These	proteins	are	majorly	overexpressed	in	malignant	tumors	
driving	cell	proliferation,	growth,	metabolism,	DNA	replication,	cell	cycle	progression,	
adhesion	and	metastasis	(Table	1.1).	They	are	known	to	be	deregulated	in	multiple	
cancer	types	via	insertional	mutagenesis,	chromosomal	translocations	and	gene	
amplifications	(Meyer	and	Penn	2008).	C-MYC	functions	as	a	direct	regulator	of	gene	
expression	via	transcription	factor	activity	and	DNA	replication	(Adhikary	and	Eilers	2005;	
Cole	and	Cowling	2008;	Lin	et	al.	2012)	(Fig	1.1).	One	group	showed	that	MYC	together	
with	its	interacting	partner	MAX	form	a	heterodimer	and	bind	a	CACGTGE-box	sequence	
with	high	affinity.	This	binding	in	turn	can	activate	transcription	via	multiple	mechanisms	
(Blackwood	and	Eisenman	1991).	MYC	shows	also	increased	transcription	by	recruiting	
RNA	Polymerase	II	and	promoting	elongation	through	the	PTEFb	(positive	transcription	
elongation	factor)	complex	(Eberhardy	and	Farnham	2001,	2002).	

	

Figure	1.2	C-MYC	protein	family	architecture.	Transcriptional	activation	domain	followed	by	a	central	position	and	a	
canonical	nuclear	localization	sequence.	C-MYC	has	a	total	of	439	amino	acids.		Image	courtesy:	(Tansey	2014)	
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							Table	1.1	MYC	regulation	and	its	targets	involved	in	transformation.		Table	courtesy:	(Dang	et	al.	2006)	

	

	
There	have	been	several	attempts	to	identify	target	genes	for	MYC	(Bello-Fernandez,	
Packham,	and	Cleveland	1993).	However,	identifying	gene	targets	via	cycolhexamide	
treatment	(Patel	et	al.	2004)	were	labor	intensive	and	slow	.	With	the	advent	of	
microarray	expression	studies,	large-scale	MYC-regulated	genes	could	be	analyzed	at	
once.	Even	then	the	poor	signal-to-noise	ratio	of	microarray	analysis	exacerbated	the	
target	prediction.	Only	in	recent	years,	Chromatin	Immunoprecipitation	(ChIP)	followed	
by	next	generation	sequencing	(Seq)	has	allowed	researchers	to	predict	true	targets	of	
MYC.	ChIP-Seq	has	enabled	the	researchers	to	look	at	genome	wide	targets	of	MYC	with	
high	sensitivity	and	specificity	(Perna	et	al.	2012).Through	early	ChIP-Seq	binding	studies	
of	MYC,	it	has	been	deciphered	that	MYC	binds	to	approximately	10-15%	(24,000	
genomic	sites)	of	the	genomic	locations	unlike	any	other	transcription	factor	(Dang	et	al.	
2006).	Most	of	the	target	genes	were	involved	with	cell	cycle	regulation	(CDKs),	protein	
synthesis,	cell	adhesion,	metabolism,	and	RNA-binding	factors	(Lee	and	Dang	2006).	Not	
only	that,	MYC	was	also	shown	to	transcriptionally	regulated	non-protein	coding	genes	
like	miRNAs.	
	
	



	
	

			 	 	
	 	 	
	 	 	

15	

	

																																 	

Figure	1.3	MYC	targeting	Chromatin.	The	four	possible	ways	MYC	targets	genomic	sites.	(a)	Binding	by	MYC/MAX	is	
induced	by	sequence	similarity	to	the	E-Box.	(b)	in	this	case	MYC/MAX	dimers	only	bind	to	E-Box	under	certain	
chromatin	states	such	as	CpG	islands.	(c)	Dosage	specific	binding	by	MYC.	Under	low	MYC	levels,	MYC	binds	to	
promoter	proximal	to	E-boxes	(B-HLH-LZ	motifs).	At	high	levels	of	MYC,	MYC/MAX	dimer	binds	to	consensus	E-boxes	
but	also	bind	to	imperfect	E-boxes	(“iE”).	(d)	Recruitment	of	MYC	via	other	transcription	factors.	Like	in	this	case	where	
MYC	is	recruited	by	retinoic	acid	receptor	–	α	(RAR)	to	the	DNA	element	(RARE)	to	regulate	possibly	new	set	of	genes.	
Image	courtesy	(Tansey	2014).		

	

Given	the	importance	of	MYC	and	its	involvement	in	diverse	and	crucial	cellular	functions	
it	is	necessary	to	discover	and	study	novel	MYC	targets.	They	could	be	used	to	study	the	
gene	expression	pattern	of	multiple	cancers.		
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1.2.2 GATA1	
	

GATA1,	also	known	as	erythroid	transcription	factor,	is	a	member	of	GATA	transcription	
factor	family.	In	mammals,	the	GATA	family	is	composed	of	six	members	that	are	divided	
into	two	subfamilies	depending	on	their	expression	and	overall	gene	structure	(Cantor	
and	Orkin	2002;	Lowry	and	Atchley	2000;	Patient	and	McGhee	2002).	Some	of	the	
members	of	this	family	(GATA1,	GATA2,	GATA3)	are	expressed	specifically	in	the	
hematopoietic	lineages	(Shimizu	and	Yamamoto	2005).		
	
	

																																		 	

Figure	1.4	Functional	aspects	of	GATA1.	Two	types	of	leukemia	can	be	caused	by	GATA1.	(a)	Quantitative	deficits	of	
GATA1	in	mice.	(b)	Qualitative	defects	of	GATA1	in	human	Down	syndrome	(DS)	patients.	(Blue	acute	megakaryoblastic	
leukemia	(AMKL).	Image	courtesy	:	(Shimizu,	Engel,	and	Yamamoto	2008)	

	
The	GATA-1	protein	contains	multiple	domains	(C-finger,	N	finger,	and	N	terminus)	that	
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work	as	transcriptional	activators	(Ferreira	et	al.	2005).	The	C-finger	domain	mediates	
zinc	finger	sequence	specific	DNA	binding.	GATA1	Protein	is	typically	expressed	in	
differentiated	erythrocytes,	megakaryocytes,	and	eosinophil.	The	expression	profile	of	
GATA	during	erythroid	cell	differentiation	shows	a	distinct	pattern	(Bresnick	et	al.	2005).	
GATA1	is	known	to	interact	with	other	transcription	factors	in	regulating	the	expression	
of	lineage	specific	genes	(Rylski	et	al.	2003).	Given	the	importance	of	GATA1	in	
hematopoiesis,	mutations	in	this	gene	can	cause	defects	that	lead	to	hematopoietic	
disorders	such	as	leukemia.	GATA1	knock	down	embryos	die	in	a	very	early	stage	due	to	
anemia	caused	from	impaired	maturation	of	erythroid	cells	(Fujiwara	et	al.	1996).	It	has	
also	been	observed	that	children	with	Down	syndrome,	who	develop	acute	
megakaryoblastic	leukemia,	harbor	GATA-1	mutations	that	reduce	its	expression	
(Muntean	and	Crispino	2005).	However,	there	is	still	limited	knowledge	of	the	extent	of	
damage	caused	by	mutations	or	mis–expression	of	GATA1.	

				

	

Figure	1.5	GATA1	transcription	factor	gene	architecture.	The	gene	contains	a	transcriptional	activation	domain.	
Stars	represent	the	mutations	in	this	region	is	absent	in	mutant	protein	due	to	presence	of	a	premature	stop	codon.	The	
gene	also	contains	a	carboxy-terminal	zinc-finger	domain	that	is	required	for	binding	to	specific	DNA	motifs.	The	
amino-terminal	zinc-finger	domain	interacts	with	cofactors	such	as	FOG1	and	increases	affinity	for	complex	
palindromic	DNA	morifs.	Image	courtesy	(Hitzler	and	Zipursky	2005)	
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GATA	family	proteins	recognize	and	bind	to	the	consensus	sequence		(A/T)GATA(A/G)	by	
two	characteristic	C4	(Cys-X2-Cys-X17-Cys-X2-Cys)	zinc-finger	motifs	specific	to	this	family	
(Ko	and	Engel	1993).	These	consensus	sequences	can	be	found	in	many	regions	of	the	
genome.	Specifically	GATA-1	is	known	to	target	these	genes:	α-	and	β-globins	(Evans,	
Reitman,	and	Felsenfeld	1988),	Heme	biosynthesis	enzymes	(Rylski	et	al.	2003),	
Erythropoietin	receptor	(EpoR)	(Mitchell	J.	Weiss,	Keller,	and	Orkin	1994),	Bcl-Xl	(Silva	et	
al.	1996),	other	hematopoietic	transcription	factors	like	GATA2,	MaFK	and	p45	NF-E2	
(Shirihai	et	al.	2000),	as	well	as	cell	cycle	components	and	proliferation	related	genes	like	
Cdks.	Furthermore,	GATA1	induced	expression	of	growth	inhibitors,	including	Btg2,	
Hipk2,	JunB,	and	Crep	and	down	regulated	the	expression	of	genes	with	mitogenic	
properties	such	as	MYC,	MYB,	and	Nab2	(M	J	Weiss,	Yu,	and	Orkin	1997).		

This	study	sets	out	to	find	differential	binding	of	two	transcription	factors:	GATA1	&	MYC	
across	two	different	cell	types	(K562	&	GM12878	immortalized	cell	lines)	in	two	species	
(Human	and	Mouse).	Results	show	that	the	transcription	factors	bind	to	non-identical	
regions	across	the	two	tissues	and	the	numbers	of	regions	they	bind	to	also	differ.	
Moreover,	the	binding	targets	show	tissue	specific	enrichment	of	biological	processes.	
The	results	were	further	corroborated	after	integrating	pathway	information.	Differential	
transcription	factor	occupancy	could	help	delineate	cell	specific	mechanisms	that	might	
play	crucial	roles	in	various	phenotypes.	It	might	lead	to	understand	the	behavior	of	
these	transcription	factors	and	their	transcriptional	regulatory	network.	
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2 Materials	and	Methods	
	

2.1 Raw	data	procurement	
	

In	order	to	test	the	differential	transcription	factor	binding	across	different	conditions	
using	CoPrA	and	EpiCenter,	two	exemplary	datasets	each	for	Human	and	Mouse	were	
chosen	from	ENCODE.	Each	data	set	consisted	of	two	sub-sets	of	ChIP-Seq	data,	derived	
from	different	cell	lines	were	chosen	for	comparison.	Since	of	the	major	features	of	
CoPrA	and	EpiCenter	is	to	take	into	account	the	replicates	and	control	files	for	each	data	
set,	the	respective	files	were	also	downloaded	from	the	ENCODE	website.	As	different	
transcription	factors	might	have	different	binding	sites	across	the	same	cell	line,	their	
binding	profiles	and	thus	the	ChIP-Seq	peaks	can	very.	To	test	the	ability	of	CoPrA	to	
detect	the	differences	in	binding	of	TFs,	two	ChIP-Seq	experiments	were	used	from	two	
different	TFs:	GATA1	&	C-MYC	(MYC).	
The	peaks	of	GATA1	binding	is	typically	near	the	TSS	and	is	represented	as	clear	narrow	
peaks.	In	contrast,	MYC	is	involved	in	cancer	formation	(Surget,	Khoury,	and	Bourdon	
2013)	and	functions	as	an	oncogene.	It	has	also	been	implicated	as	an	important	protein	
in	regulating	the	genome	regulation.	MYC	peaks	are	generally	near	the	TSS	of	genes	
involved	in	DNA	repair	and	cell	cycle	genes	such	as	CDKs.	Both	the	peaks	are	typically	
near	+-	1000	bp	of	the	TSS.		
The	data	for	the	GATA1	and	MYC	was	retrieved	from	two	different	cell	lines:		

1.	K562-	an	immortalized	cell	line,	derived	from	a	female	patient	with	chronic	
myelogenous	leukemia	(CML).	The	corresponding	cell	lines	in	mouse	are	also	called	MEL.		
2.	GM12878-	an	immortalized	cell	line	produced	from	blood	of	a	female	donor	with	EBV	
transformation.	It	has	a	normal	karyotype	and	develops	well.	Its	mouse	analogue	is	called	
CH12.		
	
The	advantages	of	using	ENCODE	datasets	are	the	high	quality	standard	for	biological	
experiments,	the	availability	of	replicates,	multiple	experiments	from	the	same	lab,	and	
consistent	standards	for	processing	of	data.	
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      Table 2.1 : Sample information and sources link 

Transcription	factor	
	

Experimental	condition	&	Link	
	

GATA1	 		

		 		
GSM935601_Human_K562_ChIP-seq_input_RAW	

Control	
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
?acc=GSM935601	
http://www.ncbi.nlm.nih.gov/sra?term=SRX150
680	
		
		
		

Target:	Control,Input	DNA	
one	replicates,	36	M	reads	for	sample	
Project:	ENCODE	
Data	type	:	Raw	(	fastq	files)		
Bed	file	name	:	GSM935601_Human_K562_Input.bed	

		
Experiment	

http://www.ncbi.nlm.nih.gov/sra?term=SRX186
613	
		
		
		
		
		

GSM1003608_Human_K562_ChIP-seq_GATA_RAW	

Target:	GATA1	ChIP-Seq	
Project:	ENCODE	
1	replicate,	26	M	reads	each	
Data	type	:	Raw	(	fastq	files)		
Bed	file	name	:	GSM1003608_Human_K562_ChIP-
Seq_GATA1.bed	

		 		
GSM912894_Mouse_K562_ChIP-seq_input_RAW	 Control	

Target:	Control,Input	DNA	
one	replicates,	56	M	reads	for	sample	
Project:	ENCODE	
Data	type	:	Raw	(	fastq	files)		
Bed	file	name	:	GSM912894_Mouse_K562_Input.bed	

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
?acc=GSM912894	
http://www.ncbi.nlm.nih.gov/sra?term=SRX140
357	
	

		 	
	

Experiment	
	
	

http://www.ncbi.nlm.nih.gov/sra?term=SRX140
370	
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
?acc=GSM912907	
		

GSM912907_Mouse_K562_ChIP-seq_GATA1_RAW	

Target:	GATA1	ChIP-Seq	
Project:	ENCODE	
1	replicate,	23M	&	28M	reads	
Data	type	:	Raw	(	fastq	files)		
Bed	file	name	:	GSM912907_Mouse_K562_ChIP-
Seq_GATA1.bed	

		 		
GSM923581_Mouse_G1Erythrocytes_ChIP- Experiment	
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seq_GATA1_RAW	

Target:	GATA1	ChIP-Seq	
one	replicates,	32	M	reads	for	single	sample	
Project:	Individual	study	
Data	type	:	Raw	(	fastq	files),	mapped	files		
Bed	file	name	:	
GSM923581_Mouse_G1Ecells_GATA1.bed	

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
?acc=GSM923581	
https://www.encodeproject.org/experiments/E
NCSR000DIC/	
		
		

		 		

Input	ChIP-Seq:	
one	replicates,	20	M	reads	
Data	type	:	Raw	files	
Bed_file	name	:	GSM946538_Mouse_G1E_Input_ChIP-
Seq.bed	

Control	
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
?acc=GSM946538	
https://www.encodeproject.org/experiments/E
NCSR000DJA/	
		

		 		
MYC	 		
Mouse	

	 		
GSM912906_Mouse_K562_MYC_ChIP-Seq	 Experiment	

Target:	MYC	ChIP-Seq	
0	replicates,	7	M	reads	
Project:	Individual	study	
Data	type	:	BAM	Files	
Bed	file	name	:GSM912906_Mouse_K562_MYC_ChIP-
Seq.bed	

	https://www.encodeproject.org/experiments/E
NCSR000EUA/	
		
		
		
		

		 		
GSM1003747_Mouse_K562_Input_ChIP-Seq	 Control	

Target:	Input	ChIP-Seq	
0	replicates,	7	M	reads	
Project:	Individual	study	
Data	type	:	BAM	Files	
Bed	file	name	
:GSM1003747_Mouse_K562_Input_ChIP-Seq.bed	
		

https://www.encodeproject.org/experiments/E
NCSR000ADN/	
		
		
		
		
		

		 		
GSM912906_Mouse_CHMX12_MYC_ChIP-Seq	 Experiment	

Target:	MYC	ChIP-Seq	
0	replicates,	7	M	reads	
Project:	Individual	study	
Data	type	:	BAM	Files	
Bed	file	name	
:GSM912906_Mouse_CHMX12_MYC_ChIP-Seq.bed	

	https://www.encodeproject.org/experiments/E
NCSR000ERN/	
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GSM912917_Mouse_CHMX12_Input_ChIP-Seq	 Control	

Target:	INput	ChIP-Seq	
one	replicates	
Project:	Individual	study	
Data	type	:	BAM	Files	
Bed	file	name	
:GSM912917_Mouse_CHMX12_Input_ChIP-Seq.bed	

https://www.encodeproject.org/experiments/E
NCSR000ERS/	
		
		
		
		

		 		
Human	 		

	
GSM935516_Human_K562_MYC_ChIP-Seq	 Experiment	

Target:	MYC	ChIP-Seq	
one	replicates	
Project:	Individual	study	
Data	type	:	BAM	Files	
Bed	file	name	:GSM935516_Human_K562_MYC_ChIP-
Seq.bed	

https://www.encodeproject.org/experiments/E
NCSR000EGJ/	
		
		
		
		

		 		
GSM935618_Human_K562_Input_ChIP-Seq	 control	

Target:	Input	ChIP-Seq	
one	replicates	
Project:	Individual	study	
Data	type	:	BAM	Files	
Bed	file	name	
:GSM935618_Human_K562_Input_ChIP-Seq.bed	

https://www.encodeproject.org/experiments/E
NCSR000EHI/	
		
		
		
		

		 		
GSM822290_Human_GM12878_MYC_ChIP-Seq	 Experiment	

Target:	MYC	ChIP-Seq	
one	replicates	
Project:	Individual	study	
Data	type	:	BAM	Files	
Bed	file	name	
:GSM822290_Human_GM12878_MYC_ChIP-Seq	

https://www.encodeproject.org/experiments/E
NCSR000DKU/	
		
		
		
		

		 		
GSM822292_Human_GM12878_Input_ChIP-Seq	 Control	

Target:	Input	ChIP-Seq	
one	replicates	
Project:	Individual	study	
Data	type	:	BAM	Files	
Bed	file	name	
:GSM822292_Human_GM12878_Input_ChIP-Seq	

https://www.encodeproject.org/experiments/E
NCSR000DKW/	
		
		
		
		

		 		

data	procurement	from	:	http://cistrome.org/db/#/	 		
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All	files	were	obtained	from	the	ENCODE	database	in	SRA	format.	The	files	were	then	
converted	to	fastq	format	using	the	Bedtools	package	(Quinlan	and	Hall	2010).	Since	the	
transcription	factor	binding	data	is	still	in	infancy	we	could	only	obtain	a	single	replicate	
for	most	of	the	samples.	

NOTE:	GATA1	ChIP-Seq	data	was	not	of	comparable	quality	to	MYC	ChIP-Seq	data,	having	
errors	in	the	peak	length	(greater	than	2000	bp)	possibly	due	to	experimental	errors	
during	Immunoprecipitation	step	(IP).	Later	it	was	checked	that	the	authors	of	the	data	
agreed	to	the	substandard	quality	of	the	data.	GATA1	was	hence	dropped	from	any	
further	analysis.		
	

2.2 Tools	for	analyzing	raw	data	
	

2.2.1	NGS	data	analysis	pipeline			
	

The	analysis	of	sequencing	data	for	this	project	involved	large	sequencing	files	which	
needed	to	be	analyzed	first	before	using	them	for	differential	peak	finders.	In	order	to	
make	the	analysis	faster	and	automated,	a	RNA-Seq	Pipeline	(RSAP)	was	generated,	
which	takes	fastq	files	as	input	and	performs	complete	analysis	on	it	with	minimum	
input	from	the	user.	The	workflow	is	user	friendly	with	enough	freedom	for	changing	
multiple	parameters.		
	
The	script	is	able	to	check	the	quality	of	the	data	(FastQC	&	Cutadapt)	(Andrews	
2010)(Martin	2011),	perform	mapping	(TopHat	&	STAR)	(Dobin	et	al.	2013;	Trapnell,	
Pachter,	and	Salzberg	2009b),	quantification	(HTSeq	&	FeatureCounts)	(S.	Anders,	
Pyl,	and	Huber	2014;	Liao,	Smyth,	and	Shi	2014)	and	differential	expression	analysis	
(DESeq)	(Simon	Anders	and	Huber	2010).	At	each	step	the	data	is	stored	in	a	
directory	form	with	individual	specific	folders.	The	RSAP	workflow	is	an	easy	to	use	
shell	script	for	analyzing	large	scale	NGS	data.	It	is	a	semi	automatic	pipeline,	which	
allows	the	user	to	access	bioinformatics	resources	and	tools	without	bioinformatics	
and	IT	skills.		
The	results	can	be	easily	browsed,	exported	or	transferred	to	various	resources.	This	
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pipeline	can	be	run	from	a	local	machine	and	does	not	need	to	be	installed	as	a	
program	or	software.	The	user	needs	to	provide	the	path	for	the	pipeline	in	a	shell	
environment.	The	user	also	needs	to	provide	the	parameter	files	for	each	step	after	
which	the	user	can	stop	and	check	results	at	each	of	the	individual	steps.	The	broad	
variety	of	options	and	parameters	selection	makes	this	pipeline	very	useful	for	
analyzing	data	not	only	for	this	study	but	also	for	NGS	data	in	general.	
	
The	pipeline	is	available	as	a	set	of	scripts	in	a	zip	file	downloadable	from:	
https://github.com/jatintalwar/RNA-Seq-Analysis-Pipeline-
/tree/master/Roman_data_new_analysis).	The	implementation	is	in	a	shell	
environment	and	the	user	can	run	the	pipeline	with	a	simple	shell	command	(e.g.:	sh	
pipeline.sh).	The	user	needs	to	allocate	the	desired	amount	of	space	for	the	results	
files	to	be	stored.	Once	the	user	chooses	a	particular	location	in	the	system/server,	
the	pipeline	will	create	the	directory	structure	at	the	same	location	and	run	from	that	
location	from	there	on.	The	pipeline	will	require	user	input	wherever	needed	and	will	
prompt	for	the	same	inside	the	terminal.	The	script	stops	after	each	analysis	step	for	
the	user	to	check	the	results	produced	by	the	last	step	and	to	decide	about	the	
parameters	for	the	next.	The	script	also	asks	the	user	to	provide	the	parameter	file	in	
a	particular	format	(specified	in	the	pipeline).	If	the	user	wishes	to	quit	the	pipeline	
at	moment,	it	can	be	done	via	a	simple	exit	command.		A	sample	output	of	the	script	
run	is	available	at:	https://github.com/jatintalwar/RNA-Seq-Analysis-Pipeline-
/blob/master/Roman_data_new_analysis/Sample_outputs.txt. More	detail	about	the	
tools	implemented	by	the	pipeline	is	available	in	the	following	section. 
	
The	raw	data	for	the	CHIP-Seq	(Table	2.1)	was	analyzed	using	this	pipeline.	Files	
downloaded	from	ENCODE	were	fed	into	the	pipeline	for	Quality	trimming	of	low	
quality	reads,	followed	by	mapping	to	reference	genome.	After	mapping	the	data,	the	
files	were	converted	into	appropriate	format	(.BED)	and	compared	across	samples	
for	differential	transcription	factor	binding.		
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Figure	2.1	Schematics	of	NGS	data	analysis	Pipeline	NGSdp	workflow.	After	directory	creation	the	first	step	of	the	
pipeline	is	quality	check	using	FastQC	(step	1).	Then	pipeline	performs	low	quality	read	trimming	(step	2).	Mapping	is	
step	3	(TopHat	&	STAR).	Reads	that	are	mapped	are	quantified	using	HTSeq	&	FeatureCounts	(step4	&5).	Differential	
expression	is	performed	using	DESeq	(step	6).		The	heatmaps,	PCA	plots	and	MA	plots	are	also	generated	during	DESeq	
run.	

	
	
	
2.2.1.1	FastQC:	
	

The	first	critical	step	in	data	analysis	is	always	an	effective	and	reliable	data	Quality	
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check.	FastQC	(Andrews	2010)	is	a	widely	used	tool	for	NGS	data	quality	testing.	It	
provides	users	with	multiple	options	to	check	the	sequencing	qualities	such	as:	per	
base	quality,	duplication	levels,	per	sequence	GC	content	and	sequence	length	
distributions.	The	tool	also	allows	removing	low	quality	reads	and	other	
contaminants.	High	quality	reads	are	then	used	for	further	analysis	steps.		
	

2.2.1.2	Quality	trimming:	Cutadapt	
	

	The	second	step	in	the	analysis	pipeline	involves	trimming	the	reads	for	quality.	For	
this	purpose	Cutadapt	(Martin	2011)	was	used,	In	order	to	trim	the	sequencing	
reads.	Cutadapt	provides	multiple	parameters	to	choose	from.	For	example,	the	
minimum	length	of	reads,	trimming	from	both	ends,	trimming	sequencing	adapter	
contamination	etc.	The	tool	was	used	with	default	settings	and	the	low	quality	read	
filter	was	set	to	Phred	score	of	25	and	a	minimum	sequence	length	of	20	bp.		
	

2.2.1.3	Mapping:	TopHat		
	

Mapping	was	performed	with	eukaryotic	genomes	in	mind.	Hence	this	study	
employed	a	mapping	tool,	which	could	predict	and	annotate	splicing	events.	TopHat	
(Trapnell,	Pachter,	and	Salzberg	2009b)(Trapnell	et	al.	2012)(Trapnell,	Pachter,	and	
Salzberg	2009a)	was	chosen	for	this	purpose.	TopHat	is	a	widely	used,	tested	and	
reliable	aligning	tool.	The	tool	provides	the	option	of	splice	junction	detection.	
Multiple	mapping	hits	was	set	to	3	and	a	GTF	files	(igenomes)	was	used	while	
mapping	files	to	human	and	mouse	genomes	to	increase	the	specificity	and	
sensitivity	of	the	mapping.	
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Figure	2.2	TopHat	Pipeline.	The	RNA-seq	reads	are	mapped	first	to	the	whole	genome.	The	reads	that	do	not	align	
are	set	aside	to	be	mapped	later.	Sequencing	that	flank	donor/acceptor	splice	sites	are	then	joined	to	form	splice	
junctions.		The	initially	unmapped	reads	are	then	aligned	to	these	splice	junction	sequences.	Image	courtesy	(Trapnell,	
Pachter,	and	Salzberg	2009b)	
	
	
	

2.2.2	Bam	to	BED	conversion:	Bedtools		

	
BAM	files	generated	after	mapping	were	directly	converted	to	BED	files	using	the	
Bedtools	package	(Quinlan	and	Hall	2010)	with	a	simple	BamToBed	command.	
Mapping	coverage	of	BAM	files	was	checked	using	the	genomcov	command.		
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2.3 ChIP-Seq	analysis	software	(peak	finding	&	visualization)	
	

2.3.1	CoPrA	(Comparative	Profile	Analyzer):	

	
CoPrA	(Corinna	Klein	et	al.,	unpublished)	is	a	python	based	differential	peak	finder	
for	studying	chromatin	states	between	two	samples	of	ChIP-Seq	experiments.	It	is	
designed	to	overcome	the	deficits	like	false	prediction	of	peaks	(peak	accumulation	in	
certain	regions),	taking	into	account	the	background	files	by	preprocessing	replicates	
and	control	data.	It	is	a	novel	algorithm	for	comparative	profile	analysis,	which	
employs	a	peak	calling	independent,	sliding	window	approach	to	detect	differential	
binding	events	across	samples.	In	CoPrA,	ideas	from	stock	market	analysis	have	been	
adapted	to	compare	two	peak	profiles.	In	order	to	minimize	false-positive	
predictions,	CoPrA	also	takes	into	account	the	replicates	and	control	samples	for	each	
condition.	More	details	about	the	tool	is	beyond	the	scope	of	this	study	as	the	tool	is	
yet	to	be	published.	CoPrA	provides	freedom	in	selecting	parameters	like:	selecting	
cutoff	values	used	to	filter	the	raw	difference,	values	determining	minimal	difference	
region	length,	and	significance	level	of	corrected	P-Values.		

	

2.3.2	EpiCenter		

	

In	order	to	test	for	biases	in	the	analysis	from	CoPrA,	the	study	also	employed	
EpiCenter	to	compare	the	results	obtained	and	to	further	detect	any	differences	in	
peaks	across	the	samples.	EpiCenter	(Huang	et	al.	2011)	is	able	to	detect	differential	
changes	in	epigenetic	marks	by	comparing	the	profiles	of	two	ChIP-Seq	samples.	Its	
complex	algorithms	can	account	for	signals	from	histone	modifications	and	
transcription	factor	binding	events.	It	provides	different	normalization	procedures	
for	the	user	to	choose	from.	It	also	provides	with	three	different	statistical	
procedures	(Z-test,	Bonferroni	correction,	and	exact	ratio	test)	to	reduce	FDR	by	also	
minimizing	background	noise.	It	provides	the	option	to	choose	from	a	fixed-size	
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window,	semi-dynamic	window	and	a	full	dynamic	window	for	the	analysis.	It	also	
allows	the	user	to	select	the	maximum	allowed	gap	distance	between	two	reads.	
Epicenter	accepts	a	BAM	file	as	an	input	for	the	analysis	and	requires	no	further	
preprocessing.		
	
	

											 	

Figure	2.3	Illustration	for	Epicenter	analysis	approach	for	ChIP-Seq	data	analysis.	Image	courtesy	:	(Huang	et	al.	
2011).	
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2.3.3	AnnoMiner	

	
The	output	of	both	the	differential	peak	finders	(CoPrA	&	EpiCenter	)	was	a	BED	file	
with	first	three	rows	representing	the	location	of	peaks	on	the	genome	(Chr,	start,	
stop)	and	the	last	column	being	the	numerical	values	for	the	peaks	(intensity).	
However,	it	is	imperative	to	know	to	which	gene	a	peak	belongs	to.	For	this	purpose	
Annominer	(Arno	Meiler,	et	al.,	unpublished)	was	employed.	AnnoMiner	accepts	a	
BED	file	and	the	organism	information	and	provides	a	list	of	genes	the	peaks	might	be	
associated	with.	The	user	can	select	the	expected	window	size	of	the	peaks	as	well	as	
a	window	for	upstream	and	downstream	regions	from	TSS.	The	user	can	also	choose	
between	transcript	based	or	a	gene	based	search.	
AnnoMiner	can	be	found	at:	http://vm2-annominer:8080/AnnoMiner/	
It	is	an	in-house	developed	tool	and	is	still	under	testing.	It	will	be	published	later	
this	year	via	Sourceforge.net	
	

	

2.4	Data	visualization:	UCSC	genome	Browser	

	
The	UCSC	genome	browser	is	an	open-source	web	based	genome	browser	for	visualizing	
genomic	data.	The	user	can	upload	its	own	data	for	visualization.	A	typical	ChIP-Seq	file	
consists	of	read	density,	indicating	accumulation	of	mapped	reads	(“peaks”).	In	order	to	
improve	the	visualization,	the	control	files	were	also	uploaded.	After	adding	the	required	
tracks	to	the	session	from	UCSC	browser,	the	session	for	comparison	across	samples	was	
then	completed.		
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Figure	2.4	An	exemplar	manual	visualization	session	for	peaks	visualized	using	UCSC	Genome	browser.	The	
output	tracks	from	Epicenter	were	loaded	along	with	UCSC	genes	to	view	the	genome-wide	peak	coverage.	
Chromosome	3	in	this	case	

	

2.5	Enrichment	analysis	(GOelite)	

	

In	order	to	compare	the	gene	lists	from	the	different	samples	for	enrichment	of	specific	
KEGG	Pathways	and	Gene	ontology	terms,	GO-Elite	(Zambon	et	al.	2012)	was	used	for	
enrichment	analysis.		
GO-Elite	identifies	a	non-redundant	set	of	biological	ontology	terms	or	pathways	to	
describe	the	set	containing	multiple	genes.	Its	diverse	resources	(ontology	databases,	
WikiPathways,	KEGG,	Pathway	Commons,	microRNA	target	database	and	cellular	
biomarkers)	make	it	a	valuable	tool	for	enrichment	studies.	It	provides	the	freedom	to	
run	the	analysis	via	a	GUI	(graphical	user	interphase)	or	through	the	command	line.		
GO-Elite	requires	one	input	file	and	a	denominator	file.	The	input	file	must	contain	the	
identifiers	(IDs)	to	be	examined	for	enrichment,	along	with	a	system	ID	code.	The	
denominator	file	must	contain	“ALL”	IDs	along	with	a	system	ID	code.	GO-Elite	performs	
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over	representation	analysis	(ORA).	It	also	provides	an	option	for	pruning	the	results.	

																													 	

Figure	2.5	GO-Elite	workflow	and	sources.		Two	text	files	(Input	&	Denominator)	are	provided	by	the	user	to	begin	
the	analysis.	The	Ids	in	these	files	are	mapped	to	the	system	IDs	in	the	databases	(ENSEMBL,	EntrezGene,).	ORA	is	
performed	in	the	gene-set	and	the	filtered	pathways	information	is	generated	as	output	files	(Gene-associations,	
Pruned	results,	Gene	rankings).	The	pathways	can	be	viewed	on	Go-Elite	with	a	plugin	or	viewed	on	other	external	
platforms.	Image	courtesy:	(Zambon	et	al.	2012)	
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3				Results	
	

3.1				Raw	data	analysis	

3.1.1				Quality	check	
	

To	check	the	sequence	read	quality,	FastQC	(Andrews	2010)	was	run	on	all	the	raw	fastq	
files.	The	overall	quality	was	of	the	data	was	very	good,	most	of	the	reads	having	a	
PHRED	score	>=	28.	It	is	very	well	known	that	the	read	quality	decreases	along	the	5’	end	
of	the	read.	Still	the	read	quality	never	went	below	Phred	28.		

	

Figure	3.1	Per	Base	Sequence	Quality-	FastQC.	A	sample	representation	of	quality	of	data	as	shown	by	FastQC.	
GSM647222_Mouse_ESCells_Input_ChIP-Seq.	Notice	how	all	the	bases	have	a	PHRED	score	of	>=28	(green	zone)	
indicating	that	they	are	of	good	quality	and	can	be	mapped	without	the	need	of	further	trimming.	
	

Similarly,	other	quality	checks	like	per	sequence	quality	scores,	per	base	sequence	
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content,	per	base	GC	content,	per	sequence	GC	content,	per	base	N	content,	sequence	
length	distribution,	sequence	duplication	levels,	over	represented	sequences	&	Kmer	
content	were	within	the	acceptable	limits.		

FastQC	was	run	with	default	parameters	and	all	the	input	files	were	run	from	the	RNA-
Seq	pipeline	generated	for	the	study.	They	can	be	found	in	the	Appendix	section.	The	
results	of	other	FastQC	runs	can	be	found	on	the	web	link	for	the	supporting	information.	

	

3.1.2							Quality	Trimming	

Read	quality	trimming	is	one	of	the	most	used	preprocessing	procedures	during	analysis.	
Trimming	aims	at	removing	the	low	quality	region	of	a	read	while	preserving	the	longest	
high	quality	part.	Trimming	has	been	shown	to	increase	quality	and	reliability	of	NGS	
analysis	(Del	Fabbro	et	al.	2013)	It	also	saves	time	and	computational	power.	The	study	
employed	Cutadapt	(Martin	2011)	for	quality	trimming	of	reads.	Cutadapt	was	made	a	
part	of	the	RNA-Seq	pipeline	and	the	user	has	to	provide	parameters	like	quality	cutoff	
and	minimum	sequence	length	as	a	part	of	a	parameter	file	readable	by	the	pipeline.	
Reads	(30-40	M	reads)	for	all	the	samples	were	trimmed	successfully	until	the	whole	read	
had	a	PHRED	score	of	>=28.	Since	Cutadapt	automatically	searches	for	the	presence	of	
Illumina	Adapter,	no	input	adapter	sequence	for	trimming	was	provided.	Error	rates	were	
kept	at	10.0%	and	the	tool	was	run	in	single	end	mode	(see	methods).		

							

Summary	
	

	Total	Reads	processed:		 32,993,502	
Reads	with	adapters:	 0	(0.0%)	
Reads	that	were	too	short		 146,997	(0.4%)	
Reads	written	(passing	filter):		 32,846,505	(99.6%)	
Total	base	pairs	processed:	 1,154,772,570	bp	
Quality-trimmed:		 8,818,803	(0.8%)	
Total	written	(filtered):	 1,144,788,616	bp	(99.1%)	

Figure	3.2	Cutadapt	output.		A	sample	output	from	Cutadapt	for	GSM647222_Mouse_ESCells_Input_ChIP-Seq.		Summary	
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view	provides	insight	into	the	run	and	output	results	from	Cutadapt.	The	quality-trimmed	bases	(0.8%)	signal	the	good	
quality	of	data.		

	

3.1.3				Mapping	
Mapping	was	performed	using	TopHat	(Trapnell,	Pachter,	and	Salzberg	2009b)	which	is	
implemented	in	the	RNA-Seq	pipeline.	Maximum	multi-hits	were	kept	at	3,	and	a	GTF	file	
along	with	replicates	if	any	was	provided	for	accurate	alignment.	The	files	were	mapped	
to	the	reference	genome	with	an	accuracy	of	95%	for	most	of	the	samples.	After	the	
mapping,	the	BAM	files	were	further	tested	for	coverage	using	the	BedTools	genomcov	
option.	The	samples	showed	uniform	distribution	of	reads	across	the	whole	genome	
without	any	biases	at	particular	locations.	Mapped	files	(BAM)	along	with	mapping	
summary	are	available	as	supplementary	information	at	this	link:	
https://drive.google.com/drive/folders/0B_MVmsAk2E6MUXA3WWVCdW1SeEE 

	

3.2				Finding	differential	peaks	(CoPrA)		
	

3.2.1	Preprocessing	step	I	
	
In	order	to	remove	biases	like	sequencing	depth	and	number	of	reads	across	samples,	
CoPrA	performs	a	preprocessing	step.	The	preprocessing	step	I	generates	files,	which	are	
in	BED	format	with	the	first	three	columns	specifying	chromosome,	start	and	stop	
position	of	the	read	respectively.	The	last	two	columns	are	the	random	
representation/name	of	the	read	and	the	directionality	respectively.	This	file	is	filtered	
for	baseline	values.	The	file	generated	will	look	like:		
A.GSM981238_ESCells_Input_ChIP_Seq_Human.bed_longReads_uniq.bed_singleFiltered.
bed.	
B.	GSM1003608_K562_ChIP-Seq_GATA1_Human.bed_longReads_uniq.bed.	
Once	the	files	have	been	generated	the	next	(preprocessing	Step	II)	step	can	be	run.		
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3.2.2				Preprocessing	step	II	

	
This	step	creates	the	file	that	will	be	used	by	CoPrA	for	the	main	comparisons.		
It	uses	the	GSM981238_ESCells_Input_ChIP-
Seq_Human.bed_longReads_uniq.bed_singleFiltered.bed	File	as	an	input	and	generates	a	
file	with	read	locations	in	each	chromosome.	Each	file	is	thus	a	txt	file	with	two	columns,	
the	first	one	specifying	location	in	the	chromosome	and	the	next	one	a	value	with	the	
number	of	reads	for	that	location.	This	step	also	generates	a	coverage	frequency	file,	
which	contains	the	information	about	the	number	of	reads	for	each	score	value.	All	of	
these	files	are	later	used	by	CoPrA	when	comparing	binding	events	for	two	samples.		

3.2.3	Main	CoPrA	run	

CoPrA	uses	the	files	from	preprocessing	steps	as	input	along	with	values	for	few	other	
parameters:	
1.	Config_file:	A	text	file	with	the	file	names	for	sample	to	be	analyzed,	given	sample	
name,	background	filter	value	(this	value	is	decided	after	studying	the	coverage	files	from	
preprocessing	step	II).	
2.	Chromosome	information:	this	will	be	a	file	with	chromosome	names	and	their	sizes	
(same	file	as	used	in	preprocessing	steps)	
3.	Step	size:	this	is	probably	one	of	the	most	important	parameters.	The	use	provides	a	
discretization	step	size	for	the	samples.		
4.	Region	length	filter	value:	Value	that	determines	the	minimal	difference	region	length,	
used	for	filtering	the	difference	regions	
5.	Alpha	1	values:	Significance	level	of	the	corrected	p-value	(=q-value)	of	difference	
regions	up	to	which	results	should	be	reported.	
Sample	CoPrA	run	command:	python	CoPrA_with_Control.py	-i	config.txt	-d	../../	-o	
../../Copra_out_s_50_r_100_corinna_code/	-f	../../human.hg19.genome	-s	50	-l	
A549_vs_AG04449_hahn_data	-r	100	-a	0.05	

NOTE:	Due	to	errors	in	software,	CoPrA	could	not	produce	result	files.	It	was	dropped	
from	the	study	and	other	differential	peak	analysis	was	used	for	comparisons.	
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3.3	Predicting	differential	peaks	using	EpiCenter	Run	

3.3.1				Human	TF	differential	binding	for	MYC		
																	
Sample	1:	K562	vs.	GM12878		

EpiCenter	identifies	genome-wide	epigenetic	changes	or	TF	binding	events	across	various	
scenarios.	It	also	provides	multiple	normalization	methods	and	a	series	of	3	statistical	
tests	for	estimating	background	regions	and	allowing	adjustment	for	multiple	testing	to	
control	False	Discovery	rate.	In	the	previous	studies	Epicenter	performed	better	(Olivier	
Hahn	et	al.	unpublished)	than	other	differential	peak	finders.		
In	order	to	test	for	differential	TF	binding	of	C-MYC,	EpiCenter	was	employed.	The	study	
found	that	there	were	considerable	differences	in	binding	of	MYC	across	the	two	
different	cell	lines	(K562	&	GM12878).	The	following	steps	were	performed	in	order	to	
get	the	desired	results:	



	
	

			 	 	
	 	 	
	 	 	

38	

										 	

Figure	3.3	EpiCenter	workflow	for	desired	results	

	

MYC	binding	data	for	K562	and	GM12878	was	compared	with	Epicenter		(semi-dynamic	
window	size	of	500).	A	total	of	162704	tests	were	performed	across	the	two	samples,	
giving	an	indication	already	for	the	presence	of	significant	peaks	to	compare.	The	number	
of	data	points	used	for	the	estimation	of	standard	deviation	for	Log2ratio	null	
distribution	were:	24555.		
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Figure	3.4	EpiCenter	sample	output.	EpiCenter	performs	3	statistical	tests	(bonferroni	correction,	Sidak	correction	&	
exact	ration	tests)	for	removing	any	variation/bias	from	background.	The	out	put	files	(.tscan)	can	easily	be	converted	
into	bed/bedGraph	format	with	simple	python	script.	Epicenter	was	run	with	various	test	parameters	to	choose	the	
best	ones	for	requirement	of	this	study.	

	

3.3.1.2			Annotating	peaks	to	genes	(AnnoMiner)	

Output	result	files	from	EpiCenter	were	uploaded	to	AnnoMiner	in	order	to	annotate	
peak	location	to	nearby	genes.	AnnoMiner	needs	a	.bed	file	as	input	and	provides	gene	
associations	to	potential	peaks.	AnnoMiner	contains	the	complete	database	information	
from	ENSEMBL.	Since	all	the	further	analysis	is	gene	based,	this	option	was	selected	for	
this	analysis.	Peak	regions	was	kept	to	150bp	(transcription	factor	binding	footprint)	and	
gene-flanking	region	interval	was	set	to	500	bp.	
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Figure	3.5	Base	Pair	Coverage	of	gene-intervals	graph	Annominer.	EpiCenter	results	from	MYC	ChIP-Seq	data	for	
GM12878	were	uploaded	to	AnnoMiner	to	check	for	gene	associations.	X-axis	represents	different	gene-regions.	The	
intensity	of	the	bars	is	an	average	representation	of	peaks.	Each	bars	represents	the	percentage	of	peaks	falling	in	that	
part	of	genes.	As	was	expected	highest	number	of	binding	events	are	around	TSS	(200bp-500	bp	Upstream).	The	red	
highlighted	bars	represent	the	regions	for	which	further	analysis	was	performed.		Since	the	rest	of	the	regions	were	not	
of	relevance.	A	total	of	208	genes	were	extracted	from	the	list.	

	
	

3.3.1.3			Gene	List		

AnnoMiner	provides	a	gene	list	as	an	output	(.tsv	format),	which	contains	the	peak	
information	(start,	stop)	and	associated	gene	(Chr,	start,	stop,	geneId).	For	final	analysis	
this	output	file	was	combined	with	Epicenter	output	file	and	a	final	file	with	peak	values	
integrated	was	generated.	This	file	contained	all	the	peaks,	their	associated	genes,	and	
the	peak	values	for	each	peak.	(See	appendix)	
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3.3.1.4			Gene	ontology	&	Pathway	Enrichment	analysis	

Gene	List	generated	from	AnnoMiner	contained	the	complete	gene	information	and	the	
respective	peaks.	This	file	was	used	as	an	input	for	GO-Elite.	Denominator	files	were	also	
provided,	which	contained	all	gene	Ids	from	ENSEMBL.	Go-Elite	compares	the	input	file	
with	Denominator	file	and	performs	enrichment/overrepresentation	analysis.	It	maps	the	
gene	identifiers	to	databases	to	look	for	GO	associations	and	Pathway	information	
(KEGG).	The	study	found	following	GO	and	Pathways	from	the	MYC	binding	in	K562:	
	

Many	of	the	pathways	enriched	in	K562_MYC	sample	were	associated	with	cell	cycle	
progression,	and	translation	(initiation,	termination).	Since	MYC	is	already	known	to	be	a	
transcriptional	regulator,	this	result	confirmed	that	predicting	already	known	targets	
were	identified.	However,	many	novel	pathways	were	also	among	those	that	were	
enriched.	
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GO	TERM	

	
FREQUENCY	OF	GENES	

ASSOCIATED	

	
ATP_binding		

	
66	

RNA_binding		 60	

Gene_expression		 48	

Translation	 30	

ncRNA_metabolic_process		 28	

Cell_cycle_phase		 27	

Mitochondrial_inner_membrane	 26	

Viral_reproduction		 24	

ATPase_activity	 23	

Soluble_fraction		 21	

Ribosome		 20	

Tanscription_cofactor_activity		 20	

Translational_initiation		 19	

Structural_constituent_of_ribosome		 18	

Mitotic_cell_cycle		 17	

Respiratory_electron_transport_chain		 17	

SRP-dependent_protein_targeting_to_membrane		 15	

Translational_elongation		 15	

	

Table3.1	Histogram	for	GO	terms	enriched	in	K562_MYC	sample.	The	highest	number	of	genes	belongs	to	“ATP	
binding”	(66	genes)	indicating	that	MYC	is	responsible	for	regulating	transcription	for	multiple	genes	associated	with	
mitochondrial	pathways.	Then	was	“RNA-binding”	which	points	to	MYC	targeting	genes	with	RNA-binding	capability.	
These	were	genes	like	“MARS,	RLP14,	EIF4G3”.	Cytokine	mediated	cell-signaling	pathway,	cell	cycle	progression	
pathways	are	the	ones	that	MYC	has	been	extensively	studies	to	be	associated	with.	All	of	these	have	been	previously	
associated	with	genes	transcriptionally	regulated	by	MYC.	Note:	only	top	20	GO	terms	are	shown	here.	For	complete	
table	see	appendix. 
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GO	TERM	

	
FREQUENCY	
OF	GENES	

ASSOCIATED	

	
Membrane		

	
20	

Cytoplasm	 16	

Plasma_membrane_part		 10	

Regulation_of_molecular_function		 8	

Regulation_of_response_to_stimulus		 8	

Phosphorylation		 7	

Cytokine-mediated_signaling_pathway		 6	

Kinase_activity		 6	

Phosphotransferase_activity,	alcohol_group_as_acceptor		 6	

Regulation_of_phosphorus_metabolic_process	 6	

Cell_projection	 5	

Defense_response		 5	

Enzyme_regulator_activity	 5	

Negative_regulation_of_macromolecule_metabolic_proce
ss	

5	

Regulation_of_cell_proliferation	 5	

Regulation_of_protein_modification_process		 5	

Small_GTPase_mediated_signal_transduction		 5	

Cell_activation	 4	

	

Table	3.2	Histogram	for	GO	terms	enriched	in	GM12878_MYC	sample.	The	most	enriched	terms	included	
Regulation	of	metabolic	function,	phosphorylation,	cytokine	binding,	cytokine-mediated	cell	signaling,	regulation	of	cell	
proliferation,	regulation	of	molecular	function,	and	kinase	activity.	Note:	only	top	20	GO	terms	are	shown	here.	For	
complete	table	see	appendix. 
	

	



	
	

			 	 	
	 	 	
	 	 	

44	

For	example:	“ATP	binding”	(GO:0005524)	was	highly	enriched	with	65	predicted	target	
genes	associated	with	this	GO	term.	MYC	has	previously	been	thought	to	dictate	the	
transcriptional	regulation	of	ATP	binding	genes	in	leukemic	samples	(Porro	et	al.	2011)	
and	these	targets	were	never	confirmed	via	follow	up	studies.	This	study	accurately	
predicted	65	target	genes	associated	with	ATP	binding	with	high	confidence	(avg.	P-
Value:	0.04).	Similarly	the	GO	term	“RNA	binding”	(GO:0003723)	was	second	most	
enriched	term.	Recently	(David	et	al.	2010)	showed	that	C-MYC	regulates	hnRNP1	&	
hnRNP2	which	are	two	well	established	RNA	binding	proteins.	This	study	also	found	C-
MYC	regulating	‘HNRNPA3’	(P-Value:	0.000472444)	further	confirming	the	association	
between	the	two.	The	study	also	found	RNA-binding	proteins	(See	appendix	for	the	
complete	list),	which	are	not	yet	known	to	interact	with	C-MYC	according	to	literature.	
Follow	up	research	for	these	factors	will	further	shed	light	on	the	extent	of	regulation	of	
RNA	binding	proteins	by	C-MYC.		
	
Other	enriched	pathways	included	the	mitochondrial	processes	
“mitochondrial_DNA_metabolic_process,	mitochondrial_inner_membrane,	
mitochondrial_matrix,	mitochondrial_nucleoid,	and	NADH_dehydrogenase_activity”.	
Previous	reports	of	C-MYC	regulating	mitochondrial	genes	(Li	et	al.	2005;	Yu	et	al.	2008)	
have	been	limited	to	mitochondrial	biogenesis	genes	(TFAM	&	NRF).	However,	in	this	
study	multiple	genes	involved	in	mitochondrial	processes	were	enriched	(See	Appendix).	
The	family	of	genes	with	highest	associations	to	a	GO	terms	were	RPL	(Ribosomal	Protein	
Family)	13	genes	with	a	total	of	275	GO	terms.		
	
GM12878_MYC	sample	had	fewer	predicted	binding	sites	(Table	3.2)	compared	to	
K562_MYC	(230	vs.	1737	peaks	resp.)	hence	the	following	enrichment	analysis	using	
GOelite	also	produced	fewer	GO	terms	(For	complete	list,	see	Appendix).	The	most	
enriched	terms	included	phosphorylation,	cytokine	binding,	cytokine-mediated	cell	
signaling,	regulation	of	cell	proliferation,	regulation	of	molecular	function,	regulation	of	
metabolism,	and	kinase	activity.	
	

3.3.1.5			KEGG	associations:	

GO-Elite	has	the	option	of	providing	pathway	information	along	with	GO	terms.	A	plot	
was	generated	for	all	the	enriched	KEGG	terms	enriched	in	each	of	the	sample.	As	a	
result	for	the	K562_MYC	sample,	a	number	of	pathways	associated	with	mental	illness	
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were	enriched:	Alzheimer’s	disease,	Parkinson’s	disease,	and	Huntington’s	disease.	When	
observed	closely	the	list	of	genes	that	were	enriched	in	these	pathways	it	was	found	that	
most	of	the	genes	(70%)	were	mitochondrial	genes	(MT-CO	&	MT-ATP	genes).	
Consequently	the	other	pathway	highly	enriched	was	‘Oxidative	phosphorylation’	(Table	
3.3	and	3.4).		

																															

	
KEGG	TERM	

	
FREQUENCY	
OF	GENES	

ASSOCIATED	

	
Parkinson's_disease		

	
18	

Oxidative_phosphorylation		 16	

Ribosome		 14	

Huntington's_disease		 12	

RNA_transport		 12	

Alzheimer's_disease		 11	

Purine_metabolism		 10	

Pyrimidine_metabolism		 9	

Aminoacyl-tRNA_biosynthesis	 7	

DNA_replication	 5	

Homologous_recombination	 4	

Table	3.3	Histogram	for	KEGG	associations	in	K562_MYC	sample.	Pathways	related	to	mental	illnesses	were	highly	
enriched.	Most	of	the	genes	involved	in	these	pathways	were	mitochondrial	(MT-CO,	MT-ATP	etc).	
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KEGG	TERM	

	
FREQUENCY	
OF	GENES	

ASSOCIATED	

	
Cytokine-cytokine_receptor_interaction		

	
4	

Regulation_of_actin_cytoskeleton	 4	

Tuberculosis		 4	

Calcium_signaling_pathway		 3	

Jak-STAT_signaling_pathway		 3	

Natural_killer_cell_mediated_cytotoxicity		 3	

Neurotrophin_signaling_pathway		 3	

	

Table	3.4	Histogram	for	KEGG	associations	in	GM12878_MYC	sample.	Two	pathways	were	of	specific	interest	here	
which	involve	apoptosis	or	immune	response:	“Jak-STAT	signaling	pathway”	&	“Natural	killer	cell	mediated	
cytotoxicity”.		Genes	from	the	InterLeukin	family	(IL21R,	IlL21b)	were	seen	enriched.		
	
	
	

3.3.1.6			Common	genes	&	Differential	binding	conclusions	
	

Furthermore,	in	order	to	check	the	overlap	(if	any)	between	the	binding	regions	for	the	
two	samples,	genes	with	common	binding	were	selected	and	analyzed	for	binding	value	
of	MYC.	It	was	interesting	to	find	only	two	genes	that	were	found	for	this	overlap:	CENPM	
(Centromere	Protein	M)	(K562	value:	1.734,	GM12878	binding	value:	1.329)	&	DEPDC5	
(DEP	domain	containing	protein	5)	(K562	value:	1.781,	GM12878	binding	value:	2.8).	The	
fact	that	only	few	genes	had	overlap	across	the	two	tissues,	there	might	be	a	mechanism	
of	tissue	specific	binding	for	MYC.		
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3.3.1.7			Peak	data	visualization	(UCSC)	

In	addition	to	comparing	peak	information	via	EpiCenter	and	further	by	Gene	Ontology,	
peak	data	from	Epicenter	was	also	visualized	for	manually	checking	the	binding	regions	
for	MYC	across	K562	&	GM12878.	The	output	files	from	EpiCenter	were	converted	to	
‘.BedGraph’	format	(using	a	python	script).	These	files	were	then	uploaded	to	UCSC	
genome	browser	for	a	manual	benchmark	session.		
	
	

	

Figure	3.6	Manual	benchmark	session	UCSC	genome	browser	(K562_MYC_vs_GM12878_MYC).	One	sample	
benchmarking	session	of	EpiCenter	output	(A)	for	comparison	of	MYC	binding	across	K562	(B)	And	GM12878	(C)	
distributed	over	gene	sites	(CENPM	in	this	case).	For	reference,	the	raw	bed	files	(pre	normalization)	were	also	added	
to	the	session	to	compare	the	raw	read	counts	for	a	particular	reads.	The	Black	rectangular	bar	on	top	(highlighted	red)	
represents	the	peak	value	in	GM12878	(1.743)	and	the	grey	bar	(highlighted	purple	represents	the	peak	value	in	K562	
(1.3293)	sample	respectively.	The	peak	can	be	seen	as	the	average	of	read	counts	(intensities)	for	each	sample	minus	
the	noise.	Epicenter	does	automatic	normalization	for	read	depth	hence	the	final	comparisons	(A)	are	without	any	
sequencing	biases.		
	
	
	
	
	
	

	

	(A) 

(B) 

(C) 
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3.3.2	Mouse	TF	differential	binding	MYC		
	

Sample	2:	MEL	(K562	analogue)	VS	CHX.12	(GM12878	analogue)	

	

To	compare	the	differential	binding	of	transcription	factors	across	species,	Epicenter	was	
run	with	mouse	cell	lines	for	binding	of	MYC	in	two	different	types	of	immortal	cell	lines	
(MEL	(Human	K562	analogue)	&	CHX12	(Human	GM12878	analogue)).	Since	the	two	cell	
lines	were	similar	to	the	cell	lines	used	for	human	samples,	we	could	ideally	compare	the	
binding	for	MYC	across	two	cell	lines	to	look	for	either	conserved	binding	domains	or	
novel	binding	area.	Two	mouse	samples	(MEL	&	CHX12)	were	run	with	EpiCenter	to	study	
genome-wide	binding	of	MYC.	The	same	procedure	was	followed	as	with	the	human	
samples	to	get	the	desired	results	(see	section	3.3.1).	
	

							 	

Figure	3.7	Base	Pair	Coverage	of	gene-intervals	graph	Annominer.	EpiCenter	results	from	MYC	ChIP-Seq	data	for	
MEL	were	uploaded	to	AnnoMiner	to	check	for	gene	associations.	Each	bars	represents	the	percentage	of	peaks	falling	
in	that	part	of	gene	region.	As	was	observed	in	Human	samples,	highest	number	of	binding	events	is	around	TSS	
(200bp-500	bp	Upstream).	The	red	highlighted	bars	represent	the	regions	for	which	further	analysis	was	performed.		
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Since	the	rest	of	the	regions	were	not	of	relevance.	A	total	of	2974	genes	were	extracted	from	the	list	(A	10	fold	increase	
from	Human	samples).		

Compared	to	the	human	samples,	mouse	samples	(MEL	&	CHX12)	had	higher	number	of	
significant	peaks	and	thus	genes	associated	with	them	(2974	divided	among	1548	genes	
&	3080	peaks	divided	among	1171	respectively,	P-value	<	0.05).	A	higher	number	of	
peaks	could	direct	to	a	higher	genome	wide	occupancy	of	MYC	in	Mouse	samples.	(For	
complete	tables	see	appendix).	
	
	

3.3.2.2			Gene	ontology	&	Pathway	Enrichment	analysis	

Similar	to	the	human	samples,	the	output	gene	lists	provided	by	AnnoMiner	were	
submitted	to	GOelite	for	studying	the	enrichment	of	GO	terms	and	Pathways	in	the	
respective	samples.	The	following	results	for	MEL_MYC	sample	were	obtained:	
	
The	highest	enriched	pathways	were:	positive	regulation	of	metabolic	process	(142	
genes),	regulation	of	signal	transduction	(140	genes),	and	regulation	of	cell	death	(95	
genes).	Most	of	these	pathways	were	also	enriched	in	the	human	samples.	Immune	
system	process	(120	genes)	&	regulation	of	immune	system	process	(100	genes)	were	
two	pathways,	which	were	specifically	enriched	in	mouse	samples	(Table	3.6).	The	reason	
for	enrichment	of	immune	system	related	processes	still	remains	elusive.	Not	much	is	
known	about	the	direct	relation	of	MYC	in	regulating	genes	involved	in	the	immune	
system.	However,	given	the	diverse	role	of	MYC	and	its	involvement	in	multiple	cancers,	
it	is	possible	that	MYC	might	be	regulating	genes,	which	regulate	the	immune	system	and	
maintain	a	stable	T-Cell	homeostasis.	Furthermore,	few	mitochondrial	GO	terms	were	
present	in	this	particular	sample	(as	compared	to	human	K562)	indicating	a	cell	and	
species-specific	binding	of	MYC	to	mitochondrial	genes.	Complete	GO	term	information	
in	appendix.		
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GO	TERM	

	
FREQUENCY	
OF	GENES	

ASSOCIATED	

	
Positive_regulation_of_metabolic_process		

	
142	

Regulation_of_signal_transduction		 139	

Immune_system_process		 123	

Regulation_of_cell_communication		 109	

Regulation_of_localization		 106	

Regulation_of_cell_death		 105	

Regulation_of_immune_system_process		 100	

Anatomical_structure_morphogenesis		 93	

Cell_projection		 85	

Cytosol		 83	

Enzyme_binding		 78	

Regulation_of_hydrolase_activity		 83	

Multicellular_organismal_development		 67	

Positive_regulation_of_signaling		 63	

Protein_domain_specific_binding		 62	

Defense_response		 61	

Protein_dimerization_activity		 61	

Negative_regulation_of_response_to_stimulus		 58	

Table	3.6	GO	enrichment	analysis	for	MEL-MYC	mouse	sample.	Contrary	to	human	samples,	the	mouse	samples	
showed	a	higher	number	of	peaks	and	thus	a	higher	number	of	genes	associated	with	those	peaks.	The	highest	enriched	
terms	were:	“regulation	of	signal	transduction	(139	genes),	positive	regulation	of	metabolic	processes	(142	genes),	
immune	system	process	(100	genes),	regulation	of	cell	communication	(106	genes)	and	regulation	of	cell	death	(95	
genes).		A	total	of	4012	genes	were	associated	with	a	total	of	256	GO	processes.	The	gene	with	highest	ontology	
associations	was	‘tlr4’	(45	GO	terms).	For	complete	table	see	appendix	
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GO	TERM	

	
FREQUENCY	OF	

GENES	
ASSOCIATED	

	
Catabolic_process		

	
90	

Enzyme_binding		 73	

Identical_protein_binding		 71	

Chromatin_organization		 52	

Macromolecular_complex_subunit_organization		 52	

Endoplasmic_reticulum_part		 48	

Cell_cycle		 42	

DNA_metabolic_process		 39	

Soluble_fraction		 35	

Nucleoplasm		 31	

Ligase_activity,_forming_carbon-nitrogen_bonds		 26	

Generation_of_precursor_metabolites_and_energy		 24	

ncRNA_metabolic_process		 21	

Response_to_oxidative_stress		 21	

Lysosome		 20	

Proteolysis_involved_in_cellular_protein_catabolic_proce
Ts		

20	

Transferase_activity		 18	

Endosomal_part		 17	

	

Tables	3.7	GOelite	results	for	CHX12-MYC	sample.	List	of	gene	associated	with	Go	terms	was	provided	to	GOelite.	
Catabolic	processes	(90	genes),	identical	protein	binding	(71	genes),	chromatin	organization	(52	genes),	cell	cycle	(42	
genes),	and	enzyme	binding	(73	genes)	were	the	highest	enriched	terms.	Ontology	terms	associated	with	apoptosis	and	
mitochondria	were	also	enriched	however,	with	fewer	gene	linkage.	There	were	a	total	of	1938	genes	associated	with	
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191	GO	terms.		The	gene	with	maximum	number	of	ontology	association	sin	the	sample	was	‘AKT1’	(15	associations).	
For	complete	table	see	appendix.	

	

	
3.3.2.3			KEGG	associations	
	

The	same	list	of	genes	was	used	to	search	for	enriched	pathways	with	GOelite.	It	was	
found	that	most	of	the	enriched	pathways	were	associated	with	intracellular	
signaling	(12	in	total)	(Table	3.8).	MYC	seems	to	be	regulating	multiple	targets	that	
are	involved	in	major	signaling	pathways	for	the	cell.	Out	of	these	JAK-STAT,	MAPK	
and	T,B-cell	signaling	were	the	most	enriched.	Due	to	the	enrichment	of	multiple	
signaling	pathways,	Nfkb1	&	Pik3ca	were	the	genes	with	highest	KEGG	associations	
(21	&	19	resp.).	Unlike	the	human	samples,	fewer	mitochondrial	pathways	were	
enriched.	
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KEGG	TERM	

	
FREQUENCY	OF	

GENES	
ASSOCIATED	

	
Cytokine-cytokine_receptor_interaction		

	
34	

Pathways_in_cancer		 29	

Tuberculosis		 27	

MAPK_signaling_pathway		 25	

Cell_adhesion_molecules_(CAMs)		 23	

Toxoplasmosis		 22	

Osteoclast_differentiation		 21	

T_cell_receptor_signaling_pathway		 21	

B_cell_receptor_signaling_pathway		 20	

Jak-STAT_signaling_pathway		 20	

Phagosome		 20	

Leishmaniasis		 19	

Chagas_disease_(American_trypanosomiasis)		 18	

Chemokine_signaling_pathway		 18	

Measles		 17	

Neurotrophin_signaling_pathway		 17	

Natural_killer_cell_mediated_cytotoxicity		 16	

Toll-like_receptor_signaling_pathway		 16	

Autoimmune_thyroid_disease		 15	

Table	3.8	KEGG	associations	for	MEL_MYC	sample.	The	highest	enriched	pathways	were:	cytokine-cytokine	receptor	
interaction	(43	genes)	,	pathways	in	cancer	(29	genes),	MAPK	signaling	(25	genes),	tuberculosis	(27	genes),	other	
signaling	pathways	(JAK-STAT,	neurotrophin,	chemokine,	B-cell,	and	apoptosis).	See	complete	table	in	appendix.	
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KEGG	TERM	

	
FREQUENCY	
OF	GENES	

ASSOCIATED	

	
Insulin_signaling_pathway		

	
18	

Hepatitis_C		 13	

Parkinson's_disease		 12	

Adipocytokine_signaling_pathway	 9	

Bile_secretion		 9	

ErbB_signaling_pathway		 9	

Renal_cell_carcinoma		 9	

Proteasome		 7	

SNARE_interactions_in_vesicular_transport		 7	

Fructose_and_mannose_metabolism		 6	

Mineral_absorption		 5	

Pentose_phosphate_pathway		 5	

Porphyrin_and_chlorophyll_metabolism		 5	

Galactose_metabolism		 4	

Fatty_acid_elongation_in_mitochondria		 3	

					

Table	3.9	KEGG	associations	for	CHX12	sample.	The	highest	enriched	pathways	were:	insulin	signaling	pathways	(18	
genes)	and	Parkinson’s	disease	(12	genes),	Hepatitis	C	(13	genes).		

	
	
CHX12_MYC	sample	had	completely	different	enriched	pathways.	Highest	being	
insulin	signaling	pathway	(17	genes)	followed	by	Parkinson’s	disease.	This	sample	
also	showed	fewer	pathways	than	MEL	sample	although	the	input	number	of	genes	
for	both	was	almost	similar	(1080	vs.	1370	genes	resp.)	one	of	the	possible	
explanations	could	be	that	fact	that	the	MYC	binds	to	different	targets	across	the	two	
cell	types.	Leading	to	a	highly	variable	degree	of	tissue-specific	regulation.	
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3.3.2.4			Peak	data	visualization		

	

	

Figure	3.8	Manual	benchmark	session	UCSC	genome	browser	(MEL_MYC_vs_CHX12_MYC).	Manual	peak	
visualization	session	of	EpiCenter	output	(A)	for	comparison	of	MYC	binding	across	MEL	(B)	And	CHX12	(C)	for	mouse	
samples	distributed	over	gene	sites	(CALR3	in	this	case).	For	reference,	the	raw	bed	files	(pre	normalization)	were	also	
added	to	the	session	to	compare	the	raw	read	counts	for	a	particular	reads.	The	Black	rectangular	bar	on	top	
(highlighted	red)	represents	the	peak	value	in	CHX12	(0.84)	and	the	grey	bar	(highlighted	purple)	represents	the	peak	
value	in	MEL	(1.728)	sample	respectively.	The	peak	can	be	seen	as	the	average	of	read	counts	(intensities)	for	each	
sample	minus	the	noise.	Epicenter	does	automatic	normalization	for	read	depth	hence	the	final	comparisons	(A)	are	
without	any	sequencing	biases	

	

3.3.1.3			Common	differential	binding	across	Human	and	Mouse	

Many	transcription	factors	are	believed	to	have	conserved	binding	sites	across	promoter	
regions,	which	have	been	conserved	during	evolution.	In	order	to	test	this	hypothesis,	
EpiCenter	results	were	combined	across	human	and	mouse	samples	to	look	for	

	
	

(A) 

(B) 

(C) 
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conserved	binding	sites.	Bedtools	package’s	Intersect	command	was	used	for	this	
purpose.	A	total	of	4,516,557	peaks	had	overlap	for	the	K562	sample	across	human	and	
mouse	and	a	total	of	1,535,480	peaks	had	overlap	for	GM12878	sample.	The	average	
length	of	the	overlap	was	9	bp.	The	list	was	fed	into	PAVIS	
(http://manticore.niehs.nih.gov/pavis2/)	for	peak	annotation	(AnnoMiner	was	not	able	to	
handle	such	large	files).	764587	of	1535480	(49.79%)	of	the	loci	were	associated	with	
genes	(Fig.	3.9).	Note:	Upstream	length	was	set	to	5000	and	Downstream	length	was	set	
to	1000.	
	

								 	

Figure	3.9	Distribution	of	common	peaks	between	human	and	mouse	samples	(GM12878).	

	
Most	of	the	peaks	were	present	in	the	intronic	region	for	GM12878_MYC	sample	(40.6%)	
and	fewer	were	associated	with	exonic	regions	(2.0%).	This	could	be	due	to	the	longer	
intronic	size	(PAVIS	does	not	normalize	for	the	region	length).	However,	the	most	
interesting	regions	were	the	upstream	region	(4.2%)	as	that	is	the	location	where	most	of	
the	TFs	binding	occur.		This	does	point	to	the	fact	there	are	conserved	binding	regions	at	
least	for	MYC.	A	Further	in	depth	analysis	was	required	to	decipher	which	genes	does	
these	promoters	belong	to	and	their	functional	relevance.	For	this	purpose,	the	gene	list	
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(3517	genes)	from	PAVIS	was	fed	into	GOelite	to	study	the	processes	that	were	enriched	
across	these	genes.		

Highest	30	enriched	GO	terms	are	listed	in	Table	3.11.	The	highest	being	membrane	
bound	organelles	(1563	genes),	cellular	metabolic	process	(1215	genes)	and	its	regulation	
(754	genes),	Primary	metabolic	process	(1201	genes)	&	its	regulation	(722	genes),	and	
catalytic	activity	(984	genes)	(Table	3.10).	These	processes	seemed	to	be	the	most	
conserved	for	MYC	binding	across	human	and	mouse.		
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GO	TERM	

	
FREQUENCY	OF	

GENES	ASSOCIATED	

	
membrane-bounded_organelle		

	
1563	

cellular_metabolic_process		 1215	

primary_metabolic_process	 1201	

cytoplasmic_part		 1179	

intracellular_organelle_part		 1179	

catalytic_activity		 984	

cytoplasm		 925	

regulation_of_cellular_metabolic_process		 779	

regulation_of_primary_metabolic_process		 754	

regulation_of_macromolecule_metabolic_process		 722	

non-membrane-bounded_organelle		 588	

nucleotide_binding		 436	

small_molecule_metabolic_process		 415	

organelle_membrane		 386	

intracellular	 370	

organelle_organization		 321	

zinc_ion_binding		 314	

regulation_of_catalytic_activity	 279	

intracellular_transport		 216	

enzyme_binding		 206	

RNA_binding		 185	

cell_cycle_process		 174	

cell_cycle		 164	

regulation_of_cell_cycle		 164	

macromolecular_complex_assembly		 159	
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gene_expression		 153	

ribonucleoprotein_complex		 139	

cellular_macromolecular_complex_subunit_organization		 128	

enzyme_linked_receptor_protein_signaling_pathway		 118	

Table	3.11	GO	enrichment	for	peaks	belonging	to	common	genomic	regions	(human	and	mosue).		

	

Using	the	Gene	list	provided	by	Pavis,	the	genes	with	highest	number	of	peaks	near	the	
TSS	(+-	500	bp)	were	selected.	These	genes	are	listed	in	table	3.11.	The	highest	
conservation	in	the	binding	regions	seems	to	be	in	genes	presented	here.	This	alluded	to	
the	fact	that	there	is	indeed	conserved	binding	by	MYC	across	human	and	mouse	
genomic	regions.		

Gene	Name	
	

Frequency	of	
common	peaks	

	
	
DQ582201		 643	
JA429504		 462	
DQ582265		 459	
BC018860		 451	
TVAS5		 445	
JA040725	 287	
AF079515		 273	
JA429830		 247	
UBA2		 142	
PDIA4	 141	
CEP135		 133	
RWDD3		 130	
SNHG5		 113	
TMEM97		 107	

Table	3.12	Common	genes	across	Human	and	Mouse	samples	that	had	MYC	occupancy.	A	total	of	14	genes	
showed	similar	occupancy	of	MYC	across	human	and	mouse	samples.	The	values	represent	peak	values	generated	using	
Intersect	option	from	Bedtools	and	which	were	near	TSS	(+-500	bp).	For	complete	table	refer	to	appendix.	
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4 			Conclusions	and	Discussions	
	

Transcription	factor	and	histone	modifications	are	two	key	factors	that	mediate	gene	
regulation.	TF-binding	data	and	histone	modification	data	capture	the	gene	expression	to	
a	high	extent	(Cheng	et	al.	2012)	(Fig.	4.1).	Chromatin	Immunoprecipitation	(ChIP)	
followed	by	Sequencing	(Seq)	has	become	the	primary	method	to	identify	these	large-
scale	transcription	factor	binding,	histone	marks	and	modifications,	and	mechanisms	of	
differential	gene	regulation	(Furey	2012).	We	here	show	that	using	ChIP-Seq	data,	
comparative	studies	for	transcription	factor	binding	can	be	performed	across	multiple	
samples.	Using	Gene	ontology	(combined	with	pathway)	enrichment,	we	could	confer	the	
processes	that	MYC	targets	specific	to	particular	tissue	types.	We	show	that	this	type	of	
in-depth	analysis	for	transcription	factor	binding	can	be	instrumental	in	understanding	
the	extent	of	regulation	for	specific	transcription	factors.	Comparing	binding	across	two	
species	(human	and	mouse	in	our	case)	can	also	help	elucidate	the	conserved	binding	
regions	and	hence	conserved	processes	targeted	by	transcription	factors.		

	
A	variety	of	ChIP-Seq	analysis	packages	are	available	that	perform	peak	detection	for	
multiple	samples.	However	they	fail	to	acknowledge	the	importance	of	replicates	files,	
background	normalizations	and	the	biases	caused	by	sequencing	depth.	Since	accurate	
identification	of	real	differential	binding	sites	is	likely	to	rely	more	on	biological	replicates	
and	sequencing	depth	than	number	of	absolute	reads,	a	software	tool	for	taking	in	to	
account	these	factors	is	crucial	in	study	of	ChIP-Seq	data.	Therefore	this	study	employed	
the	software	EpiCenter	(Huang	et	al.	2011)	to	compare	transcription	factor	binding	across	
differential	cell	types	and	between	species	(human	and	mouse).	Unlike	the	existing	
methods,	EpiCenter	uses	a	combination	of	two	statistical	tests	(exact	ratio	test,	and	z	test	
on	log2ratio	of	read	counts)	for	determining	differential	regions	between	samples	and	
thus	controls	for	a	lower	FDR.		
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Using	EpiCenter	for	two	samples	(K562	&	GM12878)	in	humans	and	their	counterparts	in	
mouse	(MEL	&	CHX12)	to	study	the	genome-wide	binding	of	C-MYC,	It	was	found	that	C-
MYC	seems	to	have	tissue	specific	binding	to	an	extent.	The	number	of	binding	sites	also	
varied	across	the	samples	(K562_human:	1737	peaks,	GM12878_Human:	231	peaks)	&	
(MEL_Mouse:	21857	peaks,	CHX12_Mouse:	4132	peaks).	One	critical	reason	for	this	
variation	might	be	due	to	the	fact	that	these	experiments	were	not	from	the	same	
group/lab	and	thus	technical	variation	in	sample	and	library	preparation	might	affect	the	
overall	read	count.	Also	errors	in	the	immunoprecipitation	step	can	create	high	sample	
variance.	After	analyzing	the	gene	lists	for	ontology	and	pathway	enrichment,	our	study	
could	predict	diverse	cellular	processes	that	are	associated	with	MYC	targets.	Moreover	
the	enrichment	differences	were	highly	variable	across	the	samples.	For	example:	
K562_human	had	high	enrichment	in	ATP	binding	genes,	other	mitochondrial	pathways	
and	apoptosis	–	all	of	which	are	indicative	of	a	cell	in	a	state	of	high	energy	demand.	
GM12878_human,	on	the	other	hand,	had	enrichment	in	processes	related	to	cytokine	
signaling,	cellular	proliferation	and	phosphorylation,	which	indicated	the	cell	being	in	a	
proliferating	and	signaling	mode.	

Similarly,	pathway	information	from	KEGG	provided	information	about	enriched	
pathways	in	each	sample.	The	primary	finding	from	this	was	the	fact	that	for	the	
K562_human	sample,	the	majority	of	the	target	genes	for	MYC	were	associated	with	
mental	diseases	(Alzheimer’s,	Parkinson’s,	and	Huntington’s	disease).	Many	of	these	
target	genes	were	mitochondrial	(MT-COA1,	2,	3,	4	&	ATP	enzymes).	This	information	
might	be	relevant	for	researchers	studying	mental	disorders.	C-MYC	might	be	playing	an	
important	role	in	regulating	the	expression	levels	of	these	genes.		
	
Studying	differential	binding	of	transcription	factors	is	pivotal	in	understanding	the	
different	cellular	phenotypes.	Moreover,	accurate	prediction	of	these	‘differential’	sites	is	
necessary	in	order	to	produce	reliable	results.	This	study	provides	a	framework	for	
testing	the	differential	binding	of	transcriptional	factors	across	multiple	samples	to	study	
gene	regulation.		
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Appendix		

Supplementary	data	and	result	files	can	be	found	at:	
https://drive.google.com/drive/folders/0B_MVmsAk2E6MUXA3WWVCdW1SeEE 

	

																									 	

Figure	:	Annominer	Coverage	for	G1E_GATA1	samples.	The	sample	was	not	of	good	quality.	Most	of	the	peaks	belonged	
to	downstream	regions	instead	of	near	TSS.		

																										 	

Figure:	Peak	length	distribution	for	K562_GATA1_VS_G1E_GATA1.	The	peaks	were	larger	than	expected	(TF	binding	is	
generally	150	bp	(+-	500	bp).	Improper	shearing	of	DNA	during	sample	preparation	could	cause	this	or	nonspecific	
antibody	binding.		
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