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Abstract. We introduce and solve exactly a class of interacting particle systems

in one dimension where particles hop asymmetrically. In its simplest form, namely

asymmetric zero range process (AZRP), particles hop on a one dimensional periodic

lattice with asymmetric hop rates; the rates for both right and left moves depend

only on the occupation at the departure site but their functional forms are different.

We show that AZRP leads to a factorized steady state (FSS) when its rate-functions

satisfy certain constraints. We demonstrate with explicit examples that AZRP exhibits

certain interesting features which were not possible in usual zero range process. Firstly,

it can undergo a condensation transition depending on how often a particle makes a

right move compared to a left one and secondly, the particle current in AZRP can

reverse its direction as density is changed. We show that these features are common

in other asymmetric models which have FSS, like the asymmetric misanthrope process

where rate functions for right and left hops are different, and depend on occupation

of both the departure and the arrival site. We also derive sufficient conditions for

having cluster-factorized steady states for finite range process with such asymmetric

rate functions and discuss possibility of condensation there.
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1. Introduction

Driven diffusive systems with stochastic dynamics have been studied extensively in

recent years to understand macroscopic properties of non-equilibrium steady states [1].

Unlike stationary equilibrium systems which follow Gibbs measure, the non-equilibrium

systems lead to unusual steady state measures with interesting nontrivial correlations,

thermodynamic phases and phase transitions even in one dimension [2]. In absence of

any generic method for obtaining exact steady state distributions in non-equilibrium

systems, the analytical studies are limited to model systems where certain specific

techniques like, pairwise balance [3], Bethe ansatz [4], matrix product ansatz [5] etc.

can be applied. Zero range process (ZRP), introduced by Spitzer in [6] in context of

invariant measures for interacting Markov processes, is one of the simplest model for

which steady state is known exactly. In ZRP, particles hop - one at a time- to one of the

nearest neighbors on a d-dimensional lattice with a specific rate function that depends

only on the occupation of the departure site, justifying the name zero range. For any

arbitrary form of the rate function, this model has a factorized steady state (FSS) [6]. In

spite of its simplicity, ZRP exhibits a condensation transition for certain rate functions,

even in one dimension (1d), where a macroscopic fraction of particles occupy a single site

[7]. In 1d, such a condensation transition can be mapped to a phase separation in one

dimensional exclusion model with suitable diffusion dynamics. This mapping helps in

identifying a generic criterion for having phase separation in one dimensional exclusion

models [8]. The ZRP correspondence of exclusion models has been exploited to obtain

spatial correlation functions in several systems [9].

A natural extension of ZRP is the finite range process (FRP), where the hop rate

of the particles depends on the occupation number of not only the departure site but

also that of all other sites within a specified distance [10]; clearly in FRP, particle-

particle interaction extends to a finite number of neighboring lattice sites. A specific

example, where the hop rate depends on occupation numbers of both the departure and

the arrival sites, is commonly known as misanthrope process (MAP) [11]. Like ZRP,

misanthrope process can also have factorized steady state [11], but only for a certain

class of hop rates. However, factorized steady state is not possible for FRP [10] where

three or more sites are involved in the hop rates. For these systems, in fact, one can

obtain a cluster factorized steady state (CFSS) when the rates satisfy certain specific

conditions [10]. The simplest example of a cluster factorized steady state is a pair

factorized state, introduced by Evans et. el. [12], exhibiting condensation transition

when particle interaction is tuned. Interestingly, unlike systems with factorized steady

states (leading to a single site condensate), in FRP condensate can form over a extended

region in the space [13] due to spatial correlations. Another interesting variation is ZRP

with open boundaries where, in addition to the ZRP dynamics in the bulk, particles

are allowed to enter or exit the system at the boundaries [14]. These open systems

may not have well-defined stationary states for any arbitrary boundary dynamics, but

condensation can occur for certain dynamics which lead to unique stationary measures
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[14]. Recently, a non-markovian zero range process [15] is introduced to investigate the

impact of temporal correlations on the dynamics of condensation.

Over years, zero range processes have found vast applications in different areas

of science. It is being considered as a reasonably good model for mass transport

processes [16] and sandpile dynamics [17, 18], reconstituting polymers [19] etc. Being an

analytically tractable driven diffusive system, ZRP and related models have become a

test ground for development of non-equilibrium thermodynamics [20]. These models

also help in understanding experiments on shaken granular gases [21], dynamics of

growing networks [22], aggregation of active filament bundles [23], wealth condensation

[24], jamming in traffic flow [25], quantum gravity [26] etc. Due to their far reaching

importance, ZRP and related models have found a significant place in the research

activity in statistical mechanics (see Refs. [7, 11] for reviews).

In usual ZRP and related models, the hop rates do not depend on the direction

along which the particles move. Although, recently some simple examples [27] have

been studied in two dimension (2d), where the rate functions are different in x- and

y- directions, but it was observed that the two point correlations are finite indicating

that the steady state is not factorized. Later, a generalized zero range processes was

introduced [28] where more than one particle can hop from a site and the hop rates

may depend on direction of hopping. A sufficient condition for having FSS in these

models, which is also conjectured as the necessary condition, showed explicitly that

indeed models described in [27] cannot have factorized steady states. Moreover, these

models in 1d (with one hop at a time) reduce to an asymmetric ZRP where particles hop

to right or left neighbour with rates uR(n) = pu(n), uL(n) = qu(n) respectively; notably,

the steady state weights of these models do not depend on p, q and the asymmetry

parameter p
q
only redefines the fugacity of the system in grand canonical ensemble.

In this article we introduce a class of one dimensional interacting particle systems

with asymmetric rate functions, i.e., the right hop rate uR(n) is an independent function,

not just a constant multiple of the left hop rate uL(n). It is a priori not clear, whether

a factorized steady state is at all possible for this asymmetric zero range process

(AZRP). We derive a sufficient condition for AZRP to have a factorized steady state.

Generalization of these asymmetric models to asymmetric misanthrope process (AMAP)

and asymmetric finite range process (AFRP) are also investigated to find sufficient

conditions on the rate functions that lead to factorized steady state in AMAP and

cluster factorized form for AFRP. Interestingly, even though the steady state of both

AZRP and AMAP are similar to that of ZRP, particle currents here show current-

reversal as the density of the system is changed - a feature which can not be observed

in ZRP with rates uR(n) = pu(n), uL(n) = qu(n). We also address the possibility of

condensation transition in these systems and find that the onset of condensation can be

tuned by the a factor that merely controls how often the particle chooses to move right,

compared to its left hops.

The asymmetric hopping models which we discuss in this article are interesting in

their own right. In addition, there are physical situations which may correspond to the
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asymmetric diffusion proposed here. It is well known that geometry [29] or potential of

mean forces [30] induce asymmetry across membrane channels and influence the particle

fluxes across artificial or natural-biological pores. Such asymmetry is important for

analyzing the dynamics of particle translocation [31] in biological channels. Also, this

asymmetric diffusion effect may be utilized [32] to regulate transport and distribution of

motile microorganisms in irregular confined environments, such as wet soil or biological

tissues.

The article is organized as follows. In section 2, we introduce AZRP and derive

the sufficient condition on the rate functions for obtaining a FSS. We then calculate the

generic form of these rate functions uR(n), uL(n) that gives rise to FSS, we devote the

rest of the section for elaborate discussions on phenomena of condensation and current

reversal. In section 3 we introduce asymmetric misanthrope process and show that the

system can lead to FSS under certain conditions; current reversal and condensation

phenomena in AMAP are discussed with specific examples. The most generic case,

asymmetric finite range process (AFRP) is discussed in section 4, which leads to a clus-

ter factorized steady states as in [10]. Finally, we summarize the results in section 5

with some discussions.

2. Asymmetric zero range process (AZRP)

2.1. The Model

Let us consider a system of N particles on a one dimensional periodic lattice with L

sites labeled by i = 1, 2, . . . , L. Each site i can accommodate ni ≥ 0 number of particles.

The dynamics of the system is as follows. From a randomly chosen site i, having ni > 0

particles, one particle is transferred either to the right neighbor (i+1) with a rate uR(ni)

or to its left neighbor (i−1) with a different rate function uL(ni). Thus, the total number

of particles
∑L

i=1 ni = N or the density ρ = N/L is conserved. This stochastic process is

a zero range process with asymmetric rate functions and hereafter we refer to it in short

as asymmetric zero range process (AZRP). Clearly, in AZRP, particles at any given

lattice site interacts with other particles at the same site through the hop rates which

explicitly depend on the occupation number; interaction between particles at different

sites is invoked only via the global conservation of N . In the following we show that

this interacting particle system can have a factorized steady state if the rate functions

satisfy certain constraints.

A special case of the model with uR(ni) = pu(n), uL(ni) = qu(n) is the well known

zero range process [7] which describe symmetric (when p = q) or asymmetric (when

p 6= q) transfer of particles. In this case, the steady state has a factorized form for any

choice of rate function u(n), and for arbitrary values of p, q

PN({ni}) ∼
L
∏

i=1

f(ni)δ(

L
∑

i=1

ni −N), (1)
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where f(n) =
∏n

m=1 u(m)−1. We now ask, if such a factorized form is possible when

rate functions for right and left hops are different, i.e., uR(n) and uL(n) have distinct

functional forms. The master equation for AZRP is

d

dt
P ({ni}) =

L
∑

i=1

[uR(ni) + uL(ni)] P (n1, . . . , ni−1, ni, ni+1, . . . nL)

−
L
∑

i=1

[uR(ni−1 + 1)P (. . . ni−1 + 1, ni − 1, ni+1 . . .)

+uL(ni+1 + 1)P (. . . ni−1, ni − 1, ni+1 + 1 . . .)] (2)

which governs how the probability P ({ni}) of configuration {ni} evolves with time. Let

us assume that the steady state of AZRP has a factorized form, as in Eq. (1)- then

we use the FSS in Eq. (2) to check whether the steady state condition d
dt
P ({ni}) = 0

is satisfied automatically or does it put some constraint on uR,L(n) for which FSS is

possible. With a FSS, the steady state master equation for any arbitrary configuration

of AZRP reads as,
∑L

i=1 [uR(ni) + uL(ni)] f(n1) . . . f(ni−1)f(ni)f(ni+1) . . . f(nL)

−[
∑L

i=1 uR(ni−1 + 1) . . . f(ni−1 + 1)f(ni − 1) . . .

+
∑L

i=1 uL(ni+1 + 1) . . . f(ni − 1)f(ni+1 + 1) . . .] = 0.
(3)

Now by shifting the index i → (i − 1) in the last sum we get an equation
∑L

i=1 F (ni−1, ni) = 0, where

F (m,n) = uR(n) + uL(n)− uR(m+ 1)
f(m+ 1)f(n− 1)

f(m)f(n)

− uL(n + 1)
f(m− 1)f(n+ 1)

f(m)f(n)
. (4)

Clearly we have a stationary measure if we can construct a single site function h(n)

that satisfy F (m,n) = h(m) − h(n). Existence of such a function h(n) ensures that
∑L

i=1 F (ni−1, ni) = 0 and thereby guarantees a factorized stationary measure. Since

m,n are non-negative integers, let us first find what restrictions are imposed on h(.)

from the boundary values. When m = 0 = n, from Eq. (4) we have F (0, 0) = 0, as

uR,L(0) = 0 (particle hopping is prohibited if the departure site is vacant) and f(−1) = 0

(a boundary condition that assigns zero weight for configuration having −ve occupation

numbers); thus F (m,n) = h(m)− h(n) is automatically satisfied. For other cases,

n = 0, m > 0 : − uL(1)
f(m− 1)f(1)

f(m)f(0)
= h(m)− h(0)

n > 0, m = 0 : uR(n) + uL(n)− uR(1)
f(n− 1)f(1)

f(n)f(0)
= h(0)− h(n). (5)

These equations are consistent if

f(n) =
f(1)

f(0)
[
uR(1) + uL(1)

uR(n) + uL(n)
]f(n− 1), and h(n) = h(0)− uL(1)

f(n− 1)f(1)

f(n)f(0)
. (6)
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Finally, a factorized steady state will be guaranteed if the above expressions of h(n) and

f(n) consistently satisfy F (m,n) = h(m)− h(n) for all m > 0, n > 0. This requirement

actually constraints the right and left hop rates uR,L(n) to satisfy the following condition

(from Eqs. (4) and (6)) ,

uL(n+ 1)uR(1)− uR(n+ 1)uL(1)

[uR(n) + uL(n)] [uR(n+ 1) + uL(n+ 1)]
= C, (7)

where C is a constant independent of n. This completes the proof: AZRP has a

factorized steady state if the hop rates uR,L(n) satisfy Eq. (7). The weight factors

f(n) can be calculated from the recursion relation Eq. (6)

f(n) = [f(1)v(1)]n
n
∏

m=1

1

v(m)
; where v(m) = uR(m) + uL(m), (8)

where we set f(0) = 1, without loss of generality. Note a striking similarity of the weight

factor f(n) in AZRP with that of the ZRP. In Eq. (8) if one sets f(1) = 1
v(1)

, then the

steady state of AZRP with specified hop rates uR,L(n) which satisfy Eq. (7) is exactly

the same as that of the ordinary ZRP with hop rate uR(n) + uL(n).

Note that, although validity of Eq. (7) is sufficient for AZRP to have a FSS, it is

not a priori clear if there exists any such rate functions which satisfy this condition. To

obtain a desired FSS as in Eq. (1) where

f(n) =
n
∏

m=1

1

v(m)
alongwith f(0) = 1 (9)

one can show, following Eqs. (8) and (7), that the asymmetric rate functions have the

following generic functional form for n ≥ 1,

uR(n) = v(n) [δ − γv(n− 1)] ; uL(n) = v(n) [1− δ + γv(n− 1)] . (10)

Clearly for n = 0, uR(0) = 0 = uL(0) meaning v(0) = 0. Also we have set C
v(1)

= γ. Now

we have a family of asymmetric hop rates, characterized by two independent parameters

0 ≤ δ ≤ 1 and 0 ≤ γ ≤ δ/v(n)|max ‡, which gives rise to a unique invariant measure

described by Eqs. (1) and (9).

Some specific examples of AZRP will be discussed in the following sections. A

simple situation is when γ = 0, where uR(n) = δv(n) and uL(n) = (1 − δ)v(n). Since

δ < 1, the model is identical to an ordinary ZRP where particle chooses the right (or

the left) neighbor as a target site with probability δ (or 1 − δ) and then hops to that

site with rate v(n). Obviously, δ = 0, 1 corresponds to the usual ZRP where particles

hop along a unique direction.

For any conserved system (N particles in L sites) with a factorized steady state

PN({ni}) =
1

QL
N

L
∏

i=1

f(ni)δ(
L
∑

i=1

ni −N), with f(n) =
n
∏

m=1

1

v(m)
, (11)

where QL
N =

∑

{ni}

L
∏

i=1

f(ni)δ(
L
∑

i=1

ni −N) (12)

‡ The range of δ and γ are fixed by the condition that the rates uR,L(n) must be positive.
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is the canonical partition function, one can calculate the steady state average of any local

observable straightforwardly. For completeness let us describe the procedure briefly. The

grand partition function of the system is

ZL(z) =
∞
∑

N=0

QL
Nz

N = F (z)L; F (z) =
∞
∑

n=0

f(n)zn, (13)

where the fugacity z controls the average density of the system ρ(z) = zF ′(z)/F (z).

The steady state average value of any local observable O(ni) is then

〈O〉 = 1

F (z)

∞
∑

n=0

O(n)f(n)zn, (14)

which is a function of z. One can get the corresponding value for the conserved system

with a given density ρ = ρ∗ by setting z to a specific value z∗ which satisfy ρ(z∗) = ρ∗.

2.2. Condensation

The most interesting thing that happens in ZRP with a hop rate v(n), or for any

other model which has a factorized steady state given by Eq. (11), is the condensation

transition. If the asymptotic form of v(n) is

v(n) = v(∞)

(

1 +
b

nσ
+ . . .

)

, (15)

condensation occurs for large densities either when σ < 1, or when σ = 1 and b > 2 [7].

It turns out that higher order terms in the series expansion are irrelevant in deciding

the possibility of a condensation transition; they only play a role in determining the

exact critical density above which the system forms a condensate. Since there are many

exclusion models that have exact or approximate ZRP correspondence, the above criteria

is extensively used for determining the possibility of phase separation transition [8]. A

particularly simple case of (15), which is exactly solvable [7], is

v(n) = 1 +
b

n
(16)

that results in a condensation transition for b > 2, when density ρ of the system crosses

a critical value ρc =
1

b−2
.

In AZRP, to have a FSS given by (11) with v(n) = 1 + b
n
for n > 1 (v(0) = 0 by

definition as already mentioned) the rate functions must follow Eq. (10). For this choice

of v(n), the model has three parameters b > 0, 0 < δ ≤ 1 and γ; here γ must be in the

range 0 ≤ γ ≤ δ
v(n)|max

= δ
1+b

, so that the rates in Eq. (10) remain positive for all n > 0.

Let us parametrize (b, δ, γ) in terms of three other parameters (bR, bL, α) as follows,

b = αbR + ᾱbL ; δ = α(2− bR
αbR + ᾱbL

) ; γ = α(1− bR
αbR + ᾱbL

), (17)

where we use ᾱ ≡ 1−α for notational convenience. The purpose of such parametrization

will become clear in a moment. With these new parameters the hop rates of the model

for the choice v(n) = 1 + b
n
can be written (using Eq. (10)) as

uR(n) = αũR(n), uL(n) = ᾱũL(n) (18)
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where for n = 1,

ũR(1) = (2− bR
αbR + ᾱbL

) [1 + αbR + ᾱbL]

ũL(1) = (1− bR
αbR + ᾱbL

) [1 + αbR + ᾱbL] (19)

and for n > 1

ũR(n) = (1 +
αbR + ᾱbL

n
)

[

1− ᾱ
bL − bR
n− 1

]

ũL(n) = (1 +
αbR + ᾱbL

n
)

[

1 + α
bL − bR
n− 1

]

. (20)

It is easy to see that the asymptotic forms of ũR,L(n) are

ũR(n) = 1 +
bR
n

+ . . . ; ũL(n) = 1 +
bL
n

+ . . . . (21)

The new parameters α, bR, bL are all familiar to us: bR,L, are coefficients of 1
n
in

the asymptotic expansion of the rates ũR,L(.) which normally take part in determining

possibility of a condensation transition, and α may be considered as the probability that

a particle chooses the right neighbor as the target site (note that α = γ− δ varies in the

range (0, 1) for any b > 0). Thus, for the model in hand, particles choose to move right

(or left) with probability α (or 1− α) and hop there with rate ũR,L(.) respectively.

For α = 0, particles in this model move only to left with rate ũL(n) = 1 + bL
n

leading to a factorized steady state and a condensation for large densities when bL > 2.

Similarly for α = 1, condensation occurs for bR > 2. It is interesting to ask, ‘for a given

fixed bR,L, is it possible to observe a condensation transition by changing α ?’ Note that

α determines how often the system chooses to hop right and a condensation transition,

if appears by tuning only α, is exciting as it has not been observed earlier in ZRP or

related models.

The difficulty, however, lies with the fact that for any given bR,L we do not have

exact steady state measure (within this formalism) for all α ∈ (0, 1) The constraint

comes from the requirement that the rate functions obtained in Eq. (18)-(20) must be

positive valued for n > 0, which in turn restricts the value of α for which one can obtain

the steady state weights exactly. In other words, for some bR,L, it may not be possible

to find uR,L(n) for which the steady state is factorized for any arbitrary 0 ≤ α ≤ 1.

When both bR and bL are larger than 2, we have b = αbR + (1 − α)bL > 2; this case is

not interesting because, even if we find suitable hop rates that describe this situation,

and result in a FSS as in Eq. (11) with v(n) = 1 + b
n
, the system will remain in the

condensate phase for all α. Similarly, for bR < 2, bL < 2, condensation transition is not

possible as b is smaller than 2 for any 0 < α < 1. Thus, we focus on the case where

bR < 2 and bL > 2 (the other alternative bR > 2 and bL < 2 can be described in the

same manner). For any fixed value of bR the minimum and the maximum accessible

values of α, for which one can have exact FSS with rate functions uR,L(n) given by Eq.

(18)-(20) are respectively

αmin = max{0, bL − bR − 1

bL − bR
}; αmax = min{1, 1

2

bL
bL − bR

}. (22)
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These conditions on α are calculated simply by demanding positivity of the hop rates

in (18)-(20).

To demonstrate the possibility of a condensation transition tuned by α, we consider

AZRP with hop rates uR,L(n) given by (18)-(20), in two separate cases bR = 3
2
and 1

2
.

The maximum and minimum values of α now depends on bL; in Fig. 1(a) and (b) we

2 3 4 5 6
b

L

0

0.5

1

α

b
R
=3/2

Fluid

Con
de

ns
at

e

 α
min

α
max

b=2

(a)

 α=α
c

1 2 3 4
b

L

0

0.5

1

α

b
R
=1/2

Fluid

b=2
 α

min

α
max

(b)

 α= α
c

Figure 1. Condensation transition for AZRP dynamics given by Eqs. (18)-(20). For

any given bR, bL the steady state has a factorized form when α ∈ (αmin, αmax). Plots of

αmin and αmax as function of bL (> bR) are shown here for (a) bR = 3

2
and (b) bR = 1/2;

we do not have exact steady state solution in the shaded regions where α > αmax or

α < αmin. Condensation transition occurs for large densities when b = αbL+(1−α)bR
is larger than 2. In (a), this transition line b = 2, which separates the fluid phase from

the condensate one, lies in the region where we have exact (factorized) steady state.

have plotted αmin and αmax in dashed lines for bR = 3
2
and 1

2
respectively. The regions

for α > αmax and α < αmin are shaded to indicate that within this formalism § the

steady state does not have a factorized form in these regions. In the rest of regions, we

have a factorized steady state given by Eqs. (11) and (16) and a condensation transition

occurs here for large densities (ρ > 1
b−2

) when b is greater than 2, which corresponds to

α > αc where

αc =
bL − 2

bL − bR
. (23)

In Fig. 1 we have also shown α = αc as a solid line, marked as b = 2 and correspondingly

α = αc. In the left panel (bR = 3
2
) this line lies in the exactly solvable regime separating

the fluid phase from the condensate one. For bR = 1/2, we could not conclude if there

is a condensation transition as the exact steady state measure in the neighborhood of

α = αc line is not known. In fact, with some simple algebra one can show that for any

1 < bR < 2 the transition line lies in the exactly solvable regime, which is not the case

when 0 < bR ≤ 1.

As an explicit example, let us consider bR = 3
2
, bL = 9

4
; in this case clearly α can

vary freely in the range (0, 1), which can be seen from Fig. 1 (a). The rate functions,

§ Let us remind that the condition that we derive here is not a necessary but a sufficient condition.
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from Eq. (18)-(20), are now uR(n) = αũR(n), uL(n) = (1− α)ũL(n) with

ũR(n) =

{

(13−3α)(2−α)
2(3−α)

n = 1
(4n−3α+9)(4n+3α−7)

16n(n−1)
n > 1

ũL(n) =

{

(13−3α)(3−2α)
4(3−α)

n = 1
(4n−3α+9)(4n+3α−4)

16n(n−1)
n > 1

It is easy to check that these functions result in the FSS given by Eq. (11) along with

(16) where b = αbR+(1−α)bL. For α = 1, we have b = bR = 3
2
and the system remains in

the fluid phase for all densities whereas for α = 0, condensation occurs as b = bL = 9/4.

Interestingly for any arbitrary 0 < α < 1, b = 3
4
(3 − α) and a condensation transition

takes place when α is decreased below αc = 1
3
(from Eq. (23)). For any α > αc, the

system sets in the condensate phase only when the density of the system is increased

above ρc =
4

1−3α
.

2.3. Current reversal

Another interesting thing that happens in AZRP is the current reversal, where the

direction of current depends on the particle density of the system. When AZRP with hop

rates uR,L(n) has a factorized steady state given by Eq. (11) with v(n) = uR(n)+uL(n),

the steady state current in the system can be written as

J =
1

F (z)

∞
∑

n=1

[uR(n)− uL(n)]f(n)z
n = 〈uR(n)〉 − 〈uL(n)〉 (24)

where F (z) =
∑∞

n=0 z
nf(n). As we have discussed, a sufficient condition required for

having a factorized steady state in AZRP is that uR,L(n) must have a form given by

Eq. (10), with some 0 ≤ δ ≤ 1 and 0 ≤ γ ≤ δ/v(n)|max. Then uR(n) − uL(n) =

v(n)[2δ − 1− 2γv(n− 1)] and thus

J = (2δ − 1)〈v(n)〉 − 2γ〈v(n)v(n− 1)〉
= (2δ − 1)z − 2γz2. (25)

In the last step we used v(n) = f(n−1)
f(n)

to calculate 〈v(n)〉 = 1
F (z)

∑∞
n=1 v(n)f(n)z

n = z

and similarly, 〈v(n)v(n− 1)〉 = z2.

In a simple ZRP with hop rates uR(n) = αv(n) and uL(n) = (1 − α)v(n), which

corresponds to the choice δ = α, γ = 0, Eq. (25) leads to J = (2α− 1)z. Thus, in ZRP,

the direction of current J can not be changed by changing the density ρ (or equivalently

the fugacity z); the direction is fixed only by α, i.e., J is positive (or negative) when

α > 1
2
(α < 1

2
). The change of density can only increase or decrease the magnitude of

current, it can not change the direction of the flow. But surprisingly density dependent

current reversal is possible in AZRP: for a fixed uR,L(n) the direction of the current may

get reversed when the density of the system is changed. It is clear from Eq. (24) that

such a reversal is not possible when uR(n) − uL(n)) has the same sign for all n > 0.

In the following, we illustrate with a simple example that direction of current can be

tuned by the density, when uR(n) > uL(n) for all n except n = 1 where uR(n) < uL(n).

To this end, we consider AZRP with rate functions

uR(n) =

{

δ n = 1

α n > 1
; uL(n) =

{

1− δ n = 1

1− α n > 1
, (26)



Zero range and finite range processes with asymmetric rate functions 11

which follow Eq. (10) with α = δ − γ varying in the range (0, 1) and v(n) = 1 ∀ n > 0

( and v(0) = 0). In this model isolated particles hop with a different rate than the

rest. We also consider α > 1
2
and δ < 1

2
so that isolated particles hop preferentially in

a different direction (here towards left) compared to particles from sites having two or

more particles which preferentially move towards right. In this case, the flow direction

of current can depend on the density of the system. For very large density there are

only few sites which contain isolated particles and the current is expected to be positive

(towards right) whereas for very low density most particles are isolated and one expects

a negative current. Let us see if the direction of the current can be reversed when the

density ρ of the system falls below a critical threshold ρ∗.

Since, v(n) = 1 ∀ n > 0, this dynamics results in a FSS with f(n) = 1 ∀ n > 0.

Correspondingly F (z) = 1
1−z

and ρ = zF ′(z)/F (z) = z
1−z

, which in turn implies z = ρ
1+ρ

.

Thus the current, from Eq. (25), is

J =
ρ

(1 + ρ)2
[2δ − 1 + ρ(2α− 1)] . (27)

Since α > 1
2
, and δ < 1

2
, the current J flows in the negative direction if density ρ falls

below ρ∗ = 1−2δ
2α−1

.

In fact, it is clear from (25) that density dependent current reversal is a generic

feature of AZRP. For generic AZRP with rate functions represented by (10), current

reversal is expected at fugacity z∗ = 2δ−1
2γ

. But the crucial point, one must keep in mind,

is z∗ must lie in the range 0 < z∗ < v(∞) so that z(ρ∗) = z∗ would solve for a physically

realizable density ρ∗ > 0.

It is worth mentioning that, at the point of reversal (z∗ or eqivalently ρ⋆), the

average current J is zero but the steady state of the system is far different from the

equilibrium one which also is characterized by zero current. For the model we discussed

here, one obtains equilibrium only for δ = α = 1
2
whereas the point of reversal ρ⋆ = 1−2δ

2α−1

has a finite value for any (α > 1/2, δ < 1/2) which correspond to a non-equilibrium

scenario as the detailed balance condition is violated.

3. Asymmetric misanthrope process (AMAP)

Misanthrope process (MAP) is an interacting particle system, where hop rate of particles

depends on both, the occupation of departure site and the arrival site. In contrast to

ZRP, here particles at the departure site not only interact with other particles there,

they also explicitly interact with particles at the arrival site. This model can have a

factorized steady state in 1d if the hop-rate satisfies certain condition; for a periodic

lattice with L sites i = 1, 2, . . . , L, each site i containing ni particles, if particles move to

their right neighbor with rate u(ni, ni+1), the condition for having a FSS reads as [11],

u(m,n) = u(m+ 1, n− 1)
u(1, m)u(n, 0)

u(m+ 1, 0)u(1, n− 1)
+ u(m, 0) − u(n, 0). (28)

In this section we generalize the misanthrope process to include asymmetric rate

functions uR,L(., ∗), where the subscripts R,L stands for right, left and the arguments “.”
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and “∗” correspond to occupation number of departure and arrival sites respectively.

We ask if the steady state of this asymmetric misanthrope process (AMAP) can be

factorized, and if so, what would be the corresponding condition on the hop-rates ?

3.1. The model and the criterion for FSS

Like AZRP, the present section deals with a one dimensional periodic lattice with L

sites labeled by i = 1, 2, . . . L. Each site i contains ni(> 0) number of particles as earlier

but the hop rates in AMAP depend not only on the occupancy of the departure site

but also on the arrival site. More precisely, a particle from a randomly chosen site i,

provided ni > 0, can either hop to its right neighbor (i+ 1) with a rate uR(ni, ni+1) or

it can move to its left neighbor (i− 1) with a rate uL(ni, ni−1).

To study whether AMAP can have a FSS, as before, we start with a conjecture that

the steady state has a factorized form P ({ni}) ∼
∏L

i=1 f(ni)δ(
∑L

i=1 ni − N) and look

for conditions on the rate functions that satisfy d
dt
P ({ni}) = 0 in steady state where

P ({ni}), the probability of each configuration {ni} , follows the master equation

d
dt
P ({ni}) =

∑L
i=1[uR(ni, ni+1) + uL(ni, ni−1)] . . . f(ni−1)f(ni)f(ni+1) . . .

−∑L
i=1 uR(ni−1 + 1, ni − 1) . . . f(ni−1 + 1)f(ni − 1)f(ni+1) . . .

−
∑L

i=1 uL(ni+1 + 1, ni − 1) . . . f(ni−1)f(ni − 1)f(ni+1 + 1) . . . .

Let us collect all the terms from the right hand side of the above equation that contain

both ni and ni−1 as arguments of rate functions, and write them as h(ni−1) − h(ni),

where function h(.) is yet to be determined,

uR(ni−1, ni) + uL(ni−1, ni)− uR(ni−1 + 1, ni − 1)
f(ni−1 + 1)f(ni − 1)

f(ni−1)f(ni)

−uL(ni + 1, ni−1 − 1)
f(ni−1 − 1)f(ni + 1)

f(ni−1)f(ni)
= h(ni−1)− h(ni). (29)

Clearly, existence of a function h(.) ensures that d
dt
P ({ni}) =

∑

i h(ni−1) − h(ni) = 0.

Now let us check for the boundary conditions, i.e. when either of ni, ni−1 or both

are zero. Equation (29) is automatically satisfied when ni = ni−1 = 0. When

ni = 0, ni−1 = m > 0, we have

h(m) = uR(m, 0) + uL(m, 0)− uL(1, m− 1)
f(m− 1)

f(m)
(30)

Here we have used the facts that uR,L(0, ∗) = 0 (particles can not hop from vacant

sites), f(−1) = 0 as ni > 0, f(1)/f(0) = 1 (without loss of generality) and h(0) = 0 as

the function h(.) in Eq. (29) is defined up to an arbitrary additive constant. Similarly,

ni−1 = 0, ni = m > 0 results in

h(m) = uR(1, m− 1)
f(m− 1)

f(m)
. (31)

Solving the above two equations for f(m) and h(m), we obtain

h(m) = uR(1, m− 1)w(m) ; f(m) =
f(m− 1)

w(m)
= f(0)

m
∏

k=1

1

w(k)
(32)
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where w(m) =
uR(m, 0) + uL(m, 0)

uR(1, m− 1) + uL(1, m− 1)
.

Clearly, for any given uR,L(n,m), the steady state of AMAP is same as that of a simple

ZRP with hop rate w(m) = uR(m,0)+uL(m,0)
uR(1,m−1)+uL(1,m−1)

; the function w(m), however satisfies

w(1) = 1 (from above definition). The ZRP correspondence is not surprising, as we

know that a factorized steady state (11) of any model can always be obtained from a

simple ZRP with hop rate f(m−1)
f(m)

. Finally using f(m) and h(m) in Eq. (29) we get the

following condition on hop rates that ensures a FSS in AMAP,

uR(m,n) + uL(n,m) =

[

uR(m+ 1, n− 1)

w(m+ 1)
− uR(1, n− 1)

]

w(n) + uR(m, 0)

+

[

uL(n+ 1, m− 1)

w(n+ 1)
− uL(1, m− 1)

]

w(m) + uL(n, 0). (33)

When particles move only to right, i.e. uL(., ∗) = 0 and uR(., ∗) = u(., ∗) this equation
reduces to the condition Eq. (28) required for the usual totally asymmetric misanthrope

process to have an FSS. In summary, a stochastic process on a 1d periodic lattice where

particles (without obeying hardcore exclusion) hop to right or left with different rate

functions uR,L(m,n) that depend on the occupation numbers m and n of departure and

arrival site respectively, has a factorized steady state, as in Eq. (11) if the rate functions

obey Eq. (33).

Equation (33) is more complicated than that the corresponding condition (7) for

AZRP. For AMAP with any given rate function uR,L(m,n) one can easily check if they

obey Eq. (33), but obtaining a generic form of hop rates that satisfy this condition is

rather difficult. In the following we consider consider a few special cases. A very special

class, is the equilibrium AMAP. If rate functions are related as follows

uL(m,n) = uR(n + 1, m− 1)
w(m)

w(n+ 1)
, (34)

they surely satisfy (33) required for having a FSS, at the same time they also obey

the condition of detailed balance. Equation (34) clearly describes a class of generic

equilibrium AMAP models in the sense that uR(n+ 1, m− 1) can still be chosen freely.

Another class of AMAP models that has factorized steady state is

uR(m,n) = δu(m,n) + γu(m, 0)u(1, n); uL(m,n) = γu(m, 0)u(1, n). (35)

These rates, when used in Eq. (33) result in Eq. (28), which is the condition required

for an ordinary misanthrope process with hop rate u(m,n) to have a FSS. Thus, Eq.

(35) describes a family of models, parametrized by two positive constants δ, γ and a

positive-valued function u(m,n) with u(0, n) = 0. In this case detailed balance is not

satisfied and this class of models lead to a unique non equilibrium steady state having

a factorized from as in Eq. (11) with weight function,

f(m) =

m
∏

k=1

u(k, 0)

u(1, k − 1)
. (36)

In section 3.3 we discuss a specific model of AMAP where hop rates follow Eq. (34).

In the following section, we consider a model which neither satisfies Eq. (34) nor Eq.
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(35) but still leads to a factorized steady state and exhibit density dependent current

reversal.

3.2. Current reversal in AMAP

Like AZRP, it is possible to reverse the direction of the average current J in AMAP,

only by tuning the number density ρ. Let us consider the following rate functions,

uR(m,n) =











p n = 0

p1 n > 0, m = 1

p2 n > 0, m > 1

; uL(m,n) =











q n = 0

q1 n > 0, m = 1

q2 n > 0, m > 1

(37)

It is easy to check that the rates (37) satisfy the constraint (33) only if

q2 = p2 − q + q1 +
((p+ q)q1)

(p1 + q1)
− (p(p1 + q1))

(p+ q)
(38)

With this choice of q2 we have a factorized steady state given by Eq. (11) where

f(n) =

{

1 n = 0, 1

αn−1 n > 2
; α =

p1 + q1
p+ q

. (39)

It is interesting to note that the steady state weight does not depend on p2; any value

of p2 generates the same steady state as long as q2 defined in Eq. (38) is positive. One

must also note that though the rates in this model obey the generic constraint (33),

they do not satisfy detailed balance condition and are not in the form of Eq. (34), also

do not fall in the special class of rates given by (35).

0 1 2 3 4
ρ

-0.04

-0.02

0

0.02

0.04

J

ρ*=2.23

Figure 2. Current reversal in AMAP. Current J as a function of density ρ, measured

from Monte Carlo simulation (symbols) of AMAP dynamics (37) with (p = 1

2
, q =

1

4
, p1 = 1

2
, q1 = 3

4
, p2 = 53/60, q2 = 1) on a system of size L, is compared with exact

results (lines) given by Eq. (42). As expected, current reversal occurs at density

ρ∗ = 2.32.

In the grand canonical ensemble, the partition function is ZL = F (z)L with

F (z) =
∑∞

n=0 f(n)z
n = 1+(1−α)z

1−αz
, where the fugacity z lies in the range (0, 1/α), as
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the radius of convergence of F (z) is zc = 1/α. The density of the system is now

ρ(z) = z
F ′(z)

F (z)
=

z

(1− αz)(1 + (1− α)z)
(40)

or z =
1 + ρ(2α− 1)−

√

(1− ρ)2 + 4αρ

2ρα(α− 1)
. (41)

The current in this system can be written as

J =
1

F (z)2

∞
∑

m=1

∞
∑

n=0

[uR(m,n)− uL(m,n)] zm+nf(m)f(n)

= [(p− q) + (p1 − q1)z + (p2 − q2)(F (z)− z − 1)]
F (z)− 1

F (z)2
(42)

If J needs to reverse its direction at some density ρ∗, the corresponding fugacity z = z⋆

must be such that J |z=z∗ = 0; using Eq. (42) this leads to

z∗ =
1

α− 1

[

1−
√

p(p1 − p) + q(q1 − q)

p1q1 − pq

]

(43)

The above value of z∗ will correspond to a feasible density only if 0 < z∗ < 1/α; and

then, one can obtain the corresponding density ρ∗ = ρ(z∗) using Eq. (40).

Now let us consider some specific cases, say α = 5
3
. This may be obtained from, say,

(p = 1
2
, q = 1

4
, p1 =

1
2
, q1 =

3
4
) with q2 = p2+

7
60

(from Eq. (38)). In this case zc =
1
α
= 3

5

and the fugacity at the reversal point z∗ = 3
4
(2 −

√
2) < zc. So, for this choice of

rates, current changes its direction when density of the system crosses a threshold value

ρ∗ = ρ(z∗) = 3
7
(4+

√
2) ≈ 2.32. In Fig. 2, we have shown a plot of the average current as

a function of density; for very low density current flows towards right and increases as ρ

is increased. Beyond a certain density where J reaches its maximum value, it decreases

with ρ and finally starts flowing towards left as soon as the density becomes larger than

ρ∗ ≈ 2.32.

Another interesting case is α = 1 = p + q. In this case when q2 = p2 + 1 − 2p1,

we have a factorized steady state with a weight function f(n) = 1 ∀ n > 0. Thus,

F (z) = 1
1−z

, and z = ρ
1+ρ

. Now current in the system, from Eq. (42),

J =
ρ

(1 + ρ)2
[2p− 1 + (2p1 − 1)ρ] (44)

which changes its direction at ρ∗ = − 2p−1
2p1−1

. Thus reversal is possible at density ρ = ρ∗,

when p > 1
2
, p1 <

1
2
or when p < 1

2
, p1 >

1
2
. The noticeable point here is that the current

in (44) is exactly similar to that of the AZRP current in (27) with p → δ and p1 → α, so

is the point of reversal ρ∗; but the the dynamics or AMAP is very different from that of

AZRP. The similarity originates from the fact that the stationary state of both models

are factorized with identical weight function f(n) = 1 ∀ n ≥ 0.

3.3. Condensation in AMAP

In this section, we turn our attention to AMAP models which give rise to condensation

transition. A typical example of such asymmetric rate functions in AMAP that lead to
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condensation is the following, where we consider rates uR,L(m,n) that fall in the special

class of AMAP hop rates represented by Eq. (34) with w(m) = 1
1+b

(1+ b
m
) (for m ≥ 1),

uL(m,n) = uR(n + 1, m− 1)
1 + b

m

1 + b
n+1

. (45)

This model would result in a FSS given by Eq. (11) along with the single site steady

state weight

f(n) =
n!(b+ 1)n

(b+ 1)n
, (46)

where (c)n = c(c+ 1) . . . (c + n− 1)is the Pochhammer symbol. Now, we can calculate

the grand canonical partition function Z = F (z)L where F (z) =
∑∞

n=0
n!(1+b)n

(1+b)n
zn. Thus

z varies in the range (0, zc) where zc = (1+b)−1 is the radius of convergence of F (z). The

density of the system is now ρ(z) = z F ′(z)
F (z)

; the critical density above which condensation

takes place is

ρc = ρ(zc) =

{

∞ b ≤ 2
1

b−2
b > 2.

(47)

Thus, for AMAP with dynamics (45), the system under consideration can

macroscopically distribute any number of particles if b 6 2. However, for b > 2,

the maximum allowed density is ρc = 1
b−2

and if ρ is larger than ρc, a macroscopic

number, (ρ− ρc)L, of particles gather on some particular site resulting in the formation

of a single site condensate. So, like current reversal, condensation transition is also a

common feature of both AZRP and AMAP.

4. Asymmetric finite range process process (AFRP)

Factorized steady state is a very special type of stationary measure but it is not a

generic feature of the systems out of equilibrium. Stochastic processes like ZRP, AZRP,

MAP, AMAP constitute a specific class of non-equilibrium processes that enjoy the

simplicity of FSS. But one can also have pair factorized steady state (PFSS) [12] and

cluster factorized steady state (CFSS) [10] for generic models where particle interaction

extends beyond departure and arrival sites. Such finite range processes (FRP) introduce

spatial correlations among occupation at different sites leading to extended condensates.

Shape and size of the condensates spreading over a finite region in the space has been

extensively studied in these systems [13]. In this section, we would like to focus on

asymmetric FRP in 1d where the rate functions depend on occupation of K-nearest

neighbors both to right and left of the departure site but the functional form of the hop

rates now depend on the direction (left or right) of hopping. We would like to find out

specific and sufficient conditions that must be obeyed by an asymmetric finite range

process (AFRP) to achieve a cluster factorized steady state (CFSS).
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4.1. The Model and criterion for CFSS

Consider a one dimensional periodic lattice with L sites labeled by i = 1, 2, . . . , L. Each

site i contains an integer number of particles ni(> 0). A particle from a randomly

chosen site i (with ni > 0) can hop either to its nearest right neighbor (i+ 1) with rate

uR(ni−K , ni−K+1, . . . , ni, ni+1 . . . , ni+K−1, ni+K) or it can hop to left nearest neighbor

(i− 1) at a rate uL(ni−K . . . , ni−1, ni . . . ni+K). So both the right and left rate functions

depend on (2K + 1) terms, namely the departure site and its K nearest neighbors

in both right and left directions. The (2K + 1) arguments of uR,L(. . .) are spatially

ordered, i.e. 1st to (2K+1)th arguments correspond to occupancy of site i−K to i+K

respectively. Thus, (K + 1)th argument corresponds to the occupancy of the departure

site i, and (K + 2)th and Kth arguments are the occupancy of the arrival site for right

and left moves respectively. We assume that a cluster factorized steady state is possible

for AFRP, as given below, and derive consistently the constraint required on the rate

functions to obtain such a state. A cluster factorized steady state is represented by

P ({ni}) ∼
L
∏

i=1

g(ni, ni+1, . . . , ni+K)δ(

L
∑

i=1

ni −N), (48)

where we call g(.) the cluster weight function that depends on (K + 1) variables. In

the steady state, with suitable rearrangement of terms, the master equation of AFRP

can be written as a sum of L terms, each one being a unique function F (.) of (2K + 3)

arguments (ni−K−1, . . . , ni−1, ni, ni+1, . . . , ni+K+1). So, in the steady state,

d

dt
P ({ni}) =

L
∑

i=1

F (ni−K−1, . . . , ni−1, ni, ni+1, . . . , ni+K+1) = 0. (49)

A sufficient condition that satisfy the above equation (49) is when each of the L terms

in the right hand side individually vanish, i.e. F (ni−K−1, . . . ni . . . , ni+K+1) = 0 for

every i (i = 1, 2, . . . , L). Clearly this condition is too restrictive and it is not a necessary

condition for having CFSS. We restrict ourselves to this simple case which effectively

leads to,

uR(ni−K , . . . , ni, ni+1 . . . , ni+K) + uL(ni−K , . . . , ni−1, ni . . . , ni+K)

= uR(ni−K−1 . . . , ni−1 + 1, ni − 1 . . . ni+K−1)
i

∏

j=i−K−1

g(ñj, ñj+1, . . . , ñj+K)

g(nj, nj+1, . . . , nj+K)

+ uL(ni−K+1 . . . , ni − 1, ni+1 + 1 . . . ni+K+1)

i+1
∏

j=i−K

g(n̂j, n̂j+1, . . . , n̂j+K)

g(nj, nj+1, . . . , nj+K)

Here ñj = nj + δj,i−1 − δj,i and n̂j = nj − δj,i + δj,i+1. This constraint (50) on the rate

functions can be satisfied by a family of hop rates, parametrized by δ > 0 and γ > 0,

uR(ni−K , . . . , ni, ni+1 . . . , ni+K) = δ
g(ni−K, ni−K+1, . . . , ni − 1)

g(ni−K , ni−K+1, . . . , ni)

×
i

∏

j=i−K+1

g(n̂j, n̂j+1, . . . , n̂j+K) + γ

i
∏

j=i−K

g(n̄j, n̄j+1, . . . , n̄j+K)

g(nj, nj+1, . . . , nj+K)
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uL(ni−K , . . . , ni−1, ni . . . , ni+K) = δ
i−1
∏

j=i−K

g(ñj, ñj+1, . . . , ñj+K)
g(ni − 1, ni+1 . . . ni+K)

g(ni, ni+1 . . . ni+K)

where the newly introduced n̄j = nj − δj,i and δ, γ are constant parameters.

Let us consider the simplest case of AFRP, where particle interaction extends over

a range K = 1. In this case, we expect a pair factorized steady state P ({ni}) ∼
∏

i g(ni, ni+1)δ(
∑L

i=1 ni −N) when hop rates are,

uR(k,m, n) =
g(k,m− 1)

g(k,m)

[

δg(m− 1, n+ 1) + γ
g(m− 1, n)

g(m,n)

]

uL(k,m, n) = δg(k + 1, m− 1)
g(m− 1, n)

g(m,n)
. (50)

Note that for γ = 0, the hop rates satisfy detailed balance condition, and for γ = 1, δ = 0,

we recover the usual condition required for pair factorized state discussed in [12].

Also we observe that, current reversal is not possible for these particular set of rate

functions in Eq. (50) which result in pair factorized steady states. This is because, the

current in these models turns out to be J = γz, which is just proportional to the fugacity

z and since density ρ(z) is a monotonic function of z, it is not possible to reverse the

direction of the current by changing z(≥ 0) or equivalently the density ρ(z). In fact,

for K > 1 also the rate functions in Eq. (50) give the same average current J = γz,

meaning that there is no current reversal by tuning of the fugacity or density for these

class of models. However, the possibility of current reversal with a CFSS produced by

asymmetric right-left rate functions in one dimension is still not ruled out, because,

to satisfy the master equation in the steady state, one may find a balance condition

different from the one used here; then J may not take such a simple form.

Another common feature of AZRP and AMAP is the formation of condensates

which, unlike current reversal, can also be observed in case of AFRP within the

framework of rate functions given by Eq. (50). We illustrate this briefly with a simple

example. For K = 1, let us choose g(m,n) = m+n+1
(m+1)b

, where b is a tunable parameter

indicating the onset of condensation. The corresponding right-left hop rates are

uR(k,m, n) =
k +m

k +m+ 1

[

δ
m+ n+ 1

mb
+ γ(1 +

1

m
)b

m+ n

m+ n + 1

]

uL(k,m, n) = δ
k +m+ 1

(k + 2)b
(1 +

1

m
)b

m+ n

m+ n + 1
.

(51)

Using the transfer matrix formalism developed in [10], one can calculate the partition

function QL(z) in the grand canonical ensemble, where z is the fugacity associated with

a particle in GCE and subsequently one can also obtain the density ρ(z). Now if we

proceed to calculate the critical density ρc = lim
z→1

ρ(z), we find that for b ≤ 4, ρc diverges

indicating that the system remains in the fluid phase for b ≤ 4 at any density. Whereas,

when b > 4, we have a finite value of the critical density given by

ρc =
ξ1(b− 1)− 2ξ2(b) + ξ3(b)

2ξ2(b) + 2ζ(b− 1)
√

ξ2(b)
+

ζ(b− 2)− ζ(b− 1)
√

ξ2(b) + ζ(b− 1)
. (52)
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where ξk(b) = ζ(b)ζ(b − k) and ζ(b) are Riemann zeta functions. So, for b > 4, if the

density of the system is greater than the critical density i.e. ρ > ρc, one can observe

a macroscopic number of particles (ρ− ρc)L gathering at a single but arbitrary lattice

site forming a single site condensate.

One can also observe spatially extended condensates in AFRP like the one discussed

in [12], only this time with asymmetric rate functions given by

uR(k,m, n) =















eUδm,1 [e−J(n−m+3) + e−2Jθ(m− n) + e2J(1− θ(m− n))] m ≤ k, n+ 2

eUδm,1 [e−J(m−n−3) + e2J ] m > k, n+ 2

eUδm,1 [e−J(n−m+1) + θ(m− n) + e2J (1− θ(m− n))] m > k,m ≤ n+ 2

eUδm,1 [e−J(m−n−1) + 1] m ≤ k,m > n+ 2

and

uL(k,m, n) =



















e−J(k−m+3)+Uδm,1 m ≤ k + 2, n

e−J(m−k−3)+Uδm,1 m > k + 2, n

e−J(k−m+1)+Uδm,1 m ≤ k + 2, m > n

e−J(m−k−1)+Uδm,1 m > k + 2, m ≤ n.

These rate functions lead to a PFSS with g(m,n) = e−J |m−n|+U
2
(δm,0+δn,0). Here J, U are

the parameters that can be tuned to study the possibility of a condensation transition.

As discussed in [12], when J > Jc, if the density ρ of the system is larger than the

critical density ρc = 1
e2(J−Jc)−1

(where Jc = U − ln(eU − 1)), a macroscopic number of

particles condensate over a spatial extent O(L1/2) where L is the length of the lattice.

In brief, we have discussed the possibility of formation of both single site and

extended condensates in case of AFRP with K = 1.

5. Summary

We have introduced a class of one dimensional stochastic models of interacting particles,

without hardcore exclusion, where the particles are transferred asymmetrically to their

neighbors: both right and left hop rates depend on the occupation of the departure site

and their neighbors, but their functional forms are different. In usual driven diffusive

systems the asymmetric rate appears from spatial inhomogeneity created by an external

potential, which does not depend on the microscopic occupation. However it is not

difficult to imagine, in fact actually has been shown recently, through simulations [29]

and in biological systems [30, 32], that geometric irregularity can result in asymmetric

diffusion of particles. It is interesting to ask what kind of rate functions are realistic for a

particular geometry and the answer to this question is not understood well. In this article

we focus on generic asymmetric rate functions and derive sufficient conditions on them

for obtaining exact steady state measure for various asymmetric stochastic processes

that include asymmetric zero-range process (AZRP), asymmetric misanthrope process

(AMAP) and for the most generic case, asymmetric finite range process (AFRP).

Unlike ZRP, which has a factorized steady state (FSS) for any hop rate u(n),

AZRP with rate functions uR,L(n) lead to FSS when the rate-functions satisfy a specific
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condition Eq. (7). On the other hand, a desired FSS as in Eq. (11) can always be

obtained from a two parameter family of AZRP having left and right hop rates described

by Eq. (10). It is well known [11, 10] that misanthrope process can not have a cluster-

factorized steady state and its the steady state has a factorized form only for certain hop

rates u(m,n) which satisfy Eq. (28). AMAP shares the same feature but with a different

constraint on the rate functions; it leads to a FSS only when the hop rates uR,L(m,n)

follow Eq. (33). Both AZRP and AMAP show condensation transition, similar to other

models having a FSS. Interestingly in case of AZRP, the condensation transition can be

induced or broken by tuning the relative choice of uR,L(n) i.e. by changing the factor

that decides how often a right move occurs with respect to a left move. The important

role of asymmetric dynamics, both in AZRP and AMAP, appears in the particle current.

Unlike ZRP or MAP where the direction of current is fixed by the external bias, here

the direction can get reversed by changing particle density. We also extend this idea

of asymmetry between right-left hop rates to obtain a cluster-factorized steady state in

AFRP. In particular, we describe specific examples where the rate functions depend on

the occupation of departure site and its two nearest neighbors (right and left), but the

functional form for the right hop is different from that of the left; in this case we have

obtained a sufficient condition required for a pair factorized state. Also, these examples

include the formation of both localized and extended condensates. The general condition

required for AFRP to have CFSS is much more complicated and we could not obtain

the most generic class of rates which satisfy this constraint. However, in this article, we

discuss a specific family of models parametrized by two constants although they do not

show density dependent current reversal.

Some interesting open problems are AZRP, AMAP and AFRP with open

boundaries or quenched disorder which may give rise to interesting boundary driven

phase transitions. In this context, we should mention that site dependent current

fluctuations above some critical current and that being indicator of condensation

transition for open boundary ZRP with right-left rates related through a multiplicative

constant has been studied in detail in [33]. One can also study the possibility of phase

separation in exclusion models corresponding to the AZRP, AFRP dynamics studied

here.
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