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We present a Kadanoff-Baym formalism to study time-dependent phenomena for systems of interacting elec-
trons and phonons in the framework of many-body perturbation theory. The formalism takes correctly into
account effects of the initial preparation of an equilibrium state, and allows for an explicit time-dependence
of both the electronic and phononic degrees of freedom. The method is applied to investigate the charge
neutral and non-neutral excitation spectra of a homogeneous, two-site, two-electron Holstein model. This is
an extension of a previous study of the ground state properties in the Hartree (H), partially self-consistent
Born (Gd) and fully self-consistent Born (GD) approximations published in Ref. 1. We show that choosing a
homogeneous ground state solution leads to unstable dynamics for a sufficiently strong interaction, and that
allowing a symmetry-broken state prevents this. The instability is caused by the bifurcation of the ground
state and understood physically to be connected with the bipolaronic crossover of the exact system. This
mean-field instability persists in the partially self-consistent Born approximation but is not found for the fully
self-consistent Born approximation. By understanding the stability properties, we are able to study the linear
response regime by calculating the density-density response function by time-propagation. This functions
amounts to a solution of the Bethe-Salpeter equation with a sophisticated kernel. The results indicate that
none of the approximations is able to describe the respone function during or beyond the bipolaronic crossover
for the parameters investigated. In overall, we provide an extensive discussion on when the approximations
are valid, and how they fail to describe the studied exact properties of the chosen model system.

PACS numbers: 31.15.xm,31.15.xp,71.10.Fd,71.38-k,71.39.Mx,71.15.Qe

I. INTRODUCTION

Many-body perturbation theory is one of the most
common methodologies used to study quantum trans-
port problems in which interactions among charge car-
riers or between them and other constituents play a sig-
nificant role. The method is based on diagrammatic per-
turbation theory for the non-equilibrium Green’s func-
tions together with a set of standard approximations to
describe the many-body effects2. Although these approx-
imations have been widely used, and thus their proper-
ties explored, in the case of steady-state transport3–7,
much less is known on their performance in the explic-
itly time-dependent case8–13. This is particularly true
for systems with moderate to strong electron-phonon in-
teractions in which interesting phenomena like bistabil-
ity and hysteresis have been observed14. As such phe-
nomena are typically driven by many-body interactions,
it is natural to ask whether or not the approximate
method can describe the relevant physics even qualita-
tively. This is the case, for example, with the aforemen-
tioned bistability whose existence has been subject to
doubt on the quality of the method itself15–20. The re-

cent efforts to realize more sophisticated, but computa-
tionally more demanding, approximations have enabled
addressing these questions also in the framework of time-
dependent many-body perturbation theory21–23. It is im-
portant to study these approximations on a wide scope
to understand when they are predictive and the results
can be trusted. Time-dependent many-body perturba-
tion theory has also been recently applied to study vi-
brational effects in ab-initio charge carrier dynamics in
semiconductors e.g. relaxation processes after a laser ex-
citation24–26. This has become possible as further sim-
plifications, in particular the generalized Kadanoff-Baym
Ansatz27 (GKBA), have been developed to keep the ap-
proach computationally tractable along with the grow-
ing system sizes. One could also in this manner study
time-dependent phenomena in realistic molecular sys-
tems continuing along the lines of the early studies of
vibrational effects in photoelectron spectra of molecules28

In this context, in order to understand the reasons behind
the successes or failures of the methods, it is neccessary
to understand the many-body approximations underly-
ing the additional simplifications such as GKBA. There
are also topical fields in optoelectronics, such as cavity
quantum electrodynamics, and optomechanics in which
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one deals with formally similar systems as in the quan-
tum transport case. Time-dependent many-body per-
turbation theory has been used in these fields e.g. to de-
rive time-dependent density functionals with preliminary
results giving an indication of their quality29,30. There
is however even less known about the properties of the
approximations than in the more established quantum
transport setup.

In this work, we present an extension of a previ-
ously introduced numerical method31,32 to study time-
dependent, inhomogeneous systems of interacting elec-
trons and phonons. This is also an extension of the
equilibrium formalism which we introduced in our ear-
lier work in Ref. 1. Our approach is a variant of
time-dependent many-body perturbation theory based
on the Kadanoff-Baym equations (KBE)33. Here we in-
troduce the relevant equations, time-dependent many-
body approximations, and discuss some of their char-
acteristic features e.g. the mean-field, Hartree (H) ap-
proximation is shown to lead to the semi-classical Ehren-
fest equations. The time-dependent partially34 (Gd) and
fully22 (GD) self-consistent Born approximations are in-
troduced to study correlation effects beyond the mean-
field level. These many-body approximations are in par-
ticular suited to study time-dependent quantum trans-
port with electron-phonon interactions as they are par-
ticle number conserving in the sense of Baym35,36. In
the present work, the method is instead applied to a fi-
nite system since this allows us to assess its performance
by comparing the approximate results to an exact solu-
tion. Although the method can handle complex time-
dependent perturbations, we restrict ourselves here to
linear response functions obtained by time-propagating
the Kadanoff-Baym equations. The density response
function δn/δv obtained in this manner is equivalent to
a solution of the Bethe-Salpeter equation (BSE) with an
integral kernel which is a functional derivative δΣ/δG
of the self-energy Σ with respect to the electron prop-
agator G31,37–39.The kernel therefore consists of dressed
propagators and is fully frequency-dependent in the Born
approximations. This level of approximation has, to our
best knowledge, not yet been reached in the standard
frequency-domain approach even for the much studied
purely electronic systems40–43. Moreover, as the phonon
propagator is determined by the electronic response func-
tion, by comparing to the equilibrium phonon propaga-
tor we are able to comment on whether or not this ad-
ditional level of sophistication amounts to improved re-
sults. Lastly, we would like to note that although this pa-
per is geared towards electrons and phonons, the method
is in fact applicable to a variety of systems of inter-
acting fermions and bosons e.g. electron-photon models
(Rabi44,45) and electron-plasmon models (Lundqvist46).

As the application, we study a homogeneous, two-site,
two-electron Holstein model which is a standard model
describing interacting electrons and phonons47. This
continues along the lines of our prior work in Ref. 1
in which we focused on ground-state properties and

studying the localizing effect of the electron-phonon in-
teraction by comparing the many-body approximations
against exact benchmark results. As a result, we found
that the self-energy approximations gave rise to spon-
taneous symmetry-breaking characterizable by an asym-
metric electron density and nuclear displacement. The
symmetry-broken solutions as well as solutions obtained
by enforcing symmetry were analyzed with the help of
total energies, energy components, and natural occu-
pation numbers. It was concluded that the symmetry-
breaking can be seen physically to mimic the bipolaronic
crossover of the underlying system in which two nearly
free electrons form a bound pair with an accompanying
nuclear displacement. Moreover, out of the symmetric so-
lutions, only the fully self-consistent Born approximation
showed evidence of partially describing this crossover.
Here we instead investigate the equilibrium electron and
phonon propagators, and linear response functions of the
same system using time-dependent many-body pertur-
bation theory. The equilibrium propagators are studied
in frequency-domain which gives a more detailed view to
the properties of the approximations, and allows us to re-
evaluate the physical picture obtained from the various
energies. The linear response calculations on the other
hand allow us to understand better the nature of the
symmetric and asymmetric solutions found in our earlier
work. In particular, we show that they are equivalent
to the equilibrium solutions of the semi-classical equa-
tions of the Dicke model48 in which the appearance of the
asymmetric solution represents the super-radiant phase
transition in the thermodynamic limit49–51. This transi-
tion moreover appears as a bifurcation leading to insta-
bility of the symmetric solution which in a finite system
is not in agreement with the exact solution. One of the
open questions addressed in this work concerns the stabil-
ity of the symmetric and asymmetric solutions when go-
ing beyond the mean-field approximation. In particular,
we answer to the question whether or not the symmetric
solution retains its stability in the Born approximations.
Once stable solutions have been identified, we turn our
attention to the linear response functions which are used
to assess how the approximations describe the system
reacting to a weak perturbation. There is a lot of sys-
tematic work on static i.e. zero-frequency susceptibilities
of either finite clusters52, or extended finite53 and infi-
nite54,55 dimensional systems with a focus on e.g charge-
density wave phase transition temperatures. Here we
thus extend these studies beyond the static case by con-
sidering fully frequency-dependent response functions of
a finite system.

The paper is organized as follows. In Sec. II, we intro-
duce our method: time-dependent many-body perturba-
tion for electrons interacting with phonons. The method
is applied in this work to the model system introduced
in Sec. III. The results containing both the equilibrium
electron addition and removal, as well as neutral exci-
tation spectra are presented, analyzed and discussed in
Sec. IV. The conclusions and an outlook are given in
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Sec. V, and some more technical details are presented in
App. A and B.

II. THEORY

A. Hamiltonian

In the present work, we introduce the central concepts
of time-dependent many-body perturbation theory for
systems of electrons interacting with phonons. Although
we do not discuss here electron-electron interactions, they
could be included without additional conceptual difficul-
ties. The time-dependent Hamiltonian operator is then
given by

Ĥ(z) =
∑

p

ωp(z)â
†
pâp +

∑

p

(
fp(z)â

†
p + f∗p (z)âp

)

+
∑

ij

hij(z)ĉ
†
i ĉj

+
∑

ij

∑

p

(
mp
jk(z)â†p +mp∗

kj(z)âp
)
ĉ†j ĉk ,

where the properties of the system are encoded in the
phonon frequencies ωp, generalized forces fp, elements
of the electron one-body Hamiltonian hij , and electron-
phonon interaction elements mp

ij .
These quantities all depend on a time-argument ly-

ing on the extended Keldysh contour2 shown in Fig. 1.
The Hamiltonian operator is however the same on the
forward (−) and backward (+) branches, and indepen-
dent of the contour time on the vertical equilibrium (M)
track as in our prior work in Ref. 1. An explicit time-
dependence allows one to realize a variety of physical
scenarios from electrons and nuclei driven by electro-
magnetic fields to more abstract simulations based on
an interaction quench. In the present work, we however
focus on another type of time-dependence arising from
the choice of the initial state.

The electrons and phonons are described in second

quantization with annihilation ĉi, âp and creation ĉ†i , â
†
p

operators which obey canonical anti-commutation and -
commutation relations, respectively. In order to facilitate
a compact presentation of the many-body perturbation
theory, we further introduce the self-adjoint phonon op-
erators

φ̂1,p ≡
(
â†p + âp

)
/
√

2 , φ̂2,p ≡ ı
(
â†p − âp

)
/
√

2 ,

to which we associate a collective index P ≡ {ςp ∈
{1, 2}, p} so that we can write their commutation rela-
tion compactly as

[φ̂P , φ̂Q] = αPQ ,

where α1p,1q = α2p,2q = 0 and α1p,2q = −α2q,1p = ıδpq.
These operators can be physically understood as com-

ponents of the displacement (φ̂1p) and momentum (φ̂2p)

FIG. 1. The extended Keldysh contour which consists of
the vertical, imaginary-time track responsible for the initial
equilibrium preparation, and of the horizontal forward (−)
and backward (+) real-time tracks related to the real-time
time-evolution. (color online)

operators. They allow us to rewrite the Hamiltonian op-
erator as

Ĥ(z) =
∑

PQ

ΩPQ(z)φ̂P φ̂Q +
∑

P

FP (z)φ̂P

+
∑

ij

hij(z)ĉ
†
i ĉj

+
∑

ij

∑

P

MP
ij (z)φ̂P ĉ

†
i ĉj , (1)

where the phonon frequencies, generalized forces, and
electron-phonon interaction are incorporated into

Fpςp(z) ≡ δςp,1
(
fp(z) + f∗p (z)

)
/
√

2

− ıδςp,2
(
fp(z)− f∗p (z)

)
/
√

2 ,

Ωpςp,qςq (z) ≡ ωp(z)(δpqδςpςq + αpςp,qςq )/2 ,

M
pςp
jk (z) ≡ δςp,1

(
mp
jk(z) +mp∗

kj(z)
)
/
√

2

− ıδςp,2
(
mp
jk(z)−mp∗

kj(z)
)
/
√

2 ,

which are to be understood in this work to represent el-
ements of a vector, matrix, and a vector of matrices, re-
spectively. The one-body electron Hamiltonian elements
are also to be understood as elements of a matrix. In
the following an overhead arrow denotes a vector (~F ),
boldfaced symbols matrices (Ω,h), and a combination of

these two a vector of matrices ( ~M), while tr denotes a
matrix trace.

B. Many-Body Perturbation Theory

The central quantities of many-body perturbation the-
ory of interacting electrons and phonons are the phonon
field expectation value, and the phonon and electron
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propagators defined as

φP (z) ≡ 1

Z
Tr

[
T
{
e−ı

∫
C
dz̄ Ĥ(z̄)φ̂P (z)

}]
,

DPQ(z; z′) ≡ 1

ıZ
Tr

[
T
{
e−ı

∫
C
dz̄ H(z̄)∆φ̂P (z)∆φ̂Q(z′)

}]
,

(2)

Gij(z; z
′) ≡ 1

ıZ
Tr

[
T
{
e−ı

∫
C
dz̄ H(z̄)ĉi(z)ĉ

†
j(z
′)
}]

, (3)

where ∆φ̂P ≡ φ̂P − φP is a fluctuation operator, Z ≡
Tr[e−ı

∫
dz Ĥ(z)] the partition function, Tr the trace over

a complete set of quantum states, and T is the time-
ordering operator on a Keldysh time-contour C of Fig. 1
acting on operators given in the Schrödinger picture but
having time-arguments z, z′ for book-keeping reasons2.
These objects have a closed form perturbation expansion
obtained using Wick’s theorem and re-summing all terms
into two electron and phonon propagator line irreducible
contributions. This leads to the equations

~φ(z) =

∫

C

dz̄ d(z; z̄)
(
~F (z̄)− ıtr

(
~M(z̄)G(z̄; z̄+)

)
,

(4a)

D(z; z′) = d(z; z′) +

∫

C

dz̄dz̄′ d(z; z̄)Π(z̄; z̄′)D(z̄′; z′) ,

(4b)

G(z; z′) = g(z; z′) +

∫

C

dz̄dz̄′ g(z; z̄)Σ(z̄; z̄′)G(z̄′; z′) ,

(4c)

where g and d denote the non-interacting electron and
phonon propagators defined by Eqs. (3) and (2) in the
absence of the electron-phonon interaction. The inte-
gral kernels Σ ≡ Σ[G,D] and Π ≡ Π[G,D] are non-local
one-body potentials known as electron and phonon self-
energies. These self-energies contain information on in-
teractions of the system, as well as the external driving
induced by the generalized force F . The non-interacting
electron and phonon propagators are given respectively
by

g(z; z′) = −ıU(z, t0)
(
θ(z, z′)− f+

(
βhM

))
U(t0, z

′) ,

d(z; z′) = −ıαV (z, t0)
(
θ(z, z′) + f−

(
βΩ̃

M
α
))
V (t0, z

′) ,

where θ ≡ θ1 with θ being the Heaviside function and
1 the identity matrix, β is the inverse temperature, f±
denote the Fermi-Dirac (+) and Bose-Einstein (−) dis-

tribution functions, Ω̃
M
≡ Ω̃(t0 − ıτ) independent of τ

is the Matsubara component of

Ω̃(z) ≡ Ω(z) + ΩT (z) .

Finally, we introduced the time-evolution matrices as so-
lutions to

ı∂zU(z, z′) = h(z)U(z, z′) ,

−ı∂z′U(z, z′) = U(z, z′)h(z′) ,

ı∂zV (z, z′) = Ω̃(z)αV (z, z′) ,

−ı∂z′V (z, z′) = V (z, z′)Ω̃(z)α ,

with the initial conditions U(t0, t0) = V (t0, t0) = 1.
In our earlier work in Ref. 1, we introduced our imple-

mentation of the equilibrium Matsubara formalism ob-
tained by choosing time-arguments z = t0 − ıτ, z′ =
t0 − ıτ ′ on the imaginary track. Here we focus on an
extension of this formalism to time-dependent cases in
which it is more natural to differentiate Eqs. (4) with re-
spect to the first contour time in order to arrive at the
equations of motion

(
ıα∂z − Ω̃(z)

)
~φ(z)

= ~F (z)− ıtr
(
~M(z)G(z; z+)

)
, (5)

(
ıα∂z − Ω̃(z)

)
D(z; z′)

= δ(z, z′) +

∫

C

dz Π(z; z̄)D(z̄; z′) , (6)

(
ı∂z − h(z)

)
G(z; z′)

= δ(z, z′) +

∫

C

dz Σ(z; z̄)G(z̄; z′) , (7)

where ı = ı1. These equations together with their con-
jugate equations obtained by differentiating with respect
to the second time-argument of the propagators form a
closed set of the equations which can be solved once an
approximation for the many-body part of the self-energy
has been fixed.

C. Self-Energies

The self-energy Σ, as noted above, contains both a
contribution arising from the generalized force FP (z), as
well as a part induced by the electron-phonon interac-
tions. The phonon propagator, being defined in terms of
fluctuation operators, is not directly influenced by this
force, instead it appears in the electron self-energy and
can be handled by writing the self-energy as

Σij(z; z
′) = δ(z, z′)vn,ij(z) + ΣMB,ij(z; z

′)

where we introduced the potential

vn,ij(z) ≡
∑

PQ

MP
ij (z)

∫

C

dz̄ dPQ(z, z̄)FQ(z̄)

which represents the classical potential induced by nu-
clei experiencing a generalized force FQ. The many-body
self-energy, denoted by MB, is then subject to approxi-
mation. The approximations used here, and introduced
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earlier in Ref. 1, are summarized diagrammatically in
Fig. 2. The approximate electron self-energies consists
of the Hartree (H) and Fock (F) diagrams. The Hartree
diagram can be written as

ΣH[G]ij(z; z
′) = δ(z, z′)vH[G]ij(z) ,

where the time-local Hartree potential is given by

vH[G]ij(z) = −ı
∑

kl
PQ

MP
ij (z)

×
∫

C

dz̄ dPQ(z, z̄)MQ
kl(z̄)Glk(z̄; z̄+) . (8)

or alternatively by

vH[G]ij(z) =
∑

P

MP
ij (z)φP (z)− vn,ij(z) , (9)

which follows from the equation of motion for the non-
interacting phonon propagator. Electron self-energy
terms beyond Hartree contribute to the exchange-
correlation, many-body self-energy

Σxc,ij(z; z
′) ≡ ΣMB,ij(z; z

′)− ΣH,ij(z; z
′) ,

whose lowest order diagram is the Fock diagram

ΣF[G,D]ij(z; z
′)

= ı
∑

kl,PQ

MP
ik(z)MQ

lj (z′)DPQ(z; z′)Gkl(z; z
′) ,

which is a time-nonlocal memory term describing single-
phonon absorption/emission processes. The only phonon
self-energy diagram used in this work is the bubble dia-
gram

ΠB[G]PQ(z; z′)

= −ı
∑

ij,kl

MP
ij (z)MQ

kl(z
′)Gli(z

′; z)Gjk(z; z′) ,

which describes simple phonon induced electron-hole
excitation processes.

The many-body self-energies and their abbreviations
used throughout the text are summarized in the list be-
low.

H: The Hartree approximation consists of approximating
the electron self-energy with the Hartree diagram

ΣH[G]ij(z; z
′) = δ(z, z′)vH[G]ij(z) ,

and neglecting the phonon self-energy. This is a
mean-field approximation in which electrons feel
only the classical potential due to nuclei. The re-
sulting Hartree equations

ı
d

dz
G(z; z+) =

[
h(z) + vn(z)

+ vH(z),G(z; z+)
]
, (10a)

ıα∂z~φ(z) = Ω̃(z)~φ(z) + ~F (z)

− ıtr
(
~MG(z; z+)

)
, (10b)

FIG. 2. The Hartree (H), partially self-consistent (Gd), and
fully self-consistent (GD) Born self-energies summarize the
many-body approximations used in this work. A two-fold line
with an arrow indicates a dressed electron propagator, while
single and two-fold wiggly lines represent bare and dressed
phonon propagators, respectively. An open circle and a closed
circle represent a connection for a phonon and an electron
propagator, respectively.

can be shown to be equivalent to the semi-classical
Ehrenfest equations, see App. A.

Gd: The partially self-consistent Born approximation
amounts to approximating the electron many-body
self-energy with

ΣGd[G]ij(z; z
′) ≡ ΣH[G]ij(z; z

′)

+ ΣF[G, d]ij(z; z
′) ,

where d is the bare phonon propagator obtained
by putting the phonon self-energy to zero. This
amounts to saying that that the nuclei are unaf-
fected by the electronic particle-hole excitations.

GD: The fully self-consistent Born approximation is de-
fined by writing the electron many-body self-energy
as

ΣGD[G,D]ij(z; z
′) ≡ ΣH[G]ij(z; z

′)

+ ΣF[G,D]ij(z; z
′)

while the phonon self-energy is given by

ΠGD[G]PQ(z; z′) ≡ ΠB[G]PQ(z; z′) .

Note that although we dress the phonon propagator
in the Fock diagram, one should not use a dressed
propagator in the Hartree diagram as it leads to
double-counting of terms in the perturbation ex-
pansion2,56.
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FIG. 3. The Φ-functionals for the Hartree (H), partially self-
consistent (Gd), and fully self-consistent (GD) Born approx-
imations. A two-fold line with an arrow indicates a dressed
electron propagator, while single and two-fold wiggly lines
represent bare and dressed phonon propagators, respectively.
Note that the minus sign on the left hand side arises due to
the loop rule2.

These approximations are all Φ-derivable, that is the cor-
responding self-energies can be obtained as the functional
derivatives

Σij [G,D](z; z′) =
δΦ[G,D]

δGji(z′; z)
,

ΠPQ[G,D](z; z′) = −2
δΦ[G,D]

δDQP (z′; z)

∣∣∣∣
S

,

of an approximate Φ-functional which are shown in
Fig. 3. Note that the subscript S refers to a symmetrized
functional derivative, see2. The Φ-derivability of the elec-
tron self-energy together with self-consistency in the elec-
tron propagator guarantee gauge invariance and conse-
quently fulfillment of the electron density conservation
law35,36.

D. Kadanoff-Baym Equations

The equations of motion of Eqs. (5) are customary
solved by projecting the propagators to different parts
of the Keldysh contour by choosing the time-arguments
appropriately2. This procedure leads to the greater (>),
lesser (<), left (d), right (e), and Matsubara (M) com-

ponents

a≷(t; t′) ≡ a(t±; t′∓) ,

ae(t; τ) ≡ a(t; t0 − ıτ) ,

ad(τ ; t) ≡ a(t0 − ıτ ; t) ,

aM (τ ; τ ′) ≡ a(t0 − ıτ ; t0 − ıτ ′) ,

where the subscript ∓ denotes a time evaluated on the
forward/backward branches of the contour, and a is a
function in the space of Keldysh functions2. The Keldysh
components of the phonon and electron propagator obey
the symmetries

G
≷
ij(t; t

′) = −
[
G

≷
ji(t
′; t)
]∗
,

G
d
ij(τ ; t) =

[
G
e
ji(t;β − τ)

]∗
,

D
≷
PQ(t; t′) = −

[
D

≷
QP (t′; t)

]∗
= −

[
D

≶
PQ(t; t′)

]∗
,

D
d
PQ(τ ; t) =

[
D
e
QP (t;β − τ)

]∗
=
[
D
d
PQ(β − τ ; t)

]∗
,

where the additional symmetries of the phonon propaga-
tor are due to the symmetry DPQ(z; z′) = DQP (z′, z).
The equations of motion obtained by taking all possible
components of the contour-time equations of motion form
a set of non-linear integro-differential equations of motion
known as the Kadanoff-Baym equations33. The symme-
tries of the propagator however imply that we only need
equations of motion for the greater, lesser, and right com-
ponents where the first two are required for times t ≥ t′.
The relevant equations of motion are then

ı∂tG
≷(t; t′) = heff(t)G≷(t; t′) + I≷[Σxc, G](t; t′) ,

ı∂tG
e(t; τ) = heff(t)Ge(t; τ) + Ie[Σxc, G](t; t′) ,

ı∂tD
≷(t; t′) = α

(
Ω̃(t)D≷(t; t′) + I≷[Π, D](t; t′)

)
,

ı∂tD
e(t; τ) = α

(
Ω̃(t)De(t; τ) + Ie[Π, D](t; τ)

)
,

for off time-diagonal and

ı
d

dt
G≷(t; t) = heff(t)G≷(t; t) + I≷[Σxc, G](t; t) + h.c. ,

ı
d

dt
D≷(t; t) = α

(
Ω̃(t)D≷(t; t) + I≷[Π, D](t; t)

)
+ h.c. ,

where h.c. denotes the Hermitian conjugate, for on time-
diagonal time-propagation. Here we introduced the ef-
fective one-body electron Hamiltonian

heff(t) ≡ h(t) + vn(t) + vH(t) ,

as well as the collision integrals

I≷[a, b](t; t′) ≡
[
ae ? bd

]
(t; t′)

+
[
aR • b≷

]
(t; t′) +

[
a≷ • bA

]
(t; t′) ,

Ie[a, b](t; τ) ≡
[
ae ? bM

]
(t; τ) +

[
aR • be

]
(t; τ) .
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with the bullets and stars denoting convolution integrals
of the form

[
a • b](t; t′) =

∫ ∞

t0

dt̄ a(t, t̄)b(t̄, t′) ,

[
a ? b](t; t′) = −ı

∫ β

0

dτ a(t, τ)b(τ, t′) ,

where a and b are possibly matrix valued functions on
the Keldysh contour. The Hartree potential appearing in
the effective Hamiltonian can be evaluated using Eq. (9)
instead of Eq. (8) by taking advantage of the equation of
motion

ı∂t~φ(t) = α
(
Ω̃(t)~φ(t)

+ ~F (t)− ıtr
(
~M(t)G<(t; t)

))
,

for the real-time φP (t) ≡ φP (t±) phonon field expec-
tation value. The Kadanoff-Baym equations, including
the equation above, then form a closed set of equations
which, when supplemented with the initial conditions

G
≷
ij(t0; t0) = GMij (0±) ,

G
e
ij(t0; τ) = GMij (−τ) ,

D
≷
PQ(t0; t0) = DM

PQ(0±) ,

D
e
PQ(t0; τ) = DM

PQ(−τ) ,

φP (t0) = φMP ,

given by the equilibrium Matsubara components intro-
duced in Ref. 1, can be solved on a computer by time
propagation32.

III. MODEL

Our model system is a two-site Holstein model57–69

which can be viewed as a minimal representation of a
system in which electrons move between two molecules,
so that they are coupled to the local vibrational modes of
these molecules. In the case of two identical molecules,
we find that only the relative displacement couples to the
electron density difference between the molecules, and
thus the Hamiltonian operator for the isolated system
reduces to

ĤM ≡ ω0â
†â

− tkin

∑

σ

(
ĉ†1σ ĉ2σ + ĉ†2σ ĉ1σ

)

− g√
2

(â† + â)
∑

σ

(
n̂1σ − n̂2σ

)
,

where â and â† annihilate and create a phonon to the
relative displacement mode, ĉiσ is the electronic opera-
tor that annihilates an electron of spin σ at site i, and

n̂iσ ≡ ĉ†iσ ĉiσ is the electron density operator at site i.

The parameters ω0, tkin and g characterize the bare vi-
brational frequency, inter-site hopping and local electron-
phonon interaction strength, respectively. This Hamilto-
nian corresponds to the relative Hamiltonian of Ref. 1
which is chosen here over the full Hamiltonian due to
both its simplicity and computational reasons. The sys-
tem can be probed with external time-dependent fields
which are described with the Hamiltonian operator

Ĥ(t) ≡ ĤM + f(t)
(
â† + â

)
+
∑

iσ

vi(t)n̂iσ ,

where f and vi describe amplitudes of the external fields
acting on the nuclei and electrons, respectively. The
displacement and momentum operators, defined in this
model as û ≡ (â† + â)/

√
2 and p̂ ≡ ı(â† − â)/

√
2, allow

us to rewrite the Hamiltonian operator as

Ĥ(t) =ĤM +
√

2f(t)û+
∑

iσ

vi(t)n̂iσ , (11a)

ĤM =
ω0

2

(
p̂2 + û2 − 1

)

− tkin

∑

σ

(
ĉ†1σ ĉ2σ + ĉ†2σ ĉ1σ

)

− gû
∑

σ

(
n̂1σ − n̂2σ

)
, (11b)

which is equivalent to the Hamiltonian of Eq. (1) with
the matrix elements

Fςp(z) = θ(t0+, z)δςi,1
√

2f(z) ,

Ωςp,ςq (z) = ω0(δςpςq + αςpςq )/2 ,

M
ςp
iσ,jσ′(z) = −gδςp,1δσσ′δij

(
δi1 − δi2

)
,

where we dropped the phonon mode index due to hav-
ing only the relative mode. Moreover, here θ denotes
a contour-time Heaviside function and t0+ the origin of
the backward branch. The time-independent properties
of this model depend on the two dimensionless parame-
ters

γ ≡ ω0

tkin
,

λ ≡ 2g2

tkinω0
,

denoting the adiabatic ratio and effective interaction.
The adiabatic ratio γ describes the relative energy scale
of electrons and nuclei, while the effective interaction λ is
a measure of the coupling between the motions of these
two constituents.

IV. RESULTS

In the following, we present our results for the equi-
librium propagators and linear response functions. The
results are for a system initially at zero temperature in
the pure two-electron N = 2 spin singlet S2 = Sz = 0
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ground state. This is mimicked in many-body perturba-
tion theory with the inverse temperature β/ω−1

0 = 103.
Moreover by choosing Giσ,jσ′(z; z

′) ≡ δσσ′Gij(z; z′) such
that N ≡ −2ı

∑
iG

<
ii(t; t) = 2 for all times, we can en-

sure that Sz = 0. The results cover the physical pa-
rameters γ = 1/2, 1/4 and λ ∈ [0, 2] corresponding to
the weak- and intermediate-to-strong interactions. The
approximate results (H, Gd, GD) are obtained by first
solving the imaginary-time Matsubara propagators with
an imaginary-time grid, solution method and related pa-
rameters identical to the ones used in our previous work
in Ref. 1. This leads to multiple solutions character-
ized by either symmetric or symmetry-broken electron
densities and nuclear displacements as shown in Ref. 1.
The former kind are the only solutions for a sufficiently
weak interaction and are known here as the symmet-
ric solutions, while the latter kind arise for sufficiently
strong interactions and are referred to as asymmetric so-
lutions. Here we mention that our approximations do not
respect the exact transformation relating the relative and
full Hamiltonians of Ref. 1. This is seen as quantitative
differences between some equilibirum observables, which
are invariant under this transformation in the exact case.
presented here and in Ref. 1. In the present work, the
real-time electron and phonon propagators are then cal-
culated by time-propagating the Kadanoff-Baym equa-
tions, according to an adapted version of the algorithm32,
using the abovementioned Matsubara propagators either
directly or indirectly (see the linear response section)
as initial values. The time-grid is uniform with a grid
spacing or time-step δT such that tkinδT ∈ [0.025, 0.075]
extending from zero to the final time T chosen so that
tkinT = 200. The time-domain propagators are finally
Fourier transformed to arrive at their frequency-domain
representations. The Fourier transforms are calculated
with a high-order quadrature formula and unless other-
wise stated by using the Hanning window function70.

A. Equilibrium Propagators

The out-of-equilibrium behavior of a system can be
better understood if we first understand the equilibrium
properties of this system. These properties are deter-
mined by the equilibrium electron and phonon propaga-
tors which we have studied in Ref. 1 from the perspec-
tive of time-local (e.g. density matrix) and integrated-out
(e.g. total energy) observables. Here, we further shed
light on the quality of our approximations by investigat-
ing the frequency structure of these propagators. In this
section, the propagators depend only on the relative time
and our convention for evaluating Fourier transforms is
that the first time argument is integrated over and the
second kept fixed at the initial time.

1. Electron Propagator

The electron propagator is directly related to the pho-
toemission i.e. electron removal and inverse photoemis-
sion i.e. electron addition spectra. This can be qualita-
tively seen from its zero-temperature Lehmann represen-
tation

G
≷
iσ,jσ′(ω) = ∓ı2π

∑

n

f
N≷
n,iσf

N≷
n,jσ′

∗δ(ω ∓ ΩN±1
n ) ,

where ΩN±1
n ≡ EN±1

n − EN0 is the electron addi-

tion/removal energy while fN>n,iσ ≡ 〈ΨN+1
n | ĉ†iσ |ΨN

0 〉 and

fN<n,iσ ≡ 〈ΨN−1
n | ĉiσ |ΨN

0 〉 are the corresponding ampli-

tudes. Here ΨN
n and ENn denote the nth eigenstate

and -energy of the N electron system. The Lehmann
form is used below to interpret the results shown in
Fig. 4 for exact diagonalization (ED) and many-body
perturbation theory (H, Gd, GD). The greater and lesser
components are related by the particle-hole symmetry
G>ij(ω) = −

(
− 1)i−jG<ji(−ω) whose fulfillment is dis-

cussed below, and therefore we only show results for the
lesser component. Let us focus first on the main panels
(contour plots) to illustrate the overall frequency struc-
ture, and start by examining the exact results. The exact
spectra develop as a function of the interaction from the
singly peaked, non-interacting spectra described by the
function

g
≷
ij(ω) = ∓ıπ(∓1)i−jδ(ω ∓ tkin) ,

into spectra consisting of multiple peaks whose positions
are up to an energy shift given by the energies of the
one-electron system. The one-electron energies EN=1

n are
nearly uniformly separated by the bare phonon frequency
for a weak interaction λ � 1. This manifests itself in
the exact spectra as emergence of the so-called phonon
sideband structure which gains intensity as the initial
distribution loses intensity. In the case of a sufficiently
strong interactions the lowest energies instead consist of
nearly degenerate pairs separated by the bare phonon
frequency59,60. In this case the one-elecron system can be
characterized as polaronic and is, as a first approximation
in the limit λ� γ, described by

|ψLF
k,±σ〉 ≡

1√
2

(
ĉ†1σX̂ ± ĉ

†
2σX̂

†) |0; k〉

where X̂ ≡ exp(−ıgp̂/ω0) is a shift operator, and |0; k〉
is an empty electronic state and kth eigenstate of â†â62.
In the same limit, we find the two-electron ground state

|ΨLF
0 〉 ≡

1√
2

(
ĉ†1↑ĉ

†
1↓X̂

2 + ĉ†2↑ĉ
†
2↓X̂

†2) |0; 0〉 .

which has a bipolaronic character. The removal energies
and associated amplitudes

Ω1
k,lσ = 3tkinλ/4 + ω0k ,

∑

σ′

∑

l∈{±}

∣∣∣f2<
k,lσ′;iσ

∣∣∣
2

=
e−λ/4γ

2k!

(
λ

4γ

)k
.
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then show that the spectra consist of peaks separated by
the bare phonon frequency with intensities following a
Poisson distribution62. The exact results shown in Fig. 4
indicate that the initial spectra become denser as inter-
action is increased such that the two lowest excitations
approach one another faster than the third which stays
roughly a bare phonon frequency apart, especially for
γ = 1/4. At the same time spectral weight is redis-
tributed in particular to the third and higher-lying exci-
tations. We interpret this as a precursor of the crossover
to a Poissonian disribution which is a signature of a pola-
ronic one-electron and bipolaronic two-electron system.
This change is accompanied by an overall shift of the
spectra to higher energies which appears smoothly as a
function of the interaction, although more rapidly around
λ ∼ 1 for the adiabatic ratio γ = 1/4. The shift im-
plies that one needs more energy to either add or remove
electrons indicating that the two-electron ground state
becomes more stable. This is in agreement with the in-
crease in the bipolaron binding energy, see e.g. Ref 1, and
is hence associated with the fact that the two-electron
ground state becomes characterizable as bipolaronic. In
addition to these changes there is a faint signal around
ω/tkin ∼ −3 for γ = 1/2 and weak interactions, which
is to be understood as the removal energy associated
with the anti-bonding state of the one-particle system.
This feature is washed out for the lower adiabatic ratio
γ = 1/4, in contrast to a similar feature of the single-
electron case60.

The question is then how well the many-body approxi-
mations reproduce the qualitative features of these spec-
tra and thus the associated physics. The Hartree ap-
proximation leads to spectra with peaks located at the
eigenvalues of the equilibrium Hartree equations. In the
case of the symmetric solution, the Hartree potential van-
ishes, and this approximation just reproduces the non-

interacting result g
≷
ij(ω) for all values of the interaction

thus failing to describe the exact spectra. The asymmet-
ric case however displays a more complicated behavior
with the propagators given by

G
≷
Ha+ij

(ω) = ıπλ−1δ(ω ∓ tkinλ) , i 6= j ,

G
≷
Ha+ii

(ω) = ∓ıπ
(

1± (−1)i
√

1− λ−2
)
δ(ω ∓ tkinλ) ,

where Ha+ denotes the asymmetric solution with a pos-
itive density difference n1σ − n2σ. The asymmetric
spectra emerge at λ = 1, and contain a single peak
which moves to higher energy linearly as a function of
the interaction. The particle-hole symmetry is broken
along with the reflection symmetry, however they are

replaced by G
≷
Ha+ij

(ω) = G
≷
Ha−ji(ω) and G>Ha+ij(ω) =

−
(
−1)i−jG<Ha−ji(−ω) where Ha− denotes the asymmet-

ric solution with a negative relative density. These rela-
tions represent the original symmetries under the inter-
change of the two degenerate asymmetric solutions. Al-
though the asymmetric solutions lead to spectra which
shifts to higher energies as the exact spectra do. they do

not show signs of the phonon sideband structure. The
Born approximations correct this flaw and show a clear
sideband structure. The partially self-consistent Born
approximation, in the case of the symmetric solution,
however shows that all removal energies behave roughly
in a similar fashion, namely they increase monotonously
and nearly linearly as a function of the interaction. The
spectra do not show signs of a peak corresponding to a
removal energy associated with the anti-bonding state of
the one-particle system. This feature instead emerges
qualitatively correctly in the fully self-consistent approx-
imation. The fully self-consistent approximation also im-
proves the position of the dominant removal energies for
weak interactions by showing a stronger increase of the
lowest removal energy and a simultaneously decrease in
the sideband removal energies. Moreover, on the con-
trary to the monotonous behavior of the partially self-
consistent approximation, the fully self-consistent ap-
proximation shows a signature of a stronger change in
the structure of the spectrum for λ = 1/4 approximately
where the exact spectrum also changes. At this point,
the fully self-consistent spectrum however becomes too
dense, and does not shift correctly to higher energies.
The asymmetric solutions, once they appear for a suffi-
ciently strong interaction, are similar in these approxima-
tions and differ from the asymmetric mean-field solution
by the fact that there is a related sideband structure.

The changes in the spectra from a non-interacting to
a fully interacting case should emerge in a way which
respects the two lowest order sum rules for the electron
propagator

g(0) ≡
∞∫

−∞

dω

2πı
trG<(ω)

= N , (12a)

g(1) ≡
∞∫

−∞

dω

2πı
ωtrG<(ω)

= Ee + Eep , (12b)

where the right-hand sides are equilibrium expectation
values of the electron number N , and electron Ee and
electron-phonon interaction Eep energies, see Ref. 1. The
top panels of Figs. 4 show that both constraints are ful-
filled up to a numerical accuracy. The numerical devi-
ations especially for γ = 1/2 are due to choice of time
discretization and frequency integration. Moreover, we
note that all frequency moments have been calculated in
the present work from spectra obtained using a rectangu-
lar window function. The first moments, which are equal
to the mean of the distribution, show that in addition
to the asymmetric cases, only the exact and symmetric
fully self-consistent spectra move appreciably to higher
energies, in particular for γ = 1/4.

The left panels of Fig. 4 show the position and intensity
of the lowest lying peak labeled with [E], as in Electronic,
of the removal spectra. This peak is the most significant
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FIG. 4. The exact (ED) and approximate (H, Gd, GD) electron propagator as a function of the interaction λ and frequency
ω. The top and bottom figures correspond to the adiabatic ratios γ = 1/2 and γ = 1/4, respectively. The main panels in the
middle show

∣∣trG<(ω)
∣∣ /T for the symmetric (s) solutions and, starting from the critical interaction denoted with a vertical

dashed line and its value λC , for the asymmetric (a) solutions. The top panels show the zeroth g(0) and first g(1) moments
(points) of the spectra and the corresponding expectation values (lines) to illustrate the fulfillment of Eqs. (12). The left panels
show the intensities and positions of the lowest energy peak of 2

∣∣G<
11(ω)

∣∣ /T and 2
∣∣G<

22(ω)
∣∣ /T , labeled as [E] in the main

panels, for the symmetric (solid line) and asymmetric (dashed line) solutions. The right panel show
∣∣trG<(ω)

∣∣ /T on a linear
scale for the symmetric solutions at λ = 2. (color online)

part of the spectra in the regime of weak to intermediate
interactions where the many-body approximations are
expected to be in qualitative, or even quantitative, agree-
ment with the exact solution. Our results show that, out
of the symmetric solutions, the Born approximations are
indeed in a good agreement with exact results in the weak
coupling regime. The partially self-consistent approxima-
tion however deviates considerably already for interme-
diate interactions λ ∼ 1, while the fully self-consistent
approximation gives a reasonably good estimate of both
the position and intensity up to borderline strong inter-
actions λ ∼ 1.5. For stronger interactions, both approxi-
mations fail to describe the shift of the position, as well

as the decrease of the intensity correctly, although the
fully self-consistent approximation gets the latter trend
considerably better. The exact position and intensity of
this peak change more abruptly in the case of γ = 1/4,
and imply that the sidebands become the most intense
part of the exact spectra for the higher interactions con-
sidered in this work. The many-body approximations do
not show sufficient loss of intensity, and therefore fail to
redistribute the spectral weight correctly to the higher
energy part. The results for λ = 2 shown in the right
panels of Fig. 4 verify this statement and moreover show
that the approximate spectra do not bear resemblance to
the shape of the exact spectra. Lastly, the asymmetric
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solutions capture the loss of the intensity qualitatively
correctly for the site with the lower occupation but in
doing so break the reflection symmetry which leads to
an increase of the intensity of the site with a higher oc-
cupation. This is natural since it becomes favorable to
remove electrons from an already almost fully occupied
site and vice versa.

To summarize, we found that for the adiabatic ratios
considered here the Hartree, and partially and fully self-
consistent Born approximations are in a good agreement
with exact results for very weak λ � 1, weak λ < 1,
and intermediate λ ∼ 1 interactions, respectively. More-
over, the agreement between exact and approximate re-
sults improves when the electronic and phononic energy
scale become closer to one another for γ = 1/2. These
observations are similar to the conclusions of our ear-
lier work in Ref. 1 in which it was further observed that
when approaching the anti-adiabatic limit the approxi-
mate results start to again deviate from the exact results.
In particular, the comparison of the total energies and
natural occupation numbers conducted in our previous
work supported the view that the fully self-consistent ap-
proximation describes the bipolaron crossover partially.
The present results show that as the interaction λ is in-
creased none of the approximate removal spectra i) move
to higher energies as in∼ 3tkinλ/4 nor ii) develop towards
a uniformly ω0-spaced distribution with a Poissonian-like
envelope. The results are consistent with our earlier find-
ings as the sum rules are satisfied and e.g. Ee + Eep
does show a clear significant increase in the fully self-
consistent approximation. As discussed above, points
i) and ii) signal a bipolaronic system, and their incor-
rect description rather suggest the conclusion that none
of the approximations describe the bipolaronic crossover
even partially. The failure to describe ii) is related to the
observation that the intensity of the lowest excitation
energy does not decay fast enough as a function of the
interaction in the approximate results. This is analogous
to the insufficiently fast decaying quasi-particle spectral
weight used as an indicator of absence of the bipolaronic
metal-insulator transition in the fully self-consistent ap-
proximation71. Finally, our observation on the relation
between the frequency-resolved and integrated-out quan-
tities is similar to those obtained earlier e.g. for the GW
approximation in the homogeneous electron gas in which
self-consistent total energies were good but the plasmon
description inadequate72.

2. Phonon Propagator

The phonon propagator is an indicator of the proper-
ties of the nuclear system, and relates to neutral excita-
tions, as shown by its zero-temperature Lehmann repre-

sentation

D>
PQ(ω) = D<

QP (−ω)

= −ı2π
∑

n

fNn,P f
N
n,Q
∗δ(ω − ΩNn )

where ΩNn ≡ ENn −EN0 is a neutral excitation energy, and

fNn,P ≡ 〈ΨN
n |∆φ̂P |ΨN

0 〉 the corresponding amplitude.
The frequency-domain phonon propagators obtained by
means of exact diagonalization (ED) and many-body the-
ory (H, Gd, GD) are shown in Fig. 5. Let us first discuss
the contour plots which illustrate the overall frequency
structure of the spectra. The exact results show that
as the interaction is increased the initial, non-interacting
spectra described by

d>PP (ω) = −ı2πδ(ω − ω0) ,

d>PQ(ω) = −2π(P −Q)δ(ω − ω0) , P 6= Q ,

where P,Q ∈ {1, 2} with 1 and 2 referring to the rel-
ative displacement and momentum, develop into multi-
peaked spectra consisting of a low and a high energy
scale. The low energy scale consists for a sufficiently
strong interaction of a single high intensity peak accom-
panied by a weaker peak separated approximately by the
bare phonon frequency. The high intensity peak which
is labeled with [P ] referring to Polaronic in the figures,
develops continuously from the initial distribution and
moves rapidly towards zero energy as a function of the
interaction strength. This is true for both adiabatic ra-
tios with the difference that [P ] approaches zero more
abruptly for γ = 1/4. The high energy scale, on the other
hand, consists of multiple low intensity peaks above the
first electronic excitation energy of the non-interacting
system. As the interaction is increased, these excita-
tions move towards higher energies and, although ini-
tially gain intensity, become suppressed for a sufficiently
strong interaction. These features can be understood
from the adiabatic potential energy surfaces defined and
analyzed in Ref. 1 and shown here in Fig. 6. This fig-
ure shows that the initially quadratic lowest potential
energy surface E0(u) becomes more shallow as the inter-
action is increased which is seen in Fig. 5 as a decreasing
phonon frequency. The surface builds up a double-well
structure for λ > 1 which manifests itself in the exact
results as a nearly degenerate ground and first excited
state [P ]. Moreover, as the barrier between the wells in-
creases, the low energy spectra approach the harmonic
spectra of the isolated wells which is seen in the exact
results for λ = 2 as a single peak located roughly at
the bare phonon frequency. The high-energy spectra, on
the other hand, agree with the first excited state surface
E1(u) remaining roughly quadratic while the surface sep-
aration E1(u)− E0(u) increases. As discussed in Ref. 1,
in the adiabatic case γ < 1 the double-well structure is
correlated with a splitting of the nuclear ground state
probability distribution and the crossover to a bipola-
ronic state. In this section, we thus identify its spectral
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signature, that is the low energy part consisting of the
two peaks, as an indicator of a bipolaronic state.

Let us then focus on the approximate results. The
Hartree and partially self-consistent Born approxima-
tions approximate the phonon propagator with the non-
interacting propagator which does not describe the true
behavior of the interacting system discussed above. The
question is then how the fully self-consistent approxima-
tion, in which the self-energy is a single polarization bub-
ble, fares in this system. In order to answer this, we
start with the symmetric solution for which the contour
plots of Fig. 5 show that both energy scales of the ex-
act solution are reproduced for the interaction strengths
considered. However, in the low energy scale, we only
observe [P ] and do not find a clear signature of a peak
around ω/ω0 ∼ 1 for λ ∼ 2 for the propagation times
accessed in this work. In the high energy scale, as the in-
teraction is increased the fully self-consistent spectra be-
come denser with non-uniformly separated peaks which
do not move as a whole to higher energies. These obser-
vations are all in a disagreement with the exact results
which show uniformly two bare phonon frequency sepa-
rated peaks moving to higher energies. This observation
is however consistent with the previously discussed prop-
erties of the approximate electron propagator for strong
interactions. The asymmetric solution, once it is found,
is observed to approach the non-interacting result i.e. the
lowest frequency approaches the bare phonon frequency
and higher lying structure looses intensity as the interac-
tion is increased. This is expected since there is no room
for particle-hole excitations in the symmetry-broken sys-
tem, and thus the polarization bubble should tend to zero
when the interaction is increased. As in the electronic
case, also these spectra should fulfill sum rules given in
terms of the zeroth and first moments by

d(0) ≡ −
∞∫

−∞

dω

2πı
trD>(ω)

= trΛ , (13a)

d(1) ≡ −
∞∫

−∞

dω

2πı
ωtr
(
αD>(ω)

)

= 2EpQ + EepQ + tr
(
αΩM

)
, (13b)

where Λ ≡ ıDM (0+), and EpQ and EepQ are the quan-
tum contributions to the phonon and electron-phonon
interaction energies defined in Ref. 1. The top panels
of Fig. 5 show that these sum rules are approximately
obeyed, and therefore an important consistency rela-
tion is satisfied. Here it is noteworthy that although
there is a clear change in the phonon energy, see the
zeroth frequency moment, in the exact and fully self-
consistent solutions, only the former displays a clear kink
at λ ∼ 1.3 − 1.5 in the first frequency moment. Finally,
the top panels of Fig. 5 highlight the lowest excitation
energy labeled with [P ] which is the dominant part of
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FIG. 5. The exact (ED) and approximate (H, Gd, GD)
phonon propagator as a function of the interaction λ and fre-
quency ω. The top and bottom figures relate to the adiabatic
ratio γ = 1/2 and γ = 1/4, respectively. The contour plots
show

∣∣D>
11(ω)

∣∣ /T on logarithmic scale for the symmetric (s)
solutions and, starting from the critical interaction marked
with a vertical dashed line and its value λC , for the asym-
metric (a) solutions. The middle panels show the zeroth d(0)

and first d(1) moments (points) of the spectra and the corre-
sponding expectation values (lines) to illustrate fulfillment of
Eqs. (13). The top panels show the intensities and positions
of the lowest energy peak of

∣∣D>
11(ω)

∣∣ /T for the symmetric
(solid line) and asymmetric (dashed line) solutions labeled as
[P ] in the contour plots. (color online)
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the spectra. The exact results show that this peak ap-
proaches zero energy, but never actually reaches it, and
gains intensity as a function of the interaction. This is
in contrast to the non-interacting propagator in which
this sole feature remains at the bare phonon frequency.
The self-consistent Born approximation however captures
both effects reasonably accurately up to λ ∼ 1.5 and gives
a qualitatively similar trend even beyond it for the inter-
actions considered here.

To summarize, we found that the non-interacting prop-
agator used in the Hartree and partially self-consistent
Born approximations is an adequate approximation for
the interacting phonon propagator only for very weak
λ � 1 interactions. The fully self-consistent Born ap-
proximation, on the other hand, captures the dominant
low energy peak well up to borderline strong λ ∼ 1.5
interactions and is therefore in a good agreement with
the exact results in this range of interactions. It how-
ever does not describe the second low energy excitation
at ω0, and therefore reproduces qualitatively only one of
the signatures of a bipolaronic state observable in the
phonon propagator. Finally, we remark that the absence
of a peak at the bare phonon frequency for strong in-
teractions is a likely factor for the observed too dense
frequency structure of the electron propagator.

B. Linear Response Functions

The dynamics of a system of electrons and nuclei is in
many cases dominantly determined by a linear response
function provided that the system is perturbed suffi-
ciently weakly. Many spectroscopic methods essentially
rely on measuring these functions which makes them im-
portant for understanding experiments. Here we investi-
gate in particular the first order density-density response
function of our model system.

1. Method

Let us begin by explaining how we in practice calculate
linear response functions in our time-dependent formal-
ism. This is a prerequisite for understanding when it
is reasonable to do linear response by time-propagation.
The density-density response function is calculated by
perturbing the system with the time-dependent poten-
tial

V̂ (t) = δ(t)
∑

iσ

vin̂iσ , (14)

where vi is the magnitude of the perturbation, and δ is
the Dirac delta function. Then we record the resulting
spin-summed density

ni(t) = −2ıG<ii(t; t) ,

0

10

20

−5 0 5

In
te

ra
ct

io
n

(λ
)

E
ne

rg
y

(E
/
t k

in
)

Relative Displacement (u)

0

1

2

−5 0 5

0

1

2
0

1

2

E0

E1

E2

E0 E1 E2

γ = 1/2

−8

0

8

16
E0

0

8

16
E1

0

8

16

24

32
E2

0

10

−5 0 5

In
te

ra
ct

io
n

(λ
)

E
ne

rg
y

(E
/
t k

in
)

Relative Displacement (u)

0

1

2

−5 0 5

0

1

2
0

1

2

E0

E1

E2

E0 E1 E2

γ = 1/4

−4

0

4

8
E0

0

4

8
E1

0

4

8

12

16

20
E2

FIG. 6. The adiabatic potential energy surfaces E0(u), E1(u)
and E2(u) for the three singlet eigenstates of the electronic
clamped nuclei Hamiltonian as a function of the interaction
λ and relative displacement u, see Ref. 1 for details. The
top and bottom figures correspond to the adiabatic ratios
γ = 1/2 and γ = 1/4, respectively. The left panels contain
λ = 0, 0.5, 1.0, 1.5, 2.0 cross-sections of the potential energy
surfaces shown as contour plots in the right panels. (color
online)

which in the linear response regime satisfies

δni(t) ≡ ni(t)− n(0)
i (t)

=
∑

j

χRij(t)vj +O(v2) , (15)
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where v is the norm of a vector with vi as its compo-

nents, n
(0)
i (t) is the density of the unperturbed system,

and χRij(t) ≡
∑
σσ′ χ

R
iσ,jσ′(t) the retarded component of

the first order density-density response function. The
response function is then given by

χRij(t) ≡
∂ni(t)

∂vj

∣∣∣∣
v=0

, (16)

which we in practice evaluate by using the difference quo-

tient (ni(t) − n
(0)
i (t))/vj with vj sufficiently small and

vk = 0 for k 6= j. Lastly, it is important to under-
stand that applying the delta function potential amounts
to choosing a new initial state after which the time-
evolution is induced by the unperturbed Hamiltonian. In
exact diagonalization, this is achieved by preparing the
new initial state

|Ψ̃N
0 〉 = e−ı

∑
iσ vin̂iσ |ΨN

0 〉 , (17)

where |ΨN
0 〉 is the N electron ground state, and which

is subsequently propagated in the absence of the pertur-
bation. In the Kadanoff-Baym equations, on the other
hand, the same is achieved by choosing the new initial
electron propagators

G
≷
ij(0; 0) = e−ı(vi−vj)GM

ij (0±) , (18)

G
e
ij(0; τ) = e−ıviGMij (−τ) , (19)

where GM
ij (τ) is the solution to the equilibrium Dyson

equation. The electron and phonon propagators are then
obtained by time-propagating the unperturbed Kadanoff-
Baym equations.

2. Stability

The method described above is expected to work if
the perturbation expansion of Eq. (15) is valid for the
time scales of interest. It can however be that a possibly
finite time-scale in which the expansion is good cannot be
extended to cover the entire time-scale of interest. This
can signal e.g. an unbounded linear response function. In
the following, we show that this is the case for the Hartree
approximation, and subsequently investigate whether or
not the Born approximations show a similar behavior.

The Hartree Eqs. (10) are a closed set of ordinary dif-
ferential equations for the phonon field expectation value
φP (t) and the electron propagator G<ij(t; t). In the two-
site, two-electron Holstein model these equations can be
rewritten as

ṅ = 4tkinΓ2 , (20a)

Γ̇1 = −2guΓ2 , (20b)

Γ̇2 = −tkinn+ 2guΓ1 , (20c)

u̇ = ω0p , (20d)

ṗ = −ω0u+ 2gn , (20e)

where we have suppressed the time arguments and the
overhead dot denotes the time-derivative. Moreover,
n ≡ n1σ − n2σ, u ≡ (u1 − u2)/

√
2, and p ≡ (p1 − p2)/

√
2

are the relative spin density, displacement, and momen-
tum, while Γ1 and Γ2 are the real and imaginary parts of
the density matrix element γ12 ≡ −ıG<12, respectively. As
shown explicitly in App. B, the density-density response
function is the solution to the corresponding linearized
equations of motion. If the linearization is performed
with respect to an equilibrium solution which is a stable
fixed-point, in the sense of Lyapunov73–75, of the original
equations then the eigenvalues of the resulting Jacobian
matrix have non-positive real parts73. Moreover, if there
are no repeated zero eigenvalues, then the zero solution
of the linearized system is stable and furthermore any so-
lution is bounded75. In particular, the density response
function is then bounded, that is ∃ M > 0 independent
of t such that

∣∣χRij(t)
∣∣ ≤ M for all t ≥ 0. In order un-

derstand when this is the case, we investigate below the
stability of the fixed-points of the Hartree equations. The
fixed-points whose stability is to be studied are just the
symmetric

ns = 0 ,

Γs,2 = 0 ,

us = 0 ,

ps = 0 , (21a)

and asymmetric

na± = ±
√

1− λ−2 ,

Γa±,2 = 0 ,

ua± = 2gna±/ω0 ,

pa± = 0 . (21b)

solutions of the equilibrium Hartree equations of
Eqs. (A2) derived in Ref. 1. These equations are sub-
ject to two constants of motion as both the eigenvalues
of the reduced density matrix, which are either one or
zero, and the total energy are conserved and give the
constraints

1 = n2 + 4
(
Γ2

1 + Γ2
2

)
,

E =
ω0

2

(
p2 + u2 − 1

)
− 4tkinΓ1 − 2gnu , (22)

respectively. Then by following76,77, and motivated by
the first constraint, we introduce the coordinates

z = 2Γ1 ,

n =
√

1− z2 cos(θ) ,

Γ2 =
√

1− z2 sin(θ)/2 ,

which represent cross-sections of the unit sphere with a
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plane. The transformed equations of motion

θ̇ = −2tkin + 2g
uz cos(θ)√

1− z2
,

ż = −2gu
√

1− z2 sin(θ) ,

u̇ = ω0p ,

ṗ = −ω0u+ 2g
√

1− z2 cos(θ) ,

and the total energy

E =
ω0

2

(
p2 + u2 − 1

)
− 2tkinz − 2gu

√
1− z2 cos(θ) ,

then correspond to a Hamiltonian system with canoni-
cal conjugate variables (θ, z) and (u, p). The canonical
transformation

q1 = −
√

2(1− z) sin(θ) ,

p1 =
√

2(1− z) cos(θ) ,

q2 = −p ,
p2 = u ,

transforms this system into two non-linearly coupled os-
cillators described by

E =
ω0

2

(
p2

2 + q2
2

)
+ tkin

(
p2

1 + q2
1

)

− 2gp2p1

√
1−

(
p2

1 + q2
1

)
/4 ,

where we dropped a constant energy shift. This system
of equations is a special case of the Hamiltonian system
studied in76 which arises from the semi-classical equa-
tions of the Dicke model76,78. Let us then denote x1 ≡ q1,
x2 ≡ q2, x3 ≡ p1, and x4 ≡ p2. The fixed points of this
system are just related by coordinate transforms to the
fixed points of Eqs. (21). At the symmetric fixed-point,
we find the Hessian matrix

∇∇Es ≡




2tkin 0 0 0
0 ω0 0 0
0 0 2tkin −2g
0 0 −2g ω0




which is positive-definite for λ < 1 and indefinite for
λ > 1, while at the asymmetric fixed-points, the Hessian
matrix

∇∇Ea± ≡




tkin(1 + λ) 0 0 0
0 ω0 0 0

0 0 4tkinλ
1+λ−1 − 2

√
2gλ−1

√
1+λ−1

0 0 − 2
√

2gλ−1

√
1+λ−1

ω0




is positive-definite for λ > 1. The symmetric equilibrium
and asymmetric equilibria are then due to the Lagrange-
Dirichlet theorem79,80 stable for λ < 1 and λ > 1, respec-
tively. Moreover, since det(∇∇Es) < 0 for λ > 1 also
det(J∇∇Es) < 0, where J is the standard symplec-
tic matrix79, and therefore the Jacobian matrix of the

linearized Hamilton’s equations has an eigenvalue with
a negative real-part. This implies that there also ex-
ists an eigenvalue with a positive real part which means
that the equations are linearly and nonlinearly unsta-
ble75. The symmetric equilibrium is therefore unstable
for λ > 1. The zero solution losing its stability while
two new stable equilibria arise is a standard bifurcation
known as the supercritical pitchfork bifurcation81. The
stability together with the fact that the Hessian matri-
ces do not have zero eigenvalues for λ 6= 1 implies that
the response functions obtained for λ < 1 and λ > 1 us-
ing the symmetric equilibrium and asymmetric equilibria
are bounded functions. The linear instability of the sym-
metric solution for λ > 1 leads, on the other hand, to an
unbounded response function as shown in App. B.

This answers the question when it is in this context ap-
propriate to do linear response properties at the mean-
field level, but does not resolve this issue for the cor-
related approximations. In this case, one cannot re-
cast the equations as a set of ordinary differential equa-
tions, but instead must consider the full two-time integro-
differential equations which have non-linear integral ker-
nels. As we are not aware of stability theory for such
dynamical systems and it would go beyond the scope of
the present work, we only resort to a working measure
which is in the spirit of the stability of the equilibrium
solutions. The working measure chosen here is a practical
one: we introduce the norm

||δn||∞ ≡ max
t∈[0,T ]

|n(t)− n(0)| , (23)

compare it to the magnitude of the perturbation v, and
if they remain in the same order of magnitude, we sug-
gest that the equilibrium is stable. We emphasize that
this measure is not equal to the stability even in the case
of ordinary differential equations, but does give a practi-
cal estimate whether or not a linear response calculation
makes sense for the time scales accessed in this work.

Having said this, Fig. 7 shows this norm for exact di-
agonalization (ED) and many-body theory (H, Gd, GD).
The results are obtained either by starting from a sym-
metric, or asymmetric equilibrium solution. The exact
results stay always in the same magnitude as the perturb-
ing potential v = 10−3 which is expected since the time-
dependent Schrödinger equation is linear. The other ex-
treme is the symmetric mean-field solution for which the
norm suddenly, although continuously as a function of
the interaction, approaches one when the interaction ex-
ceeds the corresponding critical value λ = 1. At the same
time, this norm remains in the same order of magnitude
as the perturbation for the asymmetric mean-field solu-
tion. This is consistent with the stability analysis pre-
sented above illustrates that our working measure agrees
in this case with Lyapunov stability. These cases give us
some confidence in looking at the symmetric and asym-
metric solutions of the Born approximations. The results
for the asymmetric cases of these approximations indicate
that they behave qualitatively similar to the asymmet-
ric equilibria of the mean-field suggesting that they are
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FIG. 7. The norm ||δn||∞ of Eq. (23) as a function
of the interaction λ for the perturbation of Eq. (14) with
v1 = 10−3, v2 = 0. The top and bottom panels correspond
to the adiabatic ratios γ = 1/2 and γ = 1/4, respectively.
The solid and dashed lines correspond to the symmetric and
asymmetric solutions, respectively. The vertical dashed lines
and the associated values λC denote the critical interactions
which are ordered according to to H, Gd, and GD from left
to right. (color online)

stable. This qualitative agreement remains true for the
symmetric equilibria of the partially self-consistent case
in which the norms approach one when passing the crit-
ical value of interaction. The norm of the symmetric so-
lution of the fully self-consistent approximation however
remains in the same order of magnitude as the perturba-
tion. We note that the declining norm for γ = 1/4 and
higher interactions is in the exact case related to the fact
that the propagation length is shorter than the period of
the lowest excitation of the system.

These observations together with the interpretation
given to our working measure of stability then suggest
that the partially self-consistent approximation has the
same qualitative stability properties as the mean-field.
On the other hand, both equilibrium solutions of the fully
self-consistent Born approximation are observed to be
stable in the sense of our working measure. This means
that, on the contrary to the Hartree and partially self-
consistent Born approximation, it is possible to do lin-
ear response with respect to the symmetric equilibrium
of the fully self-consistent Born approximation for the
time-scales addressed here.

3. Bethe-Salpeter equation

The Bethe-Salpeter equation is the standard approach
to calculate linear response functions in many-body per-
turbation theory40. Here, we discuss the connection
between the many-body approximations used in this
frequency-domain approach and in the time-dependent
approach applied in the present work. We start by noting
that the density response function of Eq. (16) is the re-
tarded χRij(t) =

∑
σσ′ χ

R
iσiσ,jσ′jσ′(t; 0) component of the

generalized, contour-time response function

χij,kl(z; z
′) ≡ 1

ıZ
Tr

[
T
{
e−ı

∫
C
dz̄Ĥ(z̄)∆γ̂ij(z)∆γ̂kl(z

′)

}]
,

(24)

where γ̂ij ≡ ĉ†j ĉi is the one-body reduced density matrix
operator and ∆γ̂ij the corresponding fluctuation oper-
ator. Note that we switched here to collective indices
containing both spatial and spin degrees of freedom. In
the standard approach, the generalized response function
satisfies the equation

χij,kl(z; z
′) = Pij,kl(z; z

′) +
∑

PQ

∑

rstu

∫

C

dz̄d
¯
z Pij,rs(z; z̄)

×MP
sr(z̄)dPQ(z̄;

¯
z)MQ

tu(
¯
z)χut,kl(

¯
z; z′) ,

(25a)

Pij,kl(z; z
′) = −ı

∑

pq

∫

C

dz̄d
¯
z Gip(z; z̄)

×Gqj(
¯
z; z)Γpq;kl(z̄,

¯
z; z′) , (25b)

where Pij,kl(z; z
′) is the irreducible polarizability defined

in terms of the irreducible vertex function Γij,kl(z, z
′; z′′).

These equations are valid for any many-body approxima-
tion which includes the mean-field, Hartree term while
beyond mean-field effects are incorporated into the irre-
ducible vertex function. This function satisfies the Bethe-
Salpeter equation2

Γij,kl(z, z
′; z′′) = δilδjkδ(z, z

′)δ(z′, z′′)

+
∑

pqrs

∫

C

dz̄dz̄′d
¯
zd

¯
z′ Kiq,pj(z, z̄; z̄

′, z′)

×Gpr(z̄′;
¯
z)Gsq(

¯
z′; z̄)Γrs,kl(

¯
z,

¯
z′; z′′) ,

where the four-point integral kernel is defined as

Kij,kl(z, z
′; z̄, z̄′) ≡ δΣxc,il(z; z̄

′)

δGkj(z̄; z′)
, (26)

with the subscript xc denoting the exchange-correlation
self-energy. The diagrammatic form of this equation is
shown in the top panel of Fig. 8. It has been shown37 that
a density response function obtained by time-propagation
of the Kadanoff-Baym equations with a self-energy Σ is
equivalent to a solution of Eqs.(25) with the vertex satis-
fying the Bethe-Salpeter equation with a four-point ker-
nel of Eq. (26). Thus by calculating the response function
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FIG. 8. The Bethe-Salpeter equation for the irreducible ver-
tex function (top) and functional forms of the four-point ker-
nels (bottom) in the Hartree (H), and the partially (Gd) and
fully (GD) self-consistent Born approximations. A line with
an arrow indicates a dressed electron propagator, while single
and two-fold wiggly lines represent bare and dressed phonon
propagators, respectively. An open circle represents a connec-
tion for a phonon propagator and a closed circle (kernel) or a
dashed line (BSE) a connection for an electron propagator.

via time-propagation using Eqs. (15) and (16) we arrive
by current standards at a high-level solution of the Bethe-
Salpeter equation.

Figure. 8 shows diagrammatically the approximate
four-point kernels related to the self-energy approxima-
tions used in the present work. In the Hartree approxi-
mation, the irreducible vertex function is the bare vertex,
and the response function is hence the sum of all bub-
ble diagrams. The partially self-consistent Born approx-
imation leads to a vertex function which consists of all
the ladder diagrams and to the bubbles-and-ladders se-
ries for the response function. In addition to such terms,
the fully self-consistent Born approximation contains also
two second order kernel diagrams in terms of the phonon
propagators. These higher-order terms are not routinely
considered in the zero-frequency54,55 nor fully frequency-
dependent cases40. Lastly, we note that despite of the so-
phistication of these approximations there are in general
no guarantees of their superiority over the conventional
approximations. It has also been shown, that similar ap-
proximations in the purely electronic case, can lead to
undesired features like non-positivity82.

4. Density-Density Response Function

We have presented a stability analysis in order to un-
derstand when it makes sense to calculate linear response
properties in the context of the present work. Addition-
ally, we have discussed the diagrammatic meaning of the
response function obtained in this manner. Here we focus
on the numerical results, that is analyzing the density-
density response function obtained by time-propagation
of the Kadanoff-Baym equations. In order to carry-out
this analysis, we start by considering the exact response
function which has the frequency-domain Lehmann rep-
resentation

χRij(ω) =
∑

n

(
hNnih

N
nj

ω − ΩNn + ıη
−

hNnih
N
nj

ω + ΩNn + ıη

)
,

where ΩNn ≡ ENn −EN0 is a neutral excitation energy, and
hNn,i ≡ 〈ΨN

0 |
∑
σ n̂iσ |ΨN

n 〉 the corresponding real-valued
oscillator strength. This form is used to analyze the exact
(ED) density response function which is shown together
with the approximate (H, Gd, GD) response functions
in Fig. 9. The main panels contain contour plots which
illustrate the overall structure of the spectra. The exact
results show that the non-interacting response function

χR0;ij(ω) ≡ (−1)i−j/2

ω − 2tkin + ıη
− (−1)i−j/2

ω + 2tkin + ıη
,

which consists of a single peak for positive frequencies,
develops as a function of the interaction to a function
comprising multiple excitation energies. In the case of
weak λ < 1 interactions, these excitations can be rea-
sonably well identified as phonon sidebands i.e. as multi-
phonon excitations either from the non-interacting elec-
tronic ground or first, singly-excited, excited state. The
sidebands corresponding to either electronic state are
separated roughly by two bare phonon frequencies for
weak interactions. Moreover, there is an extremely faint
peak located at ω/tkin ∼ 4.5 for γ = 1/2 coinciding en-
ergetically with the non-interacting doubly-excited elec-
tronic state plus a single phonon. As the interaction
is increased, the structure associated initially with the
singly-excited electronic state labeled with [E] in the fig-
ures moves as a whole to higher energies. At the same
time, the peaks related initially to the electronic ground
state approach a bare phonon frequency separated dis-
tribution with the lowest excitation labeled with [P ] in
the figures approaching zero energy and gaining inten-
sity. These spectral features can be understood from the
adiabatic potential energy surfaces of Fig. 6 as discussed
in Sec. IV A 2. In the following, we instead focus on the
dominant low energy peak [P ] with the aim to identify
it as a signature of a bipolaronic system. We start by
writing the exact time-dependent density as

ni(t) =

∫ ∞

−∞
du
(
2Pii(u; t) + P12(u; t)

)
,
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FIG. 9. The exact (ED) and approximate (H, Gd, GD) retarded density-density response function as a function of the
interaction λ and frequency ω. The top and bottom panels correspond to the adiabatic ratios γ = 1/2 and γ = 1/4, respectively.
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∣∣trχR(ω)
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where Pij(u; t) defined by

Pii(u; t) ≡ |〈i ↑, i ↓;u|Ψ̃N=2
0 (t)〉|2 ,

P12(u; t) ≡
∑

σσ′
σ 6=σ′

|〈1σ, 2σ′;u|Ψ̃N=2
0 (t)〉|2 ,

is the time-dependent joint probability to find the elec-
trons at sites i and j and nuclei at the relative coordi-
nate u at time t. Here we use the notation |Ψ̃N=2

0 (t)〉 ≡
exp(−ıĤM t)|Ψ̃N=2

0 〉 with |Ψ̃N=2
0 〉 defined in Eq. (17) and

|iσ, jσ′;u〉 ≡ ĉ†iσ ĉ
†
jσ′ |0〉e|u〉 where |0〉e is the electronic

vacuum and |u〉 is an eigenstate of û. The exact den-
sity response function can be then according to Eq. (16)

written as

χRij(t) = 2

∫ ∞

−∞
du %Rii,j(u; t) , (27)

where

%Rik,j(u; t) ≡ ∂Pik(u; t)

∂vj

∣∣∣∣
v=0

,

is a response function describing how the ground state
joint probability Pij(u; 0) changes as a function of time
due to a weak perturbation. The response function
%12,j(u; t) does not contribute to the density response
function since it is an odd function under the interchange
u ↔ −u as follows from the full inversion symmetry
of the model. In Ref. 1, we use the ground state joint
probabilities as ingredients of a working definition of a
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dominantly bipolaronic ground state. The probabilities
Pij(u; 0) shown in the top panels of Fig. 10 illustrate the
fact that as the interaction increases one is most likely to
find the system in a state in which both electrons occupy
the same site with an accompanying nuclear displace-
ment. In particular, at λ = 2.0 for γ = 1/2 and λ = 1.7
for γ = 1/4, the ground state of the system has according
to Ref. 1 crossed over to a dominantly bipolaronic state.
Next, we illustrate how these distributions behave in the
linear response regime by showing the time-average

〈%ik,j〉(u) ≡ 1

T

∫ T

0

dt |%ik,j(u; t)| ,

as a function of the interaction and displacement in the
left contour plots of Fig. 10. The final time T is cho-
sen here so that T/t−1

kin ≈ 470 and T/t−1
kin ≈ 9360 for

γ = 1/2 and γ = 1/4, respectively. The results indicate
that i) %11,1(u, t) and %22,1(u, t) are on average larger than
%12,1(u, t), and that for a sufficiently strong interactions
the latter become suppressed while the former gain mag-
nitude. The maxima maxu,t∈[0,T ] |%ik,j(u; t)| shown in
the insets underneath the averages further support these
statements. Moreover, we observe that when the ground
state distributions become spatially polarized as the in-
teraction is increased, also the response functions follow
the same trend. Thus we find that ii) the spatial shapes
of the initial distributions remain qualitatively invariant
in the linear response regime as a function of time. In
order to illustrate the temporal behavior of the dominant
response functions %ii,1(u; t), we show them in the right
panels of Fig. 10 for the initially bipolaronic systems at
λ = 2.0 and λ = 1.7 for γ = 1/2 and γ = 1/4, respec-
tively. Firstly, these results agree with the conclusion
ii) on the spatial structure, and secondly, they show that
iii) probability density is redistributed between %11,1(u; t)
and %22,1(u; t) mainly on a time-scale given by the energy
scale of [P ], while the energy scale given by [E] is seen as
superimposed small amplitude oscillations. The points i),
ii) and ii) combined allow us to conclude that, in agree-
ment with the working definition of Ref. 1, the system is
in a dominantly bipolaronic state at each instant of time.
Moreover, we understand the oscillation of the probabil-
ity density between %11,1(u; t) and %22,1(u; t) to represent
the motion of a bipolaron appearing according to iii) on
a time scale set by [P ]. Finally, this is seen in the density
response function according to Eq. (27) as the emergence
of the dominant low energy excitation [P ].

As we have described the exact density response func-
tion, we are prepared to investigate how the many-body
approximations describe it in order to understand their
limitations. Let us begin with the mean-field, Hartree ap-
proximation in which the density response function can
be obtained analytically as the solution to the linearized
Hartree equations as shown in App. B. This response
function is given by

χRHn;ij(ω) ≡
∑

k∈{±}

(
(−1)i−jχnk/2

ω − ωnk + ıη
− (−1)i−jχnk/2

ω + ωnk + ıη

)
,
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FIG. 10. The exact (ED) joint-probabilities Pij(u; 0) and re-
sponse functions %ik,j(u; t) shown for the adiabatic ratios γ =
1/2 and γ = 1/4 in the top and bottom figures, respectively.
In the top panels, we show Pij(u; 0) as a function of the dis-
placement u for the interactions λ = 0.2, 1.7, 2.0 whose color
code is shown in the bottom panels. The middle panels con-
tain 〈%ij,1〉 as a function of the displacement and interaction,
and the bottom panels display maxu, t ∈ [0, T ] |%ij,1(u; t)| as a
function of the interaction. In right panels, we show %ii,1(u; t)
as a function of the displacement and time t for the interac-
tions λ = 2.0, 1.7 with regions closed by red (blue) contour
lines being positive (negative) values. (color online)
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where

χn± ≡
2tkin

(
ω2

0 − ωn±2
)2

ωn±

[(
ω2

0 − ωn±2
)2

+ 4λω2
0t

2
kin

] ,

are the oscillator strengths and

ωs± ≡

√√√√ω2
0 + 4t2kin

2

(
1±

√
1 +

16ω2
0t

2
kin(λ− 1)

(
ω2

0 + 4t2kin

)2

)
,

ωa± ≡

√√√√ω2
0 + 4t2kinλ

2

2

(
1±

√
1−

16ω2
0t

2
kin(λ2 − 1)

(
ω2

0 + 4t2kinλ
2
)2

)
,

are the frequencies for the symmetric (s) λ < 1 and asym-
metric (a) λ > 1 solutions, respectively. The Hartree
response functions shown in the subpanels H of Fig. 9
thus consists of two contributions: the high [E] (χn+, ωn+)
and low [P ] (χn−,ωn−) energy peaks related, for weak in-
teractions, to the non-interacting electronic excited and
ground states plus zero and one phonon, respectively.
Firstly, we observe that as the interaction is increased,
the initial distribution given by [E] remains nearly invari-
ant up to the critical interaction λ = 1 beyond which its
energy increases linearly as a function of the interaction.
Secondly, the low energy peak [P ], which has no inten-
sity in the non-interacting λ = 0 case, gains intensity
and approaches the zero energy as the interaction is in-
creased. Moreover, when it reaches the zero energy at the
critical interaction λ = 1, its intensity given by the oscil-
lator strength χn− diverges. As explained in Sec.IV B 2,
by increasing the interaction beyond this point, we make
the symmetric equilibrium solution unstable, and there-
fore we change the initial state to one of the asymmetric
solutions. This leads again to a well-defined first order
response with the intensity of the low energy peak becom-
ing finite and its frequency approaching the bare phonon
frequency as the interaction is increased. We understand
these results in terms of the adiabatic potential energy
surfaces so that the mean-field approximation captures
the lowest adiabatic potential energy surface of Fig. 6
becoming more shallow which leads to the lowest excita-
tion approaching the zero energy. This agrees with the
observation that, as the Hessian matrices of Sec. IV B 2
indicate, there is a direction in the energy landscape in
the neighborhood of the symmetric equilibrium solution
such that along it, as λ → 1, the approximately har-
monic energy surface becomes more shallow. Moreover,
at λ = 1, this harmonic surface becomes completely flat,
and as the linearized equations describe only this local
neighborhood, it appears as if exciting the system costs
no energy which manifests itself as the divergence of the
zero-frequency component of the response function. At
this point, the lowest adiabatic potential energy surface
forms the double-well structure which has for λ = 1 also
a locally flat energy landscape at u = 0 where its sec-
ond derivative vanishes. Lastly, one can show that the
Hartree ground state energy function is equivalent to the

lowest adiabatic potential energy surface E0(u) by en-
forcing in Eq. (22) that 2gn = u and that Γ1 satisfies the
equilibrium Hartree equations derived in Ref. 1. This
suggests that the Hartree approximation captures the
formation of the double-well potential but needs to fall
into one of the two minima in order to minimize the en-
ergy. By doing so, it sees again a nearly harmonic surface,
which appears in Fig. 9 as the lowest excitation becoming
finite and approaching the bare phonon frequency.

Let us then discuss the density response functions ob-
tained for the stable equilibrium solutions of the par-
tially (Gd) and fully (GD) self-consistent Born approx-
imations shown in Fig. 9. The partially self-consistent
results shown in the subpanel Gd of Fig. 9 indicate that
the main qualitative difference to the Hartree approxi-
mation is that there is a sideband structure related to
the excitation [E]. The sidebands are separated roughly
by two bare phonon frequencies in agreement with the
exact results for weak interactions, but do not move
to higher energies as a function of the interaction as
clearly as the exact spectra does. Moreover, when λ
exceeds λC , the ground state becomes asymmetric and
new symmetry-forbidden excitations emerge in-between
the original sidebands. In the low energy scale, we in-
stead do not observe new qualitative differences to the
mean-field solution, in particular we still find that at λC ,
the low energy peak [P ] reaches the zero energy with its
intesity diverging. The symmetric solution of the fully
self-consistent Born approximation does, however, show
a qualitative difference as shown in the subpanel GD (s)
of Fig. 9. In the low energy scale, we observe that as the
interaction is increased, the low energy peak [P ] moves
initially towards the zero energy but, in contrast to the
mean-field and partially self-consistent results, does not
reach it for the parameters considered in this work. This
is in an agreement with the exact solution in which, how-
ever, the lowest excitation becomes increasingly close to
the ground state, while in the fully self-consistent approx-
imation, we observe that it approaches a finite non-zero
value. In the high energy scale, we on the other hand ob-
serve that as the interaction is increased, the peaks above
[E] become non-uniformly spaced and too dense in com-
parison to the exact solution. These shortcomings, as
well as the fact that the spectra do not move apprecia-
bly to higher energies as a function of the interaction,
are similar to what we observed for the equilibrium elec-
tron propagators in Sec. IV A 1. Finally, the asymmetric
solutions shown in the subpanels GD (a) are similar to
the partially self-consistent solutions for λ > λC except
for the additional excitation at ω/ω0 ∼ 2. The low en-
ergy sidebands seen in the exact solution are then likely
merely symmetry-forbidden in the symmetric solution of
the fully self-consistent approximation. As the last re-
mark on the overall structure, as shown in the top insets
of Fig. 9, the development of these spectra as a function
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of the interaction is consistent with the f-sum rule

n(1) ≡ −
∞∫

−∞

dω

πı
ωtrχR(ω)

= −2
(
Ee − Eloc

e

)
− 2
(
Eep − Eloc

ep

)
, (28)

which relates the first moment of the density-density re-
sponse function to the electron (Ee, E

loc
e ) and electron-

phonon interaction energies (Eep, E
loc
ep ), where super-

script loc refers to the site-diagonal part of the corre-
sponding energy. The fact that also the many-body ap-
proximations satisfy this sum rule is proven for the purely
electronic case in38,83.

Next, we focus on the two most significant features of
the density response function for the weak and interme-
diate interactions. These are the intensity and position
of [P ] and [E] shown in the left panels of Fig. 9. In the
exact case, as the interaction is increased, [E] loses mag-
nitude and moves towards higher energies while [P ] gains
intensity and approaches the zero energy. The former is
dominant up to borderline strong λ ∼ 1.5 interactions
although the latter is appreciable already for λ ∼ 1, and
its impact to the response properties is emphasized by its
different energy scale. In the Hartree approximation, we
observe that, as a function of the interaction, [E] is nearly
invariant for λ < 1 and that [P ] behaves in a divergent
manner as desribed above. The mean-field approxima-
tion therefore agrees with the exact solution only for very
weak interactions λ � 1. The partially self-consistent
Born results are qualitatively similar to the mean-field
results. On a quantitative level, it reproduces the exact
intensity and position of [E] better but deviates consid-
erably for intermediate λ ∼ 1 interactions. This together
with the observed divergence of [P ] implies that it can
be said to agree well with exact resutls only for weak
λ < 1 interactions. In both approximations, we find that
the intensities of [E] and [P ] decrease rapidly as a func-
tion of the interaction once λ exceeds λC . The density
response to a weak parturbation is thus suppressed for
a sufficiently strong interaction which is consistent with
the localized nature of the asymmetric equilibrium solu-
tions discussed in Ref. 1. Moreover, we find that also
the asymmetric solution of the fully self-consistent Born
approximation behaves qualitatively in this manner for
the interactions it has been found. Lastly, the symmetric
solution of the fully self-consistent Born approximation
reproduces the exact positions and intensities of [E] and
[P ] well up to intermediate interactions λ ∼ 1 with the
intensity of [E] being good also for stronger interactions.
In this approximation, the low energy excitation [P ] does
not reach the zero energy nor does it diverge as a func-
tion of the interaction, but its position and intensity do
not still agree even qualitatively with the exact solution
for strong λ > 1 interactions.

To summarize, we have found similarly as in
Sec. IV A 1 that the Hartree, and partially and fully self-
consistent Born approximations are in a good agreement
with the exact results for very weak λ � 1, and weak

λ < 1 and up to intermediate λ ∼ 1 interactions. In par-
ticular, we have shown that the exact density response
function has, for sufficiently strong λ > 1 interactions,
a dominant low energy excitation which none of the ap-
proximation describe qualitatively correctly. Moreover,
we have related this excitation to the response of a bipo-
laron to a weak perturbation by analyzing it using the
time-dependent joint probabilities. Instead of describing
the low energy excitation, the Hartree and partially self-
consistent Born approximations give rise to a divergence
of the response function at the critical point λC . This
has been explained by relating it to the formation of the
double-well structure in the lowest adiabatic potential en-
ergy surface which we have also associated with the bipo-
laronic crossover in Ref. 1. Finally, we have shown that
the divergence can be prevented by dressing the phonon
propagator self-consistently at the level of the fully self-
consistent Born approximation.

5. Phonon Propagator Revisited

The density response function which we calculated
and discussed above describes electron density fluctua-
tions which in turn couple to nuclear density fluctuations
described by the phonon propagator. This is formally
shown by the Dyson equation of Eq. (4b) which can be
written as

D(z; z′) = d(z; z′)

+

∫

C

dz̄dz̄′ d(z; z̄)Πr(z̄; z̄
′)d(z̄′; z′) , (29)

Πr,PQ(z; z′) ≡
∑

ijkl

MP
ji (z)χij,kl(z; z

′)MQ
lk(z′) , (30)

where the reducible self-energy Πr is determined by
the generalized response function of Eq. (24). This
means that a density response function obtained by time-
propagation can be also used to obtain a new phonon
propagator. Here we use this relation to identify some
phonon self-energies and discuss whether or not they lead
to better nuclear properties than the fully self-consistent
Born approximation (GD). In order to do this, due to
computational reasons instead of using the equilibrium
frequency-domain version of Eq. 29, we perturb the sys-
tem with the instantaneous force

F̂P (t) = δ(t)FP ,

where FP is the magnitude of the perturbation. We then
record the resulting phonon field expectation value which
in the linear response regime satisfies

δφP (t) ≡ φP (t)− φ(0)
P (t)

=
∑

Q

DR
PQ(t)FQ +O(F 2) ,
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where φ
(0)
P (t) is the expectation value of the unperturbed

system, and DR
PQ(t) is the retarded phonon propaga-

tor. In the Kadanoff-Baym equations this perturbation
amounts to choosing

φP (0) = φMP − ı
∑

Q

αPQFQ ,

where φMP is the equilibrium expectation value, as the
new initial condition and subsequently solving the equa-
tions of motion in the absence of this perturbation. The
phonon propagator is then given by

DR
PQ(t) ≡ ∂φP (t)

∂FQ

∣∣∣∣
F=0

.

which we in practice evaluate by using the difference quo-

tient (φP (t)−φ(0)
P (t))/FQ with sufficiently small FQ and

FR = 0 for R 6= Q. It can be shown that this propagator
satisfies Eq. (29) and its irreducible version of Eq. (4b)
with the irreducible self-energy

ΠPQ(z; z′) =
∑

ijkl

MP
ji (z)Pij,kl(z; z

′)MQ
lk(z′) ,

where P is the irreducible polarizability of Eq. (25b).
The phonon propagators obtained by time-propagation
are thus related to irreducible self-energy functionals
whose lowest-order diagrammatic expansions are shown
in Fig. 11. The phonon propagator obtained in this man-
ner in the Hartree (H), and partially (Gd) and fully
(GD) self-consistent Born approximations are respec-
tively given by

Πtd−H(z; z′) = ΠB[GH, d](z; z′) ,

Πtd−Gd(z; z′) = ΠBL[GGd, d](z; z′) ,

Πtd−GD(z; z′) = ΠBLX[GGD, DGD](z; z′) ,

where we have introduced the prefix ’td-’ referring ot
time-dependent to distinguish these self-energies from
their original counterparts. This shows explicitly that
these approximations are not self-consistent i.e. the prop-
agator satisfying the Dyson equation is not the same as
the ones in the self-energy diagrams.

The results can be anticipated by noting that the non-
interacting phonon propagator is a function peaked at
the bare phonon frequencies. The reducible frequency-
domain Dyson equation then suggests that the phonon
propagator satisfying it has a similar frequency content as
the density response function with weight redistributed
around the bare phonon frequencies. This already gives
a picture how good are the phonon propagators obtained
from the density response functions of Sec. IV B 4. How-
ever, let us try to make this picture more quantitative.
Figure 12 shows the Fourier transforms of the retarded
phonon propagators obtained by time-propagation for
the many-body approximations (td-H, td-Gd, td-GD).
The exact (ED) and fully self-consistent Born (GD) equi-
librium propagators are also shown for reference. We

FIG. 11. The phonon self-energies, or their functional forms,
corresponding to the phonon propagators obtained by time-
propagation. The Hartree (H), and partially (Gd) and fully
(GD) self-consistent Born approximations relate to the bubble
(B), and bubble-ladders (BL) and bubble-ladders-exchange
(BLX) self-energy functionals, respectively. A line with an
arrow indicates a dressed electron propagator, while single
and two-fold wiggly lines represent bare and dressed phonon
propagators, respectively. An open circle represents a connec-
tion for a phonon propagator.

have discussed the reference results and their physical
content in Sec. IV A 2 so here we focus directly to com-
paring the different approximations. The contour plots
show that none of the new approximations improve the
qualitative description of the low energy peak [P ] which
dominates the spectra. Moreover, only td-Gd with a
symmetry-broken ground state for λ > λC produces a
sideband structure for this excitation. We also observe
that td-GD has a slightly larger sideband separation for
the electronic excitation when compared to the fully self-
consistent Born (GD) spectra. Here we remark that the
numerical results for td-H agree with the analytical re-
sults and discussion on the phonon vacuum instability
presented in Ref. 1. Lastly, we show the position and
intensity of [P ] relative to its exact position and inten-
sity in the top panels of Fig. 12 for weak interactions
λ < 0.5. The results highlight, as expected in a pertur-
bative regime, that td-H deviates the most and td-GD
the least from the exact result. Furthermore td-Gd and
GD give similar results in this regime with the former
being slightly better as it includes all the diagrams up to
fourth order in the electron-phonon interaction.
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Overall due to the poor description of the lowest exci-
tation, the td-H, td-Gd, and td-GD approximations are
only valid in the regime of weak interactions λ < 1 in
which td-Gd and td-GD improve on GD. The qualita-
tive behavior for larger interactions λ ∼ 1 shows that
although one can obtain sophisticated many-body self-
energies by means of time-propagation, they do not nec-
essarily improve the description of the physics. In par-
ticular, we find that infinite summation schemes for self-
energy diagrams, which include vertex corrections, lead
to deterioration of the spectral properties of the equilib-
rium propagator evaluated with a single dressed polar-
ization bubble for intermediate to high interactions.

V. CONCLUSIONS AND OUTLOOK

We have introduced a method based on time-
dependent many-body perturbation theory aimed at
studying interacting electrons and phonons. The many-
body approximations used here are the Hartree (H), and
the partially (Gd) and fully (GD) self-consistent Born
approximations. The method has been applied to in-
vestigate both the non-neutral and neutral excitation
spectra of a two-site, two-electron Holstein model. We
have presented results for the frequency-domain ground-
state electron and phonon propagators, as well as for the
density-density and displacement-displacement linear re-
sponse functions. The results have been compared with
numerically exact results obtained by exact diagonaliza-
tion (ED) in order to assess their quality and relate a
physical picture to the behavior of the many-body ap-
proximations.

In Ref. 1, we found that the approximations stud-
ied here support multiple, concurrently co-existing solu-
tions some of which exhibit a broken reflection symmetry.
The asymmetric solutions were found once the electron-
phonon interaction λ reached a critical value λC , and
were understood to mimic the bipolaronic crossover of
the exact solution. The asymmetric solutions were fur-
thermore found to be the lowest energy solutions for a
large range of parameters. The total energies, and nat-
ural occupation numbers, also suggested that the sym-
metric solution of the fully self-consistent Born approxi-
mation describes partially the crossover to a bipolaronic
state. In the present work, we studied the frequency
structure of the ground state propagators for a restricted
range of adiabatic ratios γ = 1/2, 1/4 and interactions
λ ∈ [0, 2] which allows us to complete some of the obser-
vations made in Ref. 1. Firstly, the frequency-integrated
observables obtained from the electron propagator are in
a better qualitative agreement with exact results than
the frequency-resolved objects themselves. In particular,
our results show that none of the approximations give an
electron propagator in which there is a rigid shift or redis-
tribution of the spectral weight comparable to the exact
solution for high λ > 1 interactions. The phonon propa-
gator does not moreover show a clear spectral fingerprint
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FIG. 12. The phonon propagators as a function of the in-
teraction λ and frequency ω. The top and bottom figures
correspond to the adiabatic ratios γ = 1/2 and γ = 1/4, re-
spectively. The contour plots show

∣∣DR
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∣∣ /T for the exact
(ED), denoted with red dots, and approximate (GD, td-H,
td-Gd, td-GD) solutions. The top panels show the difference
between the approximate and exact intensity and position of
the lowest energy peak of

∣∣DR
11(ω)

∣∣ /T labeled with [P ] in the
contour plots. (color online)
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of a double-well structure in the fully self-consistent Born
approximation for the parameters considered. As all of
these features have been identified as spectral signatures
of a bipolaronic state, our results here favor the state-
ment that none of the approximations describe even par-
tially the bipolaronic crossover for the parameters con-
sidered. This said, the results for the electron prop-
agator can be roughly summarized by concluding that
the Hartree, partially self-consistent Born, and fully self-
consistent Born approximations agree with the exact re-
sults up to very weak λ � 1, weak λ < 1, and weak
to intermediate λ ∼ 1 interactions, respectively. The
non-interacting phonon propagator used in the Hartree
and partially self-consistent Born approximations is only
valid for very weak λ� 1 interactions while the dressed
propagator of the fully self-consistent Born approxima-
tion agrees reasonably well with the exact results up to
borderline strong λ ∼ 1.5 interactions.

The linear response functions studied in the present
work are obtained by time-propagation starting either
from a symmetric or an asymmetric ground state solu-
tion. In the case λ > λC , these solutions co-exits and
we find that the symmetric solutions of the Hartree and
partially self-consistent Born approximations are unsta-
ble, while the asymmetric solutions are stable, against
a small asymmetric perturbation. The symmetric and
asymmetric solutions of the fully self-consistent Born ap-
proximation are, on the other hand, shown to be stable
against the same perturbation. By identifying the sta-
ble ground state solutions, we have been able to evalu-
ate linear response functions corresponding to these so-
lutions. In particular, the density-density response func-
tion obtained in the Hartree and partially self-consistent
Born approximations is shown to have a zero-frequency
component which appears and its intensity diverges as
λ approaches λC . In the Hartree approximation, this is
caused by the build-up of a double-well structure in its
ground state energy surface exactly at λ = 1 and by the
need of the mean-field to minimize the total energy. Our
results further show that the fully self-consistent Born
approximation does not have a similar divergence. The
comparison of the exact and approximate density-density
response functions confirms that the range of validity of
the many-body approximations is roughly the same as
for the case of equilibrium propagators. In particular,
none of the many-body approximations were able to de-
scribe the lowest excitation of the exact response function
for strong interactions λ > 1 for which it is the domi-
nant feature of the exact response function. By analyz-
ing this excitation, we further identified it as a signature
of a bipolaronic system, and hence in agreement with
the conclusions based on the equilibrium propagators,
this suggests that the approximations do not describe the
crossover to the bipolaronic state. Finally, we could by
time-propagation obtain another phonon propagator as-
sociated with a highly sophisticated self-energy, although
a non-selfconsistent one. The results show that although
the propagators obtained in the partially and fully self-

consistent approximations are better than the equilib-
rium propagator of the fully self-consistent Born approxi-
mation for the perturbative λ� 1 interactions, they lead
to deterioration of the qualitative spectral properties for
higher interactions. This suggests that, at least in this
case, it is either important to maintain self-consistency,
or that instead of infinite partial summations of dressed
self-energy diagrams it is better to consider truncated
approximations.

In order to go beyond the approximations studied here
in many-body perturbation theory one needs to intro-
duce vertex corrections which are in particular needed to
improve the properties of the electron propagator. This
is realizable in an equilibrium theory but leads to a sub-
stantial increase in the complexity of the time-domain
method which makes the inclusion of vertex corrections
challenging with the current computational resources.
The two-time equations can be however cast as one-time
equations via the GKBA24–26,34,84–89 which is a possi-
ble way to overcome the numerical challenge and reduce
more advanced approximations tractable. On the other
hand e.g. in cavity quantum electrodynamics already our
weak interactions are considered strong and thus the ap-
proximations used here could be a valuable asset for in-
vestigating non-linear time-dependent phenomena. In
this context our results provide a basis for studying the
approximation in an explicitly time-dependent situation,
and for understanding properties of further approxima-
tions e.g. the GKBA which could be used in order to
address physics of larger or more realistic systems.
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Appendix A: Hartree, TDSCF and Ehrenfest

The Hartree approximation is shown here to be equiv-
alent to the time-dependent self-consistent field (TD-
SCF) approach and to the semi-classical Ehrenfest ap-
proximation. This equivalence is shown by deriving
the time-dependent self-consistent field equations, noting
that they reduce to the Ehrenfest equations of motion,
and finally by showing that their solutions can be used
to construct the phonon field expectation value, and the
electron propagator of the Hartree approximation. We
begin by introducing the product ansatz

|Ψ(t)〉 ≡ |ψ̃(t)〉 |χ̃(t)〉 ,

where |ψ̃(t)〉 and |χ̃(t)〉 consist of only electronic and
phononic degrees of freedom, respectively. By substitut-
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ing this ansatz to the time-dependent Schrödinger equa-
tion

ı∂t |Ψ(t)〉 = Ĥ(t) |Ψ(t)〉

and projecting it to the states |χ̃(t)〉 and |ψ̃(t)〉, we arrive
at the time-dependent self-consistent field equations90

ı∂t |ψ(t)〉 =
∑

ij

(
hij(t) +

∑

P

MP
ij (t)φP (t)

)
ĉ†i ĉj |ψ(t)〉 ,

ı∂t |χ(t)〉 =

(∑

PQ

ΩPQ(t)φ̂P (t)φ̂Q(t)

+
∑

P

FP (t)φ̂P (t) +
∑

ijP

MP
ij (t)γji(t)φ̂P

)
|χ(t)〉

where

φP (t) ≡ 〈χ(t)| φ̂P |χ(t)〉 ,

γij(t) ≡ 〈ψ(t)| ĉ†j ĉi |ψ(t)〉 ,

are the phonon field expectation value and the reduced
density matrix. In the derivation. we adopted the phase
conventions

|ψ(t)〉 ≡ eı
∫ t
t0
dt′
(
Ep(t′)−〈χ̃(t′)|ı∂t′ χ̃(t′)〉

)
|ψ̃(t)〉 ,

|χ(t)〉 ≡ eı
∫ t
t0
dt′
(
Ee(t

′)−〈ψ̃(t′)|ı∂t′ ψ̃(t′)〉
)
|χ̃(t)〉 ,

where we defined

Ee(t) ≡
∑

ij

hij(t) 〈ψ(t)| ĉ†i ĉj |ψ(t)〉 ,

Ep(t) ≡
∑

PQ

ΩPQ(t) 〈χ(t)| φ̂P φ̂Q |χ(t)〉 .

as the electron and phonon energies, respectively. The
semi-classical Ehrenfest equations are then derived
e.g. by introducing a polar expansion of the nuclear state
and taking its classical limit90. In our case however, the
Heisenberg equations of motion for the phonon field ex-
pectation values are equal to the classical equations of
motion. Taking advantage of this property and the bilin-
earity of the equation for |ψ(t)〉 in terms of the electronic
operators, we arrive at the Ehrenfest equations of motion

ı∂tψij(t) =
∑

k

(
hjk(t)

+
∑

P

MP
jk(t)φP (t)

)
ψik(t) , (A1a)

ı
∑

Q

αPQ∂tφQ(t) =
∑

Q

Ω̃PQ(t)φQ(t)

+ FP (t) +
∑

ij

MP
ij (t)γji(t) , (A1b)

such that |ψ(t)〉 can be written as a Slater determinant
of the time-dependent orbitals ψi(t). In order to relate
these orbitals to the electron propagator in the Hartree
approximation, we further write down the equilibrium
Hartree equations

hMH
~ψMk = εMk

~ψMk , (A2a)

hMH = hM +
∑

P

MPφMP , (A2b)

~φM = −Ω̃
M−1

(
~FM +

∑

ij

~Mijγ
M
ji

)
, (A2c)

which are introduced in Ref. 1, and correspond to a set
of non-linear eigenvalue equations for the eigenvalues εMk
and eigenvectors ψMk . The electron propagator can be
then written in the Hartree approximation in terms of
the time-dependent orbitals ψi(t) obtained by solving
Eqs. (A1) with φMP and ψMi as their initial conditions.
That is, in the Hartree approximation, the phonon field
expectation values satisfy Eq. (A1b), and the electron
propagator is given by

G>ij(t; t
′) =

1

ı

∑

k

f̄+

(
βεMk

)
ψ∗kj(t

′)ψki(t) ,

G<ij(t; t
′) = −1

ı

∑

k

f+

(
βεMk

)
ψ∗kj(t

′)ψki(t) ,

where f̄+ ≡ 1−f+, as readily verified by using Eqs. (A1)
to check that Eqs. (5) with the Hartree self-energy are
satisfied, and also by verifying that the Kubo-Martin-
Schwinger boundary conditions2 are met.

Appendix B: Hartree Density Response Function

Here, we calculate the density response function of
the two-site, two-electron Holstein model in the Hartree
approximation by applying the method discussed in
Sec. IV B 1. In order to do this, we first rewrite the
Hartree equations in a more convenient form by using
the conserved total energy to reduce the number of de-
pendent variables. That is, the total energy of Eq. (22)
allows us to eliminate Γ1, and subsequently by defining
the vector

~x ≡



n
Γ2

u
p


 ,

we can rewrite the Hartree equations given in Eqs. (20)
as

~̇x = ~f(~x)

≡




4tkinx2

−tkinx1 + 2gx3Γ1(x1, x3, x4)
ω0x4

−ω0x3 + 2gx1


 , (B1)
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where 8tkinΓ1(x1, x3, x4) ≡ ω0

(
x2

4 + x2
3 − 1

)
− 4gx1x3 −

2E0. Here E0 denotes the total energy at t = 0 which
is determined by the initial condition ~x0. The density-
density response function of Eq. (16), which is in this
case given by

χRij(t) = (−1)i+1 ∂n(t)

∂vj

∣∣∣∣
v=0

. (B2)

is then the i = 1 component of the more general response
function ∂xi/∂vj |v=0 which satisfies

d

dt

∂~x

∂vj

∣∣∣∣
v=0

= J
∂~x

∂vj

∣∣∣∣
v=0

as seen by differentiating Eq. (B1) with respect to vj .
The Jacobian matrix Jij ≡ ∂xjfi(~x)|v=0 is a function of
the unperturbed solution ~x|v=0 which is in our case ob-
tained by propagating either the symmetric or asymmet-
ric ground state solution of the equilibrium Hartree equa-
tions given in Eq. (21a) and Eq. (21b), respectively. As
these solutions are also fixed-points of Eq. (B1), they are
constant in time, and thus the Jacobian matrices for the
symmetric (s) and both asymmetric (a) solutions given
by

Js ≡




0 4tkin 0 0
−tkin 0 g 0

0 0 0 ω0

2g 0 −ω0 0


 ,

Ja ≡




0 4tkin 0 0
−tkinλ

2 0 gλ−1 0
0 0 0 ω0

2g 0 −ω0 0


 ,

are time-independent. The initial conditions
∂~x0

η/∂vj |v=0 for the symmetric (η = s) and asym-
metric (η = a) cases can be deduced from Eqs. (18) to
be

∂~x0
s

∂vj

∣∣∣∣
v=0

=




0
−(δ1j − δ2j)/2

0
0


 .

∂~x0
a

∂vj

∣∣∣∣
v=0

=




0
−(δ1j − δ2j)λ−1/4

0
0


 .

respectively. The equation for the response function is
linear, and hence admits the solution

∂~xη(t)

∂vj

∣∣∣∣
v=0

= eJηt
d~x0

η

dvj

∣∣∣∣
v=0

,

where we restored the explicit time-dependence. The
task is then to evaluate the matrix exponential which
is done here by using the eigendecomposition of the Ja-

cobian matrix. The decomposition exists since the eigen-
values of the Jacobian matrix given by ıωη±, −ıωη±, where

ωs± ≡

√√√√ω2
0 + 4t2kin

2

(
1±

√
1 +

16ω2
0t

2
kin(λ− 1)

(
ω2

0 + 4t2kin

)2

)
,

ωa± ≡

√√√√ω2
0 + 4t2kinλ

2

2

(
1±

√
1−

16ω2
0t

2
kin(λ2 − 1)

(
ω2

0 + 4t2kinλ
2
)2

)
,

are non-degenerate for λ 6= 1. The diagonalizing similar-
ity transformation given by

Xη ≡




1 1 1 1
ıωη+/4tkin ıωη−/4tkin −ıωη+/4tkin −ıωη−/4tkin

xη+ xη− xη+ xη−
ıωη+x

η
+ ıωη−x

η
− −ıωη+x

η
+ −ıωη−x

η
−


 ,

where xη± ≡ 2g/
(
1 − ωη±2

)
, then allows us to write the

response function as

∂~xη(t)

∂vj

∣∣∣∣
v=0

= Xeıω
ηtX−1 ∂~x

0
η

∂vj

∣∣∣∣
v=0

,

where ωη = diag
(
ωη+, ω

η
−,−ω

η
+,−ω

η
−
)

denotes a diagonal
matrix. In particular, its first component according to
Eq. (B2) gives the density response function

χRHη ;ij(t) = −(−1)i−jθ(t)
(
χη+ sin(ωη+t) + χη− sin(ωη−t)

)
,

χη± ≡
2tkin

(
ω2

0 − ω
η
±

2
)2

ωη±

[(
ω2

0 − ω
η
±

2
)2

+ 4λω2
0t

2
kin

] ,

where we introduced the Heaviside function to enforce
the correct causal structure.
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77A. P. Itin and P. Törmä, “Dynamics of quantum phase tran-
sitions in dicke and lipkin-meshkov-glick models,” (2010),
arXiv:0901.4778v3 [cond-mat.stat-mech].

78L. Bakemeier, A. Alvermann, and H. Fehske, Phys. Rev. A 88,
043835 (2013).

79V. I. Arnold, V. V. Kozlov, and A. I. Neihstadt, Mathemati-
cal Aspects of Classical and Celestial Mechanics (Spinger-Verlag
Berlin Heidelberg, 2006).

80R. Krechetnikov and J. E. Marsden, Rev. Mod. Phys. 79, 519
(2007).

81Y. Kuznetsov, Elements of applied bifurcation theory, 2nd edition
(Springer, New York, 1998).

82A.-M. Uimonen, G. Stefanucci, Y. Pavlyukh, and R. van
Leeuwen, Phys. Rev. B 91, 115104 (2015).

83R. van Leeuwen and N. E. Dahlen, in The Electron Liquid
Paradigm in Condensed Matter Physics, Proc. of the Interna-
tional School of Physics Enrico Fermi, Vol. CLVII (Amsterdam:

IOS Press, 2004).
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