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We study the effect of disorder on the London penetration depth in iron-based superconductors.
The theory is based on a two-band model with quasi-two-dimensional Fermi surfaces, which allows
for the coexistence region in the phase diagram between magnetic and superconducting states in
the presence of intraband and interband scattering. Within the quasiclassical approximation we
derive and solve Eilenberger’s equations, which include a weak external magnetic field, and provide
analytical expressions for the penetration depth in the various limiting cases. A complete numerical
analysis of the doping and temperature dependence of the London penetration depth reveals the
crucial effect of disorder scattering, which is especially pronounced in the coexistence phase. The
experimental implications of our results are discussed.

PACS numbers: 74.70.Xa, 74.62.En, 74.25.N-, 74.25.Dw

I. INTRODUCTION

Measurements of the magnetic penetration depth Ap
as a function of temperature, doping, magnetic field, and
crystal orientation provide invaluable information about
the nature of superconductivity and the symmetry of the
underlying order parameter (see e.g. reviews [12]). In
a single-component clean s-wave BCS superconductor,
with order parameter A and a fully gapped Fermi surface,
the low-temperature behavior of the London penetration
depth AL(T) = AL(T) — A(0) shows an exponential
decrease with temperature

o \/geA/T. (1)

Even though nonmagnetic disorder does not directly af-
fect A, it does modify the value of Ar, which becomes
A 2(T) o< A(T)o tanh[A(T)/2T], where o is the normal-
state conductivity.

In contrast to the s-wave case, d-wave symmetry of the
order parameter with nodes on the Fermi surface trans-
lates to power-law temperature dependence for the pen-
etration depth®

dAL(T)
AL(0)

SAL(T)
AL(0)

T
x X (2)

The power exponent of the low-temperature behavior
is very sensitive to disorder scattering, such that d\p
crosses over to quadratic behavior, dAp(T)/AL(0) =~
(T/A)?%, below a certain temperature scale T, which is
determined by the concentration of strong scatterers 87

The dependence of the penetration depth on various
parameters in the case of iron-pnictide superconductors

(FeSCs) is of special interest. These materials have multi-
ple Fermi pockets with electron-like and hole-like disper-
sion of carriers. Because of a delicate interplay between
interactions in various pairing channels, superconductiv-
ity in FeSCs emerges in close proximity to a spin-density-
wave (SDW) order, and the superconducting (SC) crit-
ical temperature 7T, has a dome-shaped dependence on
doping, with the T, maximum near the onset of SDW or-
der BTt has been proposed’? that superconductivity in
FeSCs is unconventional, with the order parameter hav-
ing opposite signs on different Fermi sheets, and named
sT symmetry. The latter emerges because SDW fluctua-
tions increase interpocket interaction, which is attractive
for s* gap symmetry, to a level where it overcomes in-
trapocket repulsion. Likewise, SC fluctuations tend to
increase the tendency towards SDW.

The emergent complexity of FeSCs with competing
superconducting and magnetic instabilities, which may
coexist in a certain region of the phase diagram 514
leads to peculiar dependencies of the penetration depth.
Early experiments in 122-materials, Co- and K-doped
BaFe;Ass, revealed that down to the lowest tempera-
tures and in a wide range of dopings the T-dependence
of 6\, can be systematically fitted by oAz, oc 723517 1y
contrast, in 1111-compounds such as SmFeAsO;_,F, 18
and PrFeAsO™ the penetration depth has an exponen-
tial temperature dependence consistent with a gap with-
out nodes; no appreciable effect of scattering was ob-
served. At the same time, data on another 1111-material,
LaFePO2Y pointed out that Az (T") varies approximately
linearly with T, strongly suggesting the presence of gap
nodes in this compound. Since these initial reports, the
London penetration depth has been measured systemat-
ically in a variety of families of iron-pnictides and iron-
chalcogenides 2131 Perhaps the most striking recent ob-



servation is a disorder-induced topological change of the
superconducting gap structure, as revealed from the low-
T behavior of 67, in BaFes(As;_,P.)2.%% Nonmagnetic
defects were controllably introduced by electron irradia-
tion, and it was found that the nodal state of P-doped
BaFegAss changes to a nodeless state with increasing dis-
order. Moreover, under further irradiation, the gapped
state evolves into a different gapless state, thus providing
evidence of unconventional sign-changing s-wave super-
conductivity. Such unusual sensitivity of the supercon-
ducting gap structure to disorder scattering is a unique
characteristic feature of FeSCs.

Theoretical studies of the penetration depth in FeSCs
were discussed in Refs. [34H37] for clean samples based
on the band model. The effects of disorder on the phase
diagram, including pair-breaking scattering, and on the
penetration depth were investigated in Refs. [38-44]. We
study the effect of disorder on Ay in a systematic way
and analyze its behavior in the part of the phase diagram
where the SC and SDW phases coexist. On the techni-
cal side, we develop a formalism that enables us to study
the doping and temperature evolution of the penetration
depth in the whole parameter space of the phase diagram.
Recently electron irradiation was used to introduce disor-
der into FeSC systems in a controlled way 2053253 Thys,
our theory is relevant for the interpretation of existing
and future experiments along this exciting direction.

This paper is organized as follows: In Sec. IT we present
our model, discuss underlying approximations and as-
sumptions, and we analyze the phase diagram of the
FeSC compounds. In Sec. III we derive and solve qua-
siclassical Eilenberger equations with emphasis on the
coexistence of SC and SDW orders. We then apply that
formalism to study the London penetration depth across
the whole range of the phase diagram, and at different
temperatures. In Sec. IV we summarize our findings and
place our work in the context of future developments.

II. MODEL AND APPROXIMATIONS

In this section we introduce the minimal model for
iron-based superconductors in which doping acts as a
source of disorder and produces a region of coexistence
between superconductivity and magnetism. Further-
more, right from the outset, we consider the case of
nonzero external magnetic field that acts on orbital elec-
tron motion, but assumed to be weak enough not to
affect spin. We discuss the ground state properties of
this model in zero field within the quasiclassical approx-
imation, which we use later to compute the penetration
depth across a wide doping range from the coexistence
region to the purely superconducting state.

A. Model

Following the discussion in Refs. [41[42], we consider
a model with two cylindrical Fermi surfaces. One Fermi
surface has electron-type and another one has hole-type
excitations. We introduce the following eight-component
spinor

T(r) = (Pi(r), de(r), $}(r), ds(r)), 3)

where 1, (r) = (wlT(r), ey (r)) (a = ¢, f) is a Gor’kov-

Nambu spinor, and 1} _(r) are the creation operators for

the electron (a=f) and hole (a=c) fermionic excitations

at point r in real space with a spin component o =1J.
The full Hamiltonian for the problem at hand

M= S T E)]as Vs (r), (4)
raf

consists of kinetic part and interactions
H(r) = Ho(r) + Hps(r). (5)

In the limit of weak magnetic field the noninteracting
Hamiltonian matrix [Hy(r)]as can be compactly written
as

- A ie o
Hy(r) = —{73p360 + %A -V 730000. (6)

Here, 7;, p;, and 6; with ¢ = 0,1,2,3 are sets of Pauli
matrices acting correspondingly in the band, Gor’kov-
Nambu, and spin spaces; 79,00,60 are unit matrices, A(r)
is the vector potential, f = —V?/2m — pu, and p is the
chemical potential.

Interactions between the quasiparticles on the electron-
and hole-like Fermi surfaces lead to the development of
superconducting and spin-density-wave orders. Within
the mean-field theory approximation, the corresponding
expression for the interaction part of the model Hamil-
tonian H,,; reads

ﬁmf:ﬁA—i_}AIMa (7)

Hpa = —AT3pe6o, Hy =11psM - 6. (8)
Here, A is the superconducting order parameter, while
M is the spin-density-wave order parameter. We ex-
plicitly assume that the magnetic field is weak enough
so that we can ignore the spatial dependence of both
SC and SDW fields [see discussion after Eq. be-
low]. Also note that A and M must be computed
self-consistently; we will derive the corresponding equa-
tions in what follows. We emphasize that within the
model under consideration, we study the case of s* pair-
ing, i.e. the superconducting order parameters on the
electron-like and hole-like Fermi surfaces have opposite
signs, Al = —A() = A, We also ignore the possible
mismatch due to differences in the band occupations and
effective masses between the two Fermi surfaces.



Let us now introduce a disorder potential. In what
follows we consider two types of disorder scattering: the
first type is intraband disorder with potential Uy, which
scatters quasiparticles within the same band, while the
second type with potential U, accounts for interband
scattering. Thus, in the basis for disorder potential
we write

U(r) = [Ustopsbo + Ut1ps60] 6(r — Ri),  (9)

K2

where the summation goes over impurity sites. We as-
sume that concentration of impurities is Zimp.

We will treat the effects of disorder within the self-
consistent Born approximation. Specifically, we intro-
duce a single-particle Green’s function in the Matsub-
ara representation” as a solution of the following matrix
equations

[Zan —H(ry) - i]w(R)} Gliwn, r1,10) = I, o)
[—i@n — f[(rg) — f]w(R)} G(iwn,rl,rg) = f,

where &, = 7T(2n + 1)7ppobo, T is a temperature,
I= ToPo00pd(r1 —ra), and R = (r1 +r2)/2 is the center-
of-mass coordinate. In order to write down an explicit
expression for the self-energy »(iw,,R), in addition to
the center-of-mass coordinate we introduce the relative
coordinate r = r; — ro, and consider the matrix Green’s
function as a function of R and r. Furthermore, we
perform the Fourier transformation with respect to the
relative coordinate r, and in what follows we consider
the function G(iw,,R,p). Then, assuming that disor-
der is uncorrelated, upon averaging over various disorder
configurations® we find the following expression for the
self-energy (hereafter h = ¢ = 1):

A 4F0 dgpAAAA, A A A
Yu(R) = — (%)QTOPSUOG(MT”R, P)70P360
4T &Pp A A A A

e Wﬁ%UOG(WmR,P)TlPBUOa (11)

where the cross terms o< UyU, vanish; v is the sin-
gle particle density of states, ['y = TVZimp|Uo|?/4, and
I, = wuximp|U,T|2 /4. Clearly, the fully self-consistent
computation of the order parameters A and M along
with the self-energy X,(R) is a challenging problem.
However, this problem can be solved efficiently using the
quasiclassical approach.

B. Quasiclassical approximation

The quasiclassical approximation is justified when the
characteristic quantities for the problem at hand vary
significantly on length scales that are much longer than
the Fermi wavelength Ap. In the context of iron-based
superconductors, the quasiclassical approximation works

well since both superconducting and magnetic correlation
lengths greatly exceed \p 21240
The central object in the quasiclassical approach is the

Eilenberger functiont
- 4 [pdp,. . . .
gw (R7 n) - E ?7—3[)300 : G(lwnv Ra p) (12)

To derive an equation for the Eilenberger function
G.(R,n) in a weak external magnetic field, one needs to
eliminate the single-particle dispersion via a series of al-
gebraic manipulations (see Appendix A for details). Tak-
ing into account that the relevant values of the quasipar-
ticle momentum p are close to the Fermi momentum pp,
so that p/m = vpn, we find the following equation for

Gt
[mmﬁg&o, Gu(R, n)] - [ﬁmfﬁg ps60, G (R, n)}
~ [Eu®)spa00, G (R, m)|
+ [evrm - A(R)7ofsd0, G (R, m)|
+vpn - (—iVR)G,(R,n) =0, (13)

where the square brackets denote a commutator. Since
we consider the limit of a weak magnetic field, we can
look for the solution of this equation by perturbation
theory, namely

Qw (R7 n) = QE;O) + QE;I) (R7 n)’ (14)

restricting ourselves to corrections linear in powers of the
vector potential A. This is why we could neglect the
dependence of A and M on R, since the corrections that
render both order parameters spatially inhomogeneous
are of the order of O(A?)" Next, we discuss the solution
of the Eilenberger equation in the spatially homogeneous
case.

C. Phase diagram

In this section we first review the ground-state prop-
erties of the model with disorder by taking the limit
of A =0 in Eq. and considering a uniform system,
VG = 0. We thus have

[an':sﬁ?ﬁo, GL(UO)} +i |:(I:Imf +3.) - F3p360, G&O)} =0.
(15)
Without loss of generality we choose the SDW magne-
tization to be along the z-axis, M = Me,. Then, the
solution of has the following form:

G = g, 3pado — i fuTopr62 — iSwT2pods, (16)

where the functions g, f.,, and s, are determined by the
solution of the following system of algebraic equations:

iAgw = fw (wn + 2F7Tgw) )

17
ngw = Sw (wn + 2thw) . ( )



Temperature, T/T
<) o T c0
- o N

o
T T

" PR I N I " " " n n
1 0.12 0.14 0.6 0.18 0.2 00.1 0.12 0.14 0.16 0.18 0.2

T T T 2777

o <0
- ” N o9
T T T

Temperature, T/T
o
&

" " 2 N 1 "
0.2 %.1 0.12 0.14 0.16 0.18 0.2

ry/2nT

%.1 0.12 0.14 0.6 0.18

L'/ 2nT

FIG. 1: (Color online) Phase diagrams in the (I'o,T") plane
computed by solving the self-consistency equations and
the Eilenberger equations for various ratios between in-
traband and interband scattering rates. 7.0 denotes the su-
perconducting critical temperature in a clean system. All
plots are obtained assuming Tso = 370, and Tso is the criti-
cal temperature for the SDW state.

Here we introduced the total scattering rate I'y = T'o+1'.
In addition, the functions g, f., and s, satisfy the nor-
malization condition g2 — f2 — s = 1. Subsequently, su-
perconducting and SDW order parameters can be found
from

) A . A

M A

T g Sws 2T g fuws (18)
gm Wy >0 Gse wn>0

where gs. and g,, are the coupling constants, and A is an
ultraviolet cutoff. In the clean system, there is a phase
transition from the paramagnetic to the SDW state at
critical temperature Tyy = 1.13Ae~2/Y9m provided that
Im > gsec- If gsc > gm, the ground state is a supercon-
ductor with a critical temperature T,y = 1.13Ae=2/v9se
We consider Tyg > T.9, so that without disorder, the
SDW phase develops at a higher temperature.

We solve Egs. (17) and numerically, and show
our results in Figs. In agreement with an earlier
work 2! we find that for a narrow region in I'y values,
there is a region in the phase diagram where SDW and

superconductivity coexist. Specifically, superconductiv-

ity emerges when I'y reaches some value denoted by F(()SC).

With further increase of intraband scattering, the SDW
order is fully suppressed at some value I'g = F(()de). As
the ratio I'; /Ty increases, both ngc) and FngW) decrease.
In Fig. [2| we plot the width of the coexistence region
(&™) _ 1y 27T, at T = 0. Thus, we conclude that
the coexistence region remains quite robust with respect
to the interband scattering, and it only vanishes when
both scattering rates become comparable, I'g ~ I';;.
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FIG. 2:  (Color online) Width of the coexistence region

@5 1) /20T, is shown as function of I'x /Tg. The data
points are found from the solution of Eqns. and at
zero temperature. The plot is obtained assuming Tso = 37T¢o.
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FIG. 3: (Color online) Phase diagrams in the (I'g,7T") plane
for Tso = 1.7Tco. In panel (a) we show the variation of the
critical temperatures with T for I'x = 0.1, while panel (b)
shows critical temperatures for I'x = 0.3['g. The insets show
the variation of the pairing amplitude and magnetization with
disorder, evaluated at T' = 0.017,. We use these data to
evaluate the variation of the London penetration depth with
disorder and temperature.



IIT. LONDON PENETRATION DEPTH

In this section we solve the Eilenberger equation
and use the resulting correction to the Eilenberger func-
tion to compute the penetration depth as a function of
disorder and temperature in the lowest order in A.

A. Solution of the Eilenberger equation in an
external magnetic field

The field-induced correction to the Eilenberger func-
tion is given by the solution of the following matrix
equation

[iwnf;},ﬁg&o, GW(R, n)} - [ﬁmffsﬁ?ﬁo» IV (R, n)]

— {Ew%SﬁZS&ngg)(Rv n)] =- [GUFH : Afoﬁﬁo»%;o)] .
(19)

which is found from by keeping terms linear in the

vector potential. The function GU(})(R, n) must also sat-
isfy the following condition, which results from the nor-
malization of the full Eilenberger function :

G -G (R,m) + GV R, m) -GV =0 (20)

We look for a solution of this equation in the following
form

G (R,n) = g\ (R, n)7ops60 — i fV (R, n) 73162

— V(R ). )

The matrix form for the first two terms follows from solv-
ing Eq. ; first in the limit when A = M = 0, and then
for M = 0. In order to find the matrix structure of the
third term we use condition , which can only be ful-
filled for

sW(R,n) = sWiypad. (22)

Using condition we obtain for the functions gg),

u()l), and SS) :

2
gM(R,n) = —ﬁ—wevpn -A(R),
YR, n) = — fo;gw evpn - A(R), (23)
sV(R,n) = — Swl evpn - A(R),

Zu

with

2w = (twn + 1090 ) 9w + (A — il ) fu

24
+ (M 4+ iT'ys4) Sw, (24)

where I'y = 'y — I'x. Equations and consti-
tute the perturbative solution of the Eilenberger equation
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FIG. 4: (Color online) Inverse square of the London pen-
etration depth (dimensionless units) as a function of intra-
band scattering rate I'g evaluated at T = 0.017%o. In the co-
existence region )\ZQ grows linearly with A in contrast with
the clean case where ;% ~ A% Eq. .
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FIG. 5: (Color online) a) Temperature dependence of A} >
for various values of I'y. b) Temperature dependence for
OAL(T) = Ao(T) — AL(0) at low temperatures. The inset
shows the same data as in the main panel-(b) but plotted
in log-log scale. The interband scattering rate is fixed at
I'r =0.1T.



B. Effect of disorder on the penetration depth

The expression for the current density in terms of the
original Green’s function is given by

eT d’p A
. A s o A1)
J m WZ/ (ZW)ZPII |:T3p00—0Gw (R7 p):|

B Ne2A

)

(25)

mc

where the last term guarantees the gauge invariance of
the normal state. We can now use the same approxima-
tion that we have already employed in our derivation of
the Eilenberger equation: since the main contribution to
the current comes from a narrow energy region around
the Fermi surface, in the integral above we approximate
p ~ prn. It follows that

. —tenvppT A
J= STpF ; <HTT [TOP30090(J1)(R7 n)} > » (26)
where we used the definition ; angular brackets de-
note averaging over directions of unit vector n. Using
our solution of the Eilenberger equation together with
the equations for the current we obtain at an inter-
mediate step

ve?vZ if?
= —QA =——-Lr) == 27
J=QA Q=T s (D)

where the auxiliary function z, is defined by Eq. .
This expression can be significantly simplified by using
the mean-field equations together with the normal-
ization condition. Indeed, one observes that first and
third terms in z,, can be combined as follows

(wn +T490)gw — i(M 4 iTysy,)Sw =

. Sw
(Wn + thw)gw - (ZMgw - Ft&u!]w)? =
si 1+ 3
(Wn + thw)gw - (wn + thw)i = (wn + thw) g J s

(28)

and then (w, +T¢gu)(1+ £2) —i(A =il fo) fugw = (wn+
I'tg.). Consequently @ can be brought to the form

1/62'02 3
Q= FTwag“ . (29)

Curiously, the function s, does not enter explicitly into
the final expression for the current. Thus, for the London
penetration depth we have

which is the main result of this paper. Next we analyze
various limiting cases.

In the clean limit, I'y = 0, it is easy to show that

A2

A=A O0) g

(31)

in agreement with earlier studies“®37 Let us now analyze
the Matsubara sum in in the limit of low temper-
atures and for weak interband disorder, I'y < I'y. In
that limit, using Eqns. for the function f,,, we find
fw = iAg,/w. Next, we set T — 0, and convert the
frequency summation into an integral over the variable
x = w/A. The resulting expression for the Matsubara
sum in has the following form
e z[x + vg(x)] " ldx
27rTZ—>/O [ (z)] 3/2° (32)
. ( (w)]?)

where we have introduced the parameter v = T';/A. For
small enough values of A, such that v > 1, it follows
that for the moderate range of z ~ O(1) we can sim-
plify = + 2vg(z) = 2yg(z). Furthermore, the dominant
contribution to the integral comes from the region
of x where g(z) ~ x. Thus, for sufficiently small A, we
approximately obtain for the integral

A
VM2 4T3

In the opposite limit, and still at zero temperature, an-
other analytical result for A, as a function of the scat-
tering rates and A can be derived (see Appendix B for
details)

ALZ = A%(0) (33)

Yo + 27772 4+ 473)

_ _ (
A2 =27%(0) Y
S

34
(s + 499 arccos(27,)] Y

87dy/1— 492 ’

where we introduced the following parameters for brevity
vs = 2I's/A, and v, = 2I'; /A. Note that when inter-
band scattering becomes negligibly small, then the term
of Eq. in square brackets is proportional to A/Ty,
in agreement with our estimate, Eq. , taken in the
same limit.

Our complete numerical analysis of equation con-
firms our asymptotic analytical expressions, and in par-
ticular the estimate (33]). In fact, we find that this be-
havior persists for much larger values of A ~ I';. Lastly,
comparing this result with the corresponding expression
for the London penetration depth in the clean limit ,
we conclude that disorder has a crucial effect on the de-
pendence of A;? on both A and M.

In Fig. [4| we show the variation of )\22 with dis-
order, computed using Eq. together with A(Ty)
and M(Typ), which in turn have been computed self-
consistently and are shown in Fig. Furthermore, in
Fig. |5| we show the temperature dependence of )\Ez(T)

¥ (3 +873)
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FIG. 6: (Color online) Plot of A7 % on A across the phase dia-
gram at T = 0.017,0. Remarkably, the position of the line for
the purely superconducting state depends on the strength of
the interband scattering rate. This is expected as the super-

conducting order parameter is strongly suppressed for higher
values of 'z /Tg.

for various values of T'y across the phase diagram [see
inset (a) in Fig. |3]. Finally, in Fig. |§| we show the de-
pendence of A on )\22 evaluated at T = 0.017,.3. One
immediately observes that combining measurements of
the London penetration depth in the coexistence region
with those made in the superconducting state should, in
principle, allow one to obtain an estimate for the ratio
between the interband and intraband scattering rates.
Indeed, for moderate values of I'; /T, superconductiv-
ity is strongly suppressed, leading to lower values of A
in the superconducting state compared to those in the
coexistence state.

IV. DISCUSSIONS AND PERSPECTIVES

In this paper, we obtained the phase diagram of doped
iron-pnictide superconductors and calculated the mag-
netic penetration depth at different temperatures under
the assumption that doping introduces disorder but does
not affect the band structure. In several limiting cases
we have been able to reproduce previously known results.

Our main finding concerns the behavior of Ay in the
coexistence phase that has not been systematically ana-
lyzed before in the presence of disorder scattering. Our
modeling shows that starting from the overdoped side,
)\52 grows with the reduction of the scattering rate in-
duced by doping up to an optimal doping where super-
conducting order is maximal. Once the system enters the
coexistence phase, the inverse square of the penetration
depth, which is proportional to the superfluid density, ex-
hibits a kink followed by a sharp falloff. In that region,
disorder primarily affects magnetic order rather than su-
perconductivity. In sharp contrast with the clean case,
where )\ZQ o A? near the end-point of the superconduct-
ing dome from the side of the pre-existing SDW, within

the disorder model we find a completely different scaling
law )\Z2 o A. Another important observation concerns
the low temperature dependence of A1, (T"). The log-log
plot presented in Fig. (5p) suggests either a power law
behavior of §\;, on temperature, Ay, oc T, with rather
high power exponent a 2 5, or exponential dependence
oA o e="W/T The exponential dependence indicates the
presence of the gap W in the spectrum of electron states
near the Fermi surface for parameters of curves presented
in Fig. . It is plausible, however, that for stronger '
electron spectrum becomes gapless at low temperature
and 0\ (T) exhibits a power law with a ~ 248

Several extensions of the presented model are in order
to improve the comparison with experiments. First, one
could treat the band®# and disorder**2 models on an
equal footing in order to study the observed anisotropy in
AL. Second, one could consider the extension of the pre-
sented formalism beyond the Born approximation, which
might be necessary for an accurate interpretation of the
low-temperature data. Third, one could account for dif-
fusive scattering from the surface of the superconductor.
That would complicate the calculation of the penetra-
tion length considerably, since one would have to work
with an integral Milne equation, instead of a differential
London equation, which governs the distribution of the
magnetic field in superconductors and consequently de-
termines the precise value of Az, in the nonlocal limit 47
Fourth, our analysis, so far, has been restricted to the
mean-field level. A most intriguing recent experimen-
tal observation®*®*? is an apparent sharp peak in Ay, ob-
served in isovalently P-doped BaFesAs, at nearly zero
temperature around the optimal doping. This effect was
attributed to quantum critical fluctuations of the SDW
order at the onset of the transition into the coexistence
phase 2052 Tt i of apparent theoretical and experimen-
tal necessity to investigate to what degree such quantum
effects are robust against disorder scattering. On a tech-
nical level, this would require the inclusion of magneti-
zation fluctuations into the existing formalism. We note
that such a generalization has already been carried out
in the context of thermal magnetic fluctuations, which
are relevant for the interpretation of specific heat data >3
Finally, when analyzing the quantum critical behavior of
the superfluid density in FeSC compounds, it might be
useful to use the results obtained in the context of cuprate
superconductors® In the vicinity of the quantum criti-
cal point (QCP), generic scaling analysis indicates that
the superconducting critical temperature should vanish
as T, o« 0*¥, where § = |z — z.| measures the devi-
ation in doping from the QCP, while z and v are the
quantum dynamical and correlation length exponents.
At the same time, the superfluid density should scale
as ng x )\22 o 6(3td=2v where d is the dimensionality
of the system. When combined together, these two scal-
ing laws predict that there should exist a precise relation
dInT,./dlnngs = z/(z + d — 2). In the two-dimensional
case there should exist a linear relation between T, and
ns. For FeSCs, each of the end-points of the coexistence



phase represent a QCP and, consequently, establishing
the relation between T, and ns will provide new informa-
tion about superconductivity in these complex materials.
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Appendix A: Derivation of the Eilenberger equation

We start by writing down the equations of motion for
the matrix Green’s function using an imaginary time rep-
resentation, while ignoring the disorder potential for the
time being:

— a—é(rlﬁ; ro7o) — H(ry) - G(I‘lT; raTo)
T1

:j5(7'1 77’2)5(1‘1 *1‘2), (Al)
o 4 R A
87G(r17—1;r27_2) — G(I‘l'rl; I'2T2) : H(r2)
T2
:j(S(Tl —7'2)5(1'1 —1'2)- (A2)

Next, we use mixed space-momentum, keeping the
center-of-mass coordinate R = (r; + r2)/2, but making
the Fourier transformation with respect to the relative
coordinate r = r; — ry. In the Matsubara frequency rep-
resentation, we find:

o ip-Vel. . . -
|:an7_3/7300 +&p — p2mR} 73p360Gw(R, P)

v - A(R)73p060C0 (R, p) — Hint(R)Go (R, p) = 1(A3)

. ip-Vgr\ - .
anGw(R7 p) + (fp + p2m R Gw(Ra p)TBpSUO +

G (R, p)73p000v - A(R) — Gu(R,p) Hue(R) = I, (Ad)

where we redefined the vector potential £A — A for
brevity, and we used Equs. @ and . We write
P ~wvpn, vxuvpn, n= %7 and using Eq. we
multiply Eq. by 73p36¢ from the left, and multiply
Eq. by the same matrix from the right. Then, we
subtract the second equation from the first. Lastly, we
use T3p300 + T3p3009 = I where necessary, and integrate
both parts over the absolute value of the momentum,
which allows us to use the Eilenberger Green’s function

. We thus find

iwnG.o (Rom) — iwnTsps60Gu (R, m) 73360

+opn - (—iVR)73p3600, (R, n)

+orn - A(R) |730000u(R,m) — Fapsdol(R,m)0psd0]
+7336000 (R, 1) Hyne (R)73p360 —
7713ﬁ3&0Hmf(R)7A'3,535'0gw(R, 1'1) =0. (A5)
This equation can be written in a compact form if we
multiply it from the left by 73036¢. Then, Eq. from
the main text follows, where we have included the effects
of disorder by trivially writing the self-energy correction

to the mean-field Hamiltonian. In terms of the Eilen-
berger Green’s function it is given by

Appendix B: London penetration depth for M < A

In this section we will derive an expression for the Lon-
don penetration depth at low temperatures, assuming
that the SDW order parameter is much smaller than the
superconducting order parameter, M < A. We start by
writing Eqns. where we replace f — if and s — is:

Agy = (wn +2T0) fu, Mgy = (wn +2T)s,.  (B1)
The functions in (B1)) satisfy the normalization condition
g2 + f2+ 52 = 1. From Eqs. (B1) it follows that

As, — Mf, = —2Tgf, 5. (B2)
We can now eliminate s, from this equation by using
the normalization condition, which yields the following
equation for g,:

2
Va3
Solving this equation for g2 one obtains
e ST
Next, we consider the following integral
Q= [ Jatede )
o wtTige

which in a way determines the penetration depth. The
idea is to replace the integration over w with an integral



over f,. To do that, we employ Egs. (Bl]), (B2), and
(B4)). It follows then that

I R

2 AM2
+(A = 2T fo,) f (1 + (AHW’)H 7

and g, is a functional of f,,, Eq. (B4). Clearly, for 'y =0
we find Q(A, M) = A?/(M? + A%). When M = 0, the
expression for Q(A, M = 0) simplifies to:

bO(A - or 8 fdf

" Jo VI-fAAsorf)

(B6)

Q(A,0)

(B7)

This integral can be evaluated exactly, and it gives
Eq. from the main text. Lastly, one can also ex-
pand Q(A, M) in powers of M /A to derive the correction
to the penetration depth due to the development of the
SDW order in the superconducting state. The resulting
expression, however, is too cumbersome to show here.
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