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Abstract

Balanced truncation is the most commonly used model ordéuct®on scheme in control
engineering. This is due to its favorable properties of matiic stability preservation and the
existence of a computable error bound, enabling the adapmticthe reduced model order to a
specified tolerance. It aims at minimizing the worst casereof the frequency response over the
full infinite frequency range. If a good approximation onlyeo a finite frequency range is required,
frequency-weighted or frequency-limited balanced trtincavariants can be employed. In this paper,
we study this finite-frequency model order reduction (FFR)@roblem for linear time-invariant
(LTI) continuous-time systems within the framework of bradad truncation. Firstly, we construct a
family of parameterized frequency-dependent (PFD) maggpivhich transform the given LTI system
to either a discrete-time or continuous-time PFD systene fEfationships between the maximum
singular value of the given LTI system over pre-specifiedjdiency ranges and the maximum
singular value of the PFD mapped systems over the entiraiérery range are established. By
exploiting the properties of the discrete-time PFD mappestiesns, a new parameterized frequency-
dependent balanced truncation (PFDBT) method providingiteffrequency type error bound with
respect to the maximum singular value of the error systenteveloped. Examples are included

for illustration.
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. INTRODUCTION
A. Problem Formulation

Model order reduction (MOR) is an ubiquitous tool in the gs& and simulation of
dynamical systems, control design, circuit simulatiomyaural dynamics, computational
fluid dynamics, and many more areas in the computationahsegeand engineering; see,
e.g., [1]-[4]. Modeling of complex physical processes nfieads to dynamical systems with
high-dimensional state-spaces, so that the corresposgisigm is of large order. This may
lead to difficulties in the simulation, optimization, casitand design of such systems due
to memory restrictions and (run) time limitations for thesewtion of the related algorithms.
In general, the purpose of MOR is to produce a lower dimermgisystem that has similar
response characteristics as the original system with veelstorage requirements and largely
reduced evaluation time. In this paper, we focus on the MGRIpm for linear time-invariant

(LTI) dynamical systems:

x(t) = Az(t) + Bu(t)
y(t) = Cx(t) + Du(t)

G: & G(w):=C(wl — A 'B+ D, 1)
whereA € R™" B € R™™, C € RP*", D € RP*™, z(t) € R™ is the state vectoy(t) € R™

is the input signaly(t) € C? is the output signal. The imaginary unit is denoted jbyand

w € R is related to the operating frequengy(measured in Hertz) of the LTI system via
w = 2xwf . By abuse of notation, we denote the LTI system as well agatsster function
by G. A realization of the LTI systeni{1) is given by the matrix kigA, B, C, D). When

AB
appropriate, we will also use the equivalent notatioggrb , Which is common in control
theory. |
The aim of MOR then is to approximate the LTI systéi (1) by aicedl-order LTI system:
T,(t) = A2, (t) + Bou(t
G, ®) (®) ®) & G,(w):=C(wl —A) B, +D,, (2
y(t) = Crx,.(t) + D,yu(t)
where A, € R™" B, € R™™ (. € RP*" D, € RP*™ with r < n, and so that(t) ~ y.(t)
for ¢t in some chosen time range and for all admissible input fonstiu(¢). In other
words, in order to replace the original model successftitlg, reduced-order model should
approximate the input-output behavior of the original eystas well as possible. This

underlying requirement on the reduced-order model meatghle MOR problem inherently
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depends on the chosen class of input signals, that is, @iffelypes of input signals will
lead to different MOR problems with respect to the approtiomperformance. From the
frequency-domain viewpoint, signals can be classified emiire-frequency (EF) type signals
and finite-frequency (FF) type signals, as listed in Tablef.l}[5].

Obviously, such a classification of the frequency range pdiirsignals will give rise to several
classes of MOR problems: EF-MOR when considering the fatjfirency range, and FF-MOR
(including LF-MOR, MF-MOR, and HF-MOR) for limited frequen ranges, respectively.
In case that there exists ra priori known frequency information of the input signals or
the frequency of input signals belongs to a very wide rangeMOR problems will be the
appropriate choice, and a uniform approximation perforreasver the entire frequency range
should be taken into consideration. For many practicalgabeugh, a certain range for the
frequency of the input signals is pre-known. In these sibuai it will be better to resort to
a FF-MOR formulation since only the in-band input-outpuhéeéor of the original system
is needed to be captured; cf., e.g., [6]-[8]. Thus, goodanebapproximation performance
can be expected while neglecting the out-of-band appraiamaerformance, or, in other
words, a better approximation quality in-band at the sandeiged order is to be expected

than for methods trying to approximate uniformly in the emtirequency band.

B. Literature Review

During the last decades, many efficient approaches suchlasced truncation [9], [10],
moment matching [11], [12], and modal truncation [13] haeer developed from different
fields; see also the books [1]-[4] and the recent survey Adhlong them, balanced truncation
stands out for its beneficial properties relevant in cordedign, i.e., stability preservation and
computable error bound, allowing for an automatic reduneter model generation. Here,
we focus on balanced truncation, and therefore in the fallgunainly review the literature
with regard to attempts of adopting balanced truncatiorhéoRF-MOR framework.

The idea underlying balanced truncation consists in tanghg the state space system

TABLE |
DIFFERENT FREQUENCY RANGES FOR INPUT SIGNALS

EF FF (finite-frequency)
(entire-frequency) | LF (low-frequency) | MF (middle-frequency) HF (high-frequency)

weN:(—o0,4+00) | weQ: [—w,+w] W € Qyy, : o1, 2] w € Qyp, i (—o0, —wmp]| U [wp, +00)
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into a balanced form whose controllability and observapiBramians become diagonal and
equal, together with a truncation of those states that atte difficult to reach and to observe.
The standard version of balanced truncation is often cajeghunov balancing (LyaBT), see,
e.g., [15], and was first introduced by Moore in 1981 [9]. Thduced-order model obtained
by LyaBT has diminishing error for increasing frequencibagf takes the maximum error
often atw = 0. In order to match the DC gain, i.e., to have zero errap at 0, but allowing

a larger error at large frequencies, Liu and Anderson deeelahe singular perturbation
approximation (SPA) scheme [16], which is also based on anlsald realization of the LTI
system. Both, LyaBT and SPA, are widely appreciated andgrézed as the most suitable
techniques for EF-MOR problems since both of them provideraputablea priori simple
error bound, called EF-type error bound in the followingthaiespect to the following entire-

frequency approximation performance index:
Omax (G(Jw) — Gr(w)) , w € Q= (—00,+) - ®3)

Though this performance index related to thg -norm of the error system, is not minimized
by LyaBT and SPA, the computed reduced-order models usgallyclose to optimal [1],
[17]. The error bound makes it possible to choose the redocddr » automatically. As
mentioned above, LyaBT generally leads to good high-fraquepproximation performance
since the reduced-order models generated via LyaBT matbleesriginal model exactly at
|w| = oo, while SPA generally leads to good low-frequency approtiomaperformance as
the corresponding reduced-order models match the origwode! exactly atv = 0. However,
it is unclear how good the in-band approximation perforneamower a specified HF (LF) range
is, since only the EF-type error bound is known for LyaBT aAS

In order to make the standard LyaBT scheme more suitableofeing FF-MOR problems,
several modified BT schemes have been developed. Frequezigitted balanced truncation
(FWBT) and frequency-limited Gramians balanced truncae{féGBT) are two popular ones
for this purpose and were studied during the last 25 yeans.cbmmon procedure of FWBT
is to build a frequency-weighted model first by introducingut/output frequency weighted
transfer functions and then apply the standard LyaBT or SRiquure on the weighted
model; see, e.g., [6], [18]-[23]. Indeed, good frequenogedic approximation performance
may be obtained if the selected weighting function is appabgly chosen. However, the

design iterations to search for such a weighting transfactfan can be tedious and time
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consuming. Besides, FWBT also suffers from the drawbackhefihcreased order of the
weighted plant model.

FGBT was first introduced by Gawronski and Juang in [24]. Thethodology stems from
the consideration of extending the definition of standardn@ans to the frequency-limited
case and then applying the standard balanced truncati@egueces to the frequency-limited
Gramians [25]-[27]. An implementation of this method foulyr large-scale systems was
recently suggested in [28]. As has been pointed out in [129],[FGBT may be invalid
in some cases as the solutions of the “frequency-limitedpupav equations” cannot be
guaranteed to be positive semi-definite, and it providesrmr &ound. Although there exist
several modified FGBT schemes, see, e.g., [15], [26] to owveecthose drawbacks, good
in-band performance generally cannot be guaranteed. Moportantly, both FWBT and
FGBT continue to use the EF-type indéX (3) to evaluate theadlgtdesiredfinite-frequency
approximation performance. This incompatibility betwehba intrinsic requirement and the
achievement of the method yields many deficiencies. Sindg BR-type error bounds are
available, whether or not the in-band approximation penéomce has been improved cannot
be guaranteed. In particular, FWBT and FGBT may give risedar n-band approximation
performance together with a large error bound in some cases.

In [30], we studied the FF-MOR problem from the perspectif/aahieving good approx-
imation quality locally by devising a balanced truncatidgles method satisfying an error
bound at a prescribed frequency. The method shows good »apmation quality locally
in a neighborhood of the given frequency point, and this meighood is usually larger
than for interpolatory (or moment-matching) methods treatehzero error at the prescribed
frequency. Nevertheless, this new method does not solvERRRIOR problem satisfactorily
as it provides no error bound valid on a (half-)finite intérva

The shortcomings of the approaches to adapt balanced trom¢a the FF-MOR setting

motivated us to study this problem from a new FF-type errarobcentered viewpoint.

C. Contributions and Structure

In this paper, we are dedicated to solving the FF-MOR probl&ithin the framework
of balanced truncation. In contrast to existing BT schemesare interested in developing
a new way to provide in-band error bounds by using the folgMrF-type approximation

performance index

Omax(Gw) — G(Jw)), w € 0/ /. - (4)
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Compared with the EF-type indekl (3), adopting the FF-typ#ein(4) is obviously more
appealing for FF-MOR problems. To this end, a fundamentall éstimating the maximum
singular value of an LTI system over finite-frequency rangeseveloped first, and then new
BT based schemes are proposed for LF-MOR problems and HF-prOiitems. In particular,
the contributions of this paper are:

1) By introducing an auxiliary user-defined parametertwo kinds of discrete-time pa-
rameterized frequency-dependent (PFD) systems and tvets ki continuous-time pa-
rameterized frequency-dependent (PFD) system are cotedriloy a suitable mapping
applied to the given continuous-time LTI system. The magpm determined with
respect to the specified finite-frequency range. Furthezm®FD bounded real lemmas
bounding the maximum singular value of the given system twepre-specified finite-
frequency ranges are derived. It is shown that there exatiagprelationships between
the maximum singular value of the given system over the pesified finite-frequency
ranges and the maximum singular value of the PFD mappednsgsteer the entire
frequency ranges.

2) By exploiting the standard discrete-time LyaBT method #dre developed PFD bounded
real lemma, new PFD balanced truncation (PFDBT) schemegpragosed to solve
the LF-MOR and HF-MOR problems, respectively. The new PFDBdthods generate
reduced-order models and provide FF-type approximatioor dsounds in the sense
of bounding the maximum singular value of the error systerardhe pre-specified
frequency range.

The remainder of this paper is organized as follows: Firgtimroduce the KYP lemma and
the Generalized KYP Lemma in subsection Il.A, and then weentthe definitions of the
PFD mapped systems as well as the corresponding PFD bouealddmmas in subsections
II.B and II.C. Thereafter, we present the PDFBT algorithmd ¢&he results on the FF-type
error bounds for the LF-MOR and HF-MOR problems in SectidnNlext, we demonstrate
the effectiveness and advantages of the proposed resulieveyal examples in Section IV.
Finally, we end with a conclusion in Section V.

Notation: For a matrix M, M*” and M* denote its transpose and conjugate transpose,
respectively.M > 0 and M > 0 indicate a positive definite and semi-definite matrix,
respectively. The symbok within a matrix represents symmetric entries aHd(M) =

%(M + M*) is the Hermitian part of a matri®/. 0,,..(G) denotes the maximum singular
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value of the transfer matri&. f3¢(z) andJm(z) are the real and imaginary parts, respectively,

of the complex scalar.

II. PARAMETER-DEPENDENT SYSTEM TRANSFORMATIONS AND BOUNDED REAL

LEMMAS

In this section, we will first review the well-known Kalmarakubovich-Popov (KYP)
Lemma and the generalized KYP lemma. Then a family of PFD mdgystems are con-
structed, and new PFD bounded real lemmas bounding the-fiegqeency maximum singular

value of a given system are presented.

A. Introduction of the KYP Lemma and the Generalized KYP L&mm

The Kalman-Yakubovich-Popov (KYP) Lemma [31], [32] is a merstone for analyzing
and synthesizing linear systems. In [5], Iwasaki and Haxessfully generalized the KYP
Lemma from the entire-frequency case to different finiegtrency cases. The Generalized
KYP Lemma and the KYP lemma will play a fundamental role in development. Therefore,
we state the original versions for continuous- and disetiate LI systems in the following.

Lemma 2.1 (Continuous-time KYP Lemma [32Q)onsider the linear continuous-time LTI
system[(ll), and assunfd, B) to be controllable as well ad to have no eigenvalues on the

imaginary axis. Given a matrid € R"t™>"+™ then the following statements are equivalent:

(1) The frequency domain inequality
[G*(jj“)] I [G*([jw)} <0 holds for all w € (—o0, +00). 5)
(2) There exists a symmetric matriX > 0 such that the following linear matrix inequality
holds:
AB][oP|[AB]"  [cD],[cD]
[]0}{P0} [10} +[0 I]H{O I} <0. (6)
(3) There exist a symmetric matrik > 0 and matricess, L such that the following Lur’e

matrix equation holds:
AB| [oP][AB]" _ [CD
[] 0} [Po] [I 0] T [0 I} Il
Lemma 2.2 (Discrete-time KYP Lemma [32Jonsider a linear discrete-time system, re-
alized by (A, B,C, D), with transfer functionG(e”?), (A, B) controllable, A having no

CD}* N [—LL* —LK*}

01 KL —KK* (7)
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eiogenvalues of modulus 1, and a matfixe R**™*"+™ Then the following statements
are equivalent:

(1) The frequency domain inequality

{G*([eje)]*n {G*(Ieje)} <0 holds forall 6 €©: [, +]. ®)

(2) There exists a symmetric matri > 0 such that the following linear matrix inequality

holds:
AB|[opP][AB]"  [cD],[cD]
{]0}{P0} [10} +[0 I]H{O I} =0. 9)
(3) There exist a symmetric matriX > 0 and matricess, L. such that the following Lur’e

matrix equality holds:
ABl[opP]|[aB]", [cD]4[CcD]"  [-LL* —LK*
ll 0} {PO] [I o] *[o [}H{o [} :{—KL*—KK*} (10)
The generalized versions of the KYP Lemma for finite freqyeranges introduced by
Iwasaki and Hara read as follows:

Lemma 2.3 (Continuous-time generalized KYP lemma [Bljder the assumptions of Leminal2.1,

the following statements are equivalent:

(1) The frequency domain inequality

[G*(ljw)} il {G*(Ij“)] <0 holds for all w € Q/Q /. (11)
(2) There exist symmetric matrice3 and () of appropriate dimensions, satisfyirdg > 0
and
AB| . [AB]"  [c¢D][cD]
7o) e 5e) « [57]m[G7] <o @

where ® is determined according to the type of frequency range densd, as shown

in the following table:

LF (low-frequency) MF (middle-frequency) HF (high-frequency)

-Q P —Q JwQ + P Q P
P w?Q —1w.Q + P wiw@ P —w,QlQ

Remark 2.4:The main role of the KYP and GKYP lemmas is to characterizeouar
system properties in terms of an inequality condition on Blogov function corresponding

to the LTI system over the entire frequency range or overdifigquency ranges. In case the
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matrixIT in (B), (8) is specialized as in the common bounded-realcagssIlzr = {é _32[}

or the positive-realness casépr = [é , the (generalized) KYP lemma is referred to as
(generalized) bounded real lemnaat (generalized) positive real lemmactually, the EF-
type index [B) could be equivalently characterized by théredfrequency inequality({5) by
choosingll = I1z;. Similarly, the FF-type indeX{4) could be equivalently zerized by
the finite-frequency inequality 8) by choosihf= I1zz. For more details about the KYP

and GKYP lemmas, we refer the reader to [5], [32], [33].

B. PFD Mapped Systems and PFD Bounded-Real Lemma (MF & LFsFase

In this subsection, we first define a family of PFD mapped systéor a given system
with respect to a pre-specified MF or LF range, then presend#rived PFD bounded real
lemma to show the relationships between the entire-freguemaximum singular value of
the PFD mapped systems and the MF maximum singular valueedgitten system. Noticing
that the LF range can be viewed as a special case of the MF t@anggting . = 0 and
wy = w; (w. = (w1 +@2) /2, wqg = (w2 — w1)/2, where the different frequencies in the LF
and MF cases are defined in Tafble I), all the definitions andltsewiill be presented in the
more general MF setting.

Definition 2.5 (PFD Mapped Systems (LF & MF Cased)gt (A, B, C, D) be a realiza-
tion of the LTI system[(l1)p € R, andw, = (w1 + w2)/2, wq = (w2 — w1)/2 With wy, ws
defining the considered finite frequency range as in TAblehénTwe define the following
PFD mapped systems correspondingio (1).

pc

O> >>

a) The discrete-time syste@mpc(eﬁ) = is constructed via the following

mpc Bm
mpc Dm

pc

upper type PFD mapping:

A ~ ~ A

(Ampca Bmpca Cmpca Dmpc) = %mpc (Aa Ba Ca Da Qm) )

where A
A = (P? + @32 ((p+ gwe)] — A) Y,

By = ((p+ @)l — A) ' B,
Conpe = C ((p+ jw) I — A) ",
Dype = (0> +@2) 72 (C((p+ jw)] — A) "B+ D).

(13)

N

Gmpe Will be referred to asupper type PFD mapped system w.r.t. the MF rafige
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b)

d)

10

pc

The discrete-time syster@mpc(eﬁ) = is constructed via the following

mpc Bm
mpc Dm

pc

lower type PFD mapping:

(Ampca Bmpca Cmpca Dmpc) = %mpc (Aa Ba Ca Da Ql) )

where
P’ + w@2) ewy(gw.d — A)~! (wd1+ L(yw.! - A)) ,

wa(yw I — A)7B, (14)

G,pc will be referred to adower type PFD mapped system w.r.t. the MF ranfgg.

. . Ayt B | . . .
The continuous-time syste@,, ,; (Jw) := {C pi D ”j is constructed via the following
mp mp

left type PFD mapping:
(Amph Bmplu Cmp17 Dmpl) = «%mpl (A7 Bu Cu D7 Qm) )

where
Ampl = _%I - (p - ]wd)(]wll - A)ila

By = (Jwil — A)7'B,
Cmpl = C(jwll — A)717
D,p1 = —(p—gm1)  (Cywil — A)'B+ D),

(15)

Gi1 will be referred to adeft type PFD mapped system w.r.t. the MF rarige.

mp2 Bmp2

The continuous-time syste@d,, ,»(jw) := C . D
mp2 mp2

} is constructed via the following

right type PFD mapping:
(Amp27 Bmp27 Cmp27 Dmpl) = «%me (A7 Bu Cu D7 Qm) )

where
Ao = =31 — (p+ ywa) (gl — A)7,

Bmpg = (]’ZEQI — A)_lB,
Cmp2 = C(j@z[ — A)_l,
D2 = (p+ gw4) " 'C(jwal — A)"'B+ (p + joo1) ' D,

(16)

G2 Will be referred to asight type PFD mapped system w.r.t. the MF rarigg.

Proposition 2.6: Letting pf, = max (@2 — Re(\;)? — (. + Tm(\;))?)/2Re(N;),i = 1,2, ..m,
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where \;,i = 1,2,...n are eigenvalues of the matrit, then the following statements are
true.

a). If p > p* , then the matrixAmpc is Schur stable.

b). If p < —pz,, then the matrixA,,,. is Schur stable.

c). If p > pr,, then the matrixA,,,;, is Hurwitz stable.

d). If p > pr , then the matrixA,,,, is Hurwitz stable.

Proof. a). From the upper case PFD mapping] (13), the eigenva?lulgg,z' =1,..,n of

the mapped matrix&mpc are: S\mpci = (p* + wfl)%(p + 9w — X)L I p > pf ., we have

Ampei| < 1,0 =1,...,n. Thus the matrixA,,,,. is Schur stable.

Similarly, the statements b)-d) could be proved by obsegr¥ire eigenvalues of the mapped

matrices.

Theorem 2.7:(PFD Bounded-Real Lemma (LF&& MF Cagd)enote the entire-frequency
range ¢ € [—m, +m]) in the discrete-time setting &3, and use) and(2,, to represent the
entire-frequency range and middle-frequency range (sbk T respectively. The following
statements on the relationship between the maximum singalae of the mapped systems
over entire-frequency range and the maximum singular vafutbe given system are true:
a). If G (Gonpe(€7°)) < Ampe, 70 € O, then oy (

G(w)) < (p* + @2)2Ampe, Y € Q.
D). If Trnase(Gonpe(6%)) < Fmpes Y0 € O, theN o (G(Jw)) < (2 + @2) 2 Hmpe, Vo € Q.
C). If Trnax (Grp1 (J0)) < Vg1, Vo € Q, then opmay (G(Jw)) < (02 + ©2) 2 Ymp1, Yo € Q.
d). If omax (Gp2(Jw)) < Yimp2, Vw € Q, thenoy., (G(w)) < (p* + wg)%’ympg,%u e 0.

Proof. a). Sinceomax(Gmpe(¢”?)) < Ampe, V0 € O = [, +7] equalivent to

G [0 (G () .
{ pI } {0_%%] pI <0,v0 € ©:[—m +7]. (17)

According to the discrete-time KYP lemma, there exists atpessymmetrical matrixf’mpc

and L, ., K., satisfying

Ampcpmpc :H)C - Pmpc + BmpcB:u)c = _i‘mpcf‘jnpm (183.)
Ao PopcCloe + Brpe Do = — LK, (18b)
Cmpc]?)mpcé;knpc + ]:A)mpcf):(npc - ﬁlpc—[ = _KmpcK;knpca (180)
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Define Q = P,,c, P = pP,,e, from the above equatiof (18al18c) we have

— He((yw1 I — A)Q(ywol — A)) + AP+ PA* + BB*

— (el - A)f’mpc(ml — A)" + D3P — p(1@e] — APy — pPPrmpe(ywe] — A)* + BB
= (0> + @) Ppe — (0] + gl — AP e(pl + joo. I — A)* + BB*

= (pl + jw I — A) {AmpchpcA* - f’mpc + BmPCBfm} (pl + yw I — A)*

mpc

B0 4yl — A) { mechpc} (pI + gl — A)*
(19)
(ywd — A)QC* + PC* + BD*
= (yw I — A)Pmch* + ppmch* + BD*
= (pl + yw I — A)f’mch* + BD*
+(0* 4+ @2)(pl + g d — A)"'Pope(pl + gl — A)*
Bl + g — A 4 (pl + jw.l — A)LBB*(pl + .l — A)~ C* + BD*

%_I”npcldhpc
- (p2 + wé)l(p[ + g d — A) {Ampchch:npc + BmpcD:npc} + (pl + yw.l — A)mecL:;chC*
IO * * *

(pl + ]wcl A) { (p + wd) 2]:JTWPCI{mpc + LmPCmecC }

—(pl + yw I — A)mec ((p + wd)EKmpc — C’mec>

(20)
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+(0? + @) (pl + gwel — A) 7 Prope(pl + jwel — A)~

3. —C < +(pl + ywd — A)*BB*(pl + jw. I — A)~* C*+ DD* — (p* + wﬁ)ﬁwcl
+LmPCL:npc
( +C(pl + yw I — A)*lf’mpc(pIJrjch — A)*C* )
+(p? + @) 'C(pl + yw. I — A)"'BB*(pl + jw.l — A)~*C*
®, 5 o ) H*+@) ' Clpl +yw.l — A)'BD*
= (p* + @)
+(p* + @2) ' DB*(pI + yw. I — A)~*C*
+(p? + @w3) ' DD*
{ —Hmpe] J
( +2C (pI + g I — A)71 mpc(pIJrjch A)y—*C )
(7 + ) +2(p* + @) C(pl + yw ] — A)'BB*(pl + jww.l — A)~*C*
‘ +(p? + @)~ 'C(pl + yw. I — A)"'BD*
| +(p* + @) 'DB*(pl + jw.d — A)~*C* )
—Cmechnch*
IR

S22+ 23) { PG+ Doy = 42,1
+ (07 + @) {57 (A PrpeCrpe + BupeDiye) |
+ (0 + ) {2 (AmpePrupCle + BupeDie) } C°
— Oyl C*

—(0* + D) Knpe Koo + (07 + @2)2C L Koo + (07 + @2)2 Koo Linpe C* — CLy L, CF

moc
_ ((p +w2)2 K e — Cmec) (<P + ) Ko = Cﬂmpe>* (21)

Combing the above equations, we have:
(AT -Q  +y@mQ+P|[AI]" [BO][! 0 B0l
CO] |—1mQ+ P @w@Q C0 DI||0—=(p*+@)pe| | DI

—He((ymil — A)Q(ywsl — A)) + AP + PA* + BB*  (yw.l — A)QC* + PC* + BD*

i x —CQC* + DD* — (p* + w)i2 el
_ [-LLr —LK*
x —KK*
(22)
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where

A

L= (pl +jw.d — ALy pe
K= Cfimpc — (p2 + wﬁ)%f{mpc

According to the GKYP lemma (Lemma 2.3), the following inafjty can be concluded:

[G*(fj@]* { é —(P2 +?v§)%ipj {G*Sjw)] < 0,Vw € & : [, wo). (23)

This leads to

Tmax (G(w)) < (0% + @2) 2 Ampe; Y € Dy : 1, 3], (24)

this completes the proof of statement (a).

b). Sinceomax (Gipe(€?’)) < Fipe, V0 € © is equivalent to

{G*(Jeﬁ)yﬂ [G*([eﬂ)] <0, V9 € [—m 4], (25)

According to the discrete-time KYP lemma (Lemma 2.2), thetists a positive symmetrical

matrix P,,,. andL,,,., K,,. satisfying

AmpchpcA:ﬂpc - Pmpc + BmpcB:;ch = _mec]z:npca (268.)
AP ipcCle + BunpeDi e = =L K (26b)
Cmpc]::)mpcc:npc + Iv)mpcf):npc - ’%ancj = _KmpcK:npca (260)

Define Q = P,,,c, P = pP e, from the above equatioi (42) we have

— He((yw1l — A)Q(yw2l — A)) + AP + PA* + BB*
= ()@l = A)Pope(gme] — A)* + D3P — p1@el — A)Prpe — pPPrmpe(ywc] — A)* + BB
= (wal + L-(y@.! — AP pe(wal + £ (we — A))*
— (P + @)@, (gwel — A)Poye(jme] — A) + BB
= (P + @) wy*(gwe] — A) {AmpcpmpcA:npc - 15mpc + BmPCB;knpc} (@l — A)
D52 4 2) w721l — A) {~LinpeLi o} (] — A)*

mpc

(27)
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(yw.d — A)QC* + PC* + BD*
= (yw.l — A)f’mch* + pdemch* + BD*
[+ 22(@ed — APy ] — A )
+(yw . — A)'BB*(yw d — A)~*
Jwed —A)§ —p(yww d — A)*lf)mpc C*+ pdemch* + BD*
—PPpe(ymed — A)
P+ )T L

mpc )

=

\

= wy(wy — wid(jwcl — A))Pmpc(]wcl — A)7*C* + B(B*(yw.l — A)~*C* + D*)

20b _ < . . .
(p2 + @3)w; 2wa(gwwd — A) {AlePmpCC:npc + Bmpchnpc}
+ <p2 + wczl)w(;2<jwcl - A)]:mPCIv‘:nch*

= (0 + @)@, > (9w — A)Lmpe (dempc — Cﬁmpc)*
(28)
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— CQC*+ DD* — (p* + w3)72
CPmch* + DD* — (p? + @2)4?

= (¢ + )y e

—(p* + @)

\
—(p* + wi)wy,

W, ,

+ (p* + @3)

([ +@3med — A)Ppe(ymed — A) )
+(ywd — A)1BB*(yw I — A)~*
==-C _p(]wcl - A)ilpmpc

1

’ympc

I

Tm pc

+2(p? + @) 'C(yw I — A)'BB*(yw I — A)~*C*
—(p* + @) plywel — A) TP
—(p* +@3) T PP e (gl — A)
+(p? + @3 'C(yw I — A)~'BD*
(0% + @) DB* (jw I — A)*C*
2CLppels, O

mpc

d {Clcmech;knpc + DmpcD;knpc ’s/gnpcl}
+(p* +@3)

C {w(; AlCPPmPCC:npc + BmPCD:npc)}
{w;1 AlCPPmPCC:lpc + BmPCD:zpc } Cr

— (p* + @)@, *CL, L, OF

—(p* + wd)KmpcK* + (p* + wg)w;2wdCmecK*

mpc

mpc mpc

+ (p? —|—wd)wd demchmch* CmecL* C*

mpc

—(p* + @)@, (@aKinpe — CLinpe) (@aKimpe — CLinpe)”

C" + DD* = (p* + @) Vimpe
—PP e (el — A)7
+(p? +wd)wd ZLmPCL;knpc )
[ (5 + @) DOl = A) Pyl — ) C
+(p* + @3 'C(yw ] — A) ' BB*(yw I — A)*C*
) +(p* + wy) ' Cyw. — A)"'BD*
+(p* + @) 'DB*(yw. d — A)~*C*
+(p? + @3) "' DD*
[ ! J
+2(p* + @w2) w2 C (g I — A)*lf’mpc(jwcl —A)*C

1

16

(29)
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Combing the above equations, we have:

1] [ i 0] < (21 [0 - e al [55]

CO0| |—j@wQ+ P w@wiwQ C0 DI| |0 —=(p*+@)impel | | DI
| —He((yw1 !l — A)Q(yw2l — A)) + AP + PA* + BB* (jw.I — A)QC* + PC* + BD*
- g —CQC" + DD" — (9 + ) gl
_ |-z —LE
x I —KK*
(30)
where

L= (p* +w3)2wy " (jwel — A)Lye
K= (P2 + wﬁ)%wgl (dempc - CIVJmpc)

According to the GKYP lemma (Lemma 2.3), the following inafjty can be concluded:

G*(jw)| " [L, 0 G (jw)
{ 1 ] [0—<p2+w§>&3ﬂpc 7 | £0,holds for all w € [@1, @] (31)
This leads to

Oma (G(3)) < (0* + @3) Fmpe, Yo € Uy : 1, ). (32)

C). SINCETwax (Gip1 (Jw)) < Yip1, Vw € Q 1 [—00, +00] equivalent to

N

According to the GKYP lemma (Lemma 2.3), there exists a p@sisymmetrical matrix

P, andL,, ., K,,, satisfying

AmpIPmpl + PmplA:;Lpl + BmplB;npl - _melL:erlv (343.)
Py Cot + B D5y = — Lo K (34b)
Dmﬂlenpl - fyglplj = _Kmle:@plu (34C)

Define@ = P,,,1, P = pP,,,1, from the above equatiof (34) we have
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— He((yo1I — A)Q(yw2l — A)) + AP + PA* + BB*
~(g@el = APyt (jocl = A)* + @Pogs — p(@1] = APyt = Propr (joonl — A)* + BB®
—(g@w1l — A)Pppr (g1l — A)* — p(gmwi] — A)Pppr — Poypi (ol — A)*
(gl = A)Pup1 (30)" + (10)Punpr (Je] = A)* + (a) (1%a) Prnpr + @Pmp1 + BB*
( )P (
)

+
~N N~
I

~

— (g1l — AP (ool — A)* = p(gwil — A)Prpt — Prypr (ool — A)*

+ (o1l — A)P o1 Jwa)* + (9040)Prpr (g0 L — A)*

— (9a) (9%a)* Prnpr — (1@a) (95a) Pmpr + (99a) (90a) " Prnpr + @iPmp1 + BB*
= —He((yw1I — A)Pup1 (pI — ywal + 0.5 % (yoi I — A))") + BB*
= (gL = A) { Ay Pt — P A% + BB ) (g I — A)

@(jwlf — A) {_melL;npl} jw1[ — A)
(35)

(.l — A)QC* + PC* + BD*
= (9wel — A)P i C* + pP 1 C* + BD*
= (Jw2l — A)P mplo* (p+ 3@a) P C* + BD*
+(g@al = A)'BB*(yi I — A)~* ‘
- —(p+ 3wa) (w2l — A) " Py
= (gwal — A) ¢ —(p+ J@0a)Ponp1 (011 — A)~* C*+ BD*
—(29@a)(p + jwa) (g2l — A) "' Py (gwil — A)~™*
| +O@il — A)(ywal — A) 'Ly L
+(p + J7a)Prnp C*

mpl )

P (ool — A)~*C*
—(p+y@wa) gl — A) ¢ —(p+ gwa4) (gonl — A)"'BB*(yw.l — A)~*C*
—(p+ywa)" (gl — A)"'BDY)
+(gw1 I = ALy L, C*
—(p + Jwa) (gwil — A) {P 1 C;, 1 + Bipt Dy b+ (y01] — A) Ly L, CF

_(]wll - A)mel (_(p - ]wd) mpl — Cmel)
(36)
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— CQC* + DD* — (p* + wi)vin !
= —CPmplC + DD* — (p* + @)yl
+(9ol — A)7'BB*(yoo [ — A)™*
B4, —(p = ywa) (gl — A)'Pyyn
—Prp gl — A)7(p — jwa)*
\ +LmP1L:np1 )
—C(ym I — A)"'BB* (g I — A)*C*
+C (gl — A)'BB* (ol — A)7*C* + DB* (w1l — A)7*C* — (p — ywa) K L, ,, C*
+C (gl — A)'BB* (gl — A)~*C* + C(gwil — A)7'BD* — CLyy K, 1 (p — j0a)*
—CLyLs, O
+DD* — (p* + @i
[ C(p— yma) (=il — A)'BB(ymr ] — A) ™ (p — ywa) "C* ]
+(p = ywa) ' DB* (oo I — A)™(p — yowa)*C*
= (P*+ @) +C(yml — A) " (p— ywa) ' BD*(p — jwa)
+(p = jwa) ' DD*(p — ywa)~*

C* + DD* — 4]

mpl

L —712p11 )
—(p— jwd)KmplL;knpl cr — Cmelep1 (p = gwa)* — CLyu Ly, CF
(P {Dmplepl ’Ylplf} — (p = J@a) Kinpr L7, 1 C°
C’melepl(p — jg)* C’meleplC*
(34

- - (_(p - jwd) mpl — Cmel) (—(P - ]wd) mpl — Cmel)
(37)

Combing the above equations, we have:
(AT -Q  +mQ+P|[AI]"  [BO][! 0 B0l
_C 0 —jch + P LTJ1’LTJ2Q co DI 0 —(,02 + ws)’ygnpll DI

—He((yo1 I — A)Q(ywal — A)) + AP + PA*+ BB* (yw.I — A)QC* + PC* + BD*

. —CQC ¥ DD — (P + @]

(38)

L= (]wll — A)me1
K = _(p - ]wd) mpl — Cmel
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According to the GKYP lemma (Lemma 2.3), the following inafjty can be concluded:

This leads to
Tmax (G(w)) < (0° + @2) 2 Ymp1, Yoo € Qyy, : [01, o). (40)

d). Sinceomax (Gmp2(Jw)) < Yip2, Yw € Q : [—00, +00] equivalent to

P af s cimm

According to the Continuous-time KYP lemma (Lemma 2.1)rehexists a positive symmet-

rical matrix P, andL,, ., K,,,12 satisfying

AmePme + PmeA:uQ + BmeB*mpz - _meQL;p% (428.)
DWPQD*mp2 - ’ygszI - _KmeK*mp27 (420)

Define @ = P2, P = pP,,2, from the above equatioh (42) and follow the similar way of

the proof of statement (3), we have

AT -Q  +wQ+P]AIl"  [BO][L 0 B0l
CO| |—1wQ+P wwmQ C0 DI|| 0 (0 +w)vmnl| |DI

(43)

L= (]’ZEQI — A)meg
K= —(,0 -+ ]wd)KmpZ - CmeQ

According to the GKYP lemma (Lemma 2.3), the following inafjty can be concluded:

G*(jw)|" [ L. 0 G+ (jw) |
{ 1 } [ 0 —(p* + @3) Vimp2 7| S 0.Vw e Qo [w, @l (44)
This leads to
Tmax (G(w)) < (0% + @2) 2 Ymp2, Yo € Q= [01, o). (45)

Remark 2.8:The linear matrix inequality of GKYP lemma (in particulanetgeneralized
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bounded real lemma) is a necessary and sufficient criteriaHecking the finite-frequency
maximum singular value. In contrast, the PFD bounded reaira only provides a conserva-
tive estimation of the maximum singular value over the dpesgtifrequency range. However,
the PFD bounded real lemma make it feasible to analysis thie-frequency maximum
singular value via the standard KYP Lemma (in particulag, standard bounded real lemma),
in which a simpler linear matrix inequality requiring lessimx decision variables is involved.
Moreover, the PFD bounded real lemma pave a way to solve soitefiiequency problems

(such as the FF-MOR) by exploiting some existing entirerfiency techniques.

Remark 2.9:1t should be noticed that the parameter matrices of all kmfd8FD mapped
systems generally will be complex matrices for the genergl ddses (i.ew,. # 0). For the
LF cases (i.eww. = 0), the parameter matrices of the upper and lower type destieie

PFD mapped systems are real if the parameter matrices ofithe gystemG'jw) are real.

C. PFD mapped systems and PFD Bounded Real Lemma (HF Case)

Definition 2.10 (PFD Mapped Systems (HF Case$@t (A, B, C, D) be a realization of
the LTI system((ll)p € R, andw,, defining the considered high-frequency range as in Table |.

Then we define the following PFD n]appqd systems correspgridir{d).

. . A v Ahpc Bhpc . .
a) Discrete-time systerty;,,.(e”’) =: |—= ~ constructed via the following upper type

. Chpc thc
PFDCM (Ahpca Bhpca Chpca thc) = '//hpc (A, B, C, D, Qh):

([ Anpe = (0* + @) "2 (ol + A)

\

will be referred as the upper type PFDCM system with respec¢hé HF ranges?,,.

A el Bhe _ .
_hpel 2hp ] constructed via the following lower type

b) Discrete-time syster@v,,.(e’?) =: G
hpc|H hpc
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PFDCM (Ahpca Bhpca Chpca thc) = '/thc (A, B, C, D, Qh):

p

Appe = (p? +1)2 A(wp I — pA)~!
g} B, = (w,] — pA)"'B
Chpe = C(wpl — pA)~

Dype = (p? + 1) 72w, pC(@nl — pA) ' B+ (p? + 1) "2, ' D

\

will be referred as the lower type PFDCM system with respedhe HF range};,.

: . : A, B _
c) The following continuous-time syste#),;, (jw) : C:pi szi constructed via the follow-
p p

ing left type PFDCM(AhPl, Bhp17 Chpla thl) = %hpl ( , B, C, D, Qh):

(

Ay = =051+ (p+ goon) gwpl — A) 1

B, = (yonl — A)7'B

Chpn = C(gmwpl — A)™*

Dy =—(p— gwn) ' C(ywnd — A)7'B — (p — ywp) ' D

thl (]w) = (47)

\

will be referred as the left type PFDCM system with respeah®HF range(?,,.

. . . A, 0B ,
d) The following continuous-time syste@), 2 (jw) : C:pz DZ”Z constructed via the fol-
p p

lowing right type PEDCM(A 2, Brs2, Chp2, Drp2) = i (A, B, C, D, y,):

( Ay = =051+ (p— gwp)(—gopd — A)7!
Biyo = (—jwpl — A)7'B
Chpo = C(—gmpl — A)7!
( D2 = (p — goon) "' C(—yoond — A)"' B+ (p — jwou) ' D

Ghp2(Jw) =: (48)

will be referred as the right type PFDCM system with respecthe HF rangef),,.

w,% —9%()\,' )2 —(jm()w
29%2()@)

are the eigenvalues of, then the following statements hold.

Proposition 2.11:Let p; = max{ i li=1,... ,n}, where);,i =1,...,n,
a) If p > py, then the matrixAhpc is Schur stable.
b) If p < —p;, then the matrixA,,,. is Schur stable.
c) If p > py, then the matrixA,,; is Hurwitz stable.
d) If p > p;, then the matrixA,,,, is Hurwitz stable.
Proof: The proof is analogous to the proof of Proposition 2.6 andnistted here.
Theorem 2.12:The following statements on the relationship between th&imam sin-

gular value of the mapped systems and the given system hold:
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a) If O'max( pe(€?)
b) If oumax(Gh pe(€?)
C) If omax (Gpp1 (Jw)
d) If Oumax (Grp2(J0)) < Yhp2 Y € Q, theN oy (G(Jw)) < (0 + @2) 29mp0 Y € Q.
Proof: The proof is similar to the proof of Theordm P.7 and is themefomitted. M|

) < VO € O, theno,.x (G
) < 7 hpe V0 € O, thenop,, (G
) < Anp1 Yw € Q, thenoyax (G(w)) < (p? + wh)ifyhpl Yw € Q.

[1l. PARAMETERIZED FREQUENCYDEPENDENTBALANCED TRUNCATION

In this section, we first summarize the results of the stahdlgaBT in the discrete-time
setting in subsection IIl.A. Afterwards, the results on tiesv proposed PFDBT schemes for

LF cases and HF cases are presented, respectively.

A. Review of the standard LyaBT

Algorithm 1 Continuous-time (discrete-time) standard LyaBT

Input: Full-order continuous-time systei@(jw) : (A, B,C, D) or discrete-time system
G(e?) : (A, B,C, D), and the order of reduced model

Step 1. For continuous-time case, solve the continuous-time odlability and observ-
ability Lyapunov equations

AP — P°A* + BB* =0, (49a)
A*P° — P°A+ C*C =0, (49b)

For discrete-time case, solve the continuous-time cdabibty and observability Lyapunov
equations

AP°A* — P¢ + BB* =0, (50a)
A*P°A— P°+ C*C =0, (50b)

Step 2. Compute the Cholesky factorizatid?® = UU.
Step 3. Compute the eigenvalue decompositionlgfQ;,, i.e., U*P°U = Vv,
Step 4. Compute the coordinate transformation matfik:= NrVeU-L

Step 5. Compute the balanced realization of the given system bydioate transformation:

(AbaBbacban) = (T_lAT7 T_lB,CT,D) (51)
Step 6. Compute the reduced-order model Gs(jw)
(AraBracraDr) = (ZrAbzfaerbacbzfan)- (52)

whereZ, = [I,,0,,_»)] is the truncating matrix with respect to the reduced order
T.

Output: Reduced-order modél, (yw) : (A,, B, C., D,)
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Lemma 3.1:( [9], [23], [34], [35]) For a given linear continuous-timgstem G (jw) or
discrete-time syster&(¢??), suppose the continuous-time reduced mdeghw) or discrete-
time reduced modef, (¢?) is generated via the standard LyaBT, then the following yFet
error bound holds, i.e.

a). For continuous-time case, the EF-type error bound is

r+1
Omax (G(yw) — G, (yw)) < QZai,Vw € Q: (—o0,+00) (53)

b). For discrete-time case, the EF-type error bound is

r+1
T (G() = G (e”)) <2 03,¥0 € O : (=7, +7) (54)

i=n

Remark 3.2:For more details on the continuous-time EF-type error bopitehse refer to
[23] [35] . For more details on the discrete-time EF-typeoetvound, please refer to [10],
[35]. Besides, as the companion version of the standard Ty&8BA also provides the same
EF-type error bounds [36]. It should be pointed out that thétPKLemma plays a important
role in the proof of EF-type error bound. One could find a KYRhea based constructive

way to prove the EF-type error bound in [35].

B. PFD Balanced Truncation (LF Case)

Based upon the above preliminaries and results, we now at#ge to present the PFDBT

algorithm for LF case.

Theorem 3.3 (LF-type error bound via LF case PFDBGiven a linear continuous-time
systemG/(yw) and a pre-known LF interval € €, : [—w;, +o;]. Suppose the reduced model
G.(jw) is generated via the LF case PFDBT algorithm, then the appation performance
over pre-specified frequency interval satisfys the follogvFF-type error bound:

Omaz(G(w) — Gr(Jw)) < 2(p* + w?)% > ou, we Y =|—w,+w] . (57)
i=r+1
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Algorithm 2 PFDBT (LF Case)
Input: Full-order model(A, B,C, D), frequency interval), : [—w;, +w,|, user-defined
admissible parameter and the order of reduced model),

Routing 1.

apply the standard discrete-time LyaBT for the mapped eisetime systenGmpC( %)
to obtain the mapped discrete-time reduced m@,e,jm(eﬂ ): (Alpcr, Blpcr, Clm, Dlm)
Compute the reduced-order model by applying inverse uyperPFD mapping as follows:

Ay = (pl + jwed) = (9 + @3)2 AL,
B = (pI +]wcl A )BlpCT‘7
C Clpcr(p] +]wc] A )
D, Dlpcr — Cy(pl + yw. — A,)'B,.
wherew,. = 0 andw,; = w;.
Routing 2.
apply the standard discrete-time LyaBT for the discreteeti PFD mapped Sys-
tem Gmpc( Jf), obtain the discrete-time mapped reduced mocﬁjnm( %)

(Alpcr,Bl,,CT,Clpcr,Dlpcr) Compute the reduced-order model by applying inverse upper
type PFD mapping as follows:

(55)

r = —gwel —@a(p* +1)72 (p(p* +1)72 = Agpper)
(,0 + 1) (]wcl A ) mper
Cr = (p + 1) Cmpcr(]wc] A?")a
D, = (0> + 1)2wyDiper — Cr(jwed — A,) ' B,
wherew,. = 0 andw,; = @;. o S
Output: Reduced-order modelz, (yw) : (A,, B, C,, D,) or G,.(yw) : (A, B,,C,, D,.).

A, =
b (56)

Proof: The error system between the original high-order systemein@¢)w) and the
truncated(n — 1) reduced systeny, (jw) can be represented by

B,

0]
E,(w)=G(w) — G, (jw) = |- - = A B . (58)
e

suppose the parameter matrides, B,, C,, D,) are computed via upper routine, then apply
the upper case PFD mapping for the error sysferh (58). It carobeluded that the mapped

error system can be represented by

| | »
A [;) Ampcr 0 Bmpcr
A 9 ~ 0 ~ 20 mpcer : ~mpcer ~ A
Bynper () = Crupe@) = Ger(@) =1 | 0 21 00 Ay B
Crpcer (D X SR p
pcer i “mpcer
_Cmpcr Cmp Dmpc Dmpcr
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Since Gmpcr(]w) is the reduced model obtained by applying the standard Ly&BThe
upper PFD mapped systefﬁmpc(jw). According to the Lemma 4, we have

Omaz(Grpe(€) = Grper(€)) <232 015, 0 € O = [—m, +7) . (60)

i=r+1
Noticing that the error systerﬁmpcr(]w) can be obtained by applying the upper type PFD
mapping on error syster,(jw), then we have

Omaz(G(w) — G, (Jw)) < 2(02 + wlz)% > Olpi; W E Yy =: [~ +a] . (61)
i=r+1

according to Theorem_2.7. In the cases that the parameteicesabf the reduced model
is computed via routine2 of the PFDBT algorithm, one can erthe LF-type error bound
similarly. Thus, the proof is completed.

[

Remark 3.4:As far as our knowledge, this is the first result that provié€stype error
bound in the framework of balanced truncation. Similar wihle EF-type error bound (53)
provided by LyaBT, the FF-type error bourid{64) is also vémypde anda priori. Comparing
the values of EF-type error bound with FF-type error bourgbthtically is difficult, however,
it is shown that the FF-type error bound could be smaller tih@nEF-type error bound by
choosing a proper parameter To obtain a proper value of the parameterwe suggest a
simple line search over the admissible range.oAs shown by the examples in the sequel,
one could find the proper parameter by observing the curvdsetfype error bound with
respect to several different values of the parametétow to compute the optimal parameter
rendering the FF-type error bound as the smallest valuellisustopen problem for further
investigation.

Remark 3.5:1t is well-known that the original model is required to beldé&ato apply the
standard LyaBT, moreover, the stability will be preservgdhe reduced model generated via
the standard LyaBT. The stability restriction on the oradimodel is not needed for PFDBT.
For non-stable original model, one could apply the PFDBT lpyschoosing a larger enough
parameter rendering the PFD mapped matriA%c or Ampc be Schur stable. At the same
time, the PFDBT don’t possesses the stability preservapi@mperty. In other words, the
stability of reduced model cannot be theoretically guaradteven the original model is

stable. According to our numerical experiments, one colihys obtain a stable reduced
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model in cases that the original model is stable by seledipgoper parameter (especially
by letting the parametes large enough).

Remark 3.6:1n algorithm 2, only the discrete-time PFD mapped systenasthe discrete-
time LyaBT procedures are involved. Obviously, if we reswrtthe continuous-time PFD
mapped systems and the continuous-time LyaBT proceduiesimilar way, another routines
give rise to reduced models could be derived. Unfortunately parameter matrices of the
reduced models generally will become complex matrices uswdeh a circumstance. Besides,
extending the PFDBT for LF case to the MF case is also feadilitewise, such an extension

generally will leads to complex reduced models siage# 0.

C. PFD Balanced Truncation (HF Case)

Similarly with the LF case, we now present the HF case PFDBordhm and the results

on HF-type error bound.

Algorithm 3 PFDBT(HF case)
Input: Full-order model(A, B, C, D), HF frequency rangé€, : (—oo, —wy] U [+, +00),
user-defined admissible parameteand the order of reduced model),

Routing 1. apply the standard discrete-time LyaBT for the mapped reliseime
system Gy,.(¢”’) to obtain the mapped discrete-time reduced mo@g),..(e’)

(A per, Bhpers Chper, Diper). Compute the reduced-order model by applying inverse upper
type PFD mapping as follows:

Ar - (,02 + wh)%Ahpcr pI,

B~ (7t B

- ' 62
QT - (P2 + wz)%chpcra ( )
D, = (;02 + w}%)%thcr

Routing 2. apply the standard discrete-time LyaBT for the mapped elisetime
system Gy,.(¢”’) to obtain the mapped discrete-time reduced mo@g),..(e’)

(A per, Bhpers Chper, Diper). Compute the reduced-order model by applying inverse upper
type PFD mapping as follows:

A= wh(p ) éAhpcr(] + P(Pz + 1)_%Ahpcr)71>

B - (wh[ pA )Bhpcra

C. = Chpcr(whl ,oA ),

Dy = @n(p* + 1)2(Dager — pl(p? + 1) "2, ' (@l — pA,) 7' B,).

Output: Reduced-order modet, (jw) : (A,, B,,C,, D,) or G,(jw) : (4,, B,,C,, D).

(63)
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Theorem 3.7 (HF-type error bound via HF case PFDBGiven a linear continuous-time
systemG(yw) and a pre-known HF frequency internale Q) : (—oo, —wy] U [+, +00).
Suppose the reduced mod&}(jw) is generated via PFDBT, then the approximation perfor-

mance over pre-specified frequency interval satisfy thieviohg HF-type error bound:

Omaz(G(w) — G, (w)) < 2(P2 + wi)% > Ohpis W € Ly, =: (=00, —wp] U [+w@p, +00) .
i=r+1
(64)

Proof: The proof can be completed in a similar way of the prove of Teed3.3 =

IV. |LLUSTRATING EXAMPLES

In this section we demonstrate the validity of the PFD bodnaal lemmas and the advan-
tages of the PFDBT schemes through four examples.
Example 4.1:Lets consider a simple linear continuous-time systeim (1f) #ie following

parameter matrices:
—4.1859 0.7195 51.8712

_ | L7797 1187211639 | (65)
0.4528 —2.40992.5606

.................

We are interested to apply the proposed PFD bounded realddomastimating the maximum
singular value of this system over four different low-fregay ranges)} : [—0.1,0.1], Q7 :
[—1,1],93 : [-10,10], Q¢ : [~100, 100].

As shown in Fig. 1, the estimated maximum singular valuegsiobtl by PFD bounded real
lemma with any admissible paramejeare always lager than the actual maximum singular
values over the specified low-frequency ranges. In pagictihe gaps between the estimated
maximum singular values and the actual maximum singularevabay be very small if the
adjustable parameterlies in an appropriate range. The results indicate that #teity and

effectiveness of the proposed PFD bounded real lemma.

Example 4.2:Lets consider a linear continuous-time systém (1) with tilefing param-
eter matrices:

—4.7488 0.3264 1.9341 —1.2358 1.4344 1.0027 , 0.0971
| —0.8072—-1.9578 —1.2402 0.4604 —1.3092 0.7351 —0.0346

4|8 1.2614 —0.9532—5.7282 1.4590 1.9886 —1.7071 2.6406
,,,,,,,, | = | 0.2184 —0.8236 0.6495 —4.7123 1.3120 0.2781 —1.8819 | . (66)

CD —1.4203 —1.9980 —0.6598 —0.2915 —3.4583 —1.5371 1.9220
—1.2009 -1.6311 0.1655 —1.3573 1.5405 —3.5409—0.4961
1.9256 1.4937 —0.4044 0.7905 —0.4776 2.0169 0.9839
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Q}-0.1,0.1] Q7-1.1]
5 5 2 2\1 2
P o1 4+ 02) 2
O+ =P WP+ =¥
45 (0 + @) e 45 (0" + %0 e
-2 2)3 ~,
2 == = (P + )i 4 (Pz + w;’)f’””'
o P LoV S IR I N I O (P* + @3) 2
w 2
35 — e (G(w), w € | 35 Imar(G)),w € G
3 * 3
i
25 — — 25
2 2
-6 -4 -2 0 2 4 6 -20 -10 0 10 20
adjustable parameter p adjustable parameter p
nf:[—lo,lo] Qf:[—100,1001
5 0+ %) i 5
45 (P +@2) i 45
== =P+ =)
4 e (@) e 4

35 Tnar (G(w)), w € O}

*

P

3

25 1 25

2
—3000 -2000 -1000 0 1000 2000 3000 -3 -2 -1 0 1 2 3
adjustable parameter p adjustable parameter p 5

Fig. 1. Estimating the maximum singular value of given systever specified frequency range via PFD bounded real
lemma

Consider two different frequency rand& : [—1,1] and Q7 : [—2,2]. In order to show

the differences between the standard LyaBT, SPA and theopeap PFDBT, the EF-type
error bound via LyaBT(SPA), the FF-type error bound via PAD& well as the actual
approximation error are depicted by the following Fig. 2 &ig. 3.

To apply the proposed PFDBT, here we just randomly chooseethlifferent admissible
values of the parameter (p; = 4,p2 = 7,p = 20). As Fig. 2 and Fig. 3 illustrate, the
proposed PFDBT performs better than the standard LyaBTattiqolar, the actual in-band
approximation error resulted by PFDBT also could be smahan the actual in-band error
obtained by SPA, which is well-known as for good low-freqeyerapproximation perfor-

mance. More importantly, the PFDBT possesses an advantatfeean-band approximation
error estimation. Obviously, the FF-type error bounds jgled by PFDBT are smaller than
the EF-type error bound provided by LyaBT(SPA). This proyenakes the proposed PFDBT
more appealing for selecting the minimum order of the redutmdel satisfyinga priori

given error tolerance.

Example 4.3 (The CD player benchmark example [37]his original model of bench-
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Fig. 2. comparison between the standard LyaBT, SPA and thyoped PFDBTQ; : [—1,1])
0.045 approximation error via LyaBT L
- b L e approximation error via SPA
= = = error bound via LyaBT
004~~~ T T ooTmEEEEEEEEEEEES approximation error via LF—PFDBT(p:pl);

0.035

0.03

approximation error via LyaBT
approximation error via SPA

= = = error bound via LyaBT

approximation error via LF—PFDBT(p:pl)

= = = error bound via LF-PFDBT (p=p1)

approximation error via LF—PFDBT(p:pZ)
= = = error bound via LF-PFDBT (p:pz)

approximation error via LF—PFDBT(p=p3)

—~ = = error bound via LF-PFDBT (p=p3)

0.025

0.02

0.015

0.01

0.005

= = = error bound via LF-PFDBT (p=p1)

approximation error via LF—PFDBT(p:pZ)
= = = error bound via LF-PFDBT (p:pz)

approximation error via LF-PFDBT(p=p )4

— = = error bound via LF-PFDBT (p=p3)

frequency w

Fig. 3. comparison between the standard LyaBT, SPA, and rigoped PFDBT} : [—2, 2])

mark CD player example describes the dynamics between aysavim on which a lens is

mounted by means of two horizontal leaf springs. The modsliRa states, i.e.n = 120
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(Please refer to [37] for more details). Suppose the intedeBequency ranges are of low-
frequency type, here we are intended to compare the acléewatband error bound by

applying the standard LyaBT and the proposed PFDBT.

. Q-1 . 0%[-10,10]
10" : : 10" ‘ ‘
. error bound of LyaBT . error bound of LyaBT
H N error bound of PFDB'b:p' " N error bound of PFDBT):p'
error bound of PFDBP=10p" .""'-c-,,.._‘" + error bound of PFDBP=10p
10° error bound of PFDBTp=100p" 10° rmrererssen error bound of PFDBH=100p"
107 107
10720 L L L L L 10720 L L L L L
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Order of reduced model Order of reduced model
0%[-50,50] Q*[-100,100]
1010 . . 1010 T T
. error bound of LyaBT . error bound of LyaBT
‘u error bound of PFDBTp:p' i . error bound of PFDBT):p'
= «  error bound of PFDBTp=10p" g, + error bound of PFDBTp=10p"

o | . (U *
10° t, w"”"“‘mu-__.,.....,, * error bound of PFDBP=100p 10 | M * error bound of PFDBP=100p

-10| -10|

10 10

~20 L L L L L 10720 L L L L L
0 20 40 60 80 100 120 0 20 40 60 80 100 120

Order of reduced model Order of reduced model

10

Fig. 4. comparison between the EF-type error bound via stahbdyaBT and the FF-type error bound via PFDBT

Given four different low-frequency rangé¥, i = 1,2, 3,4, the corresponding FF-type error
bounds with different valuesp(t, 10p™*,100p*,7 = 1,2,3,4) of the adjustable parameter
are depicted in Fig. 4, wherg”*,i = 1,2,3,4 is the minimum value rendering the PFD
mapped systerﬁ?mpc(eﬁ) Schur stable. For comparison, the EF-type error boundsnauta

by standard LyaBT are also included. From Fig. 4, it is cléat the PFDBT is possible to
give rise to a smaller in-band error bound. Certainly, to tndxdend the in-band error bound

can be improved is depended on the choice of parameter

Example 4.4 (The ISS benchmark example [37]his is a model of component (Rus-
sian service module) of the ISS. It has 270 states, 3 inpuls3aautputs (Please refer to
[37] for more details). Here we are interested to approx@tiaé original model over a high-
frequency(, : (—oo, —35]U[35, +00). Suppose there existspriori assigned error tolerance

on the in-band approximation performance as follows,

Omaz(G(w) — G.(Jw)) < 0.001,w € Qy, : (—oo, —35] U [35, +00)
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To decide the minimum order of reduce model satisfying therdolerance, the FF-type error
bound provided by PFDBT and the EF-type error bound provioedlyaBT are plotted in
Fig. 5.

Comparison of the EF-type error bound via LyaBT and the FF-type error bounds via PFDBT (Qi:(—co, —35]0 [35,+x])
10" ¢ T T 1 T T I

T T
[ EF-type error bound via LyaBT
le + HF-type error bound via PFDBT (p=p;)

HF-type error bound via PFDBT (p:lOp;) i

HF-type error bound via PFDBT (p:lOOp;)g

error tolerance

order of ROM

Fig. 5. Deciding the minimum order of reduced model by usimg ¢rror bounds

As shown by Fig. 5, choosing tfd*" reduced order model is enough if we adopt the PFDBT.
In contrast,46* reduced order model is required if we use the standard LyaBT.

Fig. 6 illustrates the actual in-band approximation erroetween the original model and
the 31" reduced models obtained via LyaBT, SPA and the proposed FF@Berep;,i =
1,2,3,4 is the minimum value rendering the PFD mapped sysfém(eﬁ) Schur stable.
Obviously, PFDBT yields the best in-band approximatiorfqrenance. Besides, it is shown
that both the EF-type error bound and the FF-type error banednot tight. In fact, all
the 31" reduced models satisfy the in-band error tolerance. Horvewdy the 31 reduced

model generated via PFDBT is pre-known to satisfy the indbamor tolerance.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we have proposed new parameterized freqesgmmendent balanced trun-
cation (PFDBT) schemes to solve some finite frequency (FFRMfRoblems. Specifically,
the merit of our approach is a family of PFD mapped systemsgif@n LTI system in the

presence of a specified frequency range. We have shown théintte-frequency maximum
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K10 Comparison of the actual errors over specified specified high—-frequency range (er]:(—oc, —35]0 [35,+0]

—— actual error over the specified high—frequency range via PF@&':T]X

—— actual error over the specified high—-frequency range via LyaBT
3 - - =actual error over the specified high—-frequency range via SPA T

0 - Il L L L
35 50 100 150 200 250 300 350
frequency w

Fig. 6. Actual in-band approximation errors obtained by ByaSPA, and the proposed PFDBT

singular values of the given system can be bounded by theedrgiquency maximum singular
value of the PFD mapped systems. Furthermore, PFDBT scharhasg the LF-MOR (lower
frequency) and HF-MOR (higher frequency) problems whileviding LF-type and HF-type
error bounds are derived by utilizing the PFD bounded reantas. Numerical examples
illustrate the results with a comparison between the pregp@pproach and the standard BT
and SPA methods. As future work, it would be interesting tedgtthe MF-MOR (middle
frequency) problem in a similar way, i.e., to develop a MBe®FDBT scheme generating

real reduced-order models while providing an MF-type elound.
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