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Balanced Truncation of Linear Time-Invariant

Systems over Finite-frequency Ranges

Xin Du1,2, Peter Benner1,2∗,

Abstract

This paper discusses model order reduction of LTI systems over limited frequency intervals within

the framework of balanced truncation. Two newfrequency-dependent balanced truncationmethods were

developed, one isSF-type frequency-dependent balanced truncationto copy with the cases that only a single

dominating point of the operating frequency interval is pre-known, the other isinterval-type frequency-

dependent balanced truncationto deal with the cases that both of the upper and lower bound offrequency

interval are knowna priori. SF-type error bound and interval-type error bound are derived for the first time

to estimate the desired approximation error over pre-specified frequency interval. We show that the new

methods generally lead to good in-band approximation performance, at the same time, provide accurate

error bounds under certain conditions. Examples are included for illustration.

I. INTRODUCTION AND PROBLEM FORMULATIONS

We study model order reduction for linear time-invariant continuous-time systems

G(ω) :







ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
⇔ G(ω) :=

[

A B

C D

]

⇔ G(ω) :
ω
=C(ωI −A)−1B +D (1)

whereA ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n, D ∈ Cp×m, x(t) ∈ Cn is the state vector,u(t) ∈ Cm

is the input signal,y(t) ∈ Cp is the output signal. Modeling of complex physical processes often

leads to large ordern. The corresponding high storage requirements and expensive computations

make it very difficult to simulate, optimize or even design such large scale systems [1]-[4]. In this

case model order reduction (MOR) plays an important role. Itconsists in approximating the system

(1) by a reduced-order system:

Gr(ω) :







ẋr(t) = Arxr(t) +Bru(t)

y(t) = Crxr(t) +Dru(t)
⇔ Gr(ω) :=

[

Ar Br

Cr Dr

]

⇔ Gr(ω) :
ω
=Cr(ωI −Ar)

−1Br +Dr (2)
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whereAr ∈ C
r×r, Br ∈ C

n×m, Cr ∈ C
p×n, Dr ∈ C

p×m with r < n.

Balanced truncation is a well grounded and the most commonlyused model order reduction

scheme [5] [6]. The standard form is the so-calledLyapunov balanced truncation, which was

first introduced in the systems and control literature by Moore [7]. The prominent advantages of

balanced truncation is that it preserves stability and provides ana priori known error bound over

the entire-frequency range. In detail, it gives a upper bound of the following entire-frequency (EF)

type approximation performance index function

σmax(G(ω)−Gr(ω)), for all ω ∈ [−∞,+∞] (3)

In many practical applications, the operating frequency ofinput signal belongs to a fully or partially

known finite-frequency range such as a limited interval (i.e. ω ∈ [̟1, ̟2]). For those cases, the

reduced-order model is only needed to capture the input-output behavior of the original system for

input signals with admissible frequency. Correspondingly, good in-band approximation performance

is more expected, while the out-band approximation performance might be neglected [10]-[22]. In

other words, the objective offinite-frequency(FF) model order reduction is only to minimize the

following finite-frequency type performance index function:

σmax(G(ω)−Gr(ω)), for all ω ∈ [̟1, ̟2] (4)

Since the standard balanced truncation is intrinsically frequency-independent, hereby we will

call it as frequency-independent balanced truncation(FIBT) in the sequel, it cannot be used to

further improve the in-band approximation performance with pre-known frequency information.

To enhance the approximation performance over pre-specified frequency range, several balancing-

related approaches have been developed. Some famous and popular ones include:

(1) Singular perturbation approximation(SPA). SPA is a companion balancing-related method of

the standard FIBT and is first introduced by Liu and Anderson [8]. Although FIBT and SPA gives

same entire-frequency type error bound, the characteristics of them are contrary to each other. The

reduced systems generated by FIBT generally have a smaller error at high frequencies, and tend to

be larger at low frequencies. In contrast, SPA generally leads to good approximation performance

at frequencies aroundω = 0 by forcing the transfer function of full order model and reduced order

model to be matched exactly atω = 0 (i.e G(0) = Gr(0)). Therefore, SPA is particularly suited

for solving model reduction problems in the cases thatω = 0 is pre-known as the dominating

operating frequency point ([9] [10]). To further make the a flexible tradeoff between the local

approximation performance over low-frequency ranges and the global approximation performance

over entire frequency range, generalized SPA algorithm hasbeen developed by introducing a user-

defined adjustable scalar (see Obinata and Anderson [11]).
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(2) Frequency-weighted balanced truncation(FWBT). In the fields of system analysis and

control theory, frequency weighting functions is a conventional tool which has been widely applied

for solving various analysis and synthesis problems with pre-known frequency information. For

finite-frequency model order reduction problems, utilizing the frequency weighting technique and

combing it with the standard balanced truncation method also is very prevailing. During the

last three decades, many frequency weighted balanced reduction approaches have been developed

(see Enns [12]; Zhou [13]; Sreeram [14]; Ghafoor and Sreeram[17]; Houlis and Sreeram [18];

Wang et al [15]; Sreeram et al [16] and the references therein). The common procedure of

FWBT is build frequency-weighted model first by introducinginput/out frequency weighted transfer

functions and then apply the standard FIBT on the weighted model. Indeed, good frequency-specific

approximation performance may be obtained if the selected weighting function is anappropriate

one. However, the design iterations to search for anappropriateweighting transfer function can

be tedious and time consuming. Besides, FWBT also suffers from the drawback of the increased

order of the weighted plant model.

(3) Frequency-limited Grammians balanced truncation(FGBT). It was first introduced by Gawron-

ski and Juang in [19]. This methodology stems from the consideration of extending the definition of

standard Gramians to the frequency-limited case and then applying the standard balanced truncation

procedures to the frequency-limited Gramians ([20] [21] [22]). As has been pointed out in [22],

FGBT may be invalid in some cases as the solutions of the “frequency-limited Lyapunov equations”

cannot be guaranteed to be positive semi-definite, and it provides no error bound. To overcome those

drawbacks, several modified FGBT schemes providing error bound have been proposed (Gugercin

and Antoulas [5]; Gahfoor and Sreeram [22])

A common feature of the those existingfinite-frequencybalancing-related approaches is that they

continue to useentire-frequencytype index (3) to evaluate the actually concernedfinite-frequency

approximation performance (See Table I).

TABLE I

CHARACTERIZATIONS OF VARIOUS BALANCING-RELATED METHODS

Assumption Method Actually concerned error Indices for the error bound

EF−MOR

ω ∈ [−∞,+∞]
FIBT σmax(G(ω) −Gr(ω)), ∀ω ∈ [−∞,+∞] σmax(G(ω) −Gr(ω)), ∀ω ∈ [−∞,+∞]

FF−MOR

ω ∈ [̟1,+̟2]

SPA σmax(G(ω) −Gr(ω)), ∀ω ∈ [̟1,̟2] σmax(G(ω) −Gr(ω)), ∀ω ∈ [−∞,+∞]

FWBT σmax(G(ω) −Gr(ω)), ∀ω ∈ [̟1,̟2] σmax(G(ω) −Gr(ω)), ∀ω ∈ [−∞,+∞]

FGBT σmax(G(ω) −Gr(ω)), ∀ω ∈ [̟1,̟2] σmax(G(ω) −Gr(ω)), ∀ω ∈ [−∞,+∞]

FDBT

(To be developed)
σmax(G(ω) −Gr(ω)), ∀ω ∈ [̟1,̟2] σmax(G(ω) −Gr(ω)), ∀ω ∈ [̟1,̟2]
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As illustrated in Table I, there exists a incompatibleness between the intrinsic requirement and

the achievement with respect to the existing finite frequency oriented balancing-related approaches.

Since only entire-type error bounds are available, then whether or not the in-band approximation

performance has been improved cannot be pre-known and guaranteed. In particular, FWBT and

FGBT may gives rise to poor in-band approximation performance together with larger error bound

in some cases. Moreover, there is little knowledge on the in-band approximation performance, even

in the cases that the resulting in-band approximation performance is better than the standard FIBT

method. This motivate us to revisit the finite-frequency model reduction problems.

In this paper, we are dedicated to deal with the finite-frequency model order reduction still within

the framework of balanced truncation, however, a conceptual innovation that establishingfinite-

frequencytype error bound instead ofentire-frequencytype error bound to estimate the in-band

approximation error will be adopted in our development. Theresearch scope and contribution of

the present work is twofold. First, we focus on the cases thatonly a single dominating operating

frequency point̟ is pre-known. By exploiting a special class of parameterized Mobious transfor-

mation,SF-type frequency-dependent balanced truncation(FDBT) method was developed based on

the Generalized KYP Lemma (Iwasaki and Hara [25]). It is shown that the proposedSF-type FDBT

provides a scalable SF-type error bound with respect to a user-defined parameter. By adjusting the

parameter and picking it up with an appropriate value, it is probably to obtain satisfactory approx-

imation performance. Second, we discuss the cases that boththe upper bound and lower bound of

operating frequency interval are pre-known. Following thesame Generalized KYP Lemma based

methodology, aninterval-type frequency-dependent balanced truncationmethod which provides

interval-type error bound was developed. Theinterval-type FDBTgenerally gives rise to good

in-band approximation performance. In particular, we showthat small in-band approximation error

with small interval-type error bound could be simultaneously generated as long as the pre-specified

interval is small enough.

The remainders of this paper is organized as follows: First,we introduce the Generalized KYP

Lemma in Section 2. Then, we present the related results about SF-type frequency-dependent

balanced truncationmethod andinterval-type frequency-dependent balanced truncationmethod in

Section 3 and Section 4, respectively. Next, we demonstratethe effectiveness and advantages of the

proposed methods by several examples in Section 5. Finally,we end with a conclusion in Section 6.

Notations: For a matrixA, AT andA∗ denote its transpose and conjugate transpose, respectively.

The symbol∗ within a matrix represents the symmetric entries.He(M) denotes0.5(M + M∗).

σmax(G) denotes maximum singular value of the transfer matrixG. Re(x) and Im(x) denote

the real part and imaginary part of the complex scalarx, respectively.[M ]
1

2 denotes the square
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roots of matrixM and [M ]
1

2
⋆ denotes the positive principle square rootof matrix M (i.e. all

the eigenvalues of[M ]
1

2
⋆ has positive real part).I represents the identity matrix with appropriate

dimension.

II. FUNDAMENTAL TOOL

The Kalman-Yakubovich-Popov (KYP) Lemma [24] is a cornerstone in system and control

theory. In fact, the EF-type error bound provided by the standard FIBT can be proofed and

interpreted with the aid of KYP Lemma [23]. In [25], Iwasaki and Hara successfully generalized the

KYP Lemma from entire-frequency case to finite-frequency cases. The Generalized KYP Lemma

plays a fundamental role in our developed and it is included here.

Lemma 2.1 (Iwasaki and Hara [25], Generalized KYP lemma):Consider a continuous-time sys-

tem (1), the following statements are equivalent:

(1) The frequency domain inequality

σmax(G(ω)) ≤ γ holds for all ω ∈ [ω1, ω2]. (5)

(2) There exist symmetric matricesP andQ of appropriate dimensions, satisfyingQ > 0 and






−He((jω1I −A)Q(jω2I −A)∗) +AP + PA∗ +BB∗ (jωcI −A)QC∗ + PC∗ +BD∗

∗ −CQC∗ +DD∗ − γ2I






≤ 0. (6)

III. FREQUENCY-DEPENDENT BALANCED TRUNCATION OVER UNCERTAIN FREQUENCY

INTERVAL

In this section, we focus on the model order reduction over anuncertain frequency interval

(i.e. ω ∈ [̟ − δ,̟ + δ], where̟ denote the pre-known dominating frequency point, andδ

denotes the unknown size of the frequency interval). First,we construct a class of parameterized

frequency-dependent extended systems, which plays an important role in the development of SF-

type frequency-dependent balanced truncation. Then, the related results and algorithm are presented.

Definition 3.1 (SF-type Frequency-dependent Extend systems): Given a system (1) and a pre-

specified frequency point̟ , the SF-type frequency-dependent extended systems can be constructed

as:

Gǫ̟(ω) :

[

Aǫ(̟) Bǫ(̟)

Cǫ(̟)Dǫ(̟)

]

=

[

̟I − ǫ(ǫI + ̟I −A)−1(̟I −A) ǫ(ǫI + ̟I −A)−1B

ǫC(ǫI + ̟I −A)−1 D + C(ǫI + ̟I −A)−1B

]

, (7)
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whereǫ > 0 is a user-specified scalar. It should be pointed out thatǫ should be a scalar satisfying

the condition:ǫ 6= −(̟ − λi) to ensure the invertibility of(ǫI + ̟I −A), whereλi, i = 1, ..., n

denote the eigenvalues of the matrixA.

Proposition 3.2:For a given system (1), the corresponding SF-type frequency-dependent ex-

tended system (7) can be obtained by applying a particular Moebius transformation as follows:

Gǫ̟(ω) = G

(

a(ω) + b

c(ω) + d

)

,

wherea = ǫ− ̟, b = −̟2, c = −1, d = ǫ+ ̟.

Proposition 3.3:The following statements are true:

a). If the original system (1) is Hurwitz stable andǫ > 0, then the corresponding SF-type frequency-

dependent extended system is stable.

b). Given the original system (1) is unstable and denote the unstable eigenvalues ofA asλ+
i , i =

1, ..., nu, then the corresponding SF-type frequency-dependent extended system is stable if the value

of ǫ satisfying0 < ǫ < min(ǫ+i ), i = 1, ..., nu, whereǫ+i = (̟ − Im(λi))
2/Re(λi) +Re(λi).

Proof: a). Let us denoteλi, i = 1, 2..., n, andλǫi(̟), i = 1, 2..., n as the eigenvalues of the

matricesA andAǫ(̟), respectively. According to the mapping betweenA andAǫ(̟) given in (7),

we know that

λǫi(̟) = ̟ − ǫ(̟ − λi)(ǫ+ ̟ − λi)
−1, i = 1, ..., n

Noticing thatRe(λi) < 0 if the systemG(ω) is stable, then the following inequalities

Re(λǫi(̟) = −
−ǫRe(λi)(ǫ−Re(λi)) + ǫ(̟ − Im(λi))

2

(ǫ−Re(λi))2 + (̟ − Im(λi))2
< 0, i = 1, ...n (8)

hold if ǫ > 0. Thus the proof is completed.

b). Denoteλ+
ǫi(̟), i = 1, ..., nu as the eigenvalues ofAǫ(̟) mapped fromλ+

i , i.e.

λ+
ǫi(̟) = ̟ − ǫ(̟ − λ+

i )(ǫ+ ̟ − λ+
i )

−1, i = 1, ..., nu

then it can be concluded thatRe(λ+
ǫi(̟)) < 0, i = 1, ..., nu for all ǫ satisfying0 < ǫ < min(ǫ+i ), i =

1, ..., nu, according to the computational formula (8). Thus the proofis completed.

Definition 3.4 (SF-type Frequency-dependent Lyapunov Equations): Given a linear continuous-

time system (1) and one of its corresponding Hurwitz stable SF-type frequency-dependent extended

systems (7), then the following two Lyapunov equation

Aǫ(̟)Wcǫ(̟) +Wcǫ(̟)A∗
ǫ(̟) +Bǫ(̟)B∗

ǫ (̟) = 0,

A∗
ǫ (̟)Woǫ(̟) +Woǫ(̟)Aǫ(̟) + C∗

ǫ (̟)Cǫ(̟) = 0.
(9)
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are defined asSF-type frequency-dependent controllability and observability Lyapunov equationsof

the continuous-time system (1). Furthermore, the solutionsWcǫ(̟) andWoǫ(̟) will be referred to

asSF-type frequency-dependent controllability and observability Gramiansof the continuous-time

system (1).

Definition 3.5 (SF-type Frequency-dependent Balanced Realization): Given a linear continuous-

time system (1) and one of its Hurwitz stable SF-type frequency-dependent extended systems

(7), the corresponding SF-type frequency-dependent controllability and observability Gramians are

equal and diagonal, i.e. the following Lyapunov equations

Aǫ(̟)Σǫ(̟) + Σǫ(̟)A∗
ǫ(̟) +Bǫ(̟)B∗

ǫ (̟) = 0,

A∗
ǫ(̟)Σǫ(̟) + Σǫ(̟)Aǫ(̟) + C∗

ǫ (̟)Cǫ(̟) = 0.
(10)

simultaneously hold, then this particular realization will be referred to as aSF-type frequency-

dependent balanced realization

Proposition 3.6:Suppose the given system (1) is stable and letWc,Wo,Σ denote its standard

controllability and observability and balanced Gramian matrices, then the following statements are

true:

a). Wc > Wcǫ(̟), Wo > Woǫ(̟), Σ > Σǫ(̟),

b). lim
ε→0

Wcǫ(̟) = 0, lim
ε→0

Woǫ(̟) = 0, lim
ε→0

Σǫ(̟) = 0,

c). lim
ε→∞

Wcǫ(̟) = Wc, lim
ε→∞

Woǫ(̟) = Wo, lim
ε→∞

Σǫ(̟) = Σ.

Proof: a). It is well known that the standard controllability and observability Gramian matrices

Wc,Wo of system (1) satisfy the following standard frequency-independent Lyapunov equations:

AWc +WcA
∗ +BB∗ = 0

A∗Wo +WoA+ C∗C = 0.
(11)

Post-and-pre multiply the SF-type frequency-dependent Lyapunov equations (9) byǫ−1(ǫI+̟I−

A), then we have

AW̟c +W̟cA
∗ + 2ǫ−1(̟I −A)W̟c(̟I −A)∗ +BB∗ = 0

A∗W̟o +W̟oA+ 2ǫ−1(̟I −A)∗W̟o(̟I −A) +BB∗ = 0.
(12)

Furthermore, the following equations can be derived by subtracting the equations (11) from (12)

A(Wc −Wcǫ(̟)) + (Wc −Wcǫ(̟))A∗ + 2ǫ−1(̟I −A)Wcǫ(̟)(̟I −A)∗ = 0

A∗(Wo −Woǫ(̟)) + (Wo −Woǫ(̟))A + 2ǫ−1(̟I −A)∗Woǫ(̟)(̟I −A) = 0
(13)

It is easily to conclude that(Wc −Woǫ(̟)) > 0 and (Wo −Woǫ(̟)) > 0 since

2ǫ−1(̟I −A)Wcǫ(̟)(̟I −A)∗ > 0

2ǫ−1(̟I −A)∗Woǫ(̟)(̟I −A) > 0.
(14)
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Thus the proof is completed.

b). The SF-type frequency-dependent Lyapunov equations (9) can be rewritten as:

He((̟I −A)(ǫI + ̟I −A)−1Wcǫ(̟)) = ǫ(ǫI + ̟I −A)−1BB∗(ǫI + ̟I −A)−∗

He((̟I −A)∗(ǫI + ̟I −A)−∗Woǫ(̟)) = ǫ(ǫI + ̟I − A)−∗C∗C(ǫI + ̟I −A)−1.
(15)

thus one can conclude that:

lim
ǫ→0

Wcǫ(̟) =
1
2He(lim

ǫ→0
(̟I −A)(ǫI + ̟I −A)−1 lim

ǫ→0
Wcǫ(̟))

= 1
2 lim
ǫ→0

ǫ lim
ǫ→0

(ǫI + ̟I −A)−1BB∗(ǫI + ̟I −A)−∗ = 0,

lim
ǫ→0

Woǫ(̟) =
1
2He(lim

ǫ→0
(̟I −A)∗(ǫI + ̟I −A)−∗ lim

ǫ→0
Woǫ(̟))

= 1
2 lim
ǫ→0

ǫ lim
ǫ→0

(ǫI + ̟I −A)−∗C∗C(ǫI + ̟I −A)−1 = 0.

Thus the proof is completed.

3). It can be easily observed that the̟-dependent matricesA̟, B̟, C̟ will recover A,B,C as

ǫ → ∞, i.e.
lim
ε→∞

A̟ = lim
ε→∞

(̟I − ǫ(ǫI + ̟I −A)−1(̟I −A)) = A,

lim
ε→∞

B̟ = lim
ε→∞

ǫ(ǫI + ̟I −A)−1B = B,

lim
ε→∞

C̟ = lim
ε→∞

ǫC(ǫI + ̟I −A)−1 = C.

(16)

Then it is trivial to conclude that

lim
ǫ→∞

W̟c = Wc, lim
ǫ→∞

W̟o = Wo, lim
ǫ→∞

Σ̟ = Σ.

Theorem 3.7 (SF-type Frequency-dependent Balanced Truncation): Given a linear continuous-

time system (1) and the pre-known dominating operating frequency pointω = ̟, then for any

one of its Hurwitz stable SF-type frequency-dependent extended systems (7) given in SF-type

frequency-dependent balanced realization with respect tothe SF-type frequency-dependent Gramian

Σǫ(̟) = diag(Σǫ1(̟),Σǫ2(̟))

Σǫ1(̟) = diag(σǫ1(̟), σǫ2(̟), ..., σǫr(̟)),

Σǫ2(̟) = diag(σǫ(r+1)(̟), σǫ(r+2)(̟), ..., σǫn(̟)),

and σǫ1(̟) ≥ ... ≥ σǫr(̟) ≥ ... ≥ σǫn(̟), the desiredrth-order modelGr(ω) :=

[

Ar Br

CrDr

]

is

given by:

Ar = ̟I − ǫZr(̟I −Aǫ(̟))ZT
r (ǫI − Zr(̟I −Aǫ(̟))ZT

r )
−1,

Br = ǫ−1(ǫI + ̟I − Ar)ZrBǫ(̟),

Cr = ǫ−1Cǫ(̟)ZT
r (ǫI + ̟I − Ar),

Dr = Dǫ(̟)− Cr(ǫI + ̟I − Ar)
−1Br,

(17)

whereZr = [Ir×r 0r×(n−r)]. Furthermore, the truncated modelGr(ω) possesses the following
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properties:

1). The approximation error between the original system model (1) and the truncatedrth reduced

model (17) at the given frequency pointω = ̟ satisfies the following SF-type error bound:

σmax(G(ω)−Gr(ω)) ≤ 2

n
∑

i=r+1

σiǫ(̟), for ω = ̟. (18)

2). The approximation error between the original system model (1) and the truncatedrth reduced

model (17) over entire frequency range satisfies the following EF-type error bound:

σmax(G(ω)−Gr(ω)) ≤ 2
n
∑

i=r+1

σi̟

+ ‖G(ω)−Gǫ̟(ω)‖∞

+ ‖Gr(ω)−Grǫ̟(ω)‖∞, for all ω ∈ [−∞,+∞]

(19)

where

Grǫ̟(ω) :

[

Arǫ(̟) Brǫ(̟)

Crǫ(̟)Drǫ(̟)

]

=

[

̟I − ǫ(ǫI + ̟I −Ar)
−1(̟I − Ar) ǫ(ǫI + ̟I −Ar)

−1Br

ǫCr(ǫI + ̟I −Ar)
−1 Dr + Cr(ǫI + ̟I −Ar)

−1Br

]

,

(20)

Proof: 1). The detailed proof forr = n − 1 case will be provided in the sequel, and the

r = n− 2, ...1 cases can be easily completed step by step.

The error system model between the original high-order system modelG(ω) and the truncated

(n− 1)th reduced modelGn−1(ω) can be represented by

En(ω) = G(ω)−Gn−1(ω) =:





Aen Ben

Cen Den



 =





An−1 0 Bn−1

0 A B
−Cn−1 C D −Dn−1



 . (21)

From the error systemEn(ω), we can construct a dilated systemEn(ω) as follow:

En(ω) =





Aen Ben

Cen Den



 =









Aen Ben Bdn

Cen Den D11
dn

Cdn D12
dn D22

dn









, (22)
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whereBdn, Cdn,D
12
dn,D

21
dn,D

22
dn are auxiliary ’dilated’ matrices, and those matrices are constructed

as follows:

Bdn = −σǫn(̟)ǫ−1(ǫI + ̟I −Aen)





Zn−1

−I



Σ−1
ǫ (̟)Cǫ(̟)∗,

Cdn
∗ = −σǫn(̟)ǫ−1(ǫI + ̟I −Aen)

T





−Zn−1

−I



Σ−1
ǫ (̟)Bǫ(̟),

D12
dn = −Cen(ǫI + ̟I −Aen)

−1Bdn + 2σǫn(̟)I,

D21
dn = −Cdn(ǫI + ̟I −Aen)

−1Ben + 2σǫn(̟)I,

D22
dn = −Cdn(ǫI + ̟I −Aen)

−1Bdn.

(23)

Defining the Lyapunov variableQen = Q∗
en ≥ 0 andPen = Pen as follows:

Qen = 2ǫ−1





Zn−1

I



Σǫ(̟)





Zn−1

I





T

+ 2ǫ−1σǫn(̟)2





−Zn−1

I



Σ−1
ǫ (̟)





−Zn−1

I





T

,

Pen =





Zn−1

I



Σǫ(̟)





Zn−1

I





T

+ σǫn(̟)2





−Zn−1

I



Σ−1
ǫ (̟)





−Zn−1

I





T

.

(24)

Substituting the above constructed Lyapunov variableQen,Pen into the following SF-type matrix

inequality suggested by the Generalized KYP Lemma,
[

−(̟I − Aen)Qen(̟ − Aen)
∗ + AenPen + PenA ∗

en + BenB∗

en (̟I − Aen)C
∗

en + PenC ∗

en + BenD∗

en

∗ −CenQenC ∗

en + DenD∗

en − (2σǫn(̟))2I

]

=

[

Π11 Π12

∗ Π22

]

=









Π11 Π
1
12 Π

2
12

∗ Π11
22 Π

12
22

∗ ∗ Π22
22









(25)

Combing the balanced SF-type frequency-dependent Lyapunov equations (10), one can derive the

following equations:

Π11 = −(̟I − Aen)Qen(̟ − Aen)
∗ + AenPen + PenA

∗
en + BenB

∗
en

= [ǫ−1(ǫI + ̟I −Aen)]∆1[ǫ
−1(ǫI + ̟I −Aen)]

∗
(26)

Π1
12 = (̟I −Aen)QenC

∗
en + PenC

∗
en + BenD

∗
en

= [ǫ(ǫI + ̟I −Aen)]∆2[ǫ(ǫI + ̟I − A)−1]∗C∗
(27)

Π2
12 = (̟I −Aen)QenC∗

en + PenC∗
en + BenD∗

en

= [ǫ−1(ǫI + ̟I −Aen)]∆3Σ
−1
ǫ (̟)[ǫ(ǫI + ̟I − A)−1]B

(28)
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Π11
22 = −CenQenC

∗
en +

[

Den D
12
dn

][

Den D
12
dn

]∗

− (2σǫn(̟))2I

= −ǫ−1Cen∆2[ǫ(ǫI + ̟I − A)−1]∗C∗

− ǫ−1C[ǫ(ǫI + ̟I − A)−1]∆∗
2Cen

∗

(29)

Π12
22 = −CenQenC

∗
en +

[

Den D
12
dn

][

D21
dn D

22
dn

]∗

= −ǫ−1C[ǫ(ǫI + ̟I − A)−1]∆2C∗
dn

− ǫ−1σǫn(̟)Cen∆3Σ
−1
ǫ (̟)[ǫ(ǫI + ̟I − A)−1]B

(30)

Π22
22 = −CenQenC

∗
en +

[

D21
dn D

22
dn

][

D21
dn D

22
dn

]∗

− (2σǫn(̟))2I

= −ǫ−1σ2
ǫn(̟)B∗[ǫ(ǫI + ̟I − A)−1]∗Σ−1

ǫ (̟)∆3Σ
−1
ǫ (̟)[ǫ(ǫI + ̟I − A)−1]B

− ǫ−1σ2
ǫn(̟)B∗[ǫ(ǫI + ̟I − A)−1]∗Σ−1

ǫ (̟)∆∗
3Σ

−1
ǫ (̟)[ǫ(ǫI + ̟I − A)−1]B

(31)

where

∆1

=

[

Arǫ(̟) 0
0 Aǫ(̟)

]([

Zn−1Σǫ(̟)ZT
n−1Zn−1Σǫ(̟)

Σǫ(̟)ZT
n−1 Σǫ(̟)

]

+ σ2
ǫn(̟)

[

Zn−1Σǫ(̟)−1ZT
n−1−Zn−1Σǫ(̟)−1

−Σǫ(̟)−1ZT
n−1 Σǫ(̟)−1

])

+

([

Zn−1Σǫ(̟)ZT
n−1Zn−1Σǫ(̟)

Σǫ(̟)ZT
n−1 Σǫ(̟)

]

+ σ2
ǫn(̟)

[

Zn−1Σǫ(̟)−1ZT
n−1−Zn−1Σǫ(̟)−1

−Σǫ(̟)−1ZT
n−1 Σǫ(̟)−1

])[

Arǫ(̟) 0
0 Aǫ(̟)

]

∗

+

[

Zn−1Bǫ(̟)

Bǫ(̟)

][

Zn−1Bǫ(̟)

Bǫ(̟)

]∗

+ σ2
ǫn(̟)

[

Zn−1Σǫ(̟)−1Cǫ
∗(̟)

Σǫ(̟)−1C∗

ǫ(̟)

][

Zn−1Σǫ(̟)−1Cǫ
∗(̟)

Σǫ(̟)−1C∗

ǫ(̟)

]

∗

= 0

(32)

∆2

=

[

Zn−1Σǫ(̟)ZT
n−1Zn−1Σǫ(̟)

Σǫ(̟)ZT
n−1 Σǫ(̟)

][

−Zn−1

I

]

+σ2
ǫn(̟)

[

Zn−1Σǫ(̟)−1ZT
n−1−Zn−1Σǫ(̟)−1

−Σǫ(̟)−1ZT
n−1 Σǫ(̟)−1

][

−Zn−1

I

]

+ 2σǫn(̟)

[

σǫn(̟)Zn−1Σǫ(̟)−1

−σǫn(̟)Σǫ(̟)−1

]

= 0

(33)

∆3

=

[

Zn−1Σǫ(̟)ZT
n−1Zn−1Σǫ(̟)

Σǫ(̟)ZT
n−1 Σǫ(̟)

][

−Zn−1

−I

]

+ 2σǫn(̟)

[

σ−1
ǫn (̟)Zn−1Σǫ(̟)
σ−1
ǫn (̟)Σǫ(̟)

]

+σ2
ǫn(̟)

[

Zn−1Σǫ(̟)−1ZT
n−1−Zn−1Σǫ(̟)−1

−Σǫ(̟)−1ZT
n−1 Σǫ(̟)−1

][

−Zn−1

−I

]

= 0

(34)

According to the Generalized KYP Lemma, the dilate error systemsEn(ω) satisfying

σmax(En(̟)) ≤ 2σǫn(̟)
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therefore the error systemEn(ω) satisfying

σmax(En(̟)) ≤ σmax(En(̟)) ≤ 2σǫn(̟)

This completes the SF-type error bound (18) for ther = n − 1 case. The remainder of the proof

for the r = n− 2, ...1 cases can be easily completed in a reciprocal way.

2). From (17) and (20), it can be concluded that the SF-type frequency-dependent extended system

Grǫ̟(ω) of reduced systemGr(ω) can be obtained by applying the standard FIBT algorithm for

Gǫ̟(ω). Therefore, we have

σmax(Gǫ̟(ω)−Grǫ̟(ω)) ≤ 2
n
∑

i=r+1

σi̟, for all ω ∈ [−∞,+∞] (35)

Noting that

G(ω)−Gr(ω) = (Gǫ̟(ω)−Grǫ̟(ω)) + (G(ω)−Gǫ̟(ω)) + (Grǫ̟(ω)−Gr(ω)). (36)

Using triangle inequality we get

σmax(G(ω)−Gr(ω))

≤ σmax(Gǫ̟(ω)−Grǫ̟(ω)) + σmax(G(ω)−Gǫ̟(ω)) + σmax(Gr(ω)−Grǫ̟(ω))

≤ 2
n
∑

i=r+1

σi̟ + ‖G(ω)−Gǫ̟(ω)‖
∞

+ ‖Gr(ω)−Grǫ̟(ω)‖
∞
, for all ω ∈ [−∞,+∞]

(37)

This completes the proof of entire-frequency error bound (19).

Based on above preliminaries and results, we now at the stageto present the SF-type frequency-

dependent balanced truncation algorithm (see Algorithm 1).

Remark 3.8:According to Proposition 3, the SF-type error bound can be regulated to an arbitrary

small value by decreasing the parameterǫ, in other word, arbitrary approximation accuracy at the

given frequency pointω = ̟ can be achieved. To make the approximation performance overthe

neighboring intervals (ω ∈ [̟ − δ,̟ + δ]) be satisfactory, the value of parameterǫ should be

selected carefully. One possible way to pick an appropriatevalue ofǫ is to plot the curves of SF-

type error bound (18) and EF-type error bound (19) with respect to the parameterǫ, then one can

choose a proper valueǫ∗ which make the SF-type and EF-type error bound be traded off against

each other. Furthermore, it is suggested to adopt the value of ǫ be smaller thanǫ∗ if there exists

an estimation (̂δ) on the size of the uncertain frequency interval (δ). The smaller̂δ is, the smaller

value of ǫ could be.
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Algorithm 1 SF-type FDBT
Input: Full-order model(A,B,C,D), frequency(̟), user-defined parameterǫ and the order of

reduced model(r),

Step 1. Solve the SF-type frequency-dependent Lyapunov equations(9)

Step 2. Get the SF-type frequency-dependent balanced realizationof the given system by
coordinate transformation:

[

Aǫb(̟) Bǫb(̟)

Cǫb(̟) Dǫb(̟)

]

=

[

T−1
ǫ (̟)Aǫ(̟)Tǫ(̟) T−1

ǫ (̟)Bǫ(̟)

Cǫ(̟)Tǫ(̟) Dǫ(̟) + Cǫb(̟)(ǫI + ̟I −Aǫb(̟))−1Bǫb(̟)

]

, (38)

whereTǫ(̟) is a matrix that simultaneously diagonalize the matricesWcǫ(̟) andWoǫ(̟), i.e.,

T−1
ǫ (̟)Wcǫ(̟)Tǫ(̟) = T ∗

ǫ (̟)Woǫ(̟)T−∗
ǫ (̟) = Σǫ(̟),

Step 3. Compute the reduced-order model as:

Ar = ̟I − ǫZr(̟I − Aǫb(̟))ZT
r (ǫI − Zr(̟I − Aǫb(̟))ZT

r )
−1,

Br = ǫ−1(ǫI + ̟I −Ar)ZrBǫb(̟),
Cr = ǫ−1Cǫb(̟)ZT

r (ǫI + ̟I − Ar),
Dr = Dǫb(̟)− Cr(ǫI + ̟I − Ar)

−1Br.

(39)

Output: Reduced-order model(Ar, Br, Cr, Dr)

Remark 3.9:For the sake of theoretical completeness, the SF-type FDBT approach is developed

in a complex setting. The original system matrices and the reduced system matrices are allowed

to be complex. In many applications, only real systems are ofpractical interest. With real model

restriction, the proposed SF-type FDBT can only be applied in the case that̟ = 0. It is easy to find

that the involved matricesWcǫ(̟),Woǫ(̟), Tǫ(̟) and the generated reduced modelAr, Br, Cr, Dr

are all real if the original system is real and the frequency point is ̟ = 0. In the framework of

balancing related methods, the proposed SF-type FDBT is notthe only way for solving model

order reduction problems assuming the dominating frequency is ̟ = 0. As referred to in Section

I, SPA is also regarded as an effective way for improving the approximation performance over low-

frequency ranges. However, it should be noticed that the underlying mechanisms and the algorithms

of SPA and SF-type FDBT are totally different. Which one willperforms better on low-frequency

approximation accuracy improvement depends on the given original system model. From the results

of Example 3 in Section 5, to say the least, the proposed SF-type FDBT can be viewed as a new

non-trivial alternative option besides SPA.

Remark 3.10:It is well-known that the conventional balanced truncationmethods (such as the
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above mentioned FIBT, SPA, FWBT and FGBT) are developed for stable systems. To make

those methods applicable for unstable system, some techniques like stable part and unstable part

decomposition should be combined [5] [27] [28]. According to Proposition 2, one can always find

a stable SF-type frequency-dependent extended system by choosing a properǫ, even if the given

original system is unstable. Thus, the SF-type FDBT can be used for coping with model reduction of

unstable systems directly. The corresponding cost is that it cann’t guarantee the generated reduced

model is stable even if the original system is stable.

IV. FREQUENCY-DEPENDENT BALANCED TRUNCATION OVER KNOWN

FREQUENCY-INTERVALS

In this section, we present our results for the cases that theoperating frequency belongs to a

pre-known limited interval, i.e.ω ∈ [̟1, ̟2]. We will present some related definitions first and then

show the related results and the interval-type frequency-dependent balanced truncation algorithm.

Definition 4.1 (Interval-type Frequency-dependent Extendsystems):Given a linear continuous-

time system (1) and a pre-known frequency interval (ω ∈ [̟1, ̟2]), one can construct an interval-

type frequency-dependent extended system as follows:

G̟1,̟2
(ω) :

[

A(̟1, ̟2)B(̟1, ̟2)

C(̟1, ̟2)D(̟1, ̟2)

]

, (40)

where
A(̟1, ̟2) = A,

B(̟1, ̟2) = [̟2
d(̟1I −A)−1(̟2I − A)−1]

1

2
⋆B,

C(̟1, ̟2) = C[̟2
d(̟1I − A)−1(̟2I − A)−1]

1

2
⋆,

D(̟1, ̟2) = D + C[(̟cI −A)(̟1I − A)−1(̟2I −A)]−1B,

̟d = (̟2 −̟1)/2, ̟c = (̟2 +̟1)/2.

Definition 4.2 (Interval-type Frequency-dependent Lyapunov Equations):Given a linear continuous-

time system (1) and a pre-specified frequency interval (ω ∈ [̟1, ̟2]), then the following two

Lyapunov equation

A(̟1, ̟2)Wc(̟1, ̟2) +Wc(̟1, ̟2)A
∗(̟1, ̟2) +B(̟1, ̟2)B

∗(̟1, ̟2) = 0

A∗(̟1, ̟2)Wo(̟1, ̟2) +Wo(̟1, ̟2)A(̟1, ̟2) + C∗(̟1, ̟2)C(̟1, ̟2) = 0
(41)

are defined as interval-type frequency-dependent controllability and observability Lyapunov equa-
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tions of the continuous-time system (1). Furthermore, the solutionsWc(̟1, ̟2) andWo(̟1, ̟2)

will be referred to as interval-type frequency-dependent controllability and observability Gramians

of the continuous-time system (1)

Definition 4.3 (Interval-type Frequency-dependent Balanced Realization):Given a linear continuous-

time system (1) and a pre-specified frequency interval (ω ∈ [̟1, ̟2]), the corresponding interval-

type frequency-dependent controllability and observability Gramians are equal and diagonal, i.e.

the following Lyapunov equations

A(̟1, ̟2)Σ(̟1, ̟2) + Σ(̟1, ̟2)A
∗
(̟1, ̟2) +B(̟1, ̟2)B

∗(̟1, ̟2) = 0

A∗(̟1, ̟2)Σ(̟1, ̟2) + Σ(̟1, ̟2)A(̟1, ̟2) + C∗(̟1, ̟2)C(̟1, ̟2) = 0
(42)

simultaneously hold, then this particular realization will be referred to as interval-type frequency-

dependent balanced realization.

Theorem 4.4 (Interval-type Frequency-dependent BalancedTruncation): Given a linear continuous-

time system (1) with a pre-specified frequency interval (ω ∈ [̟1, ̟2]), and assume the system is

given in interval-type frequency-dependent balanced realization with respect to the interval-type

frequency-dependent Gramian:

Σ(̟1, ̟2) = diag(σ1(̟1, ̟2), ..., σr(̟1, ̟2), ..., σn(̟1, ̟2)),

and σ1(̟1, ̟2) ≥ ... ≥ σr(̟1, ̟2) ≥ ... ≥ σn(̟1, ̟2), the desiredrth reduced-order model

Gr(ω) :=

[

Ar Br

CrDr

]

is given by:

Ar = ZrAZ
T
r ,

Br = [̟2
d(̟1I −Ar)

−1(̟2I − Ar)
−1]−

1

2
⋆ZrB(̟1, ̟2),

Cr = C(̟1, ̟2)Z
T
r [̟

2
d(̟1I − Ar)

−1(̟2I −Ar)
−1]−

1

2
⋆,

Dr = D(̟1, ̟2)− Cr[(̟cI − A)(̟1I − Ar)
−1(̟2I − Ar)]

−1Br,

(43)

whereZr = [Ir×r 0r×(n−r)]. Furthermore, the truncated modelGr(ω) possesses the following

properties:

1). If the original system is stable then the reduced system is stable.

2). The approximation error between the original system model (1) and the truncatedrth reduced

model (43) over the given frequency interval (ω ∈ [̟1, ̟2]) satisfies the following interval-type
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error bound:

σmax(G(jω)−Gr(jω)) ≤
n
∑

i=r+1

√

ηi(̟1, ̟2), for all ω ∈ [̟1, ̟2], (44)

where

ηi(̟1, ̟2) = σmax

(

(2σi(̟1, ̟2))
2I +He

(

−CeiNeiBeiHe([0 I]T (2σi(̟1, ̟2))[I 0]
))

(45)

and

Bei =



 Bei Bdi



 =






M−1

ei





Zi−1

Zi



B(̟1,̟2) σi(̟1, ̟1)M
−1

ei
Σ−1

ei
(̟1, ̟2)





Zi−1

−Zi



C∗(̟1,̟2)






,

(46)

C
∗

ei =



 C∗

ei
C∗

di



 =






M−∗

ei





−Zi−1

Zi



C∗(̟1,̟2) σi(̟1,̟2)M
−∗

ei
Σ−1

ei
(̟1,̟2)





−Zi−1

−Zi



B(̟1, ̟2)






,

(47)

Nei = diag{Ni−1, Ni} = diag{[(̟cI−Ai−1)(̟1I−Ai−1)
−1(̟2I−Ai−1)

−1], [(̟cI−Ai)(̟1I−Ai)
−1(̟2I−Ai)

−1]}, (48)

Mei = diag{Mi−1, Mi} = diag{[̟2

d
(̟1I−Ai−1)

−1(̟2I−Ai−1)
−1]

1

2 , [̟2

d
(̟1I−Ai)

−1(̟2I−Ai)
−1]

1

2 }, (49)

Σei(̟1,̟2) = diag{Σi−1(̟1,̟2), Σi(̟1,̟2))} = diag{Zi−1Σ(̟1, ̟2)Z
T
i−1

, ZiΣ(̟1,̟2)Z
T
i }.

(50)

3). The approximation error between the original system model (1) and the truncatedrth reduced

model (43) over entire frequency range satisfies the following EF-type error bound:

σmax(G(ω)−Gr(ω)) ≤ 2
n
∑

i=r+1

σi(̟1, ̟2)

+ ‖G(ω)−G̟1,̟2
(ω)‖∞

+ ‖Gr(ω)−Gr̟1,̟2
(ω)‖∞, for all ω ∈ [−∞,+∞].

(51)

whereGr̟1,̟2
(ω) represents the corresponding interval-type frequency-dependent extended sys-

tem of reduced systemGr(ω), i.e.

Gr̟1,̟2
(ω) :

[

Ar(̟1, ̟2) Br(̟1, ̟2)

Cr(̟1, ̟2)Dr(̟1, ̟2)

]

, (52)

where
Ar(̟1, ̟2) = Ar = ZrA(̟1, ̟2)Z

T
r ,

Br(̟1, ̟2) = [̟2
d(̟1I −Ar)

−1(̟2I −Ar)
−1]

1

2
⋆Br = ZrB(̟1, ̟2),

Cr(̟1, ̟2) = Cr[̟
2
d(̟1I −Ar)

−1(̟2I −Ar)
−1]

1

2
⋆ = C(̟1, ̟2)Z

T
r ,

Dr(̟1, ̟2) = Dr + Cr[(̟cI −Ar)(̟1I −Ar)
−1(̟2I −Ar)]

−1Br = D(̟1, ̟2).

Proof: 1) It can be easily completed by the similar procedure adopted in the proof of stability

preservation for classic FIBT [23].

2). Similar with the proof of SF-type error bound provided inTheorem 1, only the sketch of the

proof for r = n− 1 case will be given below.

We abuse notation a little bit for simplification. The error system En(ω) between the original
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system modelG(ω) and the(n− 1)th order reduced modelGn−1(ω) can be represented by:

En(ω) = Gn(ω)−Gn−1(ω) = G(ω)−Gn−1(ω) =:





Aen Ben

Cen Den



 =







An−1 0 Bn−1

0 An Bn

−Cn−1 Cn Dn −Dn−1






(53)

Based on the error systemEn(ω), one can construct a structure-preserving dilated systemEn(ω)

as follows:

En(ω) :=

[

Aen Ben

Cen Den

]

=





Aen Ben Bdn

Cen Den −CenNenBdn + 2σn(̟1, ̟2)I

Cdn −CdnNenBen + 2σn(̟1, ̟2)I −CdnNenBdn



 (54)

whereBen,Bdn, Cen, Cdn,Nen are defined as (46)-(50). Now, if one choose two symmetrical Lya-

punov variablesQen = Q∗
en ≥ 0 andPen = P∗

en as follows:

Qen = Nen(ω1, ω2)BenBen
∗Nen

∗(ω1, ω2) +Nen(ω1, ω2)BdnBdn
∗Nen

∗(ω1, ω2)

Pen = He
(

(ωd)(ω1I −Aen)
−1BenBen

∗(ω2I −Aen)
−∗

)

+He
(

(ωd)(ω1I −Aen)
−1BdnBdn

∗(ω2I −Aen)
−∗

)

− ω2
dHe

(

(ω1I −Aen)
−1Men

−1[ZT
n−1 I]TΣ(ω1, ω2)[Z

T
n−1 I]Men

−∗(ω2I −Aen)
−∗

)

− σn
2ω2

dHe
(

(ω1I −Aen)
−1Men

−1[−ZT
n−1 I]TΣ−1(ω1, ω2)[−ZT

n−1 I]Men
−∗(ω2I −Aen)

−∗

)

(55)

Combing the interval-type balanced frequency-dependent Lyapunov equation (42) and following a

similar way in the proof of Theorem 1, one can derive the inequality
[

−He((̟1I − Aen))Qen(̟2 − Aen)
∗) + AenPen + PenA

∗

en + BenB
∗

en (̟cI − Aen)C
∗

en + PenC
∗

en + BenD
∗

en

∗ −CenQenC
∗

en + DenD
∗

en − (
√
ηn)

2I

]

=

[

0 0

∗ (2σn(̟1,̟2))
2I +He

(

−CeiNeiBeiHe([0 I ]T (2σn(̟1,̟2))[I 0])
)

− ηn(̟1,̟2)I

]

≤ 0

(56)

According to the Generalized KYP Lemma, the dilated error systemEn(ω) satisfies
σmax(En(ω)) ≤

√

ηn(̟1, ̟2), for all ω ∈ [̟1, ̟2] (57)

Therefore the error system satisfying the following inequality
σmax(En(ω)) ≤ σmax(En(ω)) ≤

√

ηn(̟1, ̟2), for all ω ∈ [̟1, ̟2] (58)

This completes the proof of interval-type error bound (44) for ther = n−1 case, ther = n−2, ..., 1

cases can be fulfilled step by step.

3). Similar with proof of EF-type error bound (19) provided by SF-type FDBT, the proof of EF-type

error bound (51) provided by interval-type FDBT can be completed in the same way.

Proposition 4.5: the the following statements are true:
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a). lim
̟d→0

Wc(̟1, ̟2) = 0, lim
̟d→0

Wo(̟1, ̟2) = 0, lim
̟d→0

Σ̟(̟1, ̟2) = 0,

b) lim
̟d→∞

Wc(̟1, ̟2) = Wc, lim
̟d→∞

Wo(̟1, ̟2) = Wo, lim
̟d→∞

Σ̟(̟1, ̟2) = Σ.

c) lim
̟d→0

ηi = 0, i = 1, ..., n

Proof: a). It can be easily observed that

lim
̟d→0

A(̟1, ̟2) = lim
̟d→0

A = A,

lim
̟d→0

B(̟1, ̟2) = lim
̟d→0

[̟2
d(̟1I −A)−1(̟2I −A)−1]

1

2
⋆B = 0,

lim
̟d→0

C(̟1, ̟2) = lim
̟d→0

C[̟2
d(̟1I −A)−1(̟2I −A)−1]

1

2
⋆ = 0.

(59)

From the interval-type frequency-dependent Lyapunov equation (41), we know that

A lim
̟d→0

Wc(̟1, ̟2) + lim
̟d→0

Wc(̟1, ̟2)A
∗ = 0

A∗ lim
̟d→0

Wo(̟1, ̟2) + lim
̟d→0

Wo(̟1, ̟2)A = 0.
(60)

which means lim
̟d→0

Wc(̟1, ̟2) = 0 and lim
̟d→0

Wo(̟1, ̟2) = 0.

b). Similar with the above proof, we have

lim
̟d→∞

A(̟1, ̟2) = lim
̟d→∞

A = A,

lim
̟d→∞

B(̟1, ̟2) = lim
̟d→∞

[̟2
d(̟1I −A)−1(̟2I −A)−1]

1

2
⋆B = B,

lim
̟d→∞

C(̟1, ̟2) = lim
̟d→∞

C[̟2
d(̟1I −A)−1(̟2I −A)−1]

1

2
⋆ = C.

(61)

and
A lim

̟d→∞

Wc(̟1, ̟2) + lim
̟d→∞

Wc(̟1, ̟2)A
∗ +BB∗ = 0

A∗ lim
̟d→∞

Wo(̟1, ̟2) + lim
̟d→∞

Wo(̟1, ̟2)A+ C∗C = 0.
(62)

Then lim
̟d→∞

Wc(̟1, ̟2) = Wc and lim
̟d→∞

Wo(̟1, ̟2) = Wo can be conclude.

c). Noticing thatσi(̟1, ̟2) is the minimum of the diagonal components ofΣei(̟1, ̟2), then we

have

lim
̟d→0

σi(̟1, ̟2)Σei(̟1, ̟2) ≤ I (63)

furthermore, one can conclude that there exists a scalarµ < ∞ such that the following inequality

lim
̟d→0

CeiNeiBei ≤ µI (64)

holds since the convergence of matricesCei,Nei andBei in cases that̟ d → 0 are norm bounded.

lim
̟d→0

ηi(̟1, ̟2)

= lim
̟d→0

σ2
i (̟1, ̟2)I + lim

̟d→0
He

(

−CeiNeiBeiHe([0 I]T (2σi(̟1, ̟2))[I 0]
)

= lim
̟d→0

σ2
i (̟1, ̟2)I +He

(

− lim
̟d→0

CeiNeiBeiHe([0 I]T (2 lim
̟d→0

σi(̟1, ̟2))[I 0]

)

= 0

(65)

Thus the proof is completed.
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Proposition 4.6:The following equation

T−1[̟2
d(̟1I − A)−1(̟2I − A)−1]

1

2
⋆T = [̟2

d(̟1I − T−1AT )−1(̟2I − T−1AT )−1]
1

2
⋆ (66)

holds for arbitrarily given invertible matrixT ∈ Cn×n

Proof: Lets consider the square of matrices of the left side and right side in (66), we have

(

T−1[̟2
d(̟1I − A)−1(̟2I − A)−1]

1

2
⋆T

)2

= T−1[̟2
d(̟1I − A)−1(̟2I − A)−1]

1

2
⋆[̟2

d(̟1I − A)−1(̟2I − A)−1]
1

2
⋆T

= T−1[̟2
d(̟1I − A)−1(̟2I − A)−1]T

= [̟2
d(̟1I − T−1AT )−1(̟2I − T−1AT )−1]

=
(

[̟2
d(̟1I − T−1AT )−1(̟2I − T−1AT )−1]

1

2
⋆
)2

The above equation means that there exist matricesU, V such that

(

T−1[̟2
d(̟1I − A)−1(̟2I −A)−1]

1

2
⋆T

)2

=
(

[̟2
d(̟1I − Â)−1(̟2I − Â)−1]

1

2
⋆
)2

= UV U−1

whereU is the matrix whose columns are eigenvectors of
(

T−1[̟2
d(̟1I − A)−1(̟2I −A)−1]

1

2
⋆T

)2

and
(

[̟2
d(̟1I − Â)−1(̟2I − Â)−1]

1

2
⋆
)2

andV is the diagonal matrix whose diagonal elements

are the corresponding eigenvalues. Furthermore, one get

T−1[̟2
d(̟1I − A)−1(̟2I − A)−1]

1

2
⋆T = [̟2

d(̟1I − Â)−1(̟2I − Â)−1]
1

2
⋆ = UV

1

2
⋆U−1

This completes the proof.

With the above preparations, the corresponding interval-type FDBT algorithm (Algorithm 2) can

be presented as follows.

Remark 4.7:Compared with other balancing-related approaches, the most distinctive feature of

the proposed interval-type FDBT method is that it gives an interval-type error bound (44). To the

best of our knowledge, it is the first time to provide such an interval-type error bound using the

interval-type index (4) in the model order reduction research areas. In particular, as revealed by

Proposition 4, the interval-type error bound (44) always tends to be zero while the interval size

tends to zero. This property means that the interval-type FDBT generally will gives rise to good

in-band approximation performance while provides better in-band error bound simultaneously as
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Algorithm 2 Interval-type FDBT
Input: Full-order model(A,B,C,D), Frequency interval(̟1, ̟2), order of reduced model(r).

Step 1. Solve the interval-type frequency-dependent Lyapunov equations (41)

Step 2. Get the frequency-dependent realization of the given system by coordinate transformation:

[

Ab Bb

Cb Db

]

=

[

T−1(̟1, ̟2)AT (̟1, ̟2) T−1(̟1, ̟2)B

CT (̟1, ̟2) D + Cb[(̟cI −Ab)(̟1I −Ab)
−1(̟2I −Ab)

−1]Bb

]

, (67)

where T (̟1, ̟2) is a matrix that simultaneously diagonalize the matricesWc(̟1, ̟2) and
Wo(̟1, ̟2), i.e.,

T−1(̟1, ̟2)Wc(̟1, ̟2)T (̟1, ̟2) = T ∗(̟1, ̟2)Wo(̟1, ̟2)T
−∗(̟1, ̟2) = Σ(̟1, ̟2),

Step 3. Compute the reduced-order model as:

Ar = ZrAbZ
T
r ,

Br = [̟2
d(̟1I −Ar)

−1(̟2I −Ar)
−1]−

1

2
⋆Zr[̟

2
d(̟1I −Ab)

−1(̟2I −Ab)
−1]

1

2
⋆Bb,

Cr = Cb[̟
2
d(̟1I −Ab)

−1(̟2I −Ab)
−1]

1

2
⋆ZT

r [̟
2
d(̟1I −Ar)

−1(̟2I −Ar)
−1]−

1

2
⋆,

Dr = D + Cb[(̟cI −Ab)(̟1I −Ab)
−1(̟2I −Ab)

−1]Bb

− Cr[(̟cI −Ar)(̟1I −Ar)
−1(̟2I −Ar)

−1]Br,

(68)

Output: Reduced-order model(Ar, Br, Cr, Dr)

long as the size of frequency interval is small enough. Although the interval-type error bound may

be increasing quickly with respect to the size of frequency interval. The interval-type error bound

and its property are still appealing from a theoretical viewpoint.

Remark 4.8:Again, the interval-type FDBT is also presented in a generalform, i.e. the system

matrices are allowed to be complex or real and the frequency interval might be symmetrical or

asymmetrical. It can be easily verified that the interval-type FDBT will generate real reduced models

for real full models if the given frequency interval is symmetrical (i.e̟1 = −̟2). For applications

with real system parameter restriction in asymmetrical frequency interval cases (ω ∈ [̟1, ̟2]), the

interval-type FDBT can also be applied in a conservative wayby modifying the frequency as

ω ∈ [−̟max, ̟max] with ̟max = max{|̟1| , |̟2|}.

V. EXAMPLES

Example 5.1:Lets consider a LTI system (1) with the following parameter matrices:









A B

C D









=

















0.2128 0.7749 0.1945 −0.2864 0.0501 −0.0464 0.9673
−0.6613−2.6801−0.8468−0.5733−0.7945 0.9653 −1.4467
0.2423 −0.8043−0.7669−0.5423−0.9032 0.1441 −1.2514
−0.1508 0.5229 0.6927 −0.0704 0.8778 −0.5350−0.4141
0.3542 0.7882 0.3681 −0.2077−0.1705−0.7660−0.6560
−0.6424−0.5045−0.0252 0.6453 0.9838 −0.9392−0.1651
−1.5883−1.3181 0.5656 1.1507 −0.5106−0.7736 3.9764

















(69)

Here we assume that the frequency of input signal belongs to an uncertain interval around̟ = 0.
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The task is to build reduced model of order 3 approximating the frequency domain dynamic

behaviors of the original model well in the neighborhood of̟ = 0. Among the existing balancing-

related methods, the(generalized) SPAis the most suitable one for coping with this kind of model

reduction problems. At the same time, our proposedSF-type FDBTmethod can also be applied

for this kind of problems. The sigma plots of error systems generated bygeneralized SPAandSF-

type FDBTare depicted in Fig.1 and Fig.2, respectively. As Fig.1 and Fig.2 shown, both of them

could gives rise to small approximation error around̟ = 0. Moreover, one can make a tradeoff

between the local approximation performance and global approximation performance by adjusting

the the user-defined parameter (ρ for generalized SPA andǫ for SF-type FDBT). In this example

the generalized SPA and the SF-type FDBT performs very similar with each other, however, huge

variety on their performance may occurred in some cases (seeexample 3 in the below, in which

only the SF-type FDBT is effective).

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Sigma plot of error systems obtained via FIBT and Generalized SPA

frequency ω
 

 

Sigma plot of Error system obtained via FIBT

Sigma plot of Error system obtained via Generalized SPA (ρ=0)

Sigma plot of Error system obtained via Generalized SPA (ρ=1)

Sigma plot of Error system obtained via Generalized SPA (ρ=10)

Sigma plot of Error system obtained via Generalized SPA (ρ=100)

Fig. 1. Sigma plot of error models generated via GeneralizedSPA and FIBT

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Sigma plot of error systems obtained via FIBT and the proposed SF−type FDBT

frequency ω
 

 

Sigma plot of Error system obtained via FIBT

Sigma plot of Error system obtained via SF−type FDBT(ε=0.5)

Sigma plot of Error system obtained via SF−type FDBT (ε=1.5)

Sigma plot of Error system obtained via SF−type FDBT (ε=2)

Sigma plot of Error system obtained via SF−type FDBT (ε=10)

Fig. 2. Sigma plot of error models generated via SF-type FDBTand FIBT
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ε

EF−type and SF−type error boounds

 

 

Error bounds over entire−frequency range via SF−type FDBT

Error bounds over at specified frequency point (ϖ=0) via SF−type FDBT

Error bounds over entire−frequency range via FIBT

Fig. 3. SF-type error bound and EF-type error bound with respect to the parameterǫ

Besides, the corresponding SF-type error bound and EF-typeerror bound with respect to different

ǫ provided by SF-type FDBT are plotted in Fig 3. According to the error bounds, we know that

the local and global approximation performance could be well balanced by picking up the value

of parameterǫ larger than 3 and smaller than 5. In this way the trial-and-error procedure to find

an appropriateǫ can be shorten or avoided. Furthermore, if the parameterǫ satisfy25 > ǫ > 4, the

EF-type error bound of SF-type FDBT will even be smaller thatthe EF-type error bound of FIBT.

Example 5.2:Lets consider a LTI system (1) with the following parameter matrices:









A B

C D









=











−0.62 0.44 −0.03−0.00−0.31
0.44 −3.64 0.59 0.02 0.47
0.03 −0.59−6.80−0.46 0.12
−0.00 0.02 0.46 −5.64−0.00
−0.31 0.47 −0.12−0.00 0.00











(70)

The frequency range of input signals is assumed to be pre-known, and we consider the following

two different cases: (1) Case 1:ω ∈ [−0.4,+0.4]; (2) Case 2:ω ∈ [−0.8,+0.8].

Among the existing balancing-related methods, FGBT [5] is the exact one developed for solving

such interval-type finite-frequency model reduction problems. Our proposed interval-type FDBT

is also aimed to solve this kind of problems. We will show the differences between them by

this example. The sigma plot of error models and the corresponding error bound are given in

the Fig. 4-Fig. 5, by which the most striking difference on the type of error bounds can be

illustrated. The FGBT provides error bound over entire-frequency range, in contrast, the interval-

type only provides error bound over the pre-specified frequency interval. Since it is assumed that

the operating frequencies belong to the given intervals, the interval-type error bounds are adequate

for approximation performance estimation. Compared with the standard FIBT, both the FGBT and

the interval-type FDBT are effective in improving the approximation performance over specified
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frequency interval. At the same time, the interval-type FDBT has the advantage that it gives rise

to better approximation performance and smaller error bound simultaneously.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8
x 10

−4

ω

sigma plot of error systems and the corresponding error bound (2nd order reduced model)

 

 

Error Bound via FIBT (Case I & Case II)

Actual Error via FIBT (Case I & Case II)

Error Bound via FGBT (case I)

Actual Error via FGBT (case I)

Error Bound via FGBT (case II)

Actual Error via  FGBT (case II)

Error Bound via Interval−type FDBT (Case I )

Actual Error via Interval−type FDBT (Case I )

Error Bound via Interval−type FDBT (Case II)

Actual Error via Interval−type FDBT (Case II )

Fig. 4. Sigma plot of error models and the corresponding error bounds (2nd order reduced model)
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0.03
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0.05
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0.07

ω

sigma plot of error systems and the corresponding error bound (1st order reduced model)

 

 

Error Bound via FIBT (Case I & Case II)

Actual Error via FIBT (Case I & Case II)

Error Bound via FGBT (case I)

Actual Error via FGBT (case I)

Error Bound via FGBT (case II)

Actual Error via  FGBT (case II)

Error Bound via Interval−type FDBT (Case I )

Actual Error via Interval−type FDBT (Case I )

Error Bound via Interval−type FDBT (Case II)

Actual Error via Interval−type FDBT (Case II )

Fig. 5. Sigma plot of error models and the corresponding error bounds (1st order reduced model)

As depicted by Fig. 4 and Fig.5, the interval-type error bound provided by interval-type FDBT

for Case II is larger than the interval-type error bound for Case I. To further show the property

of interval-type error bound, we plot the curves of the two interval-size (̟ l) dependent indices in

Fig.6 and Fig.7. It is shown the interval-type error bound appears to be increasing with respect
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to the interval-size. Moreover, the interval-type FDBT outperforms FGBT and FIBT on both the

in-band approximation performance and the error bound for the cases that̟ l < 1.5.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8
x 10

−4

upper bound of the frequency interval ϖ
l

2nd order case

 

 

EB(ϖ
l
) via  FIBT

Err(ϖ
l
) via  FIBT

EB(ϖ
l
)  via FGBT

Err(ϖ
l
)  via FGBT

EB(ϖ
l
) via interval type FDBT

Err(ϖ
l
) via interval type FDBT

Fig. 6. Curves of maximum error and error bound (1st order reduced model).Err(̟l): represents the maximum approximation
error over frequency interval[−̟l,̟l], i.e. Err(̟l) = σmax(G(ω) − Gr(ω)),∀ω ∈ [−̟l,̟1], whereGr(ω) denotes the
reduced model generated by specified method.Err(̟l): represents the interval-type error bound for interval-type FDBT.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

upper bound of the frequency interval ϖ
l

1st−order case

 

 

EB(ϖ
l
) via  FIBT

Err(ϖ
l
) via  FIBT

EB(ϖ
l
) via  FGBT

Err(ϖ
l
)  via FGBT

EB(ϖ
l
) via interval type FDBT

Err(ϖ
l
) via interval type FDBT

Fig. 7. Curves of maximum error and error bound (2nd order reduced model).Err(̟l): represents the maximum approximation
error over frequency interval[−̟l,̟l], i.e. Err(̟l) = σmax(G(ω) − Gr(ω)),∀ω ∈ [−̟l,̟1], whereGr(ω) denotes the
reduced model generated by specified method.Err(̟l): represents the interval-type error bound for interval-type FDBT.

As referred to in Remark 4, the interval-type FDBT always provides small error bound as long

as the size of frequency interval is small enough. To show this, a randomization experiment was

carried out. We randomly generate 100 stable systems with order 4. (The off-diagonal elements

of matrix A and each element of the matricesB,C,D are obtained with a zero mean and unitary
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variance normal distribution, the diagonal element of matrix A are obtained with mean -5.5 and

variance 4.5). To compare the average performance between FGBT and interval-type FDBT, several

indices are defined in Table II.

TABLE II

INDICES USED TO COMPARE THE APPROXIMATION ERROR AND ERROR BOUND GENERATED BY DIFFERENT METHODS

Indexes computation formula

Err(̟ l, r, FDBT) 1
L

L
∑

l=1

σmax(Gl(ω)−Gl

Dr
(ω)), ω∈[−̟l,+̟l]

σmax(Gl(ω)−GIr
l(ω)) ω∈[−̟l,+̟l]

Err(̟ l, r, FGBT) 1
L

L
∑

l=1

σmax(Gl(ω)−Gl

Gr
(ω)), ω∈[−̟l,+̟l]

σmax(Gl(ω)−Gl

Ir
(ω)), ω∈[−̟l,+̟l]

Eb(̟ l, r, FDBT) 1
L

L
∑

l=1

upper bound of (σmax(Gl(ω)−Gl

Dr
(ω)), ω∈[−̟l,+̟l])

upper bound of (σmax(Gl(ω)−GIr
l(ω)) ω∈[−∞,+∞])

Eb(̟ l, r, FGBT) 1
L

L
∑

l=1

upper bound of (σmax(Gl(ω)−Gl
Gr

(ω)), ω∈[−∞,+∞])
upper bound of (σmax(Gl(ω)−Gl

Ir
(ω)), ω∈[−∞,+∞])

In Table II, ̟l represents the upper bound of the symmetrical frequency interval, r is the order

of reduced model,Gl
Dr(ω), G

l
Sr(ω), G

l
Gr(ω), G

l
Ir(ω) represent the reduced models of orderr

generated by interval-type FDBT, SPA, FGBT and the classic FIBT for the lth random model,

respectively. Fig. 8 and Fig. 9 display the experiment results on the these indices.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
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1

1.5

2

2.5

3

frequency upper bound ϖ
l

FIBT vs. FGBT vs. Interval−type FDBT (on the error bound)

 

 

Eb(ϖ
l
,3,FDBT)

Eb(ϖ
l
,2,FDBT)

Eb(ϖ
l
,1,FDBT)

Eb(ϖ
l
,3,FGBT)

Eb(ϖ
l
,2,FGBT)

Eb(ϖ
l
,1,FGBT)

Baseline

Fig. 8. Randomized experiment results on actual error

Fig. 8 validated that the interval-type error bound provided by interval-type FDBT generally is

smaller than the EF-type error bound generated by FIBT and FDBT for the cases that the interval-

size is small enough (about̟ < 1 in this experiment). Although the advantage on the error bound

is restricted for small interval-size cases, it is suggested to take the interval-type FDBT as a feasible

option even for medium interval-size cases. According to our experiment, the interval-type FDBT

DRAFT



26

generally also gives rise to better in-band approximation performance than FIBT and FGBT for

medium interval-size cases (see Fig. 9 for details).
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l
,3,FDBT)

Err(ϖ
l
,2,FDBT)
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l
,1,FDBT)

Err(ϖ
l
,3,FGBT)

Err(ϖ
l
,2,FGBT)

Err(ϖ
l
,1,FGBT)

baseline

Fig. 9. Randomized experiment results on error bound

Example 5.3:Lets consider the201th order RLC ladder circuit example provided by [5] [29].

As has been pointed out in [29], approximating the ladder circuit is quite difficult in the framework

of balancing related model order reduction approaches since neither the Hankel nor the singular

values decay to any extent. In particular, its dynamic behavior over low frequency ranges is too

complex to be well approximated due to the special distribution of its poles and zeros. Here we

are interested to approximate this circuit in the followingcases:

Case I: the frequency of input signal belongs to a unknown neighborhood of dominating operating

frequency point (̟ = 0).

Case II: the frequency of input signal is known to be within the interval (ω ∈ [−0.5,+0.5]).

At first, lets consider the case I and apply FIBT and generalized SPA to build reduced models.

The frequency response of full model and reduced model of order 181 are shown in Fig. 10.

As indicated by the visual inspections of the frequency response of the reduced vs. the full system

from Fig. 10, the standard FIBT is failed to approximate the dynamic behaviors aroundω = 0 even

the order of reduced model is181. Besides, it is surprising and remarkable that the generalized

SPA method also failed here. Although the generalized SPA approach generally leads to good

approximation performance aroundω = 0, it is incapable to cope with this example. Now, lets

resort to the proposed SF-type FDBT for dealing with the model reduction problem in case I.

Our experiment results show that good approximants can be generated via SF-type FDBT as long

as the order of reduced system is larger than50. The frequency response of the full system and
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Sigma plot of 201th order RLC Ladder Circuit system [1] and the 181th order approximants obtained via FIBT and SPA

frequency ω

 

 

201th order original RLC Ladder Circuit system

181th order reduced system via FIBT

181th order reduced system via generalized SPA (ρ=0)

181th order reduced system via generalized SPA (ρ=1)

181th order reduced system via generalized SPA (ρ=10)

181th order reduced system via generalized SPA (ρ=100)

Fig. 10. Approximating the ladder circuit in Case I via FIBT &Generalized SPA

reduced systems in Fig. 11 show a success of SF-type FDBT for this example. Therefore, the

SF-type FDBT should be treated as a useful alternative way for solving model reduction problem

with low-frequency assumption. In our opinion, it is a non-trivial parallel approach beside the

well-known generalized SPA. In addition, the frequency response of reduced model generated by

Pad́e approximation(i.e moment-matching at zero) is also included in Fig. 11. Itis observed that

Pad́e approximationalso leads to good approximation performance, which is bothnatural and

expected since it is an inherent local approximation method. It is interesting that the performance

of interval-type FDBT is very similar withPad́e approximationfor this example. The reasons for

the similarity is unclear and comparing them is far beyond the scope of this paper. Here we just

want to show the possibility that good local approximation performance of the ladder circuit may

also be obtained in the balancing-related framework.
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201th order original RLC Ladder Circuit

51th order reduced system via moment matching (Pade  approximation)

51th order reduced system via SF−type FDBT (ε=10)

51th order reduced system via SF−type FDBT (ε=50)

51th order reduced system via SF−type FDBT (ε=100)

51th order reduced system via SF−type FDBT (ε=150)

Fig. 11. Approximating the ladder circuit in Case I via SF-type FDBT & Moment matching
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Finally, lets consider the stated model reduction problem in case II and apply the interval-type

FDBT and FGBT [5] to build reduced model. Fig. 12 shows the frequency response of full model

and reduced models of order61 and51. The results show that only the interval-type FDBT leads

to satisfactory in-band approximation performance.
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Sigma plot of 201th order RLC Ladder Circuit system, 61th order and 51th order approximants obtained via Interval−type FDBT and FGBT
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201th order original RLC Ladder Circuit system

61th order reduced system via FGBT

51th order reduced system via FGBT

61th order reduced system via Interval−type FDBT

51th order reduced system via Interval−type FDBT

Fig. 12. Approximating the ladder circuit in Case II via Interval-type FDBT & FGBT

VI. CONCLUSIONS AND FUTURE WORK

This paper revisited model order reduction over limited frequency intervals in the framework

of balanced truncation. From a new perspective that establishing frequency-dependent type error

bound instead of the existing frequency-independent type error bound, we developed SF-type and

interval-type frequency-dependent balanced truncation methods to cope with the partially pre-

known frequency interval cases and the completely pre-known frequency interval cases, respectively.

Moreover, SF-type and interval-type error bound have been established in the first time. Examples

have been illustrated to verify the efficiency and advantageof the proposed methods. Future work

will focus on developing frequency-dependent balanced truncation algorithms in other forms to get

a sharper frequency-dependent error bound.
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