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Abstract

In this paper, we derive new relative perturbation bounds for eigenvectors and eigenvalues
for regular quadratic eigenvalue problems of the form λ2Mx + λCx + Kx = 0, where M
and K are nonsingular Hermitian matrices and C is a general Hermitian matrix. We base
our findings on new results for an equivalent regular Hermitian matrix pair A − λB. The
new bounds can be applied to many interesting quadratic eigenvalue problems appearing in
applications, such as mechanical models with indefinite damping. The quality of our bounds
is demonstrated by several numerical experiments.
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1 Introduction

The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors x satisfying

(λ2M + λC +K)x = 0, (1.1)

where M , C and K are n×n complex matrices. A major algebraic difference between the QEP
and the standard (and also generalized) eigenvalue problem is that the QEP has 2n eigenvalues
with up to 2n eigenvectors, and if there are more than n vectors they do not form a linearly
independent set. The solution of the QEP is required in many applications arising in the
dynamic analysis of structural mechanical and acoustic systems, in electronic circuit simulation,
in fluid mechanics, in modeling microelectronic mechanical systems, and so on. The number
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of application of the QEP is constantly growing. In [11] and [19] an extensive theoretical
background on the QEP and the other polynomial eigenvalue problems can be found, and in
[28] one can found more about applications, mathematical properties, and a variety of numerical
solution techniques for the QEP.

The aim of this paper is to present relative perturbation bounds for eigenvalues and eigenspaces
of the QEP from (1.1), where M , C, and K are allowed to be indefinite Hermitian and C could
be singular.

In general, the perturbation theory of the matrix or operator eigenvalue problems can be
divided in two major parts. The first part belongs to the so-called standard or absolute per-
turbation theory which can be found in many well-known textbooks. Without minimizing the
importance of the omitted titles, the important textbooks which contain the results on standard
perturbation theories for matrices as well as operators are [17, 10, 3, 5, 25, 27].

On the other hand, in the late 80s and early 90s, the so-called relative perturbation theory
becomes a very active research area. Again without minimizing the importance of the omitted
titles, some important results of the relative perturbation theory can be found in [8, 2, 9]. The
development of such a theory went back to as early as Kahan’s technical report [16] in 1966.

Regarding the perturbation theory for the QEP in a general setting, the standard or absolute
perturbation bounds are given, for example, in [24, 30, 28], but to the authors’ knowledge there
is no relative perturbation bounds for eigenvalues and especially for eigenspaces for the QEP, of
which all three coefficient matrices could be arbitrary Hermitian.

Some results on the relative perturbations for the QEP can be found in [29]. There one can
find the bounds for eigenvectors and eigenvalues for QEP (1.1), where the matrices M , C and
K are positive definite Hermitian matrices and the condition

(xHCx)2 − 4 · xHMxxHKx > 0, ∀x ∈ C
n, x 6= 0,

is satisfied, which means that the corresponding QEP is hyperbolic. The more about hyperbolic
QEP can be found in [28, 24].

In this paper we will derive similar bounds for the more general case, that is, QEP does
not have to be hyperbolic and moreover we allow that the matrices M and K are nonsingular
Hermitian and C is any Hermitian matrix. Such QEP arises in many applications. For example,
in [26] negative definite matrix C causes increasing of the robotic system energy, and brake-squeal
is based on the loss of stability of the brake-system which is caused by negative definite damping
matrix C, see for example [1, 15]. Also, in [31, 18, 6], authors have considered stabilization of
the unstable mechanical systems which is caused by indefinite damping matrix C. Therefore,
we will illustrate our results on the numerical experiments motivated by these problems.

Our approach to the perturbations of the QEP will be based on a proper linearization and a
construction of the appropriate relative perturbation bounds for obtained regular matrix pair.
First, we will consider Hermitian regular matrix pairs A − λB with A and B Hermitian and
derive corresponding relative perturbation bounds for eigenvalues and eigenspaces. Then, we
will use these bounds to derive desirable eigenvalue and eigenvector bounds for QEP (1.1).

Until now, there is a vast amount of material in perturbation theory (covering absolute and
relative perturbation results) for definite matrix pairs. Here we will list some of those results
relating to the eigenspaces perturbations, where the distance between two eigensubspaces is
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measured by bounding the trigonometric function of the angle operator Θ associated with the
eigensubspaces X = span(X) and Y = span(Y ) of original and perturbed matrix pairs. The
angle operator Θ is defined by

Θ(X ,Y) = arcsin(PX − PY) ,

where PX and PY are orthogonal projections on subspaces X and Y, of the same dimension. The
eigenvalues of the matrix Θ represent canonical angles. For example, in [27, 7] and in [14, 13, 29]
one can find results from standard perturbation theory, and the relative perturbation bounds for
eigenspaces, respectively. For the case that B is positive definite Hermitian in [14, 13] authors
define angle operator Θ in the matrix-dependent scalar product 〈x, y〉B = yTBx, ∀x, y ∈ R

n and
measure the distance between the subspaces spanned by perturbed and original eigenvectors.
For the case that the matrix B is Hermitian indefinite nonsingular and matrix pair (A,B) is
definite, it is not possible to use this approach. For that case, as it has been shown in [29], it is
possible to measure the distance between two subspaces, using the fact that ‖ sinΘ(X ,Y)‖ → 0
if and only if ‖Y HBX‖ → 0. For general regular matrix pairs, until now, there is no similar
bound for eigenspaces and part of this paper is devoted to it.

This paper is outlined as follows. In Section 2 we derive our relative perturbation sinΘ type
theorems and a relative bound on eigenvalues for regular matrix pairs. We apply these bounds
on QEP and derive relative perturbation bounds for eigenvectors and eigenvalues in Section 3.
Numerical examples to illustrate our bounds are given in Section 4. Finally, some conclusions
are summarized in Section 5.

Notations. Through this paper we use ‖ · ‖2, ‖ · ‖F and ‖ · ‖ui to denote the spectral matrix
norm, the Frobenius norm and any unitary invariant matrix norm, respectively, where there is
no danger of confusion. If A is a positive (semi-)definite Hermitian matrix, we will write A ≻ 0
(A � 0), and similarly A ≺ 0 (A � 0) for a negative (semi-)definite Hermitian A. We use the
standard Matlab notation A(:, i) for the i-th column of the matrix A. Also, by Fm and Gm

respectively we will denote the m×m matrices of the forms

Fm =




1

. .
.

. .
.

1



, Gm =




1 0

. .
.

. .
.

1 . .
.

0



.

Then the Jordan block of size m for eigenvalue λ is

Jm(λ) := λIm +GmFm =




λ 1
. . .

. . .

. . . 1
λ



.

A matrix pair A−λB could also be written by (A,B). If A1, B1 have the same size and so do

A2, B2, then the matrix pair

[
A1

A2

]
−λ

[
B1

B2

]
is also written by (A1−λB1)⊕ (A2−λB2)

3



or (A1, B1) ⊕ (A2, B2). For any matrices W,V of apt sizes, WH(A,B)V is used to denote
(WHAV,WHBV ).

2 Relative perturbation bound for a Hermitian matrix pair

In this section, we will see that the bound of the angle between the eigenspaces of a regular Her-
mitian matrix pair is related to the bound of the solutions to the structured Sylvester equations
SX −XS′ = T , where S, S′, T are special structured. Our approach goes more or less along the
way of Davis and Kahan [7] and much more similarly to that of Li [22, 23].

In the very beginning, we state the spectral structure of a Hermitian matrix pair, which is
the basis in the discussion of eigenspaces.

Lemma 2.1 ([12, Theorem 5.10.1], [20, Theorem 6.1]). Every Hermitian matrix pair (A,B) is
congruent to a Hermitian matrix pair of the form

(0, 0) ⊕
p⊕

j=1

(G2εj+1,




Fεj

0
Fεj


)

⊕
r⊕

j=1

δj(Fkj , Gkj )⊕
q⊕

j=1

ηj(αjFℓj +Gℓj , Fℓj )

⊕
s⊕

j=1

(

[
βjFmj

+Gmj

βjFmj
+Gmj

]
, F2mj

). (2.1)

Here ε1 ≤ · · · ≤ εp and k1 ≤ · · · ≤ kp are positive integers, αj are real numbers, βj are complex
nonreal numbers, δj , ηj are signs (+1 or −1). The form is uniquely determined by (A,B) up to
a combination of permutations of the following types of blocks:

T0. (0, 0);

T1. (G2εj+1,




Fεj

0
Fεj


), j = 1, . . . p;

T2. δj(Fkj , Gkj ), j = 1, . . . r;

T3. ηj(αjFℓj +Gℓj , Fℓj ), j = 1, . . . q;

T4. (

[
βjFmj

+Gmj

βjFmj
+Gmj

]
, F2mj

), j = 1, . . . s, with possible replacement of βj by

βj .

Specifically, if (A,B) is a regular pair, then its canonical form only contains blocks of type
T2, T3, T4.

To increase the similarity of the asymptotic behavior between these blocks and the corre-
sponding eigenvalue, in the following we make an equivalent transformation:
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1. For blocks of type T3 with αj 6= 0, write T = diag(|αj |
ℓj−1

2 , |αj |
ℓj−1

2
−1, . . . , |αj |−

ℓj−1

2 ), and
then THFℓjT = Fℓj and THGℓjT = |αj |Gℓj , so the new block pair is of type ηj(αjFℓj +
|αj |Gℓj , Fℓj ).

2. For blocks of type T4, write T = diag(|βj |
mj−1

2 , |βj |
mj−1

2
−1, . . . , |βj |−

mj−1

2 ), and then
THFmj

T = Fmj
and THGmj

T = |βj |Gmj
; noticing

[
T

T

]H [
S

SH

] [
T

T

]
=

[
THST

THSHT

]
,

the new block pair is of type

(

[
βjFmj

+ |βj |Gmj

βjFmj
+ |βj |Gmj

]
, F2mj

).

Then we have this variant canonical form:

Lemma 2.2. Every regular Hermitian matrix pair (A,B) is congruent to a Hermitian matrix
pair of the form

r⊕

j=1

δj(Fkj , Gkj )⊕
q′⊕

j=1

η′j(Gℓ′j
, Fℓ′j

)⊕
q⊕

j=1

ηj(αjFℓj + |αj |Gℓj , Fℓj )

⊕
s⊕

j=1

(

[
βjFmj

+ |βj |Gmj

βjFmj
+ |βj |Gmj

]
, F2mj

). (2.2)

Here kj are positive integers, αj are real numbers, βj are complex nonreal numbers, δj , η
′
j , ηj

are signs (+1 or −1). The form is uniquely determined by (A,B) up to a combination of
permutations of the following types of blocks:

R1. δj(Fkj , Gkj ), j = 1, . . . r;

R2. η′j(Gℓ′
j
, Fℓ′

j
), j = 1, . . . q′;

R3. ηj(αjFℓj + |αj |Gℓj , Fℓj ), j = 1, . . . q;

R4. (

[
βjFmj

+ |βj |Gmj

βjFmj
+ |βj |Gmj

]
, F2mj

), j = 1, . . . s, with possible replacement of

βj by βj .

Next, we begin to consider the structured Sylvester equations. Besides the references given
above, structured Sylvester equations and their connection to the sinΘ type theorems can be
found in, e.g., [21]. According to our needs, we derive this result:
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Lemma 2.3. Given same-size matrices M,N . Suppose Λ,Ω and Λ′, Ω′ are block pairs of the
type R2, R3, R4 in (2.2). Write λ(Λ,Ω) = {λ, . . . , λ︸ ︷︷ ︸

n

} or {λ, λ, . . . , λ, λ︸ ︷︷ ︸
2n

} and λ(Λ′, Ω′) =

{λ′, . . . , λ′
︸ ︷︷ ︸

n′

} or {λ′, λ′, . . . , λ′, λ′
︸ ︷︷ ︸

2n′

}. For any α > 0,m ∈ N, define

ϕ−(α,m) := α1−m 1− αm

1− α
, ϕ+(α,m) := α−m 1 + α− 2αm

1− α
.

If λ(Λ,Ω) ∩ λ(Λ′, Ω′) = ∅, then each of the equations

(Ω′Λ′)HY − Y ΩΛ = −(Ω′Λ′)HM +NΩΛ (2.3a)

Y − (Fn′Gn′)HY ΩΛ = −M + (Fn′Gn′)HNΩΛ (2.3b)

has a unique solution Y whose size is the same as M,N . Moreover, writing λ′ = ∞ for (2.3b),
then

‖Y ‖F ≤ α1(λ, λ
′, n, n′)‖M‖F + α2(λ, λ

′, n, n′)‖N‖F ,
where

α1(λ, λ
′, n, n′) =

(
n′+n−1

n

)
ϕ−(γ, n)ϕ+(γ

′, n′), α2(λ, λ
′, n, n′) =

(
n′+n−1

n′

)
ϕ−(γ

′, n′)ϕ+(γ, n);

α1(0, λ
′, n, n′) =

(
n′+n−1

n

)
|λ′|−1ϕ−(|λ′|, n− 1) + 1, α2(0, λ

′, n, n′) =
(
n′+n−1

n

)
|λ′|−1ϕ−(|λ′|, n− 1);

α1(λ, 0, n, n
′) =

(
n′+n−1

n′

)
|λ|−1ϕ−(|λ|, n′ − 1), α2(λ, 0, n, n

′) =
(
n′+n−1

n′

)
|λ|−1ϕ−(|λ|, n′ − 1) + 1;

α1(λ,∞, n, n′) = 2|λ|ϕ−(
1

2|λ| , n
′ − 1) + 1, α2(λ,∞, n, n′) = 2|λ|ϕ−(

1

2|λ| , n
′ − 1);

α1(0,∞, n, n′) = min{n, n′}, α2(0,∞, n, n′) = min{n, n′} − 1, (2.4)

and γ := min{
∣∣∣λ′−λ

λ

∣∣∣ ,
∣∣∣λ′−λ

λ

∣∣∣}, γ′ := min{
∣∣∣λ′−λ

λ′

∣∣∣ ,
∣∣∣λ′−λ

λ′

∣∣∣}. Note that in (2.4) λ, λ′ /∈ {0,∞}
implicitly.

The proof of Lemma 2.3 is long and contains complicated computations, so we defer it to
Appendix A.

In the next, we will present the relative perturbation theory for the Hermitian pairs, using
the above results.

Consider two Hermitian matrix pairs (A,B) and (Ã, B̃), and two nonsingular matrices X =[
X1 X2

]
and X̃ =

[
X̃1 X̃2

]
for which these assumptions hold:

(A1) these two pairs are both regular.

(A2) X, X̃ satisfy

XH(A,B)X = (Λ,Ω) = (Λ1, Ω1)⊕ (Λ2, Ω2),

X̃H(Ã, B̃)X̃ = (Λ̃, Ω̃) = (Λ̃1, Ω̃1)⊕ (Λ̃2, Ω̃2),
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where (Λi, Ωi), i = 1, 2 and (Λ̃i, Ω̃i), i = 1, 2 are of the form (2.2) and Λi, Ωi, Λ̃i, Ω̃i have
the same size for i = 1, 2 respectively. In detail, we could write

(Λi, Ωi) =

mi⊕

ji=1

(Λi,ji , Ωi,ji), i = 1, 2, (Λ̃i, Ω̃i) =

mi⊕

ji=1

(Λ̃i,ji , Ω̃i,ji), i = 1, 2, (2.5)

where (Λi,ji , Ωi,ji) are blocks in (2.2) of size ni,ji and the corresponding eigenvalue is λi,ji ,

and similarly we have (Λ̃i,ji , Ω̃i,ji), ñi,ji , λ̃i,ji .

(A3) it holds that

λ(Λ1, Ω1) ∩ λ(Λ2, Ω2) = ∅, λ(Λ̃1, Ω̃1) ∩ λ(Λ̃2, Ω̃2) = ∅,
λ(Λ1, Ω1) ∩ λ(Λ̃2, Ω̃2) = ∅, λ(Λ2, Ω2) ∩ λ(Λ̃1, Ω̃1) = ∅.

(A4) it holds that

∞ /∈ λ(Λ1, Ω1), 0 /∈ λ(Λ2, Ω2),

∞ /∈ λ(Λ̃1, Ω̃1), 0 /∈ λ(Λ̃2, Ω̃2),

which implies Ω1, Ω̃1, Λ2, Λ̃2 are nonsingular.

Then we can state the central theorem in this paper.

Theorem 2.1. Let (A,B) and (Ã, B̃) = (A + δA,B + δB) be regular Hermitian matrix pairs
and X and X̃ be nonsingular matrices. If the assumptions (A1)–(A4) hold for perturbed and
unperturbed matrix pairs, then we have

‖ sinΘ(span(X1), span(X̃1))‖F ≤ αm
1 κ2(X)κ2(X̃)‖A+δA‖F +αm

2 ‖X‖22‖X̃−1‖22‖B̃+δB‖F , (2.6)

where

αm
1 := max

j1,j2
α1(λ̃1,j1 , λ2,j2 , ñ1,j1 , n2,j2), αm

2 := max
j1,j2

α2(λ̃1,j1 , λ2,j2 , ñ1,j1 , n2,j2), (2.7)

and α1(·, ·, ·, ·), α2(·, ·, ·, ·) are defined in (2.4). Moreover, if B is nonsingular,

‖ sinΘ(span(X1), span(X̃1))‖F ≤ κ2(X)κ2(X̃)
(
αm
1 ‖A+δA‖F + αm

2 ‖B−1δB‖F
)
. (2.8)

Proof. First, similar to the discussion in [29, Lemma 2],

‖ sinΘ(span(X1), span(X̃1))‖F ≤ ‖(BX2)
+‖2‖X̃+

1 ‖2‖‖XH
2 BX̃1‖F .

Since BX2 = X−H

[
0
Ω2

]
, ‖BX2‖2 ≤ ‖X−1‖2 and ‖(BX2)

+‖2 = ‖
[
0 ΩH

]+
X‖2 ≤ ‖X‖2.

Similarly, ‖B̃X̃1‖2 ≤ ‖X̃−1‖2.
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Then, to bound the ‖ sinΘ(span(X1), span(X̃1))‖F we need to estimate ‖XH
2 BX̃1‖F . Using

(2.5), define L,R by:

L = L1 ⊕ L2 =

2⊕

i=1

mi⊕

ji=1

Li,ji , R = R1 ⊕R2 =

2⊕

i=1

mi⊕

ji=1

Ri,ji,

where Li,ji = Λi,jiΩi,ji , Ri,ji = I if the corresponding block pair is of type R1 or Li,ji = I,Ri,ji =
Ωi,jiΛi,ji if not. Then, it is easy to check that L and R are lower triangular matrices and also,
L1 = I. Note that

XHAXL = ΛL = ΩR = XHBXR

and then
AXL = BXR, and similarly ÃX̃L̃ = B̃X̃R̃. (2.9)

Also, L̃ and R̃ are lower triangular matrices and L̃1 = I. Then

RH
2 XH

2 BX̃1L̃1 − LH
2 XH

2 BX̃1R̃1 = RH
2 XH

2 BX̃1L̃1 − LH
2 XH

2 B̃X̃1R̃1 + LH
2 XH

2 δBX̃1R̃1

= LH
2 XH

2 AX̃1L̃1 − LH
2 XH

2 ÃX̃1L̃1 + LH
2 XH

2 δBX̃1R̃1

= −LH
2 XH

2 δAX̃1L̃1 + LH
2 XH

2 δBX̃1R̃1.

Note that AX2 = X−H

[
0
Λ2

]
. Since Λ2 is nonsingular, AX2 is column full rank, which infers

span(X2) ∩N (A) = ∅, where N (A) is the nullspace of A. Note that I −A+A is the orthogonal
projector onto N (A). Thus, A+AX2 = X2. Then

RH
2 XH

2 BX̃1L̃1 − LH
2 XH

2 BX̃1R̃1 = −LH
2 XH

2 AA+δAX̃1L̃1 + LH
2 XH

2 δBX̃1R̃1

= −RH
2 XH

2 BA+δAX̃1L̃1 + LH
2 XH

2 δBX̃1R̃1.
(2.10)

To estimate norm of the solution of structured Sylvester equation (2.10) we will use this
consideration: for the equation SH

1 Y T1 − SH
2 Y T2 = SH

1 MT1 − SH
2 NT2, the solution Y can be

written as Y = Y (1)+Y (2), where Y (1) and Y (2) are the solutions of equations SH
1 Y T1+SH

2 Y T2 =
SH
1 MT1 and SH

1 Y T1 + SH
2 Y T2 = −SH

2 NT2 respectively. Estimate these two Y (i) and then use
‖Y ‖ ≤ ‖Y (1)‖ + ‖Y (2)‖ (for any norm) to obtain the result. For Y (1), or equivalently δB = 0:
Thus, for j1 = 1, . . . ,m1 and j2 = 1, . . . ,m2,

RH
2,j2Y

(1)
j2,j1

L̃1,j1 − LH
2,j2Y

(1)
j2,j1

R̃1,j1 = −RH
2,j2X

H
2,j2BA+δAX̃1,j1 L̃1,j1 .

Noticing L̃1 = I, this equation on Y
(1)
j2,j1

is of form in (2.3). By Lemma 2.3,

‖Y (1)
j2,j1

‖F ≤ α1(λ̃1,j1 , λ2,j2 , ñ1,j1 , n2,j2)‖XH
2,j2BA+δAX̃1,j1‖F .

Then

‖Y (1)‖F =

√√√√
m1∑

j1=1

m2∑

j2=1

‖Y (1)
j2,j1

‖2F
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≤ maxα1

√√√√
m1∑

j1=1

m2∑

j2=1

‖XH
2,j2

BA+δAX̃1,j1‖2F

≤ maxα1‖XH
2 BA+δAX̃1‖F

≤ maxα1‖BX2‖2‖X̃1‖2‖A+δA‖F
≤ maxα1‖X−1‖2‖X̃‖2‖A+δA‖F .

For Y (2),
‖Y (2)‖F ≤ maxα2‖XH

2 δBX̃1‖F .
For the case that B is nonsingular,

‖Y (2)‖F ≤ maxα2‖X−1‖2‖X̃‖2‖B−1δB‖F .

Thus (2.8) holds.
For the general case, since Ω1 is nonsingular, B̃+B̃X̃1 = X̃1. Then

‖Y (2)‖F ≤ maxα2‖X‖2‖X̃−1‖2‖B−1δB‖F .

Thus (2.6) holds.

Also, a more general but weaker result can be given for any unitarily invariant norm.

Theorem 2.2. Given a Hermitian matrix pair (A,B) and its corresponding perturbed pair
(Ã, B̃) with B, B̃ nonsingular (which guarantees assumption (A1)). Under the assumptions
(A2)–(A4), if there exist α ≥ 0 and δ > 0 such that

‖Ω2Λ2‖2 ≤ α, ‖(Ω̃1Λ̃1)
−1‖−1

2 ≥ α+ δ, or

‖(Ω2Λ2)
−1‖−1

2 ≥ α+ δ, ‖Ω̃1Λ̃1‖2 ≤ α,

then, for any unitarily invariant norm ‖ · ‖ui and p, q where p−1 + q−1 = 1,

‖ sinΘ(span(X1), span(X̃1))‖ui ≤ µκ2(X)κ2(X̃) q

√
‖A+δA‖qui + ‖B−1δB‖qui,

where µ = δ
p
√

αp+(α+δ)p
; also

‖ sinΘ(span(X1), span(X̃1))‖ui ≤ κ2(X)κ2(X̃)

(
‖A+δA‖ui

δ
α

+
‖B−1δB‖ui

δ
α+δ

)
.

Proof. The proof is similar to Theorem 2.1, except a modified version of [22, Lemma 2.3] is used
to estimate (2.10) other than Lemma 2.3. The “modified” version is to get rid of the assumption
“Ω,Γ are Hermitian”. That assumption appears there for using [22, Lemma 2.2] to make clear
that (2.10) has a unique solution. But now that is guaranteed by Lemma 2.3.
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Remark 2.1. Theorem 2.2 is not that useful for a general case. If there is no semi-simple
eigenvalue, we have this bounds

‖Ω2Λ2‖2 ≤ 2max
i2

|λ2,i2 |, ‖(Ω̃1Λ̃1)
−1‖2 ≤ max

ĩ1

n
ĩ1
|λ̃−1

1,̃i1
|,

which means the gap must be bigger than (2− 1
2)α+2δ, which is not the expected one, namely

kδ for some scalar k. This theorem is good only for the case that all eigenvalues are semi-simple.

Besides, we can have eigenvalue perturbation bounds:

Theorem 2.3. Given a Hermitian matrix pair (A,B) and its corresponding perturbed pair
(Ã, B̃) with B, B̃ nonsingular (which guarantees assumption (A1)). Under the assumptions
(A2)–(A4), consider λ and λ̃ are eigenvalues of the two matrix pairs respectively and Xλ and
X̃

λ̃
are the corresponding invariant subspaces containing Jordan chains with dimensions ℓ, ℓ̃

respectively. Suppose that λ, λ̃ both lie in the upper half plane (Im (λ) ≥ 0, Im (λ̃) ≥ 0) but

nonzero, and write γ =
∣∣∣ λ̃−λ

λ

∣∣∣ , γ̃ =
∣∣∣ λ̃−λ

λ̃

∣∣∣. Then,

1. provided ℓ = ℓ̃ = 1, or equivalently, both eigenvalues are semi-simple respectively, and then
rewriting the eigenvectors as Xλ = x, X̃

λ̃
= x̃,

γ ≤ ‖X−1‖2‖X̃‖2(‖A+δA‖ui + ‖B−1δB‖ui)
|xHB̃x̃|

≤ ‖X−1‖2‖X̃‖2(‖A+δA‖ui + ‖B−1δB‖ui)
|xHBx̃| − ‖X−1‖2‖X̃‖2‖B−1δB‖ui

;

2. provided γ ≤ 5−
√
17

4 , γ̃ ≤ 5−
√
17

4 ,

γℓγ̃ ℓ̃√
γ2 + γ̃2

≤ 2
‖X−1‖2‖X̃‖2
‖XH

λ BX̃
λ̃
‖F

√
(
ℓ̃+ℓ−1

ℓ

)2
‖A+δA‖2F +

(ℓ̃+ℓ−1

ℓ̃

)2
‖B−1δB‖2F .

Proof. Adopt in the same definition of L,R, L̃, R̃ in the proof of Theorem 2.1. Since B, B̃ are
nonsingular, L = I, L̃ = I. By (2.9),

RHXHBX̃ −XHBX̃R̃ = −XHδAX̃ +XHδBX̃R̃

= −RHXHBA+δAX̃ +XHδBX̃R̃

Then, for j1 = 1, . . . ,m1 and j2 = 1, . . . ,m2,

RH
j2
XH

j2
BX̃j1 −XH

j2
BX̃j1R̃j1 = −RH

j2
XH

j2
BA+δAX̃j1 +XH

j2
δBX̃j1R̃j1 .

By BX = X−H
⊕m2

i=1 Fn2,i
,

RH
j2
XH

j2
BX̃j1 −XH

j2
BX̃j1R̃j1 = −RH

j2
Fnj2

X−1A+δAX̃j1 + Fnj2
X−1B−1δBX̃j1R̃j1 .
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If ℓ = ℓ̃ = 1, then left-multiplying by eHnj2
and right-multiplying by enj1

(or enj1
2

to make

λj2 , λ̃j2 both in the upper half plane), or equivalently consider the element in the southeast
corner, also getting rid of the subscripts to coincide with the lemma, the equation gives

(
λ− λ̃

)
xHBx̃ = −λeHX−1A+δAx̃+ λ̃eHX−1B−1δBx̃.

Thus,

λ̃− λ

λ
=

eHX−1A+δAx̃− eHX−1B−1δBx̃

xHBx̃+ xHδBx̃
=

eHX−1(A+δA−B−1δB)x̃

xHB̃x̃
,

which infers item 1.
Otherwise, by Lemma 2.3, also getting rid of the subscripts to coincide with the lemma,

‖XH
λ BX̃

λ̃
‖F ≤ α1‖FX−1A+δAX̃

λ̃
‖F + α2‖FX−1B−1δBX̃

λ̃
‖F ,

where, noticing that γ ≤ 5−
√
17

4 , γ̃ ≤ 5−
√
17

4 give 1
1−γ

1+γ̃
1−γ̃

≤ 2,

α1 =
(
ℓ̃+ℓ−1

ℓ

)
γ1−ℓ 1− γℓ

1− γ
γ̃−ℓ̃ 1 + γ̃ − 2γ̃ ℓ̃

1− γ̃
≤ 2
(
ℓ̃+ℓ−1

ℓ

)
γ1−ℓγ̃−ℓ̃,

and similarly α2 ≤ 2
(ℓ̃+ℓ−1

ℓ̃

)
γ̃1−ℓ̃γ−ℓ, and then,

‖XH
λ BX̃

λ̃
‖F ≤ 2γ̃−ℓ̃γ−ℓ‖X−1‖2‖X̃‖2[γ

(
ℓ̃+ℓ−1

ℓ

)
‖A+δA‖F + γ̃

(ℓ̃+ℓ−1
ℓ̃

)
‖B−1δB‖F ],

which infers item 2.

3 Relative perturbation bound for a regular Hermitian QEP

In this section we will derive perturbation bounds for eigenvectors and eigenvalues for the QEP,
using results from the previous section.

Given M,C,K ∈ C
n×n, the quadratic matrix polynomial of order n is defined by

Q(λ) = λ2M + λC +K. (3.1)

We denote the spectra of Q(λ) by

Λ(Q) := {λ ∈ C : detQ(λ) = 0} ,

which is the multiset of eigenvalues of Q(λ). Q(λ) is called regular if detQ(λ) is not identically
zero for λ ∈ C and singular otherwise. In this section we assume that Q(λ) is regular. The QEP
for Q(·) is to find λ ∈ C and nonzero v ∈ C such that

Q(λ)x = 0. (3.2)

When this equation is satisfied, λ and x are called an eigenvalue and an eigenvector, respectively.
All eigenvalues of Q(·) are the roots of detQ(λ) = 0, which has 2n complex roots, counting
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multiplicities and including eigenvalues at infinity. If the matrix M in (3.1) is nonsingular.
Also, we assume that matrices M , C and K are Hermitian, say, the QEP is Hermitian. In that
case eigenvalues are real or they are coming in complex conjugate pairs (λ, λ). Instead of the
QEP (3.2), similarly as in [29], we will consider equivalent generalized eigenvalue problem

LQ(λ)y = 0, y =

[
x
λx

]
∈ C

2n, (3.3)

where LQ(λ) := A − λB is a matrix pencil. If M is nonsingular, we can obtain symmetric
linearization

LQ(λ) =

[
−K 0
0 M

]
− λ

[
C M
M 0

]
(3.4)

or if K is nonsingular

LQ(λ) =

[
0 −K

−K C

]
− λ

[
−K 0
0 M

]
. (3.5)

In linearizations (3.4) and (3.5) matrices A and B are Hermitian. For the more details about
linearization of the QEP see [28].

More to the point, we consider QEP

λ2Mx+ λCx+Kx = 0, (3.6)

where M and K are nonsingular Hermitian, and C is Hermitian. The corresponding perturbed
QEP is

λ̃2M̃x̃+ λ̃C̃x̃+ K̃x̃ = 0, (3.7)

where M̃ = M+δM and K̃ = K+δK are nonsingular Hermitian and C̃ = C+δC is Hermitian.
That means that we will consider Hermitian matrix pair (A,B), where

A =

[
−K 0
0 M

]
and B =

[
C M
M 0

]
. (3.8)

The corresponding perturbed pair (Ã, B̃) is such that

Ã =

[
−(K + δK) 0

0 M + δM

]
and B̃ =

[
C + δC M + δM
M + δM 0

]
. (3.9)

We assume that matrix pair (A,B) and also perturbed pair (Ã, B̃) satisfy assumptions (A1)–
(A4).

Note that there exist nonsingular matrices X and X̃ which simultaneously diagonalize matrix
pairs (3.8) and (3.9), respectively. The columns of the matrices X and X̃ are of the forms

X(:, i) =

[
xi
λixi

]
and X̃(:, i) =

[
x̃i
λ̃ix̃i

]
, i = 1, . . . , 2n, (3.10)
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respectively, where λi, λ̃i are eigenvalues and xi, x̃i ∈ C
n×n are corresponding eigenvectors of

the QEPs (3.6) and (3.7).

In the next theorem we will derive a bound for | sin ϑ(xi, x̃i)|, where ϑ is angle between the
eigenvectors xi and x̃i.

Theorem 3.1. Given M , C, K ∈ C
n×n as in (3.6). Let M̃ = M + δM , C = C + δC

and K̃ = K + δK be the corresponding perturbed matrices and X and X̃ be the nonsingular
matrices that simultaneously diagonalize matrix pairs (A,B) and (Ã, B̃), respectively. Under
the assumptions (A1)–(A4) on matrix pairs (3.8) and (3.9), we have this bound

| sin ϑ(xi, x̃i)| ≤ κ2(X)κ2(X̃) (αm
1 δaF + αm

2 δbF ) , (3.11)

where αm
1 , αm

2 are the same as that in (2.7), and

δaF =
√

‖K−1δK‖2F + ‖M−1δM‖2F (3.12)

δbF =
√

2 · ‖M−1δM‖2F + ‖M−1δC −M−1CM−1δM‖2F . (3.13)

Proof. Let us assume that xi and x̃i are normalized i.e. ‖xi‖2 = ‖x̃i‖2 = 1. Then we have that
cos ϑ(xi, x̃i) = |xHi x̃i| and also,

cos ϑ(X(:, i), X̃(:, i)) =
|X(:, i)H X̃(:, i)|

‖X(:, i)‖2‖X̃(:, i)‖2
=

|1 + λiλ̃i|
√

1 + |λi|2
√

1 + |λ̃i|2
· cos ϑ(xi, x̃i), ϑ ∈ [0, 2π] ,

(3.14)

where X(:, i) and X̃(:, i) are defined in (3.10). Since |(1 + λiλ̃i)| ≤
√

1 + |λi|2
√

1 + |λ̃i|2, it is
easy to see that

cos ϑ(X(:, i), X̃(:, i)) ≤ cos ϑ(xi, x̃i), ϑ ∈ [0, 2π] . (3.15)

That means that

| sin ϑ(xi, x̃i)| ≤ | sinϑ(X(:, i), X̃ (:, i))| for ϑ ∈ [0, 2π] . (3.16)

and the bound (3.1) follows from Theorem 2.1 simply by taking the Frobenius norm of matrices

A−1δA =

[
−K−1δK 0

0 M−1δM

]
,

B−1δB =

[
−M−1δM 0

M−1δC −M−1CM−1δM M−1δM

]
.

The next theorem contains upper bound for the relative errors in the eigenvalues.
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Theorem 3.2. Given M , C, K ∈ C
n×n as in (3.6). Let M̃ = M + δM , C = C + δC

and K̃ = K + δK be corresponding perturbed matrices and (A,B) and (Ã, B̃) be linearized
Hermitian matrix pairs, respectively. Under the assumptions (A2)–(A4), consider λ and λ̃ are
the eigenvalues of the two matrix pairs, respectively, and Xλ and X̃

λ̃
are corresponding invariant

subspaces containing Jordan chains with dimensions ℓ, ℓ̃, respectively. Suppose that λ, λ̃ both lie

in the upper half plane (Im (λ) ≥ 0, Im (λ̃) ≥ 0) but nonzero, and write γ =
∣∣∣ λ̃−λ

λ

∣∣∣, γ̃ =
∣∣∣ λ̃−λ

λ̃

∣∣∣,
then:

1. provided ℓ = ℓ̃ = 1, or equivalently, both eigenvalues are semi-simple and then rewriting

the eigenvectors as Xλ =

[
x
λx

]
, X̃

λ̃
=

[
x̃

λ̃x̃

]
,

γ ≤ ‖X−1‖2‖X̃‖2(δa+ δb+ δc)

δd− ‖X−1‖2‖X̃‖2(δb + δc)
, (3.17)

where

δa = max
{
‖K−1δK‖ui, ‖M−1δM‖ui

}
,

δb = ‖M−1δM‖ui,
δc = ‖M−1δC‖ui + ‖M−1CM−1δM‖ui,
δd =

∣∣∣(λλ̃− 1)xHM−1δMx̃+ λxHM−1δCx̃− λxHM−1CM−1δMx̃
∣∣∣ .

2. provided γ ≤ 5−
√
17

4 , γ̃ ≤ 5−
√
17

4 ,

γℓγ̃ ℓ̃√
γ2 + γ̃2

≤ 2
‖X−1‖2‖X̃‖2
‖XH

λ BX̃
λ̃
‖F

√
(
ℓ̃+ℓ−1

ℓ

)2
δa2F +

(ℓ̃+ℓ−1

ℓ̃

)2
δb2F , (3.18)

where δaF and δbF are defined in (3.12).

Proof. Bounds (3.17) and (3.18) follows simply from Theorem 2.3 by using the facts that in
item 1:

‖A−1δA‖ui ≤ δa, ‖B−1δB‖ui ≤ δb+ δc,
∣∣∣∣
[
xH λxH

]
B−1

[
x̃

λ̃x̃

]∣∣∣∣ =
∣∣∣(λλ̃− 1)xHM−1δMx̃+ λxHM−1δCx̃− λxHM−1CM−1δMx̃

∣∣∣ .

and in item 2:
‖A−1δA‖F = δaF and ‖B−1δB‖F = δbF .

14



4 Numerical examples

In this section the perturbation bounds for regular Hermitian QEPs given in Section 3 will be
illustrated by several numerical examples. The bound for hyperbolic QEPs given in [29] can be
considered as a special case here, but as a main advantage, the new bound can be applied on the
systems which are no longer overdamped. Although the new bound is restricted just on regular
Hermitian QEPs, its solution is required in different mechanical systems, which are described by
nonsingular Hermitian mass M and stiffness K matrices, and any Hermitian damping matrix
C. In the following numerical examples, we will compare the new bound with the bound given
in [29, Theorem 7], which is detailedly

| sinϑ(X(:, i), X̃(:, i))| ≤ κ(X)κ(X̃)




‖A−1
0 δA0‖F

min
j 6=i

|λi − λ̃j|
|λi|

+
‖JδJ‖F

min
j 6=i

|λi − λ̃j|
|λ̃j |




, i = 1, . . . , 2n, (4.1)

where, instead of the matrix pair A−λB given in (3.4), authors considered the equivalent matrix

pair A0 −
1

λ
J , where

A0 =

[
L−1
K CL−H

K L−1
K LM

LH
ML−H

K 0

]
, J =

[
−I 0
0 I

]
,

and then the corresponding perturbations are

δA =

[
L−1
K δCL−H

K L−1
K δML−H

M

L−1
M δML−H

K 0

]
, δJ =

[
L−1
K δKL−H

K 0

0 L−1
M δML−H

M

]
.

Here LM and LK are the matrices in Cholesky factorizations M = LMLH
M and K = LKLH

K ,
respectively.

The numerical examples below will illustrate that new bound (3.11) is applicable in the cases
that bound (4.1) is not.

Example 4.1. This is the problem Wiresaw1 in the collection NLEVP [4]. It is a gyroscopic
QEP arising in the vibration analysis of the wiresaw, for more details see [31]. It takes the form
G(λ) = (λ2M + λC +K)x = 0 where the coefficient matrices are defined by

M =
1

2
In, K =

π2(1− ν2)

2
diag(j2)j=1,...,n,

C = −CT = [cjk]j,k=1,...,n, with cjk =





4jk

j2 − k2
ν, if j + k is odd,

0, otherwise,

where n is the size of the problem and ν is a real nonnegative parameter corresponding to the
speed of wire. Clearly M ≻ 0, K is definite Hermitian when ν 6= 1, and C is skew-Hermitian.
Then the QEP

Q(λ) := −G(−iλ) = λ2M + λ(iC)−K (4.2)
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is regular and Hermitian, which means our bound (3.11) can be applied.
Note that for 0 < ν < 1, K ≻ 0 and the QEP (4.2) is hyperbolic (but not overdamped).

Then the corresponding linearization A− λB is positive definite and bound (4.1) for hyperbolic
QEPs can be also applied. On the contrary, for ν > 1, the QEP (4.2) is not hyperbolic, and
then bound (4.1) can not be used.

First we choose n = 5, ν = 0.9 < 1, and a group of random perturbations δM , δC and δK
which satisfy

|(δM)ij | ≤ η|Mij |, |(δC)ij | ≤ η|Cij |, |(δK)ij | ≤ η|Kij |, (4.3)

where η = 10−8 and matrices M + δM , i(C + δC), K + δK are also Hermitian. Then we
will compare our bound (3.11) and bound (4.1) for eigenvectors x1, x̃1 which correspond to the
eigenvalue λ1 = 21.9063 of (4.2). New bound (3.11) reads

| sin ϑ(x1, x̃1)| ≤ 4.9283 · 10−5,

and it is not too much worse than bound (4.1) which reads

| sin ϑ(x1, x̃1)| ≤ 1.1908 · 10−6.

Then we choose n and δM, δC, δK in the same way but ν = 1.0019 > 1. For the eigenvectors
x1, x̃1 that correspond to the eigenvalue λ1 = −22.7864, bound (3.11) reads

| sin ϑ(x1, x̃1)| ≤ 8.5756 · 10−6,

while bound (4.1) cannot be applied. In comparison, the exact value is

| sin ϑ(x1, x̃1)| ≈ 1.7615 · 10−9.

Example 4.2. This example is related to the model arising in the analysis of the behavior of
the brake system, given in [1]. Brake squeal is the major problem in the automotive industry
and it is based on the loss of stability of the brake system.

In this example we will consider negative-friction damping excitation mechanisms. Instability
of the system is caused by a damping matrix C ≺ 0.

In [1], authors consider mechanical models of dimension 1 or 2. Here this problem is gener-
alized to the QEP of size n

(λ2M + λC +K)x = 0, (4.4)

where M , C and K are mass, damping and stiffness matrices, respectively, and defined as:

M = diag(j)j=1,...,n, C = −γIn, K =




10 −5

−5
. . .

. . .

. . .
. . . −5
−5 10




n×n

,

Clearly M ≻ 0,K ≻ 0, C ≺ 0.
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Here we choose n = 4, γ = 0.1 and random perturbations δM , δC and δK as in (4.3). As-

sume that perturbed matrices M̃ = M + δM ≻ 0, K̃ = K + δK ≻ 0, C̃ = C + δC ≺ 0.

Contrary to the bounds in [29], which are obtained for hyperbolic QEPs whose eigenvalues are
real, the new bounds can be applied on the complex eigenvalues and corresponding eigenvectors.
This example is designed to illustrate the sensitivity of complex eigenvalues and corresponding
eigenvectors for the QEP with negative damping.
Part 1: For the eigenvectors x1, x̃1 which correspond to the eigenvalue λ1 = 0.0251 + 1.1701i,
bound (3.11) reads

| sin ϑ(x1, x̃1)| ≤ 6.9547 · 10−6,

in comparison with the exact value

| sin ϑ(x1, x̃1)| ≈ 1.2738 · 10−8.

Part 2: In this part we will illustrate the performances of our eigenvalue bound (3.17). In com-
parison to the bounds for eigenvalues given in [30] and in [29], which holds only for overdamped
QEPs, new bound is applicable for any regular Hermitian QEPs. Table 4.1 shows our bound
and the exact relative error for all eigenvalues λi ∈ Λ(Q), which appears in complex conjugate
pairs.

λi exact value estimate (3.17)

0.0438±3.4550i 4.8239e-09 6.9836e-07
0.0224±2.3223i 6.0146e-10 3.3994e-07
0.0197±1.6640i 7.8488e-10 2.5006e-07
0.0183±0.8543i 3.0628e-09 3.3075e-07

Table 4.1: Relative perturbation bound (3.17) and exact relative error for eigenvalues.

Example 4.3. This example is constructed to show that our bound for eigenvalues and eigen-
vectors is also sensitive on perturbations of Jordan blocks if they appear in the canonical form
of the matrix pair (A,B). In this small experimental example, M , C and K are chosen as:

M =

[
1 0
0 2

]
, K =

[
2 0
0 2

]
and C = 2 ·K.

The Jordan form of the linearized pair (A,B) is

J = diag

{
−3.4142,−0.5858,

[
−1 1
0 −1

]}
.

Under small perturbations δM , δC and δK as in (4.3), where µ = 10−7, we lose the size-2 Jordan
block of the matrix pair (A,B) and all the eigenvalues of the perturbed matrix pair (Ã, B̃) are
semi-simple. Table 4.2 shows that our bound in comparison to the exact value of the relative
error in eigenvalues is good enough to detect the case that the structure of Jordan blocks is
changed. The bounds given in [30] and in [29] can not be applied here.
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λi exact value estimate (3.17)

-3.4142 2.2188e-07 2.7405e-05
-0.5858 3.8069e-08 8.0671e-07

λi exact value estimate (3.18)

-1 5.6518e-08 5.2899e-06

Table 4.2: Relative perturbation bounds (3.17) and (3.18) and exact relative error for eigenvalues.

Eigenvector perturbation bound (3.11) can not be derived directly for eigenvectors in QEP.
Here we will measure distance between the subspaces. The subspace that we will consider is
spanned by the columns of the matrices X1 = X(:, 1 : 2) of which one is the eigenvector and
the other is the generalized eigenvector for the eigenvalue λ1,2 = −1. The perturbed subspace

is spanned by the columns of the matrix X̃1 = X̃(:, 1 : 2) which are eigenvectors for two distinct
eigenvalues. Our bound (3.11) gives

‖ sin(span(X1), span(X̃1))‖F ≤ 7.9620 · 10−2,

since κ(X) ≈ 3.4558, κ(X̃) ≈ 1.2357 · 104, αm
1 ≈ 2.4142 and αm

2 ≈ 2.4143. The exact bound is

‖ sin(span(X1), span(X̃1))‖F ≈ 8.0927 · 10−5,

which confirms the fact that Jordan blocks are very sensitive on small perturbations and small
perturbations can significantly change the corresponding invariant subspace.

5 Conclusion

The main contributions of this paper are new relative perturbation bounds for the eigenvalues
and their corresponding invariant subspaces for regular Hermitian quadratic eigenvalue problems
based on the new corresponding bounds for the regular Hermitian pairs. The obtained bounds
can be applied on many interesting problems, for example, on the quadratic eigenvalue problems
which appear in many mechanical models, especially on the models with indefinite damping or
mass matrices. The main advantage of the new bounds, over some earlier bounds, is that they
are more general and can be applied not only on the hyperbolic quadratic eigenvalue problems,
but also on the other regular quadratic eigenvalue problems. The quality of our bounds have
been illustrated in several numerical examples.

A Proof of Lemma 2.3

Consider (2.3a). At first, we have the inverse of a kind of structured matrix, which will be
used several times. For the block matrix P = D1 ⊗ L + FD2G ⊗ I = [Pi,j]i,j=1,...,m with
D1 = diag(d1,1, . . . , d1,m),D2 = diag(d2,1, . . . , d2,m) and L ∈ C

n×n lower triangular, it can also
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be written as

Pi,j =





0, i < j or i > j + 1,

d1,jL, i = j,

d2,m−jI, i = j + 1.

Then its inverse P−1 = [Qi,j]i,j=1,...,m satisfies

Qi,j =





i−j∏
k=1

(−P−1
i−k+1,i−k+1Pi−k+1,i−k)Qj,j, i ≥ j,

0, i < j,

=




(−1)i−j

i−j+1∏
k=1

d−1
1,i−k+1

i−j∏
k=1

d2,m−i+kL
j−i−1, i ≥ j,

0, i < j.

Now we turn back to the structured Sylvester equation (2.3a). Note that (I ⊗ Ω′Λ′ − ΩΛ⊗ I)
is a lower triangular matrix. The diagonal entry must be λ− λ′, so this matrix is nonsingular.

vec(Y ) = (I ⊗Ω′Λ′ −ΩΛ⊗ I)−H [−(I ⊗Ω′Λ′)H vec(M) + (ΩΛ⊗ I)H vec(N)]

=: −WH
1 vec(M) +WH

2 vec(N),

which shows (2.3a) has a unique solution Y , and W1 −W2 = I. There are eight cases in total:

1. (Λ,Ω) and (Λ′, Ω′) are both of type R3:

I ⊗Ω′Λ′ −ΩΛ⊗ I = I ⊗ (λ′I + |λ′|FG) − (λI + |λ|FG) ⊗ I

= I ⊗ ([λ′ − λ]I + |λ′|FG)− |λ|FG⊗ I,

and then

(I ⊗Ω′Λ′ −ΩΛ⊗ I)−1 =

{
|λ|i−j([λ′ − λ]I + |λ′|FG)j−i−1, i ≥ j,

0, i < j,

where

([λ′ − λ]I + |λ′|FG)−1 =

{
(−|λ′|)i′−j′(λ′ − λ)j

′−i′−1, i′ ≥ j′,

0, i′ < j′.

Then

([λ′ − λ]I + |λ′|FG)j−i−1 =

{(
i′−j′+i−j+1

i−j+1

)
(−|λ′|)i′−j′(λ′ − λ)j

′−i′+j−i−1, i′ ≥ j′,

0, i′ < j′.
(A.1)

Thus

W1 =

{
|λ|i−j(λ′I + |λ′|FG)([λ′ − λ]I + |λ′|FG)j−i−1, i ≥ j,

0, i < j,
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where

(λ′I + |λ′|FG)([λ′ − λ]I + |λ′|FG)j−i−1

=

{
(−|λ′|)i′−j′(λ′ − λ)j

′−i′+j−i[
(
i′−j′+i−j+1

i−j+1

)
λ′(λ′ − λ)−1 −

(
i′−j′+i−j
i−j+1

)
], i′ ≥ j′,

0, i′ < j′.

Easy to see ‖W1‖1 = ‖W1‖∞ = ‖W1e1‖1. Note that ‖W1‖2 ≤
√

‖W1‖1‖W1‖∞ = ‖W1‖1.
Thus,

‖W1‖2 ≤ ‖W1e1‖1

=

n∑

i=1

n′∑

i′=1

∣∣∣|λ|i−1(−|λ′|)i′−1(λ′ − λ)2−i′−i[
(
i′+i−1

i

)
λ′(λ′ − λ)−1 −

(
i′+i−2

i

)
]
∣∣∣

≤
n∑

i=1

n′∑

i′=1

γ1−iγ′1−i′ [
(
i′+i−1

i

)
γ′−1 +

(
i′+i−2

i

)
]

= 2

n∑

i=1

n′−1∑

i′=1

γ1−iγ′−i′
(
i′+i−1

i

)
+

n∑

i=1

γ1−iγ′−n′(n′+i−1
i

)

≤
(
2

n∑

i=1

n′−1∑

i′=1

γ1−iγ′−i′ +
n∑

i=1

γ1−iγ′−n′

)
(
n′+n−1

n

)

=

(
2γ′−1 1− γ′1−n′

1− γ′−1

1− γ−n

1− γ−1
+ γ′−n′ 1− γ−n

1− γ−1

)
(
n′+n−1

n

)

= γ′−1 2− γ′1−n′ − γ′−n′

1− γ′−1

1− γ−n

1− γ−1

(
n′+n−1

n

)

= γ′−n′

γ1−n 1 + γ′ − 2γ′n
′

1− γ′
1− γn

1− γ

(
n′+n−1

n

)

=
(
n′+n−1

n

)
ϕ−(γ, n)ϕ+(γ

′, n′).

Similarly,
‖W2‖2 ≤

(
n′+n−1

n′

)
ϕ−(γ

′, n′)ϕ+(γ, n).

2. (Λ,Ω) and (Λ′, Ω′) are both of type R4:

I ⊗Ω′Λ′ −ΩΛ⊗ I =

[
I

I

]
⊗
[
λ′I + |λ′|FG

λ′I + |λ′|FG

]
−
[
λI + |λ|FG

λI + |λ|FG

]
⊗
[
I

I

]

= diag(R1, R2, R1, R2),

where

R1 = [I ⊗ (λ′I + |λ′|FG)− (λI + |λ|FG)⊗ I],

R2 = [I ⊗ (λ′I + |λ′|FG)− (λI + |λ|FG)⊗ I].
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Then

W1 = diag(R−1
1 (λ′I+|λ′|FG), R−1

2 (λ′I+|λ′|FG), R1
−1

(λ′I+|λ′|FG), R2
−1

(λ′I+|λ′|FG)).

Write γ1 :=
∣∣∣λ′−λ

λ

∣∣∣ , γ′1 :=
∣∣∣λ′−λ

λ′

∣∣∣ , γ2 :=
∣∣∣λ′−λ

λ

∣∣∣ , γ′2 :=
∣∣∣λ′−λ

λ′

∣∣∣, then by the same calculation

in case 1,
‖R−1

1 (λ′I + |λ′|FG)‖2 ≤
(
n′+n−1

n

)
ϕ−(γ1, n)ϕ+(γ

′
1, n

′);

‖R−1
2 (λ′I + |λ′|FG)‖2 ≤

(
n′+n−1

n

)
ϕ−(γ2, n)ϕ+(γ

′
2, n

′).

Similar to the calculation in case 1,

R1
−1

(λ′I + |λ′|FG) =

{
|λ|i−j(λ′I + |λ′|FG)([λ′ − λ]I + |λ′|FG)j−i−1, i ≥ j,

0, i < j,

where

(λ′I + |λ′|FG)([λ′ − λ]I + |λ′|FG)j−i−1

=

{
(−|λ′|)i′−j′(λ′ − λ)j

′−i′+j−i[
(
i′−j′+i−j+1

i−j+1

)
λ′(λ′ − λ)−1 −

(
i′−j′+i−j
i−j+1

)
], i′ ≥ j′,

0, i′ < j′,

and then
‖R1

−1
(λ′I + |λ′|FG)‖2 ≤

(
n′+n−1

n

)
ϕ−(γ1, n)ϕ+(γ

′
1, n

′);

similarly,

‖R2
−1

(λ′I + |λ′|FG)‖2 ≤
(
n′+n−1

n

)
ϕ−(γ2, n)ϕ+(γ

′
2, n

′).

To sum up,
‖W1‖2 ≤

(
n′+n−1

n

)
ϕ−(γ, n)ϕ+(γ

′, n′)

where γ = min{γ1, γ2}. Similarly,

‖W2‖2 ≤
(
n′+n−1

n′

)
ϕ−(γ

′, n′)ϕ+(γ, n).

3. (Λ,Ω) is of type R2, while (Λ′, Ω′) is of type R3:

I ⊗Ω′Λ′ −ΩΛ⊗ I = I ⊗ (λ′I + |λ′|FG) − FG⊗ I,

and then

(I ⊗Ω′Λ′ −ΩΛ⊗ I)−1 =

{
(λ′I + |λ′|FG)j−i−1, i ≥ j,

0, i < j,

where

(λ′I + |λ′|FG)−1 =

{
(−|λ′|)i′−j′λ′j′−i′−1, i′ ≥ j′,

0, i′ < j′.

Thus

W1 =

{
(λ′I + |λ′|FG)j−i, i ≥ j,

0, i < j,
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where

(λ′I + |λ′|FG)j−i =

{
(−|λ′|)i′−j′λ′j′−i′+j−i

(
i′−j′+i−j

i−j

)
, i′ ≥ j′,

0, i′ < j′,
for i > j.

Easy to see ‖W1‖1 = ‖W1‖∞ = ‖W1e1‖1. Note that ‖W1‖2 ≤
√

‖W1‖1‖W1‖∞ = ‖W1‖1.
Thus,

‖W1‖2 ≤ ‖W1e1‖1

= 1 +
n∑

i=2

n′∑

i′=1

∣∣∣(−|λ′|)i′−1λ′2−i′−i
(
i′+i−2
i−1

)∣∣∣

= 1 +

n∑

i=2

n′∑

i′=1

|λ′|1−i
(
i′+i−2
i−1

)
.

Noticing1
∑n′

i′=1

(
i′+i−2
i−1

)
=
(
i−1
i−1

)
+
∑n′

i′=2

(
i′+i−2
i−1

)
=
(
i
i

)
+
∑n′

i′=2

(
i′+i−2
i−1

)
= · · · =

(
n′+i−1

i

)
,

‖W1‖2 ≤ 1 +

n∑

i=2

|λ′|1−i
(
n′+i−1

i

)

≤ 1 +
|λ′|−1 − |λ′|−n

1− |λ′|−1

(
n′+n−1

n

)

= 1 +
(
n′+n−1

n

)
|λ′|−1ϕ−(|λ′|, n− 1).

Then

‖W2‖2 ≤ ‖W1e1 − e1‖1

=

n∑

i=2

n′∑

i′=1

∣∣∣(−|λ′|)i′−1λ′2−i′−i
(
i′+i−2
i−1

)∣∣∣

=
(
n′+n−1

n

)
|λ′|−1ϕ−(|λ′|, n − 1).

4. (Λ,Ω) is of type R2, while (Λ′, Ω′) is of type R4:

I ⊗Ω′Λ′ −ΩΛ⊗ I = I ⊗
[
λ′I + |λ′|FG

λ′I + |λ′|FG

]
− FG⊗

[
I

I

]

= diag(R1, R1),

where
R1 = [I ⊗ (λ′I + |λ′|FG)− FG⊗ I].

Then
W1 = diag(R−1

1 (λ′I + |λ′|FG), R1
−1

(λ′I + |λ′|FG)).

1
(

p

q−1

)

+
(

p

q

)

=
(

p+1

q

)

for any q ∈ N+.
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By the same calculation in case 3,

‖R−1
1 (λ′I + |λ′|FG)‖2 ≤

(
n′+n−1

n

)
ϕ−(|λ′|, n);

Note that
‖R1

−1
(λ′I + |λ′|FG)‖2 = ‖R−1

1 (λ′I + |λ′|FG)‖2.
Thus

‖W1‖2 ≤
(
n′+n−1

n

)
ϕ−(|λ′|, n).

Similarly,
‖W2‖2 ≤

(
n′+n−1

n

)
ϕ−(|λ′|, n′)− 1.

5. (Λ,Ω) is of type R3, while (Λ′, Ω′) is of type R4:

I ⊗Ω′Λ′ −ΩΛ⊗ I = I ⊗
[
λ′I + |λ′|FG

λ′I + |λ′|FG

]
− (λI + |λ|FG) ⊗

[
I

I

]

= diag(R1, R1),

where
R1 = [I ⊗ (λ′I + |λ′|FG)− (λI + |λ|FG)⊗ I].

Then
W1 = diag(R−1

1 (λ′I + |λ′|FG), R1
−1

(λ′I + |λ′|FG)).

By the same calculation in case 1,

‖R−1
1 (λ′I + |λ′|FG)‖2 ≤

(
n′+n−1

n

)
ϕ−(γ, n)ϕ+(γ

′, n′);

Note that
‖R1

−1
(λ′I + |λ′|FG)‖2 = ‖R−1

1 (λ′I + |λ′|FG)‖2.
Thus

‖W1‖2 ≤
(
n′+n−1

n

)
ϕ−(γ, n)ϕ+(γ

′, n′).

Similarly,
‖W2‖2 ≤

(
n′+n−1

n′

)
ϕ−(γ

′, n′)ϕ+(γ, n).

6. (Λ,Ω) is of type R3, while (Λ′, Ω′) is of type R2: Note that there exist two permutation
matrices P,Q to make A ⊗ B = P (B ⊗ A)Q. Thus, ‖A ⊗ B‖2 = ‖B ⊗ A‖2. So it is the
same as case 3.

7. (Λ,Ω) is of type R4, while (Λ′, Ω′) is of type R2: the same as case 4.

8. (Λ,Ω) is of type R4, while (Λ′, Ω′) is of type R3: the same as case 5.
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Consider (2.3b). Note that (I ⊗ I − ΩΛ ⊗ FG) is a lower triangular matrix. The diagonal
entry must be 1, so this matrix is nonsingular. Then

vec(Y ) = (I ⊗ I −ΩΛ⊗ FG)−H [−(I ⊗ I)H vec(M) + (ΩΛ⊗ FG)H vec(N)]

=: −WH
1 vec(M) +WH

2 vec(N),

which shows (2.3b) has a unique solution Y , and also W1 −W2 = I. Note that there exist two
permutation matrices P,Q to make A⊗B = P (B ⊗A)Q. Thus, ‖A⊗B‖2 = ‖B ⊗A‖2. Then

I ⊗ I − FG⊗ΩΛ =




I
ΩΛ I

. . .
. . .

ΩΛ I


 ,

and

W0 := (I ⊗ I − FG⊗ΩΛ)−1 =

{
(−ΩΛ)i

′−j′ , i′ ≥ j′,

0, i′ < j′.

Then
‖W1‖2 = ‖(I ⊗ I −ΩΛ⊗ FG)−1‖2 = ‖(I ⊗ I − FG⊗ΩΛ)−1‖2 = ‖W0‖2.

There are three cases, for which it is easy to see that ‖W0‖1 = ‖W0‖∞ = ‖W0e1‖1 and then
‖W0‖2 ≤

√
‖W0‖1‖W0‖∞ = ‖W0‖1 = ‖W0e1‖1:

1. if (Λ,Ω) is of R2:

(−ΩΛ)i
′−j′ =

{
(−1)i

′−j′ , i− j = i′ − j′,

0, i− j 6= i′ − j′.

Thus ‖W1‖2 ≤ ‖W0e1‖1 = min{n, n′}; and ‖W2‖2 ≤ ‖W0e1 − e1‖1 = min{n, n′} − 1.

2. if (Λ,Ω) is of R3:

(−ΩΛ)i
′−j′ =

{
(−1)i

′−j′λi′−j′−i+j|λ|i−j
(
i′−j′

i−j

)
, i ≥ j,

0, i < j,
for i′ ≥ j′, (A.2)

Thus

‖W1‖2 ≤ ‖W0e1‖1

= 1 +

n∑

i=1

n′∑

i′=2

∣∣∣(−1)i
′−1λi′−i|λ|i−1

(
i′−1
i−1

)∣∣∣

= 1 +

n∑

i=1

n′∑

i′=2

|λ|i′−1
(
i′−1
i−1

)

≤ 1 +

n′∑

i′=2

|λ|i′−12i
′−1
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= 1 +
2|λ| − (2|λ|)n′

1− 2|λ|
= 1 + 2|λ|ϕ( 1

2|λ| , n
′ − 1);

and

‖W2‖2 ≤ ‖W0e1 − e1‖1 = 2|λ|ϕ( 1

2|λ| , n
′ − 1).

3. if (Λ,Ω) is of R4: (−ΩΛ)i
′−j′ = diag(R,R) and R is of the form (A.2). Thus,

‖W1‖2 ≤ max{‖W0e1‖1, ‖W0e1‖1} = 2|λ|ϕ( 1

2|λ| , n
′ − 1) + 1;

and

‖W2‖2 ≤ max{‖W0e1 − e1‖1, ‖W0e1 − e1‖1} = 2|λ|ϕ( 1

2|λ| , n
′ − 1).

After calculations, no matter what case it is, by

‖Y ‖F ≤ ‖W1‖2‖N‖F + ‖W2‖2‖M‖F ,

we have the result.
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