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Abstract. The goal of this paper is the efficient numerical simulation of optimization problems
governed by either steady-state or unsteady partial differential equations involving random coef-
ficients. This class of problems often leads to prohibitively high dimensional saddle-point systems
with tensor product structure, especially when discretized with the stochastic Galerkin finite element
method. Here, we derive and analyze robust Schur complement—based block-diagonal precondition-
ers for solving the resulting stochastic optimality systems with all-at-once low-rank iterative solvers.
Moreover, we illustrate the effectiveness of our solvers with numerical experiments.
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1. Introduction. Optimization problems constrained by deterministic steady-
state partial differential equations (PDEs) are computationally challenging. This is
even more so if the constraints are deterministic unsteady PDEs since one would then
need to solve a system of PDEs coupled globally in time and space, and time-stepping
methods quickly reach their limitations due to the enormous demand for storage
[25]. Yet, more challenging than the aforementioned are problems constrained by
unsteady PDEs involving (countably many) parametric or uncertain inputs. This
class of problems often leads to prohibitively high dimensional linear systems with
Kronecker product structure, especially when discretized with the stochastic Galerkin
finite element method (SGFEM). Moreover, a typical model for an optimal control
problem with stochastic inputs (SOCP) will usually be used for the quantification of
the statistics of the system response—a task that could in turn result in additional
enormous computational expense.

Stochastic finite element—based solvers for a large range of PDEs with random
data have been studied extensively [1, 3, 12, 21, 24]. However, optimization problems
constrained by PDEs with random inputs have, in our opinion, not yet received ad-
equate attention. Hence, this study is aimed at pushing the research frontier with
respect to the numerical simulation of the latter class of stochastic problems (that is,
SOCPs) toward larger and more challenging problems. Some of the papers on SOCPs
include [12, 13, 24]. While [12] studies the existence and the uniqueness of solutions
to control problems constrained by elliptic PDEs with random inputs, the emphasis in
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[13] is on solvers based on stochastic collocation methods (SCMs) for optimal control
problems with random coefficients. Rosseel and Wells in [24] apply a one-shot method
with both SGFEM and SCM approaches to an optimal control problem constrained
by stochastic elliptic PDEs. One of their findings is that SGFEM generally exhibits
superior performance compared to the SCM, in the sense that, unlike SGFEM, the
nonintrusivity property of the SCM is lost when moments of the state variable appear
in the cost functional, or when the control function is a deterministic function.

The fast convergence and other nice properties exhibited by SGFEM notwith-
standing, the resulting large tensor-product algebraic systems associated with this
intrusive approach unfortunately limit its attractiveness. Thus, for it to compete
favorably with the sampling-based approaches, there is the need to develop efficient
solvers for the resulting large linear systems. This is indeed the motivation for this
work. More precisely, we apply an all-at-once approach, together with SGFEM, to
two prototypical models, namely, optimization problems constrained by (a) stationary
diffusion equations and (b) unsteady diffusion equations, and in each of the two cases,
both the constraint equations and the objective functional have uncertain inputs. As
these problems pose increased computational complexity due to enormous memory
requirements, we here focus specifically on efficient low-rank preconditioned iterative
solvers for the resulting linear systems representing the Karush—-Kuhn—Tucker (KKT)
conditions. In particular, inspired by a state-of-the-art preconditioning strategy em-
ployed in the deterministic framework [20, 25], we derive and analyze robust Schur
complement-based block-diagonal preconditioners which we use in conjunction with
low-rank solvers for the efficient solution of the optimality systems.

For the numerical simulation of the SOCPs considered in this work, we assume
that the state, the control, and the target (or the desired state) are analytic functions
depending on the uncertain parameters. However, we note here that, as pointed out
in [24], problems in which the control is modeled as an unknown stochastic function
constitute inverse problems, and they are different from those with deterministic con-
trols. In the former, the stochastic properties of the control are unknown but will be
computed. So, in most cases (as we assume in this work), the mean of the computed
stochastic control could be considered as optimal. Depending on the application, the
mean may not, in general, be the sought optimal control, though. In addition, com-
puting the uncertainty in the system response might require additional computational
challenges.

This paper is structured as follows. In section 2, we present our problem statement
and give an overview of the SGFEM on which we shall rely throughout. Section 3 dis-
cusses efficient solution of our first model problem, namely, an optimization problem
governed by a steady-state diffusion equation with uncertain inputs. As an exten-
sion of the concepts discussed in section 3, we proceed to section 4 to introduce and
analyze our preconditioning strategy for the unsteady analogue of the steady-state
model. Furthermore, we here briefly review the tensor-train (TT) toolbox, a soft-
ware package which we shall use, in conjunction with MINRES, to solve our unsteady
problems. Finally, section 5 presents some numerical experiments to demonstrate the
performance of our solvers.

2. Problem statement. In this paper, we study the numerical simulation of
optimal control problems constrained by PDEs with uncertain coefficients. More
precisely, we formulate our model problems as

(1) min J (y,u) subject to ¢(y,u) =0,
Y,u
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where the constraint equation ¢(y,u) = 0 represents a PDE with an uncertain coeffi-
cient to be specified in what follows, and

LB
@) Jyu) = IIy iliamyerzo) + 3 ~lstd ()12 ) + 5llulliz e

is a cost functional of tracking type. The functions y, w, and § are, in general,
real-valued random fields representing, respectively, the state, the control, and the
prescribed target system response. We note here that y and u could also be modeled
deterministically. The positive constant 8 in (2) represents the parameter for the
penalization of the action of the control u, whereas a penalizes the standard deviation
std(y) of the state y. The objective functional J(y, u) is a deterministic quantity with
uncertain terms. In what follows, we shall focus on distributed control problems,
although we believe that our discussion generalizes to boundary control problems.

Next, we recall that by a random field z : D x Q — R, we mean that z(x,-) is a
random variable defined on the complete probability space (2, F,P) for each x € D.
Here, (2 is the set of outcomes, F C 2 is the o-algebra of events, and P : F — [0,1] is
an appropriate probability measure. Here, we assume that z is in the tensor-product
Hilbert space L?(D) ® L?(£) which is endowed with the norm

=

l[vllL2(pygLe() = (/ o (-, ||L2(D) dP(w )) < 00,

where L%(Q) := L%*(Q, F,P). For any random variable g defined on (£, F,P), the
standard deviation std(g) and the mean E(g) of g are given, respectively, by

3) sm@z[ém—wmfwwﬂ2wdwmzégwwan

2.1. Representation of random inputs. Suppose we are given a random field
z : D x Q — R with known continuous covariance function C,(x,y). Then one way to
represent z with a finite number of random variables is through a truncated Karhunen—
Loeve expansion (KLE):

N
(4) 2y (x,w) = E[2](x) + 0. Z Vi ()€ (w)

where o, is the standard deviation of z, the random variables {¢;}, are centered,
normalized, and mutually uncorrelated with [1],

&i(w) = /D(z(x,w) — E[z](x))pi(x) dx YA; >0,

1
Uz\/)\—i

and {\;,@;} is the set of eigenvalues and eigenfunctions corresponding to C(x,y);
that is,

A@mwmwwz&mn

The eigenfunctions {(;} form a complete orthogonal basis in L?(D). The eigenvalues
{\i} form a sequence of nonnegative real numbers decreasing to zero and

Soni= /D Var[z](x) dx
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Moreover, by Mercer’s theorem [23, p. 245], we have

sup E [(z — 2n)?] = sup Z NipZ(x) =0 as N — oo.
xeD x€Di>N

In what follows, we will employ the so-called finite noise assumption, which states
that a random field z(x,w) can be approximated with a prescribed finite number of
random variables £ := {&1,&2,...,&n}, where N € N and &;(w) : Q@ — T'; C R; this is,
for instance, the case when we use a joint N-term KLE to approximate the random
coefficient

(5) a=a(x,w)=a(x,&Ww)) = a(x,&(w), &2(w),. .., En(w))

in the stochastic PDE ¢(y, u) = 0. We also make the simplifying assumption that each
random variable is independent and characterized by a probability density function
pi : Ty = [0,1]. The random vector £ has a bounded joint probability density function
p: I = RY whereI' := Hivzl I CRYN and p = Hivzl pi(&). In particular, given the
parametric representation (5) of a(x,w), the Doob—Dynkin lemma (cf. [1]) guarantees
that y, the solution corresponding to the stochastic PDE ¢(y,u) = 0, admits exactly
the same parametrization; that is, y(x,w) = y(x,&1 (w), &(w), ..., En(w)). Here, N
has to be large enough so that the approximation error is sufficiently small.

We can now replace the probability space (£2, F,P) with (2, B(I"), p(§)d€), where
B(I") denotes the Borel o-algebra on I' and p(£)d¢ is the distribution measure of the
vector £. In addition, denoting the space of square-integrable random variables with
respect to the density p by L2(T'), we introduce the space L?(D) ® L3(T'), equipped
with the norm

2

(6) ol L2y rzr) = </F (- T2 (py(€) dﬁ) < 0.

Similarly, using (3), we have

@ stalo) = | [ (006 - E@©)Po() de] " ana t9)= [ a(@0(e) s < .

Furthermore, our cost functional J(y, u) now reads

1 ~ ! B
)  Jyu) = §||y - Z/||2L2(D)®Lg(r) + §||Std(y)||QL2(D) + §||u||%2(p)®Lg(r)-

In this contribution, we shall rely on the SGFEM for the spatial and stochastic
discretizations (see, e.g., [1, 12, 21, 24]), and our exposition here, in particular, follows
closely the framework in [24]. In a nutshell, we recall that the SGFEM is a spectral
approach in which one seeks y and u in a finite-dimensional subspace of the Hilbert
space Hj(D) @ L%(T'), consisting of tensor products of deterministic functions defined
on the spatial domain and stochastic functions defined on the probability space. More
precisely, suppose first that Vi, C H}(D) is a space of standard Lagrangian finite
element functions on a partition 7 into triangles (or rectangles) of the domain D
defined by

Vi :={vn, € Hy(D) : vy, € Pu(E) V2€ T},
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where Z € T is a cell and Py is the space of Lagrangian polynomials of degree k. In
particular, let V4, = span{¢;(x), j = 1,...,J}. Moreover, for approximation in the
stochastic space, define the set Z by

T:={i=(i1,...,in) € NV : |i| <n},

and let Y, C L2(T) be such that Y, := span{¢;(§) : i € Z}. Here, {¢;(€)} are
N-variate orthogonal polynomials of degree at most n, whereas Z is a set of all multi-
indices of length N satisfying |i| < n. It can then be shown that

n 1 k—1 (N+TL)'
(9) Pi=dim(Y,) =dim(Z) =1+ Y o [T +4) = N
k=1 j=0
Hence, it turns out that there exists a bijection p : {1,..., P} — Z that assigns a

unique integer ¢ to each multi-index (i) € Z.

To illustrate here how the space Y;, is constructed [21], consider the case of uni-
form random variables with NV = 2 and n = 3. Then Y,, is a set of two-dimensional
Legendre polynomials (products of a univariate Legendre polynomial in &; and a uni-
variate Legendre polynomial in &) of degree less than or equal to three. Each of the
basis functions is associated with a multi-index v = (v1,12), where the components
represent the degrees of the polynomials in &; and &;. Since the total degree of the
polynomial is three, we have the possibilities v = (0,0), (1,0), (2,0), (3,0), (0,1), (1,1),
(2,1), (0,2), (1,2), and (0,3). Since the univariate Legendre polynomials of degrees
0,1,2,3 are Lo(z) = 1, Li(x) =, La(x) = 3(32% — 1), and Ls(z) = 3(52° — 3x),
we have

Y, = Span{?/’i(f)}?:o
{16 388 -1, 568 -30), @ 68, 568 - Ve, 36 -1,
1 1
361036 - 1), 50663 - 3) .

So, spectral SGFEM essentially entails performing a Galerkin projection onto
Whi i= X, @ Yo C HY(D) ® L%(F) using basis functions 7y, of the form

J P-1
(10) Thn = Z ZTJWJ Z Z Tk ¢ (X) i (£),
j=1kez j=1 k=0

where 7;; is a degree of freedom. Note, in particular, that

!

J

J
(11) E(rnn) =Y Y minei (%) (Ve(€)) =Y rjod (%),

0 j=1

>
Il

J=1

where

(12) ($o(€)) =1, (¥;(€) =0, 5 >0, (¥ ()vu(€)) = (¥7(€)) dji

We now proceed to section 3 to present our first SOCP whose constraint is a
stationary diffusion equation. The idea is to use this model to motivate our discussion
on the solvers for a time-dependent model problem in section 4.
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3. A control problem with stationary diffusion equation. Our first SOCP
consists now in minimizing the cost functional J (y(x,w), u(x,w)) defined in (2) such
that, P-almost surely, the following linear elliptic diffusion equation holds:

13) { -V (a(x,w)Vy(x,w)) = u(x,w) in D xQ,

y(x,w) =0 on 0D x ,
where a : D x 2 — R is a random coefficient field and the forcing term on the right-

hand side u : D x 2 — R denotes a random control function. Furthermore, we assume
that

(14) u € L*(D)® L*(Q) a.e.,
and that there exist positive constants amin and amax such that
(15) P(we N:a(x,w) € [amin, Gmax] VX € D) = 1.

For the weak formulation of the forward problem (13), we seek y € H¢(D)® L%(Q)
such that, P-almost surely,

(16) B(y,v) = £(u,v) Yv € H}(D) @ L*(%),

where the bilinear form B(-,-) is given by

(11 B = [ [ alxw)Vutxw) - Tolxw) dxab). vy € H(D) © H9),
and

1s)  f(u,v) = /Q /D w(x, w)o(x,w) dxdP(w), v,u € HA(D) @ L*(Q).

The following existence and uniqueness result of the solution y to (13) follows from
the Lax—Milgram lemma; see, e.g., [12].

THEOREM 1. Under the assumptions (14) and (15), there exists a unique solution
y € H} (D) ® L*(Q) such that, P-almost surely, (16) holds.

Recasting the above SOCP given by (2) and (13) into a saddle-point formulation,
Chen and Quarteroni in [5] prove the existence and uniqueness of its solution. More
precisely, the following result holds.

THEOREM 2 (see [5, Theorem 3.5]). Let (14) and (15) be satisfied and let « = 0
in (8). Then there exists a unique optimal solution (y,u, f) to the SOCP (8) and
(13) satisfying the stochastic optimality conditions

B(y,v) = l(u,v), v HD)® L*(Q),
((Bu — f,w) =0, w € L*(D) ® L*(Q),
B/(yv T) =+ é(yv T) = é(gv T)v S H(}(D) ® LQ(Q)a

where f is the adjoint variable or Lagrangian parameter associated with the optimal
solution and B’ is the adjoint bilinear form of B as defined in (17); that is, B'(y,r) =

B(r,y).
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We note here that the cost functional considered in [5, 12] does not include
||std(y)||2L2(D). But then, their results extend to the more general form of J(y,u)
discussed in this paper due to the Frechét differentiability of |[std(y)]|3. (p); see, for
example, [24].

As our major concern in this paper is to study efficient solvers resulting from
the discretization of our model problems, we proceed next to recall the two com-
mon approaches in the literature to solve these optimization problems [26]. The first
method is the so-called optimize-then-discretize (OTD) approach. Here, one essen-
tially considers the infinite-dimensional problem, writes down the first order condi-
tions, and then discretizes the first order conditions. An alternative strategy, namely,
the discretize-then-optimize (DTO) approach, involves discretizing the problem first
and then building a discrete Lagrangian functional with the corresponding first order
conditions. The commutativity of DTO and OTD methods when applied to optimal
control problems constrained by PDEs has been a subject of debate in recent times
(see [15] for an overview). In what follows, we will adopt the DTO strategy because,
for the SOCPs considered in this paper, it leads to a symmetric saddle-point linear
system which fits in nicely with our preconditioning strategy.

To discretize the SOCP given by (2) and (13) using the SGFEM, consider first the
constraint (13). Given a basis for Wy, := V;, ® Y,, C Hj(D) ® L2(T') and a truncated
KLE representation ay(x,&) (cf. (4)) of the random field a satisfying (15), we now
seek a finite-dimensional yp,,, upy, € Wh, satisfying

(19) /F /D an (%, €) Vi - Vo p(€)dxdé = /F /D Whnv pl€)dxd

Yv € Wy, Expanding ypy, tnn, and the test functions in the chosen basis in (19), we
see that

P-1 J pP-1
Uhn = 3 > Yikdi(X)k(€) = Y urtoi()
k=0 j=1 k=0
and
P-1 J P-1
Unn = > Y ikt ()Pr(§) = Y urthp(€)
k=0 j=1 k=0

yield the following linear system of dimension JP x JP:
(20) Ky = Mu
with block structure, where the blocks KCp, , of the stochastic Galerkin matrix K are

linear combinations of N + 1 weighted stiffness matrices of dimension J, with each
of them having the same sparsity pattern equivalent to that of the corresponding

deterministic problem. More specifically, for p,¢q =0,..., P — 1, we have
N

(21) Kp.g = Wp()0q()) Ko + > (Ethp(€)1q () K
i=1

and

Mp.q = (¥p(§)¥q(E)) M,
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where the mass matrix M € R7*7 and the stiffness matrices K; € R/*7, { =
0,1,..., N, are given, respectively, by

(22) M. k) = /D 6, (x)du(x) dx,
(23) Ko(j.k) = /D E[a] (x) Vo (x) Vi (x) dx,
(24) Ki(j. k) = 0uv/M /D 043 Veby () Vb (x) dlx, > 0,

where E[a] > 0 due to (15), so that K is symmetric and positive definite. The block
K captures the mean information in the model and appears on the diagonal blocks
of IC, whereas the other blocks K;, ¢ = 1,..., N, represent the fluctuations in the
model. In Kronecker product notation, one obtains

N
(25) Ki=GooKo+» GioK;, M:=GyaM,
=1
where
(26) Go = diag ((v3), (¥3),..., (¥3_ 1)),
Gi(ja k) = <§Z¢ka> ) 1= ]-7 .. '7N7

due to the orthogonality of the stochastic basis functions with respect to the proba-
bility measure of the distribution of the chosen random variables (cf. (12)). Moreover,
KC is highly sparse as many of the sums in (21) are zero.

Similarly, applying SGFEM to the cost function (8), taking into account (11),
(12), and the expression Var(y) = [std(y)]2 = E(y2) — [E(y)]*, leads to

1
(27) S =9 MOy = 3) + Sy My + SuT Mu,
where
(28) My =Ho® M, H:=diag(0,(¥7),....,{(¥p_1)).

Our discrete SOCP now is to minimize (27) subject to (20). The Lagrangian
functional £ of this optimization problem is given by

1 _ _ o}
Lly.m6) = 5y —9)"Mly —5) + Sy" Moy + D" Mu £7(-Ky + Mu ),

where f denotes the Lagrangian multiplier or adjoint associated with the constraint
and the vector d := diag(Gy) ® d, where d represents, in general, contributions from
boundary conditions with respect to the spatial discretization. Now, applying the
first order conditions to the Lagrangian yields the optimality system

M, 0 —KT y My
(29) 0 AM MT ul=| 0 |,
-£ M 0 f d
=A
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where
(30) My=M+aM;=(Go@M)+a(Hy@M) =G, M,

with G, := Go + aHy, so that

<1/)8> if j=k=0,
(31) Guo(j, k) = (1+oz)<¢j2-> if j=k=1,2,...,P—1,
0 otherwise.

We note from (25), (30), and (31) that if & = 0, then G, = G and, hence, M, = M.
Moreover, we assume that the parameter N in the KLE of the random input a is
chosen such that K stays symmetric and positive definite [21]. The system (29) is
usually of huge dimension. As a result, the use of direct solvers for the system is out
of the question. In what follows, we consider efficient iterative solvers instead. First,
however, we discuss our preconditioning strategies.

3.1. Preconditioning the optimality system. Now, observe that (29) is an
indefinite saddle-point system [8, Chapter 5]:

(32) A= { i EgT ]
where
(33) A:{/‘ga ﬁ%}, B=[-k M]

where A is symmetric and positive definite and B has full row rank. An appropriate
Krylov subspace solver for the linear system is the MINRES algorithm (originally
proposed by Paige and Saunders in [19]) with a suitable preconditioner.

Throughout this paper, we will focus mainly on block-diagonal preconditioners.
More specifically, to solve (29), we precondition the MINRES algorithm with

M, 0 0
(34) P;:[’gg]z 0 BM 0 |,
o o0 S
where
(35) S =BA'BT = KM;'K + L

B

is the (negative) Schur complement. We note here that (34) is only an ideal precon-
ditioner for our saddle-point system (29) in the sense that it is not cheap to solve the
system with it. In practice, one often has to approximate its three diagonal blocks
in order to use P with MINRES. An effective approach to approximate blocks (1, 1)
and (2,2) is the application of Chebyshev semi-iteration to the mass matrices in each
of the two blocks [27]. Approximating the Schur complement S, that is, block (3, 3),
poses more difficulty, however. One possibility [22] is to approximate S by dropping
the term %M to obtain

(36) S = KMKT.
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An alternative and more robust approach, which we adopt here and in the rest of this
paper, was proposed in [20] (see also [8, Chapter 5]) in the context of deterministic
optimal control problems. Here, S is approximated by a matrix S; of the form

(37) S = (K+ MM K+ M),

where M, is determined by “matching” the terms in the expressions for S; and S as
given, respectively, in (37) and (35). More precisely, we ignore the cross terms (that
is, KM M, + M, M;1K) in the expansion of S1, to get

(38) M MM, = %M = %MM*M.

Now, observe from (26), (30), and (31) that we have M, = G, ® M. Moreover, note
that ideally in (8), we have a > 0. So, to derive an approximation to S, we consider
first of all the case a = 0. In this case, it is easy to see that (38) holds if we set

1
VB
since M, = M. If a > 0, then we apply the following trick. We proceed first by
replacing in (31) the (0,0) entry in the diagonal matrix G, with (14 ) (¢3), so that
we can then obtain

My=Ga M=~ (1+a)Gop@M = (1+ a)M.

It turns out then that (38) holds if and only if

(39) M, = —=M,

14+«
B

with which we recover (39) for o = 0. Hence, we have

T
(40) 51=</c+ 1;aM)Ma1</c+,/1;aM) .

=Z

My = M,

We point out here that the expression for M, implies that the ignored cross terms
are O(B71/2) instead of O(B3~1) in (36).

The effectiveness of the iterative solver used to solve our KKT system depends to a
large extent on how well the approximation S; represents the exact Schur complement.
To measure this, we need to consider the eigenvalues of the preconditioned Schur
complement Sy LS. In what follows, we proceed to establish the spectrum A(ST ls ) of
ST lg by examining the Raleigh quotient
2T Sz
TSz
for any nonzero vector x of appropriate dimension. We shall rely on the following
result on positive definite matrices.

PROPOSITION 3 (see [16, Theorem 2]). Let X = AB + BA, where A and B are
positive definite, Hermitian square matrices. Then X is positive definite if

w(B) < <7V A + 1>2

Kk(A) =1

R(z) :=

where k(YY) represents the spectral condition number of the matriz Y.
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We can now prove the main result of this section.

THEOREM 4. Let o € [0,+00). Then the eigenvalues of Sfls satisfy

2
1 \/ 1
(41) A(ST1S) [7 1) Vo< [VEOFLY 1,
21+ a) VEC) -1
where C = M~12KM~1/2,
Proof. Suppose that « € [0, 4+00). Define the diagonal matrices T and &, by

(42) T = diag(0,Ip_1) and &, = (Ip + oY) ® I,
where I, denotes an identity matrix of dimension n € N. Clearly,
(43) Ijp 2 €4 X (1+Q)IJP and IJPES(;lt(l‘FOé)_lIJP,

where, for arbitrary square matrices X and Y, we write X = Y if X —Y > 0, and vice
versa. Moreover, from (26), (28), (30), (42), and using the identity (AQ B)(X®Y) =
AX ® BY, we obtain

Golp +aGoY)® (MI;)
Go@M)Ip®@15)+ (Go @ M)(aY ® 1)
=(Go@M)[(Ip @ 1)+ (oY @ I1)]
=MI(Ip+aY)® 1]
(44) = ME, = EaM,

My = (Go+aHy) @M
= (
-

since both Gy and Ip 4+ oY are diagonal matrices and therefore commute with each
other. Now, recall from (40) that the approximation S; to the Schur complement S
is given by

1+« l1+a
B B

and that the preconditioned Schur complement S 1S is similar to the matrix

(45) S, = KMZ'K + MMM + [KMZ' M+ MMZ'K],

(46) Ml/Zsl—lsM—l/Q — (./\/1_1/251./\/1_1/2)_1(M_l/QS./\/l_l/z).
It therefore follows from (35), (40), (44), (45), and (46) that

—1

1ta Ita (cert +5alc)) (certc+ B ,p)

B B
_ (ﬁ&i’;lc + 1+ )& +VB(L+a) (CEST + 5;10)) B (BCESIC + 1;p),

El+

S;S ~ (csalc +

where ~ implies similarity transformation and C := M~Y2KM~1/2. Now, observe
that the matrix C is symmetric and positive definite so that A(C) C (0, 4+o00) . Consider
now the Raleigh quotient

R(z) = zT [66&;10 + IJP} x
T [Beer'C+ (14 a)eat + /B T a) (CE + 5510)} z
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But then x(€; 1) =1+ a, and hence, by Proposition 3, we have that

— 2
2T (CESTHE71C)r >0 for a+1< (%) .

This, in turn, implies that the denominator of R(x) is also strictly positive. Hence,
T [BCETIC+ (1 +a)ert] o
2T |BCESC+ (1+ @)t + /B +a) (CES + 5510)} z
from which we deduce that A\pax := max R(z) < 1.
Now, observe that 27CE; o = 2T €, 1Cx. Moreover, for any two vectors 21, 2o of
appropriate dimensions, Cauchy—Schwarz inequality implies (27 25)? < (221) (24 22).
Thus, setting 2z = 2TCETY? and 2, = €52, we obtain

R(z) <

<1,

(47) (xTCE(;le < (xTCE(;le) (2T& ).
Hence, using (47), together with the fact that (a + b)? < 2(a® + b?), a,b € R, yields
B xT [ﬁCc‘,'Ole—FIJp} T
T [Beeate+ (1 +a)Ea + /B +a) (C&a* +€30)]
S 2TpCE Cr + 2T I pa
T [BV2(aTCEL Ca) /2 + (14 a) /2 (2T ES )1 /2]
a:TBCé';le +2TI px
T 2[BaTCEL Ca + (14 )aTE ]
2TpCES I Cr + 2T E
T 2[BaTCEL Ca + (14 )aTES ]
2T 1

18 > - ,
(48) T 2142t e 214 a)

R(x)

which shows that Apin := min R(x) > a

wrFay
Note that, in the context of a deterministic optimal control problem, Pearson and

Wathen in [20, Theorem 4] have independently obtained, specifically for @ = 0, a

similar result to that of Theorem 4; see also [8, Lemma 5.2]. We, however, point out

herein that, in addition to the generalization of the said result, ours yields a sharper

bound than the one obtained by these authors. Moreover, save the parameter «, the

result of Theorem 4 is independent of the discretization parameters in the system.
The following result is an immediate consequence of Theorem 4.

THEOREM 5. Let A be the KKT matriz given by (32) and define Py by
A 0
Po = [ 0 S ] ’

where A and S1 are given, respectively, by (33) and (40). Moreover, assume that

VE(C)+1\2 _ . . .
a < (m_l) 1, where C is as defined in Theorem 4. Then the eigenvalues of the

matriz Py ' A satisfy
(49) MNPy rA) = {1} UZ- UTT,
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where
1 1 2 1 2 1
I ==(1—-vV5),=|1—4/1+—— -1 1+ — —(1 5 1.
<2( \/—)’2 < V +1—|—a> 2 ( + +1+oz>’2( +\/_)>

Proof. First, we note that Py ! A shares the same eigenvalues with the symmetric
matrix given by

It=

)

I A—l/QBTS;U?

PJ”"’APO‘”Q:[ e
Sy 2BA-1/2 0

Now, using [9, Lemma 2.1}, we know that the eigenvalues of P, 1 ZAPJ /2 are either 1
or have the form % (1 +v1+ 482) , where s is a singular value of X := S’l_l/QBA’l/Q;

in other words, s? is an eigenvalue of X X 7. Since S’l_lS is similar to X X7, the result
(49) follows immediately from Theorem 4. O

The robustness of S; notwithstanding, we cannot implement it as it is, since this
would be equivalent to solving the forward problem twice per iteration due to the

presence of Z := K + 1/HTO‘./\/l and its transpose in (40). Hence, we need to derive

an appropriate approximation for Z. To this end, observe first, from (25), that since

1+« ol ~
(50) Z=K+, 3 M=) G oK,
=0

with Ko := Ko + 1/H'TO‘M7 K; = K;,i=1,...,N, one could approximate Z using,

for example, the block-diagonal mean-based preconditioner [3, 21]:

(51) Zy = Go @ Ko.

For a practical algorithm, S; could then be implemented using multigrid tech-
niques for Ko in Zo. Note that (51) is best suited for systems for which the variance
of the random input a is small relative to its mean. Its performance, unfortunately,
deteriorates with increasing o,, since in this case we see from (23), (24), and (25),
that the off-diagonal blocks of the global stochastic Galerkin matrix Efil G;® K;
become more significant and are not represented in the preconditioner [21].

As an alternative, in our numerical experiments we therefore additionally con-
sider solves with Z (that is, Zx = b) via the inexact Uzawa method as given by
Algorithm 1. In our experience, the latter approach proved more efficient (with just
a few iterations) than the former, especially as we increased the variance of a.

Algorithm 1 Inexact Uzawa method for Zx = b.
1: Selec/‘\c X
2: Set P := 2
3: for £k=0,1,2,...do
4: r, =b— ZXI@/\
5
6

Xp+1 = Xk + P lry,
: end for

In a nutshell, we outline below the dominant operations in the application of our
proposed block-diagonal preconditioner P in (34).
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(1,1): 1 Chebyshev semi-iteration for the mass matrix M.
(2,2): 1 Chebyshev semi-iteration for the mass matrix M.
(3,3): 2 multigrid (or inexact Uzawa) operations: 1 for Zy (resp., Z) and 1
for its transpose.
Total: 2 Chebyshev semi-iterations and 2 multigrid (or inexact Uzawa) op-
erations.

Having been equipped with a suitable preconditioner, we proceed to the next
section to discuss our Krylov subspace solver.

3.2. Computing low-rank approximation of the solution to the station-
ary problem. As we have already pointed out in section 3.1, the MINRES algorithm
is an optimal solver for the system (29). Hence, we will use it, together with (34), to
solve (29). In particular, our approach is based on the low-rank version of MINRES
presented in [25]. In this section, we give a brief overview of this low-rank iterative
solver. Now, observe first that using the identity

(52) vec(WXV) = (VT @ W)vec(X),
where vec(X) = (21,...,2,)T € R™*! is a column vector obtained by stacking the
columns of the matrix X = [z1,...,2,] € R™ ™ on top of each other, the linear

system (29) can be rewritten as AX = R, where

N
Go @M 0 -Y Gi®K;
i=0
A= 0 B(Go @ M) Go®@ M ;
N
— Z G; ® K; Go®@ M 0
i=0
vec(Y) vec(Ry)
X=1| vecU) |, R= 0 ;
vec(F) vec(Rs3)

and
Y:[yﬂv"'vyp—l]a U:[uﬂv"'vuP—l]v F:[f()a"'afp—l]a

Ry = vec ' ((Go ® M)y), Rz =vec !(d).
Hence, (52) implies that

N
MYGT — S K;FGT
i=0 I
(53) AX = vec BMUGE + MFGE = vec 0
N
- K;YGT + MUGE B

3

Our approach is essentially based on the assumption that both the solution matrix
X and the right-hand side matrix R admit low-rank representations; that is,

Y = Wy Vi, with Wy € R7F1 15 € RPXk1,
(54) U= WUVg, with Wy € RJXk2, Vu € RPXk2,
F=WgpVE, with Wp e Rk Vip € RP*ks
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where k123 are small relative to P. Substituting (54) in (53) and ignoring the vec
operator, we then obtain

N

MWy VFGT — 3> KiWrpVEGT
i=0 RHR{Q
(55) BMWyVEGE + MWpVEIGE = 0 ,

Rs1 R
N 314132
— Z:OKZWYV}?G? + MWUVgGg

where Ry1 RE, and R3; R, are the low-rank representations of Ry and Rj, respectively.
The attractiveness of this approach lies therefore in the fact that one can rewrite
the three block rows on the left-hand side in (55), respectively, as

N WG
(first block row) [ MWy - Z;O KiWp ] VIGT |
VIGT
(56) (second block row) [ BM Wy MW | UT OT )
Vi Go
N vIGgT
(third block row) [ - > KiWy MWy ] }; |
i=0 Vi Gy

so that the low-rank nature of the factors guarantees fewer multiplications with the
submatrices while maintaining smaller storage requirements. More precisely, keeping
in mind that
X1 X%
T = vec XQlX’éTQ
X3 XL

corresponds to the associated vector x from a vector-based version of MINRES,
matrix-vector multiplication in our low-rank MINRES is given by Algorithm 2. Note
that an important feature of low-rank MINRES is that the iterates of the solution
matrices Y, U, and F in the algorithm are truncated by a truncation operator 7.
with a prescribed tolerance e. This is accomplished via QR decomposition as in [14]
or truncated singular value decomposition (SVD) as in [3, 25].

Algorithm 2 Matrix-vector multiplication in low-rank MINRES.
Input: Wiy, Wia, War, Waz, Wi, Wso
Output: X1, X12, Xo1, Xo2, X31, X32

X1 =MWy, —KoWsp -+ — KnWay]
X2 =[GaWi2  GoWsy -+ GnWay)
Xo1 = [BMWy1 MWs]
Xog = [GoWaz  GoWs2]
X3 =[-KoWi -+ —KnWi MWy
Xao=[ GoWiz -+ GnWia GoWay]

The truncation operation is necessary because the new computed factors could
have increased ranks compared to the original factors in (56). Hence, a truncation of
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all the factors after the matrix-vector products is used to construct new factors; for
instance,

. N WwTaT
[(X11, X12] := Te ([X11, X12]) = Te MWy, _;Kiwa‘l { W;léG? ] .
Moreover, in order to ensure that the inner products within the iterative low-rank
solver are computed efficiently, we use the fact that
(x,y) = vec (X)" vec (V) = trace (XTY)

to deduce that

T
trace (X1X2T) (YlYZT) = trace [ Y Xo XIV1 |,
—_——— —— —— ——
Large Large Small Small

where X = X;XJ and Y = Y;Yy, which allows us to compute the trace of small
matrices rather than of those from the full model.

For more details on implementation issues, we refer the interested reader to [3, 25].
In section 5, we use numerical experiments to illustrate the performance of low-rank
MINRES, together with the preconditioners discussed in section 3.1.

Next, we proceed to section 4 to present a time-dependent analogue of the model
problem considered so far.

4. A stochastic parabolic optimal control problem. In an attempt to ex-
tend our discussion on the above model problem to a time-dependent case, we hence-
forth replace L?(D) in (2) by the space

T
L*(0,T;D) = {f € L*(D): / [f(1)? dt < oo}

0

and then consider a parabolic SOCP now given by

_ 1 —112 Xiiq d 2
J(t,y,u) = §||y =l 00.m0)0L2(02) T 5”5'5 WZ200,7:D)
B
(57) + §||u||2L2(07T;D)®L2(Q)

subject, P-almost surely, to

oy(t,x,w)

ot -V (a(x,w)Vy(t,x,w)) = u(t,x,w) in (0,7] x D x §,

(58) y(t,x,w) =0 on (0,7] x 9D x Q,
y(0,x,w) =yo in D xQ,
where the random control function satisfies

u € L*(0,T;D)® L*(Q) a.e.,

and, as before, a(x,w) is assumed to be uniformly positive in D x . We note here
that the time-dependence of this problem introduces an additional degree of freedom
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which makes the system matrix here (a lot) larger than the system matrix in the
steady-state case.

We use the trapezoidal rule for temporal discretization (as was done for determin-
istic problems in, e.g., [25]) and SGFEM in the spatial and the stochastic domains to
get the discrete objective function

T _ _ To 70
(59) Tty u) =5y - y)" Maly — ) + TYTMby + TuTMgu,
where 7 represents the time step size, and

M, = blkdiag (3M, M, ..., M, M),
(60)
M, = blkdiag (3 My, My, ..., My, s M),

with M and M, as defined in (25) and (28), respectively. Note that My = M. Here,
denoting the number of time steps by n;, we also note that

Y1 Y1 uy
y=| ¢ |.y=| ¢ [Landu=| : |,
Yn, Yn, Un,
with y;,yi,u; € RJPXl, 1=1,...,n4.

For an all-at-once discretization of the state equation (58), we use the implicit
Euler method together with SGFEM to get

Kiy —tNu=d,
where
L M Myq
-M L M 0
’Ct = . . ’ N = . ) d= . )
-M L M 0

where £ := Gy @ (M + 7Kp) + Tzi]il G; ® K;. Observe that the matrix ; in this
case is not symmetric, unlike the matrix I in the stationary case.

Applying first order conditions to the Lagrangian functional for this constrained
optimization problem yields

7M1 0 —IC? y
(61) 0 BtMy 7NT u | =
—ICt TN 0 f

TM,.y
0
d
where, from (60), (30), and (25),

My = Mg+ aM,
=(D@M)+ a(Dx M)
=D®(M+aM,)

(62) =D®Ga®M=D®M,,
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with G, as defined in (31), and

1 1
(63) D = diag <§,1...,1,§) € R™>M,

We note here that

64) Ki=ITn, L)+ (COM) =1, & +(C® Gy M),

N
Z G 9K,
=0

where IA(O = M + 7Ky, K, = 7K;, i =1,...,N. The matrix C € R™*"t comes from
the implicit Euler discretization and is given by

and I, is an identity matrix of dimension n;. The use of other temporal discretizations
is, of course, possible. The Crank—Nicolson scheme, for instance, can be written in a
similar way. Moreover,

(65) N=1I1, G M, My=D®Gy® M.

Hence, each of the block matrices KC;, N, M1, and My belongs to R/FnxJPne gince
Gy e RPXP i =0,...,P—1,and M,K; € R’*/, i = 0,...,N. So, the overall
coefficient matrix in (61) is of dimension 3JPn; x 3JPny.

As can be seen from (64), for instance, the time-dependent problem leads to
an additional Kronecker product. Indeed, although the low-rank solver presented
in the stationary case reduces storage problems in large-scale simulations, the low-
rank factors become infeasible in higher dimensions. Further data compression can,
fortunately, be achieved with more advanced high-dimensional tensor product de-
compositions. Together with preconditioned MINRES, we henceforth solve the linear
system discussed in this section using an elegant and robust tensor format called the
tensor train (TT) format which was introduced in [17]. To this end, we proceed next
to section 4.1 to give an overview of the TT-format.

4.1. Solving the optimality systems from the unsteady problem. First,
we recall that a tensor y := y(i1,...,%4), g = 1,...,nk, 1S an ng X ng X -+ X ng
multidimensional array, where the integers ni,ns,...,nq are called the mode sizes
and d is the order of y. The tensor y admits a TT-decomposition or TT- format
[17, 6] if it can be expressed as

y(it, ... iq) = yi(i1)y2(i2) - - - ya(ia),

where yi(ix) is an rp_1 X 1, matrix for each fixed ig, 1 < i < ng. Moreover, the
numbers 7y, are called the TT-ranks, whereas y (i) are the cores of the decomposition.
More precisely, yi(ix) is a three-dimensional array, and it can essentially be treated
as an rg_1 X ng X rp array with elements yg(ax—1,ig, ag) = y&?fl,ak (ix). Here, the
boundary conditions rg = rq4 = 1 are imposed on the decomposition to make the
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matrix-by-matrix products a scalar. The decomposition can be expressed in index
form as
T1...Td—1

(66) y(i1,... i) = Z yi(ao, i1, n)yz2(ai, iz, a2) -+ ya—1(aa—1,ia, @),

al...ad_lzl

where ag = ag = 1. It turns out that TT-decomposition yields a low-rank format for
tensors as it is derived by a repeated application of low-rank approximation [17]. To
see this, let

(67) iQ"'id = i2+ (ig — 1)n2—|—~-~—|— (id— 1)n2n3-~-nd_1.

Then, by regrouping of indices, one can rewrite y as a matrix Y7 € R™ %24 with
Y1(i1,02---4q) = y(i1,.-.,iq). Thus, applying a low-rank SVD to the matrix Y; yields

ViR UiSi VYT, Uy e RM77, Vp @ R max,

The first factor U; is of moderate dimension and can be stored as yéll) (i1) = U1 (i1, an),
where oy = 1,...,71 and i3 = 1,...,n1. The remaining matrix ElvlT depends on a;
and s - - - ig. Next, we regroup these indices as follows:

Ya(aniz, iz - iq) = S1(a1, )V (1,42 - - - ia),
and we compute the next SVD:
Yo = UpSoVyl, Uy € RM™2X72 Y/, ¢ RMaMaxrz,

Again, Us can be reshaped to a three-dimensional tensor y((fl)ﬂ2 (i2) = Us(aqia, as)
of moderate size, and the decomposition also applied to ¥3V4! . Proceeding in this

manner, one eventually obtains the TT-format:

T1...Td—1

(68) y(in,.... i)=Yy ()yD,,002) -y, Ga1)yE) (ia),

041...04(1,1:1

with the total storage of at most dnr? memory cells, where 7, < r, ni < n. In partic-
ular, if r is small, then this requirement is much smaller than the storage of the full
array, n%. A similar construction can be made for discretized operators in high dimen-
sions. To this end, consider a matrix A = A(iy - ig, j1 - - - ja) € R ma)x(nana),
We decompose A as follows:

Ri..Rq_1
(69) A iadiJa~ Y. AD(,j)AS 5 (i, 42) - AS) (g, ja),
B1...Ba—1=1

which is consistent with the Kronecker product A = A1) @ A® in the case d = 2
and R; = 1, and allows a natural multiplication with (68) returning the result in the
same format.

As pointed out in [6], the TT-format is stable in the sense that one can always
find the best approximation of tensors computed via a sequence of QR and SVD de-
compositions of auxiliary matrices. The TT-decomposition algorithm is implemented
in the TT-Toolbox [18] and comes with a number of basic linear algebra operations,
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such as addition, subtraction, and matrix-by-vector product. Unfortunately, these
operations lead to prohibitive increase in the TT-ranks. Thus, one necessarily has to
truncate (or round) the resulting tensor after implementing each of the operations.
This enhances the efficiency of the method when used with any standard iterative
method such as MINRES. We point out that although solving the KKT system in
the TT-format (and, in general, with low-rank solvers) introduces further error in the
simulation due to the low-rank truncations, the relative tolerance of the truncation
operator can be so tightened that the error will become negligible. This is investigated
in [3] for a low-rank conjugate gradient iterative solver; see also, e.g., [6, 7] for TT
iterative solvers.

We remark here that there are, of course, other tensor formats, such as canonical,
hierarchical, and Tucker formats, which could be used to represent tensors [11] and
hence solve our linear systems. However, our choice of TT-format (or TT-Toolbox)
is due to its relative elegance and convenience in implementation. The details of
its implementation are found in [18]. A comprehensive overview of low-rank tensor
decompositions can be found in [11] and the references therein. In our numerical
experiments, we use preconditioned MINRES, together with the TT-Toolbox, to solve
the linear system (61).

4.2. Preconditioning the optimality system. As in the case of the optimal-
ity system associated with the stationary model problem, we need a good precondi-
tioner to solve (61). To this end, we will proceed as before and rewrite the saddle-point
system (61) as

o) Y [ M0

0 T8M, ] B =[-K 7N]

in the notation of (32). Again, we are interested in a block-diagonal preconditioner
to approximate the solution to (61). More precisely, we seek a preconditioner of the
form

P = Ay )
So
where the blocks A; # TDRG,@M and As =~ 718D Go® M, and as we noted before,
both approximations could be accomplished by applying a Chebyshev semi-iteration
on the mass matrix M in the blocks. The matrices D, Gy, and G, are easy to invert

since they are diagonal matrices. Moreover, S; is an approximation to the (negative)
Schur complement S; = BA™!BT | that is,

T
B

As in the time-independent case, we consider the following approximation of the
Schur complement:

(71) S, = %ICtMl‘llCtTJr NM;NT.

(72) Sy = % (iCt + /\7“) M (Ict + ﬂu)T,

where M, is again determined via the “term-matching” procedure so that both the
first and second terms in Sy and S, are matched, but the cross terms in Ss are ignored;
that is, we have

_ - 2
MMM, = %NM;U\/T,
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from which we deduce that M\u = 4N, with v = 7,/1£2, by using arguments similar

ﬂ I
to those used before, so that
T
1 1 1
(73) 52:;(’Ct+7' _;aN>M11(’Ct+T _;aN> .

=Z

Moreover, as in the stationary case, we have the following result regarding the eigen-
values of the preconditioned Schur complement S; ' S;.

THEOREM 6. Let o € [0, +00). Then the eigenvalues of Sy *S; satisfy

(74) AS;S)) © [72(110),1) Va < <7V _:ngg —1,

where K =N G @ K.

Proof. Let I, := I, and observe first from (64) that we can rewrite K; as

N
(715) Ki=(I+C)®(Go@M)+Ie71Y (GieaK)=Jyo M+71IaKk,
1=0
where
1
-1 1

Jo=I+C= i . ,
-1 1
and K, the coefficient matrix associated with the stationary forward problem, is pos-

itive definite. Now, using (42), (44), (62), (65), we see that

My =D® M,
=D ® ME,
=(DOM)I®E)

(76) = MyF, = FaMa,

where F, = I ® &,. Next, define the matrix X by

X = (D& DMy MG 2
(77) =D'YV2 D' 2RI +7I @ M™Y2KM™Y/2,

Note then that X is similar to Jo ® I + 71 @ MK = (D ® I)M; *K;. Moreover,
since

(78) S8 ~ (D@ 1) "My My YA (D ® 1),
we see, from (71), (73), (76), (77), and (78), that
-1
718~ (D@ DMy 25My (D e ] (Do My sy A (D@ 1))

-1
= [BXFS AT (14 ) F L r /BT a) (XF 4 P XT) | (BXFS AT )
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Now, consider the Raleigh quotient
R(z) zT [ﬁX.F;lXT—I—TQI]QJ
x) = .
oT [BYFAXT +72(1+ ) Fa 4+ 7B T a) (XFat + ]—Z;U(T)} x

But then
XF L+ FXT =DV2(Jy+ JD)D V2@ + T @ MTY2(KET + £ ) MY/,

Since the matrix D/2(Jy + JI)D~1/2 is the sum of two positive definite matrices, it
is therefore positive definite. In addition, by Proposition 3, one gets

o VR 1)
KE"+E,K=0 Va<<7m_l> 1

It follows that XF;! + F,1xT = 0. Furthermore, it is easy to check that both
XF1xT and F ! are also positive definite. Hence, using (43), we obtain

R(z) < T BXFIX+ 21+ ) F 2
AT [BAFSAT 4 (4 ) F /B ) (VFR + FaAT) |

<1,

from which we deduce that A\pax := max R(z) < 1.

The proof of Apin := min R(z) > m follows arguments similar to those used
in the second part of the proof of Theorem 4, with C and &, replaced, respectively,
by X and F,. a

Remark 7. Note that, using arguments similar to those in Theorem 5, we can as
well characterize the spectrum of the preconditioned KKT system in the unsteady
case if we define A as the global coefficient matrix and Py as

A 0

where A and Ss are given by (70) and (73), respectively.

It turns out that if we specifically use Legendre polynomials and piecewise linear
(or bilinear) approximation in the SGFEM discretization of the SOCPs considered
herein, then the following result proved by Powell and Elman enables us to further
bound the parameter o in Theorem 6 above.

PROPOSITION 8 (see [21, Lemma 3.7]). Let the matrices Gy in (26) be defined
using normalized Legendre polynomials in uniform random variables on a bounded
symmetric interval [—v,v], and suppose that piecewise linear (or bilinear) approxima-
tion is used for the spatial discretization, on quasi-uniform meshes. Let (A, ;) be the
eigenpairs associated with the N-term KLE of the random field an. Then k(K) < &/,
where ® = coE(a) +n and ¥ = c1h?E(a) — 7, with

N
n=c20aCn Y VAll9i ()]l oos
=1

X

where CI2Y is the mazimal root of the Legendre polynomial of degree n+1, o4 is the
standard deviation of the random field a, h is the spatial discretization parameter, and
c1 and co are constants independent of h, N, and n.
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We can now state the following result.

COROLLARY 9. Let « € [0,+00). Then the spectrum of S;lst satisfies

1
7 (S5t 1) Va<p?-1
(79) (5550 € |gapel) Ya<itoL
where i = Hff#, p#£1, andp =+/®/V, with ® and ¥ as defined in Proposition 8.
Proof. The proof is a direct consequence of Proposition 8 and Theorem 6. a

Next, as the approximation Sy is impractical, we proceed next to derive its prac-
tical version. Now, observe from (64), (65), and (73) that

2 = ICt + ’)/N
= [(In, ® L)+ (CROM)| + (I, ® M)

[ N
=In, ® <GO®(M+TKO)+TZG1'®K1'>+’Y(G0®M) +(CeM)
L i=1
[ N
=1In, ® GO@((l"‘"/)M‘f'TKO)"‘TZGi@Ki +(CeM)
L =1

N
80) =1I1,,® |Go@Y+7Y Gi®K,

i=1

+(C®Gyo M),

where Y = (14 v) M + 7Ky. Hence, using arguments similar to those in section 3.1
we can now approximate Z using

(81) Zoi=1,, @GR V.

In practice, we thus approximate Sz by applying a cheap multigrid process to Y
in each of the diagonal blocks of Zy and ZI'. The expression (81) is admittedly not the
best possible approximation to Sz due essentially to the same reasons provided in the
case of S in section 3.1. In addition, the absence of the term C ® Go ® M in Zq
would likely impact negatively on the performance of Zy. Again, solves with Z via
the inexact Uzawa algorithm could substantially mitigate these shortcomings.

5. Numerical experiments. In this section, we present some numerical results.
The numerical experiments were performed on a Linux machine with 80 GB RAM us-
ing MATLAB 7.14 together with a MATLAB version of the AMG code HSL MI20 [4].
We implement each of the mean-based preconditioners Zy and 20 as given, respec-
tively, by (51) and (81) using one V-cycle of AMG with symmetric Gauss—Seidel (SGS)
smoothing to approximately invert Ko. We remark here that we apply the method
as a black-box in each experiment, and the setup of the approximation to Ky only
needs to be performed once. Unless otherwise stated, in all the simulations, MINRES
is terminated when the relative residual error, measured in the Euclidean norm, is
reduced to tol = 10~°. Note that tol should be chosen such that the truncation tol-
erance € < tol; otherwise, one would be essentially iterating on the “noise” from the
low-rank truncations, as it were. In particular, we have chosen herein € = 10738,

For our simulations, the random input a is characterized by the covariance func-
tion

Ca(X7Y) = Ug exXp <_|$1€_ y1| - |x2€_ y2|> V(X7Y) € [_]—7 1]27
1 2

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/11/16 to 193.175.53.21. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

514 PETER BENNER, AKWUM ONWUNTA, AND MARTIN STOLL

TABLE 1
Simulation results showing the total number of iterations from low-rank preconditioned MINRES
and the total CPU times (in seconds) using the mean-based preconditioner in (51) witha =1, 8 €
{1072,1073,1074,1075}, 04 = 0.1, and selected spatial (J) and stochastic (P) degrees of freedom.

LR-MINRES | #iter (t)  # iter (t) # iter (t) # iter (t)

p d 481 1985 8065 32513

8 =10"2

20 25 (32.8) 25 (115.4) 27 (250.5) 29 (736.6)

84 25 (119.7) 27 (380.4) 27 (582.2) 29 (1619.6)

210 25 (141.6) 27 (392.8) 27 (594.69) 29 (1673.9)

B=10"3

20 21 (25.7) 21 (113.8) 25 (260.9) 25 (666.8)

84 21 (128.9) 23 (363.7) 25 (607.6) 25 (1438.1)

210 21 (145.6) 23 (385.5) 25 (600.8) 25 (1471.8)

8 =10"%

20 19 (8.2) 21 (17.4) 23 (67.4) 23 (618.3)

84 19 (18.8) 21 (42.5) 23 (229.7) 23 (1313.7)

210 19 (19.6) 21 (44.9) 23 (276.9) 23 (1450.0)

8 =10"°

20 17 (10.6) 17 (84.8) 21 (223.7) 21 (578.3)

84 17 (99.9) 19 (306.4) 21 (520.7) 21 (1217.2)

210 17 (115.4) 19 (313.63) 21 (515.6) 23 (1322.6)
where the correlation lengths ¢4 = 3 = 1 and the mean E[a] = 1. The forward

problem has been extensively studied in, for instance, [21]. The eigenpairs ();, ;) of
the KLE of the random field a are given explicitly in [10].

Next, we investigate the behavior of the solvers (low-rank MINRES and TT-
MINRES) for different values of the stochastic discretization parameters J, P, o,, as
well as a and . Moreover, we choose & = {&1,...,&n} such that & ~ U[-1,1],
and {t;} are N-dimensional Legendre polynomials with support in [—1,1]". The
spatial discretization uses Qi spectral elements. In the considered unsteady SOCP
example (that is, in section 4), the resulting linear systems were solved for time T = 1.
Moreover, our target (or desired state) in both models is the stochastic solution of
the forward model with right-hand side 1 and zero Dirichlet boundary conditions.!

Tables 1, 3, 4, and 5 show the results from the low-rank preconditioned MINRES
for the model constrained by a steady-state diffusion equation. In Table 2 we give
the total dimensions of the KKT systems in (29) for various discretization parameters
used to obtain the results in Tables 1. Herein, h is the spatial mesh size and the
dimensions range between 28,000 and 20 million. The results in Tables 1, 4, and 5
were obtained with a = 1, whereas those in Table 3 were computed with o = 0.
We have solved the linear systems using our proposed block-diagonal preconditioner,
together with the approximation S; for the Schur complement S. To compare their
practical performances, we use both the mean-based preconditioner in (51) (denoted
henceforth by MBP) and the inexact Uzawa method in Algorithm 1 (with just 4
iterations, and denoted by IUM) for approximating Z in Sj.

We observe first that Table 1 confirms our theoretical prediction that with a
relatively low variance (here o, = 0.1), our proposed block-diagonal preconditioner,
when used together with MBP, is robust with respect to the discretization parameters.

INote that this is not an “inverse crime” as the right-hand side of the forward model used is
deterministic, unlike in the state equation.
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TABLE 2
Dimension of global coefficient matriz A in (29); here dim(A) = 3JP.

J(R) 481 () 1985 (%) 065 () 82513 ()

P(N,n)

20 (N =3,n=3) | 28,860 119,100 33,000 1,950,780
84 (N =6,n=3) 121,212 500,220 2,032,380 8,193,276
210 (N = 6,n=4) | 303,030 1,250,550 5,080,950 20,483,190

TABLE 3
Simulation results using the mean-based preconditioner in (51) with 0o = 0.1, a = 0, 8 €

{1073,1074,107°}, and J = 1985 (h = 55).

LR-MINRES | # iter (t) # iter (t) # iter (t)

P 20 84 210
dim(A) =3JP | 119,100 500,220 1,250,550

B=10"3 19 (96.4) 21 (336.0) 21 (347.93)
B =10"% 17 (86.3) 19 (302.6) 19 (305.64)
B =105 15 (77.4) 17 (273.6) 17 (283.24)

Furthermore, Table 5 shows that the preconditioner performs relatively better with
IUM than it does with MBP, especially as the standard deviation o, increases from
1% to 40%. Indeed, the iterations are clearly indicative of benign dependence of ITUM
on g,, unlike MBP. In general, the iterations obtained with MBP took slightly less
CPU time, though. So, these results generally suggest that IUM should be preferred
to MBP when dealing with higher fluctuations in the random input a. We remark
here, though, that for o, > 0.5, we can no longer guarantee the positive-definiteness
of the matrix K corresponding to the forward problem [21].

Observe from Tables 1 and 5 that the timings for P = 84 and P = 210 are
nearly constant but much higher than those for P = 20. Our extensive numerical
experiments revealed that the timings, in general, have a strong dependence on the
number of random variables N (all things being equal), which in turn determines P;
see also [3]. Now, recall that for P = 20 the (stochastic) matrices Gj, € RF*F used in
the simulations were obtained with only N = 3 random variables, whereas the other
two cases were obtained with N = 6 random variables (cf. Table 2). So, we believe, in
particular, that the timings which are roughly constant for simulations with P = 84
and P = 210 are due to the fact that both cases were computed with exactly the same
value of N.

We have reported in Table 4 the values of the tracking term and the cost functional
for « = 1 and o, = 0.1. As expected, the tracking term gets smaller and smaller
as the regularization parameter 8 decreases, and the cost functional also decreases
accordingly converging, respectively, to 1.2 x 10™* and 2.5 x 10™%.

Next, we present in Table 6 our results for the unsteady diffusion-constrained
model as discussed in section 4. Here, for o € {0,1} and different values of 3, we
present the outputs of our simulations showing the total CPU times and the total
number of iterations from preconditioned TT-MINRES. Also, DoF = J - P - n; is the
size of each of the 9 block matrices in KKT matrix A; that is, A is of dimension 3DoF'.
In particular, we have done the computations with J = 1985 (h = %), P =56 (N =
5,n=3), o, = 0.1, and different numbers of total time steps n;.

As in the steady-state case, we see from Table 6 that TT-MINRES, when used
together with our mean-based preconditioner as given by (81), is quite robust, but in
general yields fewer iterations for v = 0 than for & = 1. We remark here that we used
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TABLE 4
Tracking term and the cost functional in the steady-state model using the mean-based precon-
ditioner Zo in (51) for different values of f and with o = 1, 04 = 0.1, J = 1985 (h = 2%)7 P =
84 (N =6,n=3).

8 | 102 10—4 10—6 1010

lly — g||iz(D)®L%(F) 51x107% 1.8x107* 1.2x107* 1.2x107¢

T (y, ) 1.4x 1072 42x107% 25x107% 25x1074
TABLE 5

Simulation results comparing mean-based preconditioning (MBP) and the inexact Uzawa method
(IUM) in approzimating S1 in low-rank preconditioned MINRES with o = 1, f = 1074,

LR-MINRES | # iter (t) # iter (t) # iter (t) # iter (t)
, J(h) | g1 (h - 2%) 1985 (h - 2%,,) 8065 (h - QLG) 32513 (h - 2%)
oo — 0.01 with MBP
20 17 (7.4) 19 (16.7) 19 (53.4) 21 (544.8)
84 17 (17.0) 19 (39.0) 19 (190.0) 21 (1190.0)
210 17 (18.4) 19 (40.4) 19 (470.0) 21 (1230.2)
o4 — 0.1 with MBP
20 19 (8.2) 21 (17.4) 23 (67.4) 23 (618.3)
84 19 (18.8) 21 (42.5) 23 (229.7) 23 (1313.7)
210 19 (19.6) 21 (44.9) 23 (276.9) 23 (1450.0)
oo — 0.4 with MBP
20 33 (13.9) 37 (28.0) 11 (115.3) 13 (1049.8)
84 35 (33.8) 41 (84.5) 45 (447.0) 47 (2610.4)
210 41 (41.9) 47 (98.4) 47 (782.3) 55 (3161.1)
o0 = 0.01 with TUM
20 15 (13.5) 15 (20.5) 17 (82.2) 19 (1142.4)
84 15 (31.8) 15 (57.6) 17 (332.5) 19 (2117.4)
210 15 (35.0) 15 (61.9) 17 (314.9) 19 (2777.2)
00 = 0.1 with TUM
20 15 (14.2) 17 (23.6) 17 (100.4) 19 (560.0)
84 15 (32.4) 17 (66.5) 17 (350.6) 19 (2124.0)
210 15 (34.4) 17 (82.9) 17 (375.5) 19 (2463.9)
00 = 0.4 with TUM
20 15 (13.6) 17 (27.1) 19 (109.2) 21 (1158.3)
84 15 (34.6) 17 (78.7) 19 (402.7) 19 (2577.4)
210 15 (34.5) 17 (80.7) 19 (414.5) 21 (2958.2)
TABLE 6

Simulation results using the mean-based preconditioner Zy in (81) with the model with time-
dependent diffusion constraint for selected parameter values and degrees of freedom.

TT-MINRES | # iter (t) # iter (t) # iter (t)
ny 25 26 28
dim(A) = 3JPn; | 10,671,360 21,342,720 85,370,880
a=1, tol =103

B =10"° 6 (285.5) 6 (300.0) 8 (372.2)
B =106 4 (77.6) 4 (130.9) 4 (126.7)
B =108 4 (56.7) 4 (59.4) 4 (64.9)
a =0, tol =103

B =10"° 4 (207.3) 6 (366.5) 6 (229.5)
B =109 4 (153.9) 4 (158.3) 4 (172.0)
B =108 2 (35.2) 2 (37.8) 2 (40.0)
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a smaller tolerance tol = 1073 in the unsteady case because MATLAB took a lot more
time due to the rapid growth of TT-ranks. Although not reported here, we also got
robust two-digit TT-MINRES iterations when we used tol = 107%; these iterations
were, as expected, even better with the inexact Uzawa method.

6. Conclusions and outlook. In this paper, we have derived and implemented
block-diagonal Schur complement-based preconditioners for linear systems arising
from the SGFEM discretization of SOCPs constrained by either stationary or unsteady
PDEs with random inputs. Crucially, we presented detailed analyses of the spectra of
the derived preconditioners. Our approach to the solution of the KKT linear systems
entails a formulation that solves the systems at once (for all time steps in the unsteady
case). This strategy leads to a large system that cannot be solved with direct solvers.
However, combining our proposed preconditioners with appropriate low-rank iterative
solvers has proven efficient in accomplishing the tasks. In particular, solves with the
derived Schur complements via a few iterations of the inexact Uzawa method seem
quite promising.

Although the TT-MINRES works quite well for the time-dependent problem con-
sidered in this paper, the rapid growth of the TT-ranks is not a trivial issue. In a
related work [2], we are currently exploiting some capabilities of the TT-toolbox to
minimize the rank growth and hence make the solver a lot more efficient.

Acknowledgments. The authors would like to thank Sergey Dolgov for intro-
ducing TT-MINRES to them; they are also grateful to Eldad Haber and Xin Liang
for fruitful discussions in the course of writing this paper.
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