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Stochastic Model of Backtrack Recovery. We describe the stochas-
tic motion of the backtracked polymerase as a 1D continuous
time random walk between different states i∈ ½1,2, . . . ,n− 1,
n, n+ 1, . . . ,∞Þ. Each state represents the backtracked distance
in nucleotides, with zero being the elongation-competent state.
Because the backtrack recovery was experimentally probed at
low forces (with a mean value of 1.9 pN), we assume that no
external forces are exerted on the polymerase; therefore, its
stochastic motion can be described by an unbiased diffusion
process. The polymerase is represented by a Brownian particle
that jumps between adjacent states with rate k and uses cleavage
to return to zero with rate kc. For Pol I and Pol II, the cleavage
rate is not constant but depends on the backtrack depth (Fig.
2B), λ being the cleavage cutoff at which kc drops to zero. The
statistics of backtrack recovery for a finite value of λ can only be
obtained numerically.
Because in the case of Pol II–TFIIS, we do not observe a

threshold depth in backtrack recovery (Fig. 3A), we consider a
constant cleavage rate and λ→∞. In the case of Pol I A12.2Δ C
and Pol II Δ Rpb9, there is no cleavage reaction, and the
backtrack recovery can be described by a 1D diffusion process
(kc = 0). Therefore, we derive exact analytical expressions for
the statistics of backtrack recovery for both Pol II–TFIIS and
the mutants as shown below.
For simplicity and because of the fast elongation rate from i= 0

[∼10 times faster than the backtrack diffusion rate (10)], we
neglect the backward diffusion rate from zero to one in our
model. Therefore, we consider that polymerases that reach the
elongation-competent state (i= 0) will most likely elongate. With
piðtÞ, we denote the probability of the particle to be at state i at
time t≥ 0. The dynamics of the system can be described by the
following set of master equations:

dp1
dt

= kp2 − ð2k+ kcÞp1, [S1]

dp2
dt

= kp3 − ð2k+ kcÞp2 + kp1, [S2]

and

dpi
dt

= kpi+1 − ð2k+ kcÞpi + kpi−1   for  i≥ 3. [S3]

Here, pi ≡ piðtÞ for convenience. The elongation-competent state
at i= 0 is not explicitly considered.
The recovery time τrec of a polymerase initially backtracked n

nucleotides equals the first-passage time to the elongation state
i= 0. The calculation of τrec can be simplified considering a
continuous model, where the position of the polymerase, x, is a
continuous random variable. We define ρðx, tÞdx as the proba-
bility for a polymerase to be in the interval ½x, x+ dx� at time t.
The probability density ρðx, tÞ evolves in time according to the
following Fokker–Planck equation:

∂ρðx, tÞ
∂t

= k
∂2ρðx, tÞ
∂x2

− kc   ρðx, tÞ. [S4]

We assume that the polymerase is initially located at x= n [that is,
we set the initial condition to ρðx, 0Þ= δðx− nÞ with an absorbing

boundary at the elongation-competent state ρð0, tÞ= 0]. The so-
lution of Eq. S4 in the half-plane x∈ ½0,∞Þ can be expressed as

ρðx, t; nÞ= e−kc   tffiffiffiffiffiffiffiffiffi
4πkt

p
�
e
−ðx−nÞ2
4 k  t − e

−ðx+nÞ2
4 k  t

�
. [S5]

The distribution ρðτrec; nÞ of the recovery time for a polymerase
initially at n to be within the interval ½τrec, τrec + dτrec� is given by
the probability density current into x= 0, which contains a con-
tribution of the diffusion and a contribution of the cleavage:

ρðτrec; nÞ= k
∂ρðx, t; nÞ

∂x

����
x=0,t=τrec

+ kc   Sðτrec; nÞ

= ρdiffðτrec; nÞ+ ρcðτrec; nÞ, [S6]

where Sðτrec; nÞ is the survival probability or the probability of a
polymerase initially at n to be in x> 0 at time τrec. The probability
density current into x= 0 due to diffusion (8) equals to

ρdiffðτrec; nÞ= k
∂ρðx, t; nÞ

∂x

����
x=0,t=τrec

= e−kc τrec
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πk τ3rec
p e

−n2
4 k  τrec . [S7]

At time τrec, the survival probability equals to

Sðτrec; nÞ=
Z  ∞

0
ρðx, τrec; nÞ dx= e−kc τrec erf

�
nffiffiffiffiffiffiffiffiffiffiffiffiffi

4k τrec
p

�
, [S8]

where erf is the error function. The probability density current
into x = 0 by cleavage equals to

ρcðτrec; nÞ= kce−kc τrec erf
�

nffiffiffiffiffiffiffiffiffiffiffiffiffi
4k τrec

p
�
. [S9]

Similarly, the probability density Rðτrec; nÞ of recovery from an
initial backtrack depth n in a time τrec or recovery probability is
given by

Rðτrec; nÞ= 1− Sðτrec; nÞ= 1− e−kc τrec erf
�

nffiffiffiffiffiffiffiffiffiffiffiffiffi
4k τrec

p
�
. [S10]

For the case k= 0, the recovery probability simplifies to

Rðτrec; nÞ= erfc
�

nffiffiffiffiffiffiffiffiffiffiffiffiffi
4k τrec

p
�
, [S11]

where erfc is the complementary error function. Eq. S11 is used
to fit the experimental data of recovery probability in Pol I and
Pol II mutants (Pol I A12.2 Δ C and Pol II Δ Rpb9) in Figs. 1 E
and F and 2 C and D.
The recovery time probability density can be obtained by

summing Eqs. S7 and S9:

ρðτrec; nÞ= e−kcτrec
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πk τ3rec
p e−n

2=4 k τrec + kce−kc τrec erf
�

nffiffiffiffiffiffiffiffiffiffiffiffiffi
4k τrec

p
�
.

[S12]

In the presence of both diffusion and cleavage, the recovery
time averaged over many polymerases initially backtracked n
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nucleotides or mean recovery time, hτrecin, is given by the follow-
ing equation:

hτrecin =
1
kc

"
1− exp

 
−

nffiffiffi
k
kc

p
!#

. [S13]

Eq. S13 is used to fit the experimental data of mean recovery
time of Pol II–TFIIS in Fig. 5 and Fig. S9.
For a cleavage-deficient polymerase, where kc = 0, recovery can

only proceed by diffusion. In this case, the recovery time distribution
has a power law tail ∼ τ−3=2rec with a diverging mean recovery time.
Note that, even in the absence of cleavage, a finite value of the
average is obtained when the average is done only over polymerases
that recover in a given time (5 min in our experiments). An alter-
native statistic that can be considered is the median recovery
time τ⋆rec,n, which can be obtained from the cumulative recovery time
distribution Cðτrec; nÞ that equals the survival probability at time τrec:

Cðτrec; nÞ=
Z τrec

0

nffiffiffiffiffiffiffiffiffiffiffi
4πks3

p e
−n2
4 k s   ds= erfc

�
nffiffiffiffiffiffiffiffiffiffiffiffiffi

4k τrec
p

�
. [S14]

At the median recovery time, the cumulative distribution equals
1=2, which yields

τ⋆rec,n =
�
2 erf−1

�
1
2

��−2n2
k
≈
n2

k
, [S15]

because the prefactor ½2  erf−1ð1=2Þ�−2 ’ 1.099≈ 1, with erf−1 being
the inverse error function. The mode recovery time τ̂rec,n is also
finite for a purely diffusive recovery and equal to

τ̂rec,n =
n2

6k
. [S16]
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Fig. S1. Additional examples of force reduction experiments that resulted in at least one backtrack recovery.
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Fig. S2. Additional examples of force reduction experiments that did not result in backtrack recovery.
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Fig. S3. Backtrack recovery differs between Pol I and Pol II (complete data). (A and B) Backtrack recovery as a function of backtrack depth for Pol I and Pol II:
each data point represents one force reduction event (1, recovered; 0, not recovered), the red lines represent the smoothened data, and the black lines are fits
to the model shown in Fig. 2B. The vertical gray lines represent the backtrack recovery threshold determined from the fit. (C and D) Backtrack recovery of Pol I
A12.2Δ C and Pol II Δ Rpb9 as a function of backtrack depth: each data point represents one force reduction event. The red lines are the smoothened data, and
the black lines represent the fits to the smoothened data (Materials and Methods) from which the diffusion rate (k) is extracted.

Fig. S4. Backtrack recovery times of indicated enzymes. Histogram of mean backtrack recovery times for force reduction events below 20.0 nt (which is the
critical backtrack depth, λ, for Pol I cleavage activity).
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Fig. S5. Backtrack recovery of Pol I and Pol II fitted only with a diffusion rate. (A and B) Backtrack recovery as a function of backtrack depth for Pol I and Pol II:
each data point represents one force reduction event (1, recovered; 0, not recovered), and the red lines represent the smoothened data. The black solid lines
are fits to the model that considers only the diffusion rate parameter (k), whereas the gray solid lines are fits to the full model (k, kc, and λ) (Fig. 2 C and D).
Fitting of the Pol I data with the model with only diffusion gives significantly worse fit than the full model (R2 = 0.72 compared with R2 = 0.96 for the full
model). However, fitting of the Pol II data gives equally good fit in both cases (R2 = 0.87 for both). Note that the motivation to use the full model (with k, kc,
and λ) is provided by Fig. 2F, which shows that removing the cleavage pathway impacts the backtrack recovery probability.

Fig. S6. Transcirption traces of Pol II in the presence and absence of TFIIS. Addition of TFIIS rescues backtrack Pol II and enables Pol II to transcribe against
higher forces (also seen in ref. 7).
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Fig. S7. Additional examples of backtrack recovery experiments of Pol II with adding TFIIS after the enzyme has already backtracked.

Fig. S8. Backtrack recovery times of Pol I A12.2Δ C and Pol II Δ Rpb9. Backtrack recovery times (solid lines) as a function of backtrack depth for Pol I A12.2 Δ C
and Pol II Δ Rpb9, with SDs obtained by bootstrapping (gray) (Materials and Methods). (A) Dashed lines are predictions from the fit of the backtrack recovery
probability data (Fig. 2 E and F). Note that the agreement between theoretical prediction and data is not very good here. We speculate that the reason for this
is that, specifically for a diffusive first-passage process without cleavage, the recovery time distributions are very broad and not well-represented by an average
from a finite and small dataset, like in our experimental data. Please note that the theoretical value of the average recovery time diverges here, because the
distribution of the recovery time follows a t−3=2 power law (7) (SI Text). (B and C) For this reason, we instead calculate the median (Eq. S15) and the mode (Eq.
S16) of the recovery time distribution (SI Text) and compare these with the experimental data. Dotted lines represent modes, and dashed lines represent the
medians of the backtrack recovery time. Note that the parabolic behavior now is correctly captured in B and C, and the measured values are between the mode
and the median of the respective backtrack recovery time.

Lisica et al. www.pnas.org/cgi/content/short/1517011113 6 of 7

www.pnas.org/cgi/content/short/1517011113


R
ec

ov
er

y 
tim

e 
(s

)

Backtrack depth (nt)

0 40 80 120 200
0

5

10

15

20

25

0 10 20 30
0

5

10

15

20

0 160

Fig. S9. Backtrack recovery times of Pol II with TFIIS. Backtrack recovery time as a function of backtrack depth for Pol II with TFIIS (solid green lines), with SDs
obtained by bootstrapping (gray) (Materials and Methods). Dashed black lines are fits of the experimental data to the mean recovery time (Materials and
Methods and SI Text).

Table S1. Summary of Pol I and Pol II transcription parameters in AF and OF mode experiments

Parameters

Assisting mode Opposing mode

Pol I Pol II P value Pol I Pol II P value

No. of traces analyzed 38 21 — 43 21 —

No. of detected pauses 60 82 — 61 69 —

Velocity (nt/s) 32.2 ± 2.5 18.7 ± 2.7 ≤0.05 23.9 ± 1.7 11.7 ± 1.3 ≤0.05
Pause-free velocity (nt/s) 39.2 ± 2.5 24.6 ± 2.6 ≤0.05 31.4 ± 1.5 20.9 ± 1.2 ≤0.05
Mean pause density (kbp−1) 3.8 ± 0.6 8.5 ± 2.6 0.04 6.5 ± 1.1 13.2 ± 2.0 ≤0.05
Mean pause duration (s) 3.4 ± 0.6 3.5 ± 0.5 0.37 5.6 ± 1.4 6.9 ± 1.8 0.17
Arrest force (pN) — — — 9.3 ± 0.5 6.2 ± 0.6 ≤0.05*

*Note that all errors are SEMs. The P values are computed from the WRSTs performed between the correspond-
ing values for Pol I and Pol II.

Table S2. Summary of fit parameters: Recovery by 1D diffusion
and RNA cleavage

Enzymes k ð1=sÞ kc ð1=sÞ τc =1=kc ðsÞ λ ðntÞ R2

Pol I 0.21 ± 0.13 0.019 ± 0.003 53 ± 8 20 ± 2 0.96
Pol II 0.54 ± 0.17 0.012 ± 0.003 83 ± 21 10 ± 2 0.87
Pol II–TFIIS 1.6 ± 1.2 0.076 ± 0.009 13 ± 2 ∞ 0.72

Table S3. Summary of fit parameters: Recovery by 1D diffusion

Enzymes k ð1=sÞ R2

Pol I A12.2 Δ C 1.16 ± 0.26 0.93
Pol II Δ Rpb9 0.30 ± 0.07 0.91
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