Hedgehog signaling strength is orchestrated by the *mir-310* cluster of microRNAs in response to diet

Ibrahim Ömer Çiçek¹, Samir Karaca², Marko Brankatschk³, Suzanne Eaton³, Henning Urlaub², and Halyna R. Shcherbata¹*

¹ Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany

² Bioanalytical Mass Spectrometry Research Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany

³ Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany

*corresponding author: <u>halyna.shcherbata@mpibpc.mpg.de</u>

Running title: upon diet, miRNAs modulate Hh signaling

Keywords: *Drosophila*; oogenesis; follicle stem cell; Hedgehog signaling; miRNA; the *mir-310s*; *Rab23*; dietary restriction; metabolic stress; Hh ligand

Supplemental Figures

Figure S1

Figure S1. The *mir-310s* mutant female ovaries respond to protein starvation abnormally

(A, A') Bright field images of control (w^{1118}) and *mir-310s* mutant (*KT40/KT40*) crops dissected from comparably sized females kept under normal conditions. Note the enlarged crop size of *mir-310s* mutant females (A'') (Table S3).

(B) *mir-310s* mutant females have abnormal energy metabolism as measured by the total body fat. However, upon nutritional restriction for 10 days, *mir-310s* mutants accumulate \sim 2.5-fold more lipids and larger lipid droplets than controls (B`) (Table S3).

(C) In response to nutritional restriction, control females cease egg production after day 4. *mir-310s* mutant ovaries contain substantial amounts of late egg chambers even after 7-8 days of nutritional restriction (Table S3). *mir-310s* loss-of-function mutants, similarly to *hh* (*tub-Gal80ts/+; bab1-Gal4/UAS-hh* at 29°C) and *Rab23* (*bab1-Gal4/UAS-Rab23*) overexpression (data not shown), demonstrate a delayed cessation of egg chamber production after stage 6 in response to starvation.
(D) Note that even under well-fed condition, *mir-310s* mutant females lay significantly fewer eggs than controls (Table S3).

(E) Egg laying profiles for control and *mir-310s* mutant females (Table S3).

In (A``), (B), (D), and (E) the data points indicate AVE±SEM (Table S3). Significances were calculated using two-tailed Student's t-test. *p<0.05, **p<0.005, ***p<0.0005. Scale bar represents 250 μ m in (A, A`) and 20 μ m in B`.

Table S1, related to Figure 1. Proteins significantly deregulated in *mir-310s* mutants

CG	Gene name			
number				
Energy me	etabolism			
CG10924	CG10924			
CG11594	CG11594			
CG17530	GstE6			
CG2827	Tal			
<u>CG30360</u>	<u>Mal-A6</u>			
CG31692	fbp			
CG33138	CG33138			
CG3763	Fbp2			
CG4178	Lsp1beta			
CG5177	CG5177			
CG6806	Lsp2			
CG8036	CG8036			
CG8094	Hex-C			
<u>CG8696</u>	<u>LvpH</u>			
CG9092	Gal			
CG9232	Galt			
Lipid meta	lbolism			
CG10622	Sucb			
CG10932	CG10932			
CG11064	Rfabg			
CG11129	Yp3			
CG11198	ACC			
CG15828	Apoltp			
CG1648	CG1648			
CG1742	Mgstl			
<u>CG18212</u>	<u>alt</u>			
CG2979	Yp2			
CG2985	Yp1			
<u>CG3050</u>	<u>Cyp6d5</u>			
CG31150	crossveinless d			
CG3481	Adh			
CG3523	CG3523			
CG3524	v(2)k05816			
CG3699	EG:BACR7A4.14			
CG3752	Aldh			
CG4581	Thiolase			
CG4729	CG4729			

<u>CG5170</u>	<u>Dp1</u>
CG5590	CG5590
CG5885	CG5885
CG5958	CG5958
<u>CG7400</u>	Fatp
CG8256	Gpo-1
CG8628	CG8628
CG8778	CG8778
CG9035	Tapdelta
<u>CG9412</u>	<u>rin</u>
<u>CG9577</u>	<u>CG9577</u>
CG9914	CG9914
Protein ho	meostasis
CG10236	LanA
CG10302	bsf
CG10686	tral
CG11512	GstD4
CG11899	CG11899
CG12163	CG12163
CG13393	lethal (2) k12914
CG14715	CG14715
CG15261	UK114
CG15369	CG15369
CG2852	CG2852
CG3011	CG3011
CG31198	CG31198
CG31343	CG5839
CG33103	Ppn
CG3926	Spat
CG3949	hoip
CG3999	CG3999
CG4067	pug
CG4181	GstD2
CG4463	Hsp23
CG4659	Srp54k
CG4916	me31B
CG4954	eIF3-S8
CG5064	Srp68
CG5330	Nap1
CG5394	Aats-glupro

CG5474	SsRbeta
CG5839	CG31233
CG6287	CG6287
CG6370	CG6370
CG6512	CG6512
CG6781	se
CG6950	CG6950
CG7014	RpS5b
CG7637	CG7637
CG8396	Ssb-c31a
CG8431	Aats-cys
CG8858	CG8858
CG8938	GstS1
CG9012	Chc
<u>CG9423</u>	<u>Kap-alpha3</u>
<u>CG9539</u>	<u>Sec61alpha</u>
CG9805	eIF3-S10
<u>CG9842</u>	<u>Pp2B-14D</u>
CG9897	CG9897
Mitochon	dria
CG3902	CG3902
CG10340	CG10340
CG12203	CG12203
CG12079	CG12079
CG12151	Pdp
CG14757	CG14757
CG16944	sesB
CG2286	ND75
CG32531	mRpS14
CG3283	SdhB
CG34073	mt:ATPase6
CG3566	CG3566
CG4169	0041(0
00.10)	CG4169
CG4769	CG4169 CG4769
CG4769	CG4169 CG4769 <u>Atpalpha</u>
CG4769 CG5670 CG5889	CG4169 CG4769 <u>Atpalpha</u> Men-b
CG4769 CG5670 CG5889 CG6022	CG4169 CG4769 <u>Atpalpha</u> Men-b Cchl
CG4769 CG5670 CG5889 CG6022 CG6455	CG4169 CG4769 <u>Atpalpha</u> Men-b Cchl CG6455
CG4769 CG5670 CG5889 CG6022 CG6455 CG6612	CG4169 CG4769 <u>Atpalpha</u> Men-b Cchl CG6455 Adk3

CG6666	SdhC
<u>CG6782</u>	sea
<u>CG6878</u>	<u>CG6878</u>
CG7580	CG7580
CG7610	ATPsyn-gamma
CG8479	opa1-like
CG8790	Dic1
CG8844	Pdsw
CG9090	CG9090
Nucleotide	synthesis
CG11089	CG11089
CG16758	CG16758
CG18572	r
CG2194	su(r)
CG31628	ade3
CG3989	ade5
CG4584	dUTPase
CG7917	Nlp
CG8132	CG8132
CG9127	ade2
CG9193	mus209
CG9242	bur
CG9674	CG9674
Muscle	
CG10067	Act57B
CG1106	Gel
CG11949	cora
CG12408	TpnC4
CG15792	zip
CG17927	Mhc
CG17927	MHC isoforms
CG18290	Act87E
CG2184	Mlc2
<u>CG2981</u>	TpnC41C
CG4183	Hsp26
CG4466	Hsp27
CG4843	Tm2
<u>CG4898</u>	<u>Tm1</u>
CG5125	ninaC
CG5178	Act88F
CG5596	Mlc1
CG7107	up
CG7178	wupA
<u>CG7445</u>	<u>fln</u>
CG7478	Act79B

CG7930	TpnC73F
<u>CG9138</u>	<u>uif</u>
CG9432	l(2)01289
CG9480	Glycogenin
Neural	
CG11797	Obp56a
CG12202	Nat1
CG12908	Ndg
CG15457	Obp19c
CG1618	comt
CG1634	Nrg
CG17029	CG17029
CG1744	chp
<u>CG17870</u>	<u>14-3-3zeta</u>
CG18102	shi
CG18111	Obp99a
CG1873	Ef1alpha100E
CG1977	alpha-Spec
CG2028	CkIalpha
CG2297	Obp44a
CG30021	metro
CG32234	ахо
CG33950	trol
CG3620	norpA
CG3725	Ca-P60A, CG3725
CG3747	Eaat1
CG43079	nrm
CG4609	fax
CG5119	pAbp
CG5711	Arr1
CG5779	proPO-A1
CG5779	proPo
CG5870	beta-Spec
CG7088	bnb
CG7576	Rab3
CG7592	Obp99b
<u>CG8462</u>	Obp56e
CG8663	nrv3
CG9206	Gl
CG9261	Nrv2
Cuticle	
CG10112	Cpr51A
CG10287	Gasp
CG12045	Cpr100A
CG17052	obst-A

CG1919	Cpr62Bc
CG3244	Clect27
CG4475	CG4475
CG4784	Cpr72Ec
CG7532	l(2)34Fc
CG8505	Cpr49Ae
CG8511	Cpr49Ag
CG9079	Cpr47Ea
Histone	
CG10638	CG10638
CG11765	Prx2540-2
CG12171	CG12171
CG12405	Prx2540-1
CG12896	CG12896
CG18547	CG18547
CG1982	Sodh-1
CG3609	CG3609
CG3835	EG:87B1.3
CG6084	CG6084
CG6776	GStO3
CG6776	CG6776
CG7322	CG7322
CG8503	CG8503
CG9119	CG9119
CG9331	CG9331
His2B	His2B
His4	His4
No associa	ation
CG12008	kst
CG10031	CG10031
CG10527	CG10527
CG10691	l(2)37Cc
CG10978	jagn
CG11785	bai
CG11920	CG11920
CG11999	CG11999
CG12403	Vha68-1
CG14168	Zasp67
CG1444	CG1444
CG1462	Aph-4
CG14661	CG14661
CG15081	l(2)03709
<u>CG15881</u>	<u>CG15881</u>
CG16884	BG:DS00180.3
CG16985	CG16985

CG1885	CG1885	CG34026	CG34026	CG6851	Mtch
CG2082	CG2082	CG34215	CG34215	CG6917	Est-6
CG2216	Fer1HCH	CG42314	PMCA	CG6950	CG6950
CG2233	<u>CG2233</u>	CG4239	CG4239	CG7646	CG7646
CG2310	CG2310	CG5945	CG5945	CG8108	CG8108
CG2943	CG2943	CG6214	MRP	CG8790	CG8790
CG30222	CG30222	CG6544	fau	CG9297	CG9297
CG3082	1(2)k09913	CG6702	Cbp53E	Putative m	<i>ir-310s</i> target
CG31195	CG31195	CG6815	bor		

Table S2, related to Figure 1. Relative mRNA expression levels of the starvation-sensitive genes

Genotype/ Condition	Target Gene	C _T AVE±SEM ^b	ΔC_T AVE±SEM ^b	$\begin{array}{c} \Delta\Delta \ C_T \\ AVE \pm SEM^b \end{array}$	Relative mRNA level ^{a,c} AVE± SEM ^b	<i>log</i> ₁₀ Relative mRNA level AVE± SEM ^b
			Plat	e 1		
Control		2 76E+01	9.47	3 18E-07	1.00	9 57E 08
(w^{1118})		$\pm 5.57E-02$	±6.27E-02	±5.57E-02	±3.80E-02	$\pm 1.68E-02$
well-fed					5 00E±01	
(w^{1118})		2.16E+01	3.58	-5.88	$\pm 7.30E-01$	1.77
starved	Act88E	±1.79E-02	±2.69E-02	±1.79E-02	p ^{Control well-fed} =1.52E-07	±5.38E-03
mir-310s	ACIOOL	2 50E+01	6 45	-3.02	8.09	9 08E-01
(KT40/KT40)		±3.11E-02	±4.29E-02	±3.11E-02	$\pm 1.73\text{E-01}$	±9.37E-03
mir-310s					1 28E+01	
(KT40/KT40)		2.40E+01	5.79	-3.68	±8.18E-02	1.11
starved		±9.20E-03	±1.19E-02	±9.20E-03	p ^{Control well-fed} =2.05E-08	±2.77E-03
Control		2.29E+01	4.70	1.59E-07	1.00	-4.78E-08
(W ¹¹¹⁰) well-fed		±3.16E-02	±4.28E-02	±3.16E-02	±2.18E-02	±9.52E-03
Control		0.000	5.15	4 (55 01	7.25E-01	1.405.01
(w^{1118})		2.32E+01 +4.70E_02	5.17 +5.12E.02	4.65E-01 +4.70E.02	±2.35E-02	-1.40E-01 +1.42E-02
starved	ade2	±4.70E-02	±3.12E-02	±4.70E-02	p ^{Control well-fed} =1.01E-03	±1.42D-02
mir-310s (KT40/KT40)		2.19E+01	3.32	-1.38	2.61 +4.15E.02	4.16E-01
(K140/K140) well-fed		±2.31E-02	±3.75E-02	±2.31E-02	$\pm 4.13E-02$ p ^{Control well-fed} =4.30E-06	±6.95E-03
mir-310s		2 25E+01	1 26	2.45E.01	1.27	1.04E.01
(KT40/KT40)		$\pm 1.49E-02$	4.30 ±1.67E-02	-3.43E-01 $\pm 1.49E-02$	±1.32E-02	1.04E-01 ±4.49E-03
starved		-1.172 02	-1.071 02	-1.172 02	p ^{Control well-fed} =4.48E-04	-1.172.00
Control (w^{1118})		2.34E+01	5.21	-1.59E-07	1.00 +1.22E-02	4.78E-08
well-fed		±1.77E-02	±3.38E-02	±1.77E-02	-1.221 02	±5.33E-03
Control		2 49E+01	6.91	1 70	3.09E-01	-5.11E-01
(W ¹¹¹⁸)		±2.39E-02	±3.13E-02	±2.39E-02	±5.09E-03	±7.19E-03
mir-310s	ade3				2 08	
(KT40/KT40)		2.27E+01	4.15	-1.06	±2.56E-02	3.18E-01
well-fed		±1./8E-02	±3.45E-02	±1./8E-02	p ^{Control well-fed} =2.82E-06	±5.36E-03
mir-310s		2.39E+01	5.73	5.16E-01	6.99E-01	-1.55E-01
(K140/K140) starved		±2.81E-02	±2.91E-02	±2.81E-02	± 1.3 /E-02 n ^{Control well-fed} =8 16E-05	±8.46E-03
Control		2 205 101	4.90	0.00	1.00	0.00
(w^{1118})		2.30E+01 +9.35E-03	4.80 +3.03E-02	0.00 +9.35E-03	±6.49E-03	0.00 +2 82E-03
well-fed			-5.051 02		2.57	-2.021 00
(w^{1118})		2.03E+01	2.27	-1.83	3.36 +1.49	5.52E-01
starved	4 1	±4.21E-02	±4.67E-02	±7.03E-01	p ^{Control well-fed} =4.02E-05	±1.27E-02
mir-310s	Arr1	2 28E+01	A 27	-941E-01	1.92	2 83E-01
<i>(KT40/KT40)</i>		$\pm 1.09E-01$	±1.13E-01	$\pm 5.17E-01$	$\pm 8.63\text{E-01}$	±1.56E-01
well-fed					p ^{control went-jed} =2.35E-01	
(KT40/KT40)		2.14E+01	3.19	-8.18E-01	±8.43E-01	2.46E-01
starved		±3.34E-02	$\pm 3.43 \text{E-}02$	±8.12E-01	p ^{Control well-fed} =2.11E-01	± 2.44 E-01
Control		2.39E+01	5.72	-1.59E-07	1.00	4.78E-08
$(W^{(1)})$		±5.05E-02	±5.81E-02	±5.05E-02	±3.55E-02	±1.52E-02
Control	CG3699				3.38E-01	
(w^{1118})		2.53E+01	7.28 +3.47E 02	1.56	±6.55E-03	-4.71E-01
starved		±2.82E-02	±3.4/E-02	±2.82E-02	p ^{Control well-fed} =5.16E-05	±0.49E-03

upon *mir-310s* deficit and/or nutritional stress

-						
mir-310s		2.50E+01	6.43	7.14E-01	6.09E-01	-2.15E-01
(K140/K140) well_fed		±7.56E-03	±3.05E-02	±7.56E-03	$\pm 3.19E-03$ pControl well-fed=3.88E-04	±2.28E-03
mir-310s	-				<u>4 03E-01</u>	
(KT40/KT40)		2.52E+01	7.03	1.31	±2.08E-03	-3.95E-01
starved		±/.45E-03	±1.06E-02	±7.45E-03	p ^{Control well-fed} =7.28E-05	±2.24E-03
Control		2 29E+01	4 78	1 59E-07	1.00	-4 78E-08
(w^{1118})		±1.99E-03	±2.89E-02	±1.99E-03	±1.38E-03	±5.99E-04
Well-fed	-				3 44E-01	
(w^{1118})		2.43E+01	6.32	1.54	$\pm 6.17E-03$	-4.63E-01
starved	<i>CC</i> 2002	±2.56E-02	$\pm 3.26E-02$	±2.56E-02	p ^{Control well-fed} =5.18E-08	±7.72E-03
mir-310s	CG3902	2 26E+01	4.04	-7.34E-01	1.66	2 21E-01
(KT40/KT40)		$\pm 1.72E-02$	$\pm 3.41E-02$	$\pm 1.72E-02$	±1.98E-02	$\pm 5.16E-03$
well-fed	-		0	1., 0_	p ^{Control well-jed} =4.79E-06	0.102.00
mir-310s (KTA0/KTA0)		2.33E+01	5.18	3.97E-01	7.00E-01 +6.46E-03	-1.19E-01
starved		±1.23E-02	±1.45E-02	±1.23E-02	$p^{Control well-fed} = 3.42E-06$	±3.71E-03
Control		1.925+01	0.00		F 00	
(w^{1118})		1.82E+01 +2.88E-02	+2 88E-02			
well-fed	-	±2.00E-02	±2.00E-02			
Control		1.80E+01	6.36E-07			
(W ^{III0})		$\pm 2.02 \text{E-}02$	±2.02E-02			
mir-310s	Rpl32					
(KT40/KT40)		1.86E+01	1.91E-06			
well-fed		±2.95E-02	±2.95E-02			
mir-310s		1 82E+01	6 36E-07			
(KT40/KT40)		±7.58E-03	±7.58E-03			
starved						
			No Reverse T	ranscriptase		
α , 1						
Control		3.34E+01	1.53E+01	1.53E+01	2.53E-05	-4.60
<i>Control</i> (w ¹¹¹⁸) well-fed		3.34E+01 ±2.44E-01	1.53E+01 ±2.44E-01	1.53E+01 ±2.44E-01	2.53E-05 ±4.68E-06	-4.60 ±7.35E-02
Control (w ¹¹¹⁸) well-fed Control	_	3.34E+01 ±2.44E-01	1.53E+01 ±2.44E-01	1.53E+01 ±2.44E-01	2.53E-05 ±4.68E-06	-4.60 ±7.35E-02
Control (w ¹¹¹⁸) well-fed Control (w ¹¹¹⁸)		3.34E+01 ±2.44E-01 3.30E+01 ±2.87E_01	1.53E+01 $\pm 2.44E-01$ 1.50E+01 $\pm 2.87E-01$	1.53E+01 $\pm 2.44E-01$ 1.50E+01 $\pm 2.87E-01$	2.53E-05 ±4.68E-06 3.06E-05 ±5.89E.06	-4.60 ±7.35E-02 -4.51 +8.65E.02
Control (w ¹¹¹⁸) well-fed Control (w ¹¹¹⁸) starved	Rn132	$3.34E+01 \\ \pm 2.44E-01 \\ 3.30E+01 \\ \pm 2.87E-01 \\ \end{array}$	1.53E+01 ±2.44E-01 1.50E+01 ±2.87E-01	1.53E+01 ±2.44E-01 1.50E+01 ±2.87E-01	2.53E-05 ±4.68E-06 3.06E-05 ±5.89E-06	-4.60 ±7.35E-02 -4.51 ±8.65E-02
Control (w ¹¹¹⁸) well-fed Control (w ¹¹¹⁸) starved mir-310s	- Rp132	$3.34E+01 \\ \pm 2.44E-01 \\ 3.30E+01 \\ \pm 2.87E-01 \\ 3.28E+01 \\ \end{array}$	$1.53E+01 \\ \pm 2.44E-01 \\ 1.50E+01 \\ \pm 2.87E-01 \\ 1.43E+01$	$1.53E+01 \\ \pm 2.44E-01 \\ 1.50E+01 \\ \pm 2.87E-01 \\ 1.43E+01$	$2.53E-05 \\ \pm 4.68E-06 \\ 3.06E-05 \\ \pm 5.89E-06 \\ 5.06E-05 \\ $	-4.60 $\pm 7.35E-02$ -4.51 $\pm 8.65E-02$ -4.30
$\begin{array}{c} Control \\ (w^{1118}) \\ \hline well-fed \\ \hline Control \\ (w^{1118}) \\ \hline starved \\ \hline mir-310s \\ (KT40/KT40) \\ \hline well fed \\ \end{array}$	- Rp132	$3.34E+01 \\ \pm 2.44E-01 \\ 3.30E+01 \\ \pm 2.87E-01 \\ 3.28E+01 \\ \pm 1.09E-01 \\ \end{array}$	$1.53E+01 \\ \pm 2.44E-01 \\ 1.50E+01 \\ \pm 2.87E-01 \\ 1.43E+01 \\ \pm 1.09E-01 \\ $	$1.53E+01 \\ \pm 2.44E-01 \\ 1.50E+01 \\ \pm 2.87E-01 \\ 1.43E+01 \\ \pm 1.09E-01 \\ $	$2.53E-05\pm 4.68E-06$ 3.06E-05 \pm 5.89E-06 5.06E-05 \pm 3.98E-06	$ \begin{array}{r} -4.60 \\ \pm 7.35E-02 \\ -4.51 \\ \pm 8.65E-02 \\ -4.30 \\ \pm 3.29E-02 \\ \end{array} $
Control (w ¹¹¹⁸) well-fed Control (w ¹¹¹⁸) starved mir-310s (KT40/KT40) well-fed mir-310s	- <i>Rp132</i>	$3.34E+01 \\ \pm 2.44E-01 \\ 3.30E+01 \\ \pm 2.87E-01 \\ 3.28E+01 \\ \pm 1.09E-01 \\ \end{array}$	$1.53E+01 \\ \pm 2.44E-01 \\ 1.50E+01 \\ \pm 2.87E-01 \\ 1.43E+01 \\ \pm 1.09E-01 \\ $	$1.53E+01 \\ \pm 2.44E-01 \\ 1.50E+01 \\ \pm 2.87E-01 \\ 1.43E+01 \\ \pm 1.09E-01 \\ $	$2.53E-05 \\ \pm 4.68E-06 \\ 3.06E-05 \\ \pm 5.89E-06 \\ 5.06E-05 \\ \pm 3.98E-06 \\ $	$ \begin{array}{r} -4.60 \\ \pm 7.35E-02 \\ -4.51 \\ \pm 8.65E-02 \\ -4.30 \\ \pm 3.29E-02 \\ \end{array} $
Control (w ¹¹¹⁸) well-fed Control (w ¹¹¹⁸) starved mir-310s (KT40/KT40) well-fed mir-310s (KT40/KT40)	- Rpl32	$3.34E+01 \\ \pm 2.44E-01 \\ 3.30E+01 \\ \pm 2.87E-01 \\ 3.28E+01 \\ \pm 1.09E-01 \\ 3.37E+01 \\ \pm 1.26E-01 \\ 0.16E+01 \\ \pm 1.26E-01 \\ 0.16E+01 \\ 0.16E+0.16E+0.16E \\ 0.16E+0.1$	$1.53E+01 \\ \pm 2.44E-01 \\ 1.50E+01 \\ \pm 2.87E-01 \\ 1.43E+01 \\ \pm 1.09E-01 \\ 1.56E+01 \\ \pm 1.26E+01 $	$1.53E+01 \\ \pm 2.44E-01 \\ 1.50E+01 \\ \pm 2.87E-01 \\ 1.43E+01 \\ \pm 1.09E-01 \\ 1.56E+01 \\ \pm 1.26E+01 $	$2.53E-05 \\ \pm 4.68E-06 \\ 3.06E-05 \\ \pm 5.89E-06 \\ 5.06E-05 \\ \pm 3.98E-06 \\ 2.08E-05 \\ \pm 1.06E-05 $	$ \begin{array}{r} -4.60 \\ \pm 7.35E-02 \\ -4.51 \\ \pm 8.65E-02 \\ -4.30 \\ \pm 3.29E-02 \\ -4.68 \\ 4.10E-02 \\ \end{array} $
Control (w ¹¹¹⁸) well-fed Control (w ¹¹¹⁸) starved mir-310s (KT40/KT40) well-fed mir-310s (KT40/KT40) starved	- Rp132	$3.34E+01 \\ \pm 2.44E-01 \\ 3.30E+01 \\ \pm 2.87E-01 \\ 3.28E+01 \\ \pm 1.09E-01 \\ 3.37E+01 \\ \pm 1.36E-01 \\ \end{array}$	$1.53E+01 \\ \pm 2.44E-01 \\ 1.50E+01 \\ \pm 2.87E-01 \\ 1.43E+01 \\ \pm 1.09E-01 \\ 1.56E+01 \\ \pm 1.36E-01 \\ $	$1.53E+01 \\ \pm 2.44E-01 \\ 1.50E+01 \\ \pm 2.87E-01 \\ 1.43E+01 \\ \pm 1.09E-01 \\ 1.56E+01 \\ \pm 1.36E-01 \\ \end{array}$	$2.53E-05 \\ \pm 4.68E-06 \\ 3.06E-05 \\ \pm 5.89E-06 \\ 5.06E-05 \\ \pm 3.98E-06 \\ 2.08E-05 \\ \pm 1.95E-06 \\ $	$ \begin{array}{r} -4.60 \\ \pm 7.35E-02 \\ -4.51 \\ \pm 8.65E-02 \\ -4.30 \\ \pm 3.29E-02 \\ -4.68 \\ 4.10E-02 \\ \end{array} $
Control (w ¹¹¹⁸) well-fed Control (w ¹¹¹⁸) starved mir-310s (KT40/KT40) well-fed mir-310s (KT40/KT40) starved	- Rp132	$3.34E+01 \\ \pm 2.44E-01 \\ 3.30E+01 \\ \pm 2.87E-01 \\ 3.28E+01 \\ \pm 1.09E-01 \\ 3.37E+01 \\ \pm 1.36E-01 \\ \end{array}$	$1.53E+01 \\ \pm 2.44E-01 \\ 1.50E+01 \\ \pm 2.87E-01 \\ 1.43E+01 \\ \pm 1.09E-01 \\ 1.56E+01 \\ \pm 1.36E-01 \\ Plat$	$1.53E+01 \\ \pm 2.44E-01 \\ 1.50E+01 \\ \pm 2.87E-01 \\ 1.43E+01 \\ \pm 1.09E-01 \\ 1.56E+01 \\ \pm 1.36E-01 \\ e 2$	$2.53E-05 \pm 4.68E-06$ $3.06E-05 \pm 5.89E-06$ $5.06E-05 \pm 3.98E-06$ $2.08E-05 \pm 1.95E-06$	$\begin{array}{r} -4.60 \\ \pm 7.35 \text{E-02} \\ \hline -4.51 \\ \pm 8.65 \text{E-02} \\ \hline -4.30 \\ \pm 3.29 \text{E-02} \\ \hline -4.68 \\ 4.10 \text{E-02} \end{array}$
Control (w ¹¹¹⁸) well-fed Control (w ¹¹¹⁸) starved mir-310s (KT40/KT40) well-fed mir-310s (KT40/KT40) starved	- Rp132	$3.34E+01 \pm 2.44E-01$ $3.30E+01 \pm 2.87E-01$ $3.28E+01 \pm 1.09E-01$ $3.37E+01 \pm 1.36E-01$ $2.69E+01$	$1.53E+01 \\ \pm 2.44E-01 \\ 1.50E+01 \\ \pm 2.87E-01 \\ 1.43E+01 \\ \pm 1.09E-01 \\ 1.56E+01 \\ \pm 1.36E-01 \\ Plat \\ 9.08$	$1.53E+01 \\ \pm 2.44E-01 \\ 1.50E+01 \\ \pm 2.87E-01 \\ 1.43E+01 \\ \pm 1.09E-01 \\ 1.56E+01 \\ \pm 1.36E-01 \\ e 2 \\ -6.36E-07 \\ e -0.52E-07 $	$2.53E-05 \pm 4.68E-06$ $3.06E-05 \pm 5.89E-06$ $5.06E-05 \pm 3.98E-06$ $2.08E-05 \pm 1.95E-06$ 1.00	$ \begin{array}{r} -4.60 \\ \pm 7.35E-02 \\ -4.51 \\ \pm 8.65E-02 \\ -4.30 \\ \pm 3.29E-02 \\ -4.68 \\ 4.10E-02 \\ 1.91E-07 \\ \end{array} $
Control (w ¹¹¹⁸) well-fed Control (w ¹¹¹⁸) starved mir-310s (KT40/KT40) well-fed mir-310s (KT40/KT40) starved	- Rpl32	$3.34E+01 \\ \pm 2.44E-01 \\ 3.30E+01 \\ \pm 2.87E-01 \\ 3.28E+01 \\ \pm 1.09E-01 \\ 3.37E+01 \\ \pm 1.36E-01 \\ 2.69E+01 \\ \pm 1.07E-02 \\ $	$1.53E+01 \\ \pm 2.44E-01 \\ 1.50E+01 \\ \pm 2.87E-01 \\ 1.43E+01 \\ \pm 1.09E-01 \\ 1.56E+01 \\ \pm 1.36E-01 \\ Plat \\ 9.08 \\ \pm 2.33E-02 \\ \end{array}$	$1.53E+01 \\ \pm 2.44E-01 \\ 1.50E+01 \\ \pm 2.87E-01 \\ 1.43E+01 \\ \pm 1.09E-01 \\ 1.56E+01 \\ \pm 1.36E-01 \\ e 2 \\ -6.36E-07 \\ \pm 1.07E-02 \\ e -0.2 \\ $	$2.53E-05 \\ \pm 4.68E-06 \\ 3.06E-05 \\ \pm 5.89E-06 \\ 5.06E-05 \\ \pm 3.98E-06 \\ 2.08E-05 \\ \pm 1.95E-06 \\ 1.00 \\ \pm 7.44E-03 \\ 1.00 \\ \pm 7.44E-03 \\ 1.00 \\ \pm $	$\begin{array}{r} -4.60 \\ \pm 7.35E-02 \\ \hline -4.51 \\ \pm 8.65E-02 \\ \hline -4.30 \\ \pm 3.29E-02 \\ \hline -4.68 \\ 4.10E-02 \\ \hline \\ 1.91E-07 \\ \pm 3.22E-03 \end{array}$
$Control$ (w^{1118}) well-fed $Control$ (w^{1118}) starved $mir-310s$ $(KT40/KT40)$ well-fed $mir-310s$ $(KT40/KT40)$ starved $Control$ (w^{1118}) well-fed $Control$	- <i>Rp132</i>	$3.34E+01\pm 2.44E-013.30E+01\pm 2.87E-013.28E+01\pm 1.09E-013.37E+01\pm 1.36E-012.69E+01\pm 1.07E-02$	$\begin{array}{r} 1.53E+01\\ \pm 2.44E-01\\ \hline 1.50E+01\\ \pm 2.87E-01\\ \hline 1.43E+01\\ \pm 1.09E-01\\ \hline 1.56E+01\\ \pm 1.36E-01\\ \hline \\ Plat\\ 9.08\\ \pm 2.33E-02\\ \end{array}$	$1.53E+01 \pm 2.44E-01$ $1.50E+01 \pm 2.87E-01$ $1.43E+01 \pm 1.09E-01$ $1.56E+01 \pm 1.36E-01$ e 2 $-6.36E-07 \pm 1.07E-02$	$2.53E-05 \pm 4.68E-06$ $3.06E-05 \pm 5.89E-06$ $5.06E-05 \pm 3.98E-06$ $2.08E-05 \pm 1.95E-06$ $1.00 \pm 7.44E-03$	$\begin{array}{r} -4.60 \\ \pm 7.35E-02 \\ \hline -4.51 \\ \pm 8.65E-02 \\ \hline -4.30 \\ \pm 3.29E-02 \\ \hline -4.68 \\ 4.10E-02 \\ \hline \\ 1.91E-07 \\ \pm 3.22E-03 \end{array}$
$\begin{array}{c} Control \\ (w^{1118}) \\ well-fed \\ \hline Control \\ (w^{1118}) \\ starved \\ \hline mir-310s \\ (KT40/KT40) \\ well-fed \\ \hline mir-310s \\ (KT40/KT40) \\ starved \\ \hline \hline \\ \hline \\ Control \\ (w^{1118}) \\ well-fed \\ \hline \\ Control \\ (w^{1118}) \\ \end{array}$	- <i>Rpl32</i>	$3.34E+01 \pm 2.44E-01$ $3.30E+01 \pm 2.87E-01$ $3.28E+01 \pm 1.09E-01$ $3.37E+01 \pm 1.36E-01$ $2.69E+01 \pm 1.07E-02$ $2.85E+01$	$1.53E+01 \\ \pm 2.44E-01 \\ 1.50E+01 \\ \pm 2.87E-01 \\ 1.43E+01 \\ \pm 1.09E-01 \\ 1.56E+01 \\ \pm 1.36E-01 \\ Plat \\ 9.08 \\ \pm 2.33E-02 \\ 1.08E+01 \\ 1.08E+01 \\ 1.55E+01 \\ \pm 2.08E+01 \\ 1.08E+01 \\ 1.08E$	$1.53E+01 \\ \pm 2.44E-01 \\ 1.50E+01 \\ \pm 2.87E-01 \\ 1.43E+01 \\ \pm 1.09E-01 \\ 1.56E+01 \\ \pm 1.36E-01 \\ e 2 \\ -6.36E-07 \\ \pm 1.07E-02 \\ 1.72 \\ 1.72$	$2.53E-05 \pm 4.68E-06$ $3.06E-05 \pm 5.89E-06$ $5.06E-05 \pm 3.98E-06$ $2.08E-05 \pm 1.95E-06$ $1.00 \pm 7.44E-03$ $3.04E-01 \pm 5.90E-03$	$\begin{array}{r} -4.60 \\ \pm 7.35 \text{E-02} \\ \hline -4.51 \\ \pm 8.65 \text{E-02} \\ \hline -4.30 \\ \pm 3.29 \text{E-02} \\ \hline -4.68 \\ 4.10 \text{E-02} \\ \hline \\ 1.91 \text{E-07} \\ \pm 3.22 \text{E-03} \\ \hline -5.17 \text{E-01} \end{array}$
$\begin{array}{c} Control \\ (w^{1118}) \\ well-fed \\ \hline Control \\ (w^{1118}) \\ starved \\ \hline mir-310s \\ (KT40/KT40) \\ well-fed \\ \hline mir-310s \\ (KT40/KT40) \\ starved \\ \hline \hline \\ Control \\ (w^{1118}) \\ well-fed \\ \hline \\ Control \\ (w^{1118}) \\ starved \\ \end{array}$	Rp132	$3.34E+01 \pm 2.44E-01$ $3.30E+01 \pm 2.87E-01$ $3.28E+01 \pm 1.09E-01$ $3.37E+01 \pm 1.36E-01$ $2.69E+01 \pm 1.07E-02$ $2.85E+01 \pm 2.78E-02$	$\begin{array}{c} 1.53E+01\\ \pm 2.44E-01\\ \hline 1.50E+01\\ \pm 2.87E-01\\ \hline 1.43E+01\\ \pm 1.09E-01\\ \hline 1.56E+01\\ \pm 1.36E-01\\ \hline Plat\\ 9.08\\ \pm 2.33E-02\\ \hline 1.08E+01\\ \pm 2.98E-02\\ \end{array}$	$1.53E+01 \\ \pm 2.44E-01 \\ 1.50E+01 \\ \pm 2.87E-01 \\ 1.43E+01 \\ \pm 1.09E-01 \\ 1.56E+01 \\ \pm 1.36E-01 \\ e 2 \\ -6.36E-07 \\ \pm 1.07E-02 \\ 1.72 \\ \pm 2.78E-02 \\ e -02 \\ -6.36E-07 \\ \pm 1.07E-02 \\ -6.36E-07 \\ \pm 1.07E-02 \\ -6.36E-07 \\ \pm 0.02 \\ -6.36E-07 \\ -6.$	$2.53E-05 \pm 4.68E-06$ $3.06E-05 \pm 5.89E-06$ $5.06E-05 \pm 3.98E-06$ $2.08E-05 \pm 1.95E-06$ $1.00 \pm 7.44E-03$ $3.04E-01 \pm 5.90E-03 \text{ p}^{Control well-fed} = 2.08E-07$	$\begin{array}{r} -4.60 \\ \pm 7.35E-02 \\ \hline -4.51 \\ \pm 8.65E-02 \\ \hline -4.30 \\ \pm 3.29E-02 \\ \hline -4.68 \\ 4.10E-02 \\ \hline \\ 1.91E-07 \\ \pm 3.22E-03 \\ \hline \\ -5.17E-01 \\ \pm 8.36E-03 \end{array}$
Control (w ¹¹¹⁸) well-fed Control (w ¹¹¹⁸) starved mir-310s (KT40/KT40) well-fed mir-310s (KT40/KT40) starved Control (w ¹¹¹⁸) well-fed Control (w ¹¹¹⁸) starved mir-310s	- Rp132 - CG3999	$3.34E+01 \pm 2.44E-01$ $3.30E+01 \pm 2.87E-01$ $3.28E+01 \pm 1.09E-01$ $3.37E+01 \pm 1.36E-01$ $2.69E+01 \pm 1.07E-02$ $2.85E+01 \pm 2.78E-02$	$1.53E+01 \pm 2.44E-01$ $1.50E+01 \pm 2.87E-01$ $1.43E+01 \pm 1.09E-01$ $1.56E+01 \pm 1.36E-01$ Plat 9.08 $\pm 2.33E-02$ $1.08E+01 \pm 2.98E-02$	$1.53E+01 \pm 2.44E-01$ $1.50E+01 \pm 2.87E-01$ $1.43E+01 \pm 1.09E-01$ $1.56E+01 \pm 1.36E-01$ e 2 $-6.36E-07 \pm 1.07E-02$ $1.72 \pm 2.78E-02$	$\begin{array}{c} 2.53E-05\\ \pm 4.68E-06\\ \hline 3.06E-05\\ \pm 5.89E-06\\ \hline 5.06E-05\\ \pm 3.98E-06\\ \hline 2.08E-05\\ \pm 1.95E-06\\ \hline \\ 1.00\\ \pm 7.44E-03\\ \hline \\ 3.04E-01\\ \pm 5.90E-03\\ p^{Control well-fed}=2.08E-07\\ \hline 1.44\\ \end{array}$	$\begin{array}{c} -4.60 \\ \pm 7.35E-02 \\ \hline -4.51 \\ \pm 8.65E-02 \\ \hline -4.30 \\ \pm 3.29E-02 \\ \hline -4.68 \\ 4.10E-02 \\ \hline \\ 1.91E-07 \\ \pm 3.22E-03 \\ \hline \\ -5.17E-01 \\ \pm 8.36E-03 \\ \hline \\ 1.60E-01 \end{array}$
Control (w ¹¹¹⁸) well-fed Control (w ¹¹¹⁸) starved mir-310s (KT40/KT40) well-fed mir-310s (KT40/KT40) starved Control (w ¹¹¹⁸) well-fed Control (w ¹¹¹⁸) starved mir-310s (KT40/KT40)	- Rp132 - CG3999	$3.34E+01 \pm 2.44E-01$ $3.30E+01 \pm 2.87E-01$ $3.28E+01 \pm 1.09E-01$ $3.37E+01 \pm 1.36E-01$ $2.69E+01 \pm 1.07E-02$ $2.85E+01 \pm 2.78E-02$ $2.68E+01 \pm 2.02E + 02$	$1.53E+01 \pm 2.44E-01$ $1.50E+01 \pm 2.87E-01$ $1.43E+01 \pm 1.09E-01$ $1.56E+01 \pm 1.36E-01$ Plat 9.08 $\pm 2.33E-02$ $1.08E+01 \pm 2.98E-02$ $8.55 \pm 4.82E-02$	$1.53E+01 \pm 2.44E-01$ $1.50E+01 \pm 2.87E-01$ $1.43E+01 \pm 1.09E-01$ $1.56E+01 \pm 1.36E-01$ e 2 $-6.36E-07 \pm 1.07E-02$ $1.72 \pm 2.78E-02$ $-5.30E-01 \pm 3.90E-02$	$\begin{array}{c} 2.53E-05\\ \pm 4.68E-06\\ \hline \\ 3.06E-05\\ \pm 5.89E-06\\ \hline \\ 5.06E-05\\ \pm 3.98E-06\\ \hline \\ 2.08E-05\\ \pm 1.95E-06\\ \hline \\ \hline \\ 1.00\\ \pm 7.44E-03\\ \hline \\ 3.04E-01\\ \pm 5.90E-03\\ \hline \\ p^{Control well-fed} = 2.08E-07\\ \hline \\ 1.44\\ \pm 3.95E-02\\ \hline \end{array}$	$\begin{array}{r} -4.60 \\ \pm 7.35E-02 \\ \hline -4.51 \\ \pm 8.65E-02 \\ \hline -4.30 \\ \pm 3.29E-02 \\ \hline -4.68 \\ 4.10E-02 \\ \hline \\ 1.91E-07 \\ \pm 3.22E-03 \\ \hline \\ -5.17E-01 \\ \pm 8.36E-03 \\ \hline \\ 1.60E-01 \\ \pm 1.17E.02 \end{array}$
Control (w ¹¹¹⁸) well-fed Control (w ¹¹¹⁸) starved mir-310s (KT40/KT40) well-fed mir-310s (KT40/KT40) starved Control (w ¹¹¹⁸) well-fed Control (w ¹¹¹⁸) starved mir-310s (KT40/KT40) well-fed	- <i>Rp132</i> - <i>CG3999</i>	$3.34E+01 \pm 2.44E-01$ $3.30E+01 \pm 2.87E-01$ $3.28E+01 \pm 1.09E-01$ $3.37E+01 \pm 1.36E-01$ $2.69E+01 \pm 1.07E-02$ $2.85E+01 \pm 2.78E-02$ $2.68E+01 \pm 3.90E-02$	$\begin{array}{c} 1.53E+01\\ \pm 2.44E-01\\ 1.50E+01\\ \pm 2.87E-01\\ 1.43E+01\\ \pm 1.09E-01\\ 1.56E+01\\ \pm 1.36E-01\\ \end{array}$ Plat 9.08 $\pm 2.33E-02\\ 1.08E+01\\ \pm 2.98E-02\\ 8.55\\ \pm 4.82E-02\\ \end{array}$	$1.53E+01 \pm 2.44E-01$ $1.50E+01 \pm 2.87E-01$ $1.43E+01 \pm 1.09E-01$ $1.56E+01 \pm 1.36E-01$ e 2 $-6.36E-07 \pm 1.07E-02$ $1.72 \pm 2.78E-02$ $-5.30E-01 \pm 3.90E-02$	$\begin{array}{c} 2.53E-05\\ \pm 4.68E-06\\ \\\hline 3.06E-05\\ \pm 5.89E-06\\ \\\hline 5.06E-05\\ \pm 3.98E-06\\ \\\hline 2.08E-05\\ \pm 1.95E-06\\ \\\hline \\ 1.00\\ \pm 7.44E-03\\ \\\hline \\ 3.04E-01\\ \pm 5.90E-03\\ p^{Control well-fed}=2.08E-07\\ \\\hline 1.44\\ \pm 3.95E-02\\ p^{Control well-fed}=3.79E-04\\ \end{array}$	$\begin{array}{c} -4.60 \\ \pm 7.35E-02 \\ \hline -4.51 \\ \pm 8.65E-02 \\ \hline -4.30 \\ \pm 3.29E-02 \\ \hline -4.68 \\ 4.10E-02 \\ \hline \\ 1.91E-07 \\ \pm 3.22E-03 \\ \hline \\ -5.17E-01 \\ \pm 8.36E-03 \\ \hline \\ 1.60E-01 \\ \pm 1.17E-02 \end{array}$
$Control$ (w^{1118}) well-fed $Control$ (w^{1118}) starved $mir-310s$ $(KT40/KT40)$ well-fed $mir-310s$ $(KT40/KT40)$ starved $Control$ (w^{1118}) well-fed $Control$ (w^{1118}) starved $mir-310s$ $(KT40/KT40)$ well-fed $mir-310s$ $(KT40/KT40)$ well-fed $mir-310s$ $(KT40/KT40)$	- <i>Rp132</i>	$3.34E+01 \pm 2.44E-01$ $3.30E+01 \pm 2.87E-01$ $3.28E+01 \pm 1.09E-01$ $3.37E+01 \pm 1.36E-01$ $2.69E+01 \pm 1.07E-02$ $2.85E+01 \pm 2.78E-02$ $2.68E+01 \pm 3.90E-02$ $2.76E+01$	$1.53E+01 \pm 2.44E-01$ $1.50E+01 \pm 2.87E-01$ $1.43E+01 \pm 1.09E-01$ $1.56E+01 \pm 1.36E-01$ Plat 9.08 $\pm 2.33E-02$ $1.08E+01 \pm 2.98E-02$ $8.55 \pm 4.82E-02$ 9.69	$1.53E+01 \pm 2.44E-01$ $1.50E+01 \pm 2.87E-01$ $1.43E+01 \pm 1.09E-01$ $1.56E+01 \pm 1.36E-01$ e 2 $-6.36E-07 \pm 1.07E-02$ $1.72 \pm 2.78E-02$ $-5.30E-01 \pm 3.90E-02$ $6.09E-01$	$\begin{array}{c} 2.53E-05\\ \pm 4.68E-06\\ \hline \\ 3.06E-05\\ \pm 5.89E-06\\ \hline \\ 5.06E-05\\ \pm 3.98E-06\\ \hline \\ 2.08E-05\\ \pm 1.95E-06\\ \hline \\ \hline \\ 1.00\\ \pm 7.44E-03\\ \hline \\ \hline \\ 3.04E-01\\ \pm 5.90E-03\\ p^{Control well-fed} = 2.08E-07\\ \hline \\ 1.44\\ \pm 3.95E-02\\ p^{Control well-fed} = 3.79E-04\\ \hline \\ 6.56E-01\\ + 2.10E-02\\ \hline \end{array}$	$\begin{array}{r} -4.60 \\ \pm 7.35E-02 \\ \hline -4.51 \\ \pm 8.65E-02 \\ \hline -4.30 \\ \pm 3.29E-02 \\ \hline -4.68 \\ 4.10E-02 \\ \hline \\ 1.91E-07 \\ \pm 3.22E-03 \\ \hline \\ -5.17E-01 \\ \pm 8.36E-03 \\ \hline \\ 1.60E-01 \\ \pm 1.17E-02 \\ \hline \\ -1.83E-01 \\ \hline \end{array}$
Control (w ¹¹¹⁸) well-fed Control (w ¹¹¹⁸) starved mir-310s (KT40/KT40) well-fed mir-310s (KT40/KT40) starved Control (w ¹¹¹⁸) well-fed Control (w ¹¹¹⁸) starved mir-310s (KT40/KT40) well-fed mir-310s (KT40/KT40) starved	CG3999	$3.34E+01 \pm 2.44E-01$ $3.30E+01 \pm 2.87E-01$ $3.28E+01 \pm 1.09E-01$ $3.37E+01 \pm 1.36E-01$ $2.69E+01 \pm 1.07E-02$ $2.85E+01 \pm 2.78E-02$ $2.68E+01 \pm 3.90E-02$ $2.76E+01 \pm 4.55E-02$	$\begin{array}{r} 1.53E+01\\ \pm 2.44E-01\\ \hline 1.50E+01\\ \pm 2.87E-01\\ \hline 1.43E+01\\ \pm 1.09E-01\\ \hline 1.56E+01\\ \pm 1.36E-01\\ \hline \\ Plat\\ 9.08\\ \pm 2.33E-02\\ \hline 1.08E+01\\ \pm 2.98E-02\\ \hline \\ 8.55\\ \pm 4.82E-02\\ \hline \\ 9.69\\ \pm 4.81E-02\\ \hline \end{array}$	$\begin{array}{c} 1.53E+01\\ \pm 2.44E-01\\ 1.50E+01\\ \pm 2.87E-01\\ 1.43E+01\\ \pm 1.09E-01\\ 1.56E+01\\ \pm 1.36E-01\\ e \\ 2\\ \hline -6.36E-07\\ \pm 1.07E-02\\ \hline 1.72\\ \pm 2.78E-02\\ \hline -5.30E-01\\ \pm 3.90E-02\\ \hline 6.09E-01\\ \pm 4.55E-02\\ \end{array}$	$\begin{array}{c} 2.53E-05\\ \pm 4.68E-06\\ \hline \\3.06E-05\\ \pm 5.89E-06\\ \hline \\5.06E-05\\ \pm 3.98E-06\\ \hline \\2.08E-05\\ \pm 1.95E-06\\ \hline \\1.00\\ \pm 7.44E-03\\ \hline \\3.04E-01\\ \pm 5.90E-03\\ p^{Control well-fed}=2.08E-07\\ \hline \\1.44\\ \pm 3.95E-02\\ p^{Control well-fed}=3.79E-04\\ \hline \\6.56E-01\\ \pm 2.10E-02\\ p^{Control well-fed}=1.02E.04\\ \hline \end{array}$	$\begin{array}{c} -4.60 \\ \pm 7.35E-02 \\ \hline -4.51 \\ \pm 8.65E-02 \\ \hline -4.30 \\ \pm 3.29E-02 \\ \hline -4.68 \\ 4.10E-02 \\ \hline \\ 1.91E-07 \\ \pm 3.22E-03 \\ \hline \\ -5.17E-01 \\ \pm 8.36E-03 \\ \hline \\ 1.60E-01 \\ \pm 1.17E-02 \\ \hline \\ -1.83E-01 \\ \pm 1.37E-02 \\ \hline \end{array}$
Control (w ¹¹¹⁸) well-fed Control (w ¹¹¹⁸) starved mir-310s (KT40/KT40) well-fed mir-310s (KT40/KT40) starved Control (w ¹¹¹⁸) well-fed Control (w ¹¹¹⁸) starved mir-310s (KT40/KT40) well-fed mir-310s (KT40/KT40) starved Control	- <i>Rp132</i> - <i>CG3999</i>	$3.34E+01 \pm 2.44E-01$ $3.30E+01 \pm 2.87E-01$ $3.28E+01 \pm 1.09E-01$ $3.37E+01 \pm 1.36E-01$ $2.69E+01 \pm 1.07E-02$ $2.85E+01 \pm 2.78E-02$ $2.68E+01 \pm 3.90E-02$ $2.76E+01 \pm 4.55E-02$	$1.53E+01 \pm 2.44E-01$ $1.50E+01 \pm 2.87E-01$ $1.43E+01 \pm 1.09E-01$ $1.56E+01 \pm 1.36E-01$ Plat 9.08 $\pm 2.33E-02$ $1.08E+01 \pm 2.98E-02$ $8.55 \pm 4.82E-02$ $9.69 \pm 4.81E-02$	$1.53E+01 \pm 2.44E-01$ $1.50E+01 \pm 2.87E-01$ $1.43E+01 \pm 1.09E-01$ $1.56E+01 \pm 1.36E-01$ e 2 $-6.36E-07 \pm 1.07E-02$ $1.72 \pm 2.78E-02$ $-5.30E-01 \pm 3.90E-02$ $6.09E-01 \pm 4.55E-02$	$\begin{array}{c} 2.53E-05\\ \pm 4.68E-06\\ \hline \\ 3.06E-05\\ \pm 5.89E-06\\ \hline \\ 5.06E-05\\ \pm 3.98E-06\\ \hline \\ 2.08E-05\\ \pm 1.95E-06\\ \hline \\ \hline \\ 1.00\\ \pm 7.44E-03\\ \hline \\ \hline \\ 3.04E-01\\ \pm 5.90E-03\\ p^{Control well-fed}=2.08E-07\\ \hline \\ 1.44\\ \pm 3.95E-02\\ p^{Control well-fed}=3.79E-04\\ \hline \\ 6.56E-01\\ \pm 2.10E-02\\ p^{Control well-fed}=1.03E-04\\ \hline \\ 1.00\\ \hline \end{array}$	$\begin{array}{c} -4.60 \\ \pm 7.35E-02 \\ \hline -4.51 \\ \pm 8.65E-02 \\ \hline -4.30 \\ \pm 3.29E-02 \\ \hline -4.68 \\ 4.10E-02 \\ \hline \\ 1.91E-07 \\ \pm 3.22E-03 \\ \hline \\ -5.17E-01 \\ \pm 8.36E-03 \\ \hline \\ 1.60E-01 \\ \pm 1.17E-02 \\ \hline \\ -1.83E-01 \\ \pm 1.37E-02 \\ \hline \end{array}$
$Control$ (w^{1118}) well-fed $Control$ (w^{1118}) starved $mir-310s$ $(KT40/KT40)$ well-fed $mir-310s$ $(KT40/KT40)$ starved $Control$ (w^{1118}) well-fed $Control$ (w^{1118}) starved $mir-310s$ $(KT40/KT40)$ well-fed $mir-310s$ $(KT40/KT40)$ starved $Control$ (w^{1118}) starved $Mir-310s$ $(KT40/KT40)$ starved $Control$ (w^{1118})	- <i>Rp132</i> - <i>CG3999</i>	$3.34E+01 \pm 2.44E-01$ $3.30E+01 \pm 2.87E-01$ $3.28E+01 \pm 1.09E-01$ $3.37E+01 \pm 1.36E-01$ $2.69E+01 \pm 1.07E-02$ $2.85E+01 \pm 2.78E-02$ $2.68E+01 \pm 3.90E-02$ $2.76E+01 \pm 4.55E-02$ $3.08E+01 \pm 4.55E-02$	$1.53E+01 \pm 2.44E-01$ $1.50E+01 \pm 2.87E-01$ $1.43E+01 \pm 1.09E-01$ $1.56E+01 \pm 1.36E-01$ Plat 9.08 $\pm 2.33E-02$ $1.08E+01 \pm 2.98E-02$ $8.55 \pm 4.82E-02$ $9.69 \pm 4.81E-02$ $1.30E+01 \pm 4.62E-02$	$1.53E+01 \pm 2.44E-01$ $1.50E+01 \pm 2.87E-01$ $1.43E+01 \pm 1.09E-01$ $1.56E+01 \pm 1.36E-01$ e 2 $-6.36E-07 \pm 1.07E-02$ $1.72 \pm 2.78E-02$ $-5.30E-01 \pm 3.90E-02$ $6.09E-01 \pm 4.55E-02$ $-9.54E-07 \pm 4.14E-02$	$\begin{array}{c} 2.53E-05\\ \pm 4.68E-06\\ \hline \\3.06E-05\\ \pm 5.89E-06\\ \hline \\5.06E-05\\ \pm 3.98E-06\\ \hline \\2.08E-05\\ \pm 1.95E-06\\ \hline \\1.00\\ \pm 7.44E-03\\ \hline \\3.04E-01\\ \pm 5.90E-03\\ p^{Control well-fed}=2.08E-07\\ \hline \\1.44\\ \pm 3.95E-02\\ p^{Control well-fed}=3.79E-04\\ \hline \\6.56E-01\\ \pm 2.10E-02\\ p^{Control well-fed}=1.03E-04\\ \hline \\1.00\\ \pm 2.83E-02\\ \hline \end{array}$	$\begin{array}{c} -4.60 \\ \pm 7.35E-02 \\ \hline -4.51 \\ \pm 8.65E-02 \\ \hline -4.30 \\ \pm 3.29E-02 \\ \hline -4.68 \\ 4.10E-02 \\ \hline \\ 1.91E-07 \\ \pm 3.22E-03 \\ \hline \\ -5.17E-01 \\ \pm 8.36E-03 \\ \hline \\ 1.60E-01 \\ \pm 1.17E-02 \\ \hline \\ -1.83E-01 \\ \pm 1.37E-02 \\ \hline \\ 2.87E-07 \\ \pm 1.25E-02 \\ \hline \end{array}$
$\begin{array}{c} Control \\ (w^{1118}) \\ well-fed \\ \hline Control \\ (w^{1118}) \\ starved \\ \hline mir-310s \\ (KT40/KT40) \\ well-fed \\ \hline mir-310s \\ (KT40/KT40) \\ starved \\ \hline \\ \hline Control \\ (w^{1118}) \\ well-fed \\ \hline \\ Control \\ (w^{1118}) \\ starved \\ \hline \\ \hline \\ mir-310s \\ (KT40/KT40) \\ well-fed \\ \hline \\ mir-310s \\ (KT40/KT40) \\ well-fed \\ \hline \\ \hline \\ mir-310s \\ (KT40/KT40) \\ starved \\ \hline \\ Control \\ (w^{1118}) \\ well-fed \\ \hline \end{array}$	CG0014	$3.34E+01\pm 2.44E-013.30E+01\pm 2.87E-013.28E+01\pm 1.09E-013.37E+01\pm 1.36E-012.69E+01\pm 1.36E-012.85E+01\pm 2.78E-022.68E+01\pm 3.90E-022.76E+01\pm 4.55E-023.08E+01\pm 4.14E-02$	$\begin{array}{c} 1.53E+01\\ \pm 2.44E-01\\ 1.50E+01\\ \pm 2.87E-01\\ \hline 1.43E+01\\ \pm 1.09E-01\\ \hline 1.56E+01\\ \pm 1.36E-01\\ \hline \\ \end{array}$	$\begin{array}{c} 1.53E+01\\ \pm 2.44E-01\\ 1.50E+01\\ \pm 2.87E-01\\ \hline 1.43E+01\\ \pm 1.09E-01\\ \hline 1.56E+01\\ \pm 1.36E-01\\ \hline e \ 2\\ \hline -6.36E-07\\ \pm 1.07E-02\\ \hline 1.72\\ \pm 2.78E-02\\ \hline 1.72\\ \pm 2.78E-02\\ \hline -5.30E-01\\ \pm 3.90E-02\\ \hline 6.09E-01\\ \pm 4.55E-02\\ \hline -9.54E-07\\ \pm 4.14E-02\\ \hline \end{array}$	$\begin{array}{c} 2.53E-05\\ \pm 4.68E-06\\ \\\hline 3.06E-05\\ \pm 5.89E-06\\ \\\hline 5.06E-05\\ \pm 3.98E-06\\ \\\hline 2.08E-05\\ \pm 1.95E-06\\ \\\hline \\ 1.00\\ \pm 7.44E-03\\ \\\hline \\ 3.04E-01\\ \pm 5.90E-03\\ p^{Control well-fed} = 2.08E-07\\ \hline 1.44\\ \pm 3.95E-02\\ p^{Control well-fed} = 3.79E-04\\ \hline 6.56E-01\\ \pm 2.10E-02\\ p^{Control well-fed} = 1.03E-04\\ \hline 1.00\\ \pm 2.83E-02\\ \end{array}$	$\begin{array}{c} -4.60 \\ \pm 7.35E-02 \\ \hline -4.51 \\ \pm 8.65E-02 \\ \hline -4.30 \\ \pm 3.29E-02 \\ \hline -4.68 \\ 4.10E-02 \\ \hline \\ 1.91E-07 \\ \pm 3.22E-03 \\ \hline \\ -5.17E-01 \\ \pm 8.36E-03 \\ \hline \\ 1.60E-01 \\ \pm 1.17E-02 \\ \hline \\ -1.83E-01 \\ \pm 1.37E-02 \\ \hline \\ 2.87E-07 \\ \pm 1.25E-02 \\ \hline \end{array}$
$Control$ (w^{1118}) well-fed $Control$ (w^{1118}) starved $mir-310s$ $(KT40/KT40)$ well-fed $mir-310s$ $(KT40/KT40)$ starved $Control$ (w^{1118}) well-fed $Control$ (w^{1118}) starved $mir-310s$ $(KT40/KT40)$ well-fed $mir-310s$ $(KT40/KT40)$ starved $Control$ (w^{1118}) well-fed $Control$ (w^{1118}) well-fed $Control$ (w^{1118}) well-fed $Control$	- CG3999 - CG9914	$3.34E+01 \pm 2.44E-01$ $3.30E+01 \pm 2.87E-01$ $3.28E+01 \pm 1.09E-01$ $3.37E+01 \pm 1.36E-01$ $2.69E+01 \pm 1.36E-01$ $2.85E+01 \pm 2.78E-02$ $2.68E+01 \pm 3.90E-02$ $2.76E+01 \pm 4.55E-02$ $3.08E+01 \pm 4.14E-02$ $3.19E+01$	$1.53E+01 \pm 2.44E-01$ $1.50E+01 \pm 2.87E-01$ $1.43E+01 \pm 1.09E-01$ $1.56E+01 \pm 1.36E-01$ Plat 9.08 ±2.33E-02 $1.08E+01 \pm 2.98E-02$ $8.55 \pm 4.82E-02$ $9.69 \pm 4.81E-02$ $1.30E+01 \pm 4.63E-02$ $1.42E+01$	$\begin{array}{c} 1.53E+01\\ \pm 2.44E-01\\ 1.50E+01\\ \pm 2.87E-01\\ 1.43E+01\\ \pm 1.09E-01\\ 1.56E+01\\ \pm 1.36E-01\\ e \\ 2\\ \hline -6.36E-07\\ \pm 1.07E-02\\ \hline 1.72\\ \pm 2.78E-02\\ \hline 1.72\\ \pm 2.78E-02\\ \hline -5.30E-01\\ \pm 3.90E-02\\ \hline 6.09E-01\\ \pm 4.55E-02\\ \hline -9.54E-07\\ \pm 4.14E-02\\ \hline 1.20\\ \end{array}$	$\begin{array}{c} 2.53E-05\\ \pm 4.68E-06\\ \\\hline 3.06E-05\\ \pm 5.89E-06\\ \\\hline 5.06E-05\\ \pm 3.98E-06\\ \\\hline 2.08E-05\\ \pm 1.95E-06\\ \\\hline \\ 1.00\\ \pm 7.44E-03\\ \\\hline \\ 3.04E-01\\ \pm 5.90E-03\\ p^{Control well-fed}=2.08E-07\\ \hline 1.44\\ \pm 3.95E-02\\ p^{Control well-fed}=3.79E-04\\ \hline 6.56E-01\\ \pm 2.10E-02\\ p^{Control well-fed}=1.03E-04\\ \hline 1.00\\ \pm 2.83E-02\\ \hline \\ 4.34E-01\\ \end{array}$	$\begin{array}{r} -4.60 \\ \pm 7.35E-02 \\ \hline -4.51 \\ \pm 8.65E-02 \\ \hline -4.30 \\ \pm 3.29E-02 \\ \hline -4.68 \\ 4.10E-02 \\ \hline \\ 1.91E-07 \\ \pm 3.22E-03 \\ \hline \\ -5.17E-01 \\ \pm 8.36E-03 \\ \hline \\ 1.60E-01 \\ \pm 1.17E-02 \\ \hline \\ -1.83E-01 \\ \pm 1.37E-02 \\ \hline \\ 2.87E-07 \\ \pm 1.25E-02 \\ \hline \\ -3.62E-01 \\ \hline \end{array}$
$\begin{array}{c} Control \\ (w^{1118}) \\ well-fed \\ \hline Control \\ (w^{1118}) \\ starved \\ \hline mir-310s \\ (KT40/KT40) \\ well-fed \\ \hline mir-310s \\ (KT40/KT40) \\ starved \\ \hline \\ \hline \\ Control \\ (w^{1118}) \\ well-fed \\ \hline \\ Control \\ (w^{1118}) \\ starved \\ \hline \\ mir-310s \\ (KT40/KT40) \\ well-fed \\ \hline \\ mir-310s \\ (KT40/KT40) \\ well-fed \\ \hline \\ mir-310s \\ (KT40/KT40) \\ starved \\ \hline \\ Control \\ (w^{1118}) \\ well-fed \\ \hline \\ Control \\ (w^{1118}) \\ well-fed \\ \hline \\ Control \\ (w^{1118}) \\ well-fed \\ \hline \end{array}$	- <i>Rp132</i> - <i>CG3999</i> - <i>CG9914</i>	$3.34E+01 \pm 2.44E-01$ $3.30E+01 \pm 2.87E-01$ $3.28E+01 \pm 1.09E-01$ $3.37E+01 \pm 1.36E-01$ $2.69E+01 \pm 1.36E-01$ $2.85E+01 \pm 2.78E-02$ $2.68E+01 \pm 3.90E-02$ $2.76E+01 \pm 4.55E-02$ $3.08E+01 \pm 4.14E-02$ $3.19E+01 \pm 2.46E-02$	$\begin{array}{c} 1.53E+01\\ \pm 2.44E-01\\ 1.50E+01\\ \pm 2.87E-01\\ \hline 1.43E+01\\ \pm 1.09E-01\\ \hline 1.56E+01\\ \pm 1.36E-01\\ \hline \\ \end{array}$	$\begin{array}{c} 1.53E+01\\ \pm 2.44E-01\\ 1.50E+01\\ \pm 2.87E-01\\ 1.43E+01\\ \pm 1.09E-01\\ 1.56E+01\\ \pm 1.36E-01\\ e \\ 2\\ \hline -6.36E-07\\ \pm 1.07E-02\\ \hline 1.72\\ \pm 2.78E-02\\ \hline -5.30E-01\\ \pm 3.90E-02\\ \hline 6.09E-01\\ \pm 4.55E-02\\ \hline -9.54E-07\\ \pm 4.14E-02\\ \hline 1.20\\ \pm 2.46E-02\\ \hline \end{array}$	$\begin{array}{c} 2.53E-05\\ \pm 4.68E-06\\ \\\hline 3.06E-05\\ \pm 5.89E-06\\ \\\hline 5.06E-05\\ \pm 3.98E-06\\ \\\hline 2.08E-05\\ \pm 1.95E-06\\ \\\hline \\ 1.00\\ \pm 7.44E-03\\ \\\hline \\ 3.04E-01\\ \pm 5.90E-03\\ p^{Control well-fed} = 2.08E-07\\ \hline 1.44\\ \pm 3.95E-02\\ p^{Control well-fed} = 3.79E-04\\ \hline 6.56E-01\\ \pm 2.10E-02\\ p^{Control well-fed} = 1.03E-04\\ \hline 1.00\\ \pm 2.83E-02\\ \\\hline \\ 4.34E-01\\ \pm 7.41E-03\\ \hline \\ 6.56E-01\\ \hline \end{bmatrix}$	$\begin{array}{c} -4.60 \\ \pm 7.35E-02 \\ \hline -4.51 \\ \pm 8.65E-02 \\ \hline -4.30 \\ \pm 3.29E-02 \\ \hline -4.68 \\ 4.10E-02 \\ \hline \\ 1.91E-07 \\ \pm 3.22E-03 \\ \hline \\ -5.17E-01 \\ \pm 8.36E-03 \\ \hline \\ 1.60E-01 \\ \pm 1.17E-02 \\ \hline \\ -1.83E-01 \\ \pm 1.37E-02 \\ \hline \\ 2.87E-07 \\ \pm 1.25E-02 \\ \hline \\ -3.62E-01 \\ \pm 7.42E-03 \end{array}$

mir-310s (KT40/KT40)		3.08E+01	1.25E+01	-4.46E-01	1.36 ± 2.44 E-02	1.34E-01
well-fed		±2.57E-02	±3.83E-02	±2.57E-02	$p^{Control well-fed} = 6.35E-04$	±7.74E-03
mir-310s		3 06E+01	1 27E+01	-2 91E-01	1.22	8 76E-02
(KT40/KT40)		±5.07E-02	±5.30E-02	±5.07E-02	$\pm 4.31\text{E}-02$	±1.53E-02
Control					1 00	
(w^{1118})		2.22E+01	4.41	-7.95E-07	±1.80E-02	2.39E-07
well-fed	_	±2.57E-02	±3.30E-02	±2.57E-02		±7.73E-03
Control		2.30E+01	5.33	9.29E-01	5.25E-01	-2.80E-01
(W ¹¹¹⁰) starved	CG11080	$\pm 1.08E-02$	±1.54E-02	±1.08E-02	$\pm 3.96\text{E}-03$ n ^{Control} well-fed=1 33E-05	±3.27E-03
mir-310s	011009				<u>p</u> <u>-1.55E-05</u> 2.15	
(KT40/KT40)		2.15E+01 +0.71E.02	3.30 +2.00E.02	-1.10 +0.71E_02	±1.44E-02	3.32E-01
well-fed	-	±9./1E-03	±3.00E-02	±9.71E-03	p ^{Control well-fed} =9.64E-07	±2.92E-03
mir-310s		2.30E+01	5.10	6.99E-01	6.16E-01	-2.10E-01
(A140/A140) starved		±1.41E-02	±2.10E-02	±1.41E-02	$\pm 0.0/E-0.5$ n ^{Control well-fed} =3 49E-05	±4.26E-03
Control		2 205 101	1.515+01	2.195.07	1.00	0.575.00
(w^{1118})		3.29E+01 +8.65E-03	1.51E+01 +2.24E-02	-3.18E-07 +8.65E-03	±5.97E-03	9.5/E-08 +2.60E-03
well-fed	-	±0.05E-05	±2.24L-02	±0.05E-05	2.10	±2.00E-05
Control		3.17E+01	1.40E+01	-1.12	2.18 +2.56E_01	3.38E-01
starved	<i>aa1526</i>	±1.71E-01	±1.72E-01	±1.71E-01	p ^{Control well-fed} =9.14E-03	±5.15E-02
mir-310s	CG15369	2 20E±01	1 47E±01	4 16E 01	1.33	1 25E 01
(KT40/KT40)		$\pm 8.31E-02$	$\pm 8.78E-02$	$\pm 8.31E-02$	±7.67E-02	$\pm 2.50E-02$
well-fed	-				p ^{Control well-jed} =1.17E-02	
mir-510s (KT40/KT40)		3.11E+01	1.32E+01	-1.86	5.04 ±2.06E-01	5.61E-01
starved		±8.40E-02	±8.54E-02	$\pm 8.40E-02$	p ^{Control well-fed} =2.12E-04	±2.53E-02
Control		3 60E+01	1 82E+01	0.00	1.00	0.00
(w^{III8})		±1.55E-01	±1.57E-01	±1.55E-01	±1.03E-01	±4.68E-02
Control					2 20	
(w^{1118})		3.48E+01	1.70E+01	-1.13	±9.23E-02	3.41E-01
starved	CG16884	±0.19E-02	±0.29E-02	±0.19E-02	p ^{Control well-fed} =1.02E-03	±1.80E-02
mir-310s	010007	3.63E+01	1.81E+01	-8.92E-02	1.06	2.69E-02
(K140/K140) well-fed		±5.23E-02	±5.95E-02	±5.23E-02	$\pm 3.80E-02$ n ^{Control well-fed} =6 50F-01	±1.57E-02
mir-310s	-	2 405 101	1 715+01	1.12	2.18	2 205 01
(KT40/KT40)		3.49E+01 +1.49E-01	1.71E+01 +1.50E-01	-1.13 +1.49E_01	±2.27E-01	3.39E-01 +4.48E-02
starved		±1.47E 01	±1.50L 01	±1.49£ 01	p ^{Control well-fed} =8.67E-03	±4.40L 02
Control		2.19E+01	4.11	-7.95E-07	1.00 +7 30E-03	2.39E-07
well-fed		±1.06E-02	±2.32E-02	±1.06E-02	±7.50E-05	±3.18E-03
Control		2 30E+01	5 32	1 22	4.30E-01	-3.67E-01
(w^{1118})		$\pm 1.63E-02$	±1.96E-02	±1.63E-02	$\pm 4.86\text{E-03}$	$\pm 4.91E-03$
starved	CG30360				p ^{control weir-jeu} =3.35E-0/	
(KT40/KT40)		2.27E+01	4.50	3.92E-01	$\pm 7.78E-03$	-1.18E-01
well-fed		± 1.47 E-02	±3.19E-02	$\pm 1.47E-02$	p ^{Control well-fed} =2.40E-05	$\pm 4.41E-03$
mir-310s		2.34E+01	5.52	1.41	3.76E-01	-4.24E-01
(KT40/KT40)		±2.02E-02	±2.55E-02	±2.02E-02	$\pm 5.23 \text{E}-03$	±6.08E-03
Control					р -2.36E-0/	<u> </u>
(w^{1118})		1.78E+01	-6.36E-07			
well-fed	-	±∠.0/E-02	±2.07E-02			
Control	D=120	1.77E+01	0.00			
(W ¹¹⁰) starved	кріз2	±1.09E-02	±1.09E-02			
mir-310s	-	1.000 + 0.1	1.275.04	1		
(KT40/KT40)		1.82E+01 +2.84F_02	-1.2/E-06 +2.84F-02			
well-fed		-2.071-02	-2.07L-02			

mir-310s (KT40/KT40)		1.79E+01 +1.55E-02	6.36E-07 +1.55E-02			
starved		-1.551 02	No Powerse 7	Transprintago		
<u> </u>			NU KEVEISE I	Tanseriptase	1	
Control		3.28E+01	1.50E+01	1.50E+01	3.07E-05	-4.51
(W ¹¹¹⁰)		±1.19E-01	±1.19E-01	±1.19E-01	±2.64E-06	±3.59E-02
Well-fed						
Control		3.28E+01	1.51E+01	1.51E+01	2.92E-05	-4.53
(W ¹¹⁰)		±1.03E-01	±1.03E-01	±1.03E-01	±2.16E-06	±3.10E-02
starved	Rpl32					
mir-310s	-	3.22E+01	1.40E+01	1.40E+01	6.13E-05	-4.21
$(\Lambda I 40/\Lambda I 40)$		±9.10E-02	±9.10E-02	±9.10E-02	±3.82E-06	±2.74E-02
well-led						
mir-510s (VTAO/VTAO)		3.27E+01	1.49E+01	1.49E+01	3.37E-05	-4.47
$(\Lambda 140/\Lambda 140)$		±2.33E-01	±2.33E-01	±2.33E-01	±5.94E-06	$\pm 7.00E-02$
starved			Plat	e 3		
Control			1 144		1.00	
(w^{1118})		2.54E+01	7.51	0.00	+9 53E-03	0.00
well-fed		±1.38E-02	$\pm 2.92 \text{E-}02$	±1.38E-02		±4.14E-03
Control					3 29	
(w^{1118})		2.36E+01	5.80	-1.72	$\pm 373E-03$	5.17E-01
starved		$\pm 1.64 \text{E-}03$	$\pm 9.31E-03$	$\pm 1.64 \text{E-}03$	p ^{Control well-fed} =2.41E-09	±4.93E-04
mir-310s	CG31233		/		8.46E-01	
(KT40/KT40)		2.59E+01	7.76	2.41E-01	±2.13E-02	-7.25E-02
well-fed		$\pm 3.60 \text{E}-02$	± 1.04 E-01	$\pm 3.60 \text{E}-02$	p ^{Control well-fed} =2.79E-03	$\pm 1.09E-02$
mir-310s		2.425+01	(12	1.00	2.12	2 2(E 01
(KT40/KT40)		2.43E+01	6.43	-1.08	±2.82E-02	3.26E-01
starved		±1.91E-02	$\pm 2.24 \text{E}-02$	±1.91E-02	p ^{Control well-fed} =2.96E-06	±5./4E-03
Control		2.45E+01	1.665+01	(2(E 07	1.00	1.01E.07
(w^{1118})		5.45E+01 +7.64E 02	1.00E+01	0.30E-07	±5.16E-02	-1.91E-07
well-fed		± 1.04 E-02	±8.00E-02	± 1.04 E-02		±2.30E-02
Control		2 15E±01	1 27E±01	2.02	7.64	9 92E 01
(w^{1118})		5.13E+01 +2.45E 02	1.3/E+01 +2.57E 02	-2.93	±1.84E-01	0.03E-01 +1.04E.02
starved	Cnr62Rc	±3.43E-02	±3.37E-02	±3.43E-02	p ^{Control well-fed} =4.10E-06	±1.04E-02
mir-310s	Cprozbe	3 20E+01	1 38E+01	_2 79	6.90	8 39E-01
(KT40/KT40)		+5.19E-02	$+1.11F_{-01}$	+5 19E-02	±2.46E-01	+1.56E-02
well-fed		±5.17E 02	±1.11E 01	±5.17E 02	p ^{Control well-fed} =1.94E-05	±1.50E 02
mir-310s		3.01E+01	1 23E+01	-4 31	1.98E+01	1 30
(KT40/KT40)		$\pm 1.61E-02$	$\pm 2.00E-02$	$\pm 1.61E-02$	±2.22E-01	$\pm 4.84E-03$
starved					p ^{Control well-jed} =1.29E-07	
Control		3.25E+01	1.46E+01	-3.18E-07	1.00	9.57E-08
$(w^{(11)})$		±8.92E-02	±9.28E-02	±8.92E-02	$\pm 6.37E-02$	±2.68E-02
Well-fed					7.015.01	
Control		3.29E+01	1.51E+01	5.13E-01	/.01E-01	-1.54E-01
(W ^{rre})		±1.73E-02	±1.96E-02	±1.73E-02	± 8.41 E-05 <i>p</i> Control well-fed-0.22E_02	±5.22E-03
starveu	Cpr72Ec				<u>p</u>	
(KTAO/KTAO)		2.80E+01	9.84	-4.76	$\pm 1.70E \pm 0.1$	1.43
(K140/K140) well_fed		±9.14E-03	$\pm 9.80E-02$	±9.14E-03	$\pm 1.712-01$ pControl well-fed=1 $1.6E-08$	±2.75E-03
mir_310s					7 40E+01	
(KT40/KT40)		2.62E+01	8.39	-6.21	+154	1.87
starved		±3.01E-02	±3.24E-02	±3.01E-02	p ^{Control well-fed} =1 19E-06	±9.07E-03
Control					1 00	
(w^{1118})		3.18E+01	1.39E+01	0.00	±8.06E-02	0.00
well-fed		±1.13E-01	±1.16E-01	$\pm 1.13E-01$		$\pm 3.41E-02$
Control	1	0.000.01	1.015.01	2.50	1.38E+01	
(w^{1118})	Cpr100A	2.79E+01	1.01E+01	-3.78	±1.89E-01	1.14
starved		±1.96E-02	$\pm 2.17E-02$	±1.96E-02	p ^{Control well-fed} =4.00E-07	±5.91E-03
mir-310s	1) 7 0E + 0.1	0.62	4.07	1.93E+01	1.00
(KT40/KT40)		2./8E+01	9.65	-4.2/	±5.45E-01	1.29
well-fed		±4.13E-02	±1.06E-01	±4.13E-02	p ^{Control well-fed} =4.90E-06	±1.24E-02

mir-310s (KT40/KT40) starved		2.84E+01 ±3.03E-02	1.06E+01 ±3.25E-02	-3.31 ±3.03E-02	9.93 $\pm 2.10\text{E-}01$ $p^{Control well-fed} = 2.43\text{E-}06$	9.97E-01 ±9.11E-03
Control					<u>p</u> <u>100</u>	
(w^{1118})		2.76E+01	9.77	-3.18E-07	$+4.26E_{-}02$	9.57E-08
well-fed		$\pm 6.26E-02$	$\pm 6.77 \text{E-}02$	$\pm 6.26E-02$	±4.20L-02	±1.89E-02
Control					8 04E-01	
(w^{1118})		2.79E+01	1.01E+01	3.15E-01	+2 55E-02	-9.50E-02
starved		$\pm 4.60 \text{E-}02$	$\pm 4.69E-02$	$\pm 4.60 \text{E-}02$	p ^{Control well-fed} =1.65E-02	±1.38E-02
mir-310s	Gal				6 25E-01	
(KT40/KT40)		2.86E+01	1.04E+01	6.79E-01	±7.62E-03	-2.04E-01
well-fed		$\pm 1.76E-02$	$\pm 9.91E-02$	$\pm 1.76E-02$	p ^{Control well-fed} =9.55E-04	$\pm 5.31E-03$
mir-310s	-	0.005.01	1.015.01	0.505.01	7.74E-01	1.115.01
(KT40/KT40)		2.80E+01	1.01E+01	3.70E-01	±1.02E-02	-1.11E-01
starved		±1.89E-02	$\pm 2.23 \text{E-}02$	±1.89E-02	p ^{Control well-fed} =6.50E-03	±5.68E-03
Control		2 00E ± 01	1.20E+01	2 195 07	1.00	0.57E.09
(w^{1118})		2.99E+01	1.20E±01	5.18E-07	±2.79E-02	-9.37E-08
well-fed		±4.09E-02	±4.03E-02	±4.09E-02		±1.23E-02
Control		2.61E±01	8 24	2.67	1.27E+01	1.10
(w^{1118})		$\pm 1.01E+01$		-3.07 $\pm 1.05E.02$	±1.73E-01	1.10 +5 88E 03
starved	Gasn	±1.95E-02	±2.10E-02	±1.95E-02	p ^{Control well-fed} =2.97E-07	±3.88E-03
mir-310s	Jusp	2 90F+01	1 08F+01	-1.16	2.23	3 49F_01
(KT40/KT40)		+2.701+01 $+2.72E_02$	$+1.001F_{-01}$	$+2.72E_{-0.02}$	±4.20E-02	+8.20E-03
well-fed	-	±2.72L-02	±1.01L-01	±2.72E-02	p ^{Control well-fed} =1.66E-05	±0.20L-05
mir-310s		2 76E+01	9 77	-2.24	4.72	6 74E-01
(KT40/KT40)		+1.90E-02	+2.24E-02	+1.90E-02	±6.19E-02	+5.72E-03
starved		±1.90E 02	±2.24L 02	±1.90E 02	p ^{Control well-fed} =6.65E-07	±5.72E 05
Control		1 79E+01	0.00			
(w^{1118})		$\pm 2.57E-02$	$\pm 2.57E-02$			
well-fed	-	-2.072 02	-2.072 02	-		
Control		1.78E+01	6.36E-07			
(w^{1110})		±9.16E-03	±9.16E-03			
starved	Rpl32			-		
mir-310s	1	1.81E+01	0.00			
(K140/K140)		±9.76E-02	±9.76E-02			
well-fed						
mir-310s (VTAO/VTAO)		1.78E+01	0.00			
(K140/K140)		±1.18E-02	±1.18E-02			
starveu			N. D 7	 		
<i>C</i> + 1			No Reverse I	ranscriptase		Γ
Control		3.30E+01	1.51E+01	1.51E+01	2.81E-05	-4.55
(W ¹¹⁰)		±6.88E-02	±6.88E-02	±6.88E-02	±1.34E-06	2.07E-02
Control	-					
(m ¹¹¹⁸)		3.29E+01	1.51E+01	1.51E+01	2.90E-05	-4.54
starved		±1.01E-01	±1.01E-01	±1.01E-01	±2.03E-06	3.04E-02
mir-310s	Rpl32					
(KT40/KT40)		3.23E+01	1.42E+01	1.42E+01	5.32E-05	-4.27
well-fed		$\pm 2.68 \text{E-}01$	$\pm 2.68 \text{E-}01$	±2.68E-01	±9.93E-06	8.06E-02
mir-310s	1	0.005.01	1.505.01	1.000	0 (7 7) 0-	
(KT40/KT40)		3.30E+01	1.52E+01	1.52E+01	2.67E-05	-4.57
starved		±9.89E-03	±9.89E-03	±9.89E-03	±1.83E-07	2.98E-03
			Plat	te 4	•	
Control					1 00	
(w ¹¹¹⁸)		2.55E+01	8.26	-3.18E-07	$\pm 2.42E-02$	9.57E-08
well-fed		±3.46E-02	±3.85E-02	±3.46E-02	2.122.02	$\pm 1.04 \text{E-}02$
Control	1				8.17E-01	0
(w^{1118})	GstD4	2.56E+01	8.55	2.91E-01	±1.43E-02	-8.77E-02
starved		$\pm 2.51E-02$	$\pm 2.63 \text{E}-02$	$\pm 2.51E-02$	p ^{Control well-fed} =2.85E-03	$\pm 1.57 E-03$
mir-310s	1	0.545+01	7.72	5 30E 01	1.45	1 (05.01
(KT40/KT40)		2.54E+01	1.12	-5.38E-01	±1.24E-02	1.62E-01
1		±1.23E-02	±3.9/E-02	±1.23E-02	p ^{Control well-fed} =7.65E-05	±3./1E-03

mir-310s		2.59E+01	8.72	4.55E-01	7.30E-01	-1.37E-01
starved		±1.08E-02	±1.58E-02	±1.08E-02	$\pm 5.40E-05$ p ^{Control well-fed} =3.97E-04	±3.26E-03
Control		2.69E+01	9.65	-6.36E-07	$1.00 +2.73E_{-}02$	1.91E-07
well-fed		±3.96E-02	±4.31E-02	±3.96E-02	-2.750 02	±1.19E-02
Control		3 17E+01	1 47E+01	5.08	2.95E-02	-1 53
(w ¹¹¹⁸)		±9.43E-03	±1.23E-02	±9.43E-03	±1.93E-04	±2.84E-03
mir-310s	Lsplbeta				1 05E+01	
(KT40/KT40)		2.39E+01	6.26	-3.39	±2.12E-01	1.02
well-fed	-	±2.93E-02	±4.78E-02	±2.93E-02	p ^{Control well-fed} =1.54E-06	±8.82E-03
mir-310s		2.40E+01	6.85	-2.80	6.98 +1 38E 01	8.44E-01
starved		±2.88E-02	±3.11E-02	±2.88E-02	$\pm 1.58E-01$ $p^{Control well-fed} = 1.83E-06$	±8.67E-03
Control		1 08E+01	2 57	6 36E 07	1.00	1.91E-07
(w^{1118})		$\pm 1.86E-02$	± 2.57 $\pm 2.52E-02$	±1.86E-02	±1.28E-02	±5.61E-03
well-fed					1 74E 02	
(w^{1118})		2.87E+01	1.17E+01	9.17	±4.95E-05	-2.76
starved	L an 2	±4.05E-02	±4.12E-02	±4.05E-02	p ^{Control well-fed} =1.64E-07	±1.22E-02
mir-310s	Lsp2	2.19E+01	4.30	1.72	3.03E-01	-5.19E-01
(KT40/KT40)		±2.81E-03	±3.78E-02	±2.81E-03	$\pm 5.89E-04$ pControl well-fed—6 01E 07	±8.45E-04
mir-310s	-				8.28E-02	1.00
(KT40/KT40)		2.34E+01 +2.49E-02	6.17 +2.74E-02	3.59 +2.49E-02	±1.44E-03	-1.08 +7.49E-03
starved		±2.49E-02	±2.74E-02	±2.49E-02	p ^{Control well-fed} =2.36E-07	±7.49E-05
Control		2.17E+01	4.53	-4.77E-07	1.00 +3.29E-02	1.44E-07
well-fed		±4.82E-02	±5.10E-02	±4.82E-02	-5.270-02	±1.45E-02
Control		2 18E+01	4 76	2 35E-01	8.50E-01	-7.06E-02
(w^{1118})		±2.57E-02	±2.69E-02	±2.57E-02	±1.52E-02	±7.74E-03
mir-310s	LvpH				9 32E-01	
(KT40/KT40)		2.23E+01	4.63	1.01E-01	±1.34E-02	-3.04E-02
well-fed	-	±2.00E-02	±4.30E-02	±2.06E-02	p ^{Control well-fed} =1.26E-01	±0.21E-03
mir-310s		2.29E+01	5.74	1.21	4.32E-01 +7 80E 04	-3.64E-01
starved		±2.60E-03	±1.19E-02	±2.60E-03	p ^{Control well-fed} =6.58E-05	±7.84E-04
Control		2 29E+01	5 71	_4 77E_07	1.00	1 44E-07
(w^{1118})		$\pm 1.60E-02$	±2.33E-02	$\pm 1.60E-02$	±1.11E-02	±4.82E-03
Control	-				6 26E-01	
(w^{1118})		2.34E+01	6.38	6.76E-01	±6.96E-03	-2.04E-01
starved	Møstl	±1.61E-02	±1./9E-02	±1.61E-02	p ^{Control well-fed} =8.94E-06	±4.83E-03
mir-310s	1118511	2.24E+01	4.78	-9.32E-01	1.91	2.80E-01
(K140/K140) well-fed		±5.28E-03	±3.81E-02	±5.28E-03	$\pm 0.99E-03$ p ^{Control well-fed} =2.62E-07	±1.59E-03
mir-310s		2 24E±01	5 22	4 80E 01	1.40	1 47E 01
(KT40/KT40)		$\pm 1.72E-01$	$\pm 1.72E-01$	$\pm 1.72E-01$	$\pm 1.76\text{E-01}$	$\pm 5.17E-02$
starved					p ^{control well-jed} =7.43E-02	
(w^{1118})		2.19E+01	4.70	-6.36E-07	±9.37E-03	1.91E-07
well-fed		±1.36E-02	±2.17E-02	±1.36E-02		±4.08E-03
Control		2.44E+01	7.39	2.69	1.55E-01	-8.10E-01
(W ¹¹⁰) starved		±9.25E-03	±1.21E-02	±9.25E-03	±9.93上-04 n ^{Control} well-fed=9 25F_02	±2.78E-03
mir-310s	mus209	0.105+01	4.0.4		1.38	1 205 01
(KT40/KT40)		2.19E+01 ±5.19E-03	4.24 ±3.81E-02	-4.61E-01 ±5.19E-03	±4.96E-03	1.39E-01 ±1.56E-03
well-fed	-	-0.171-05	-5.011-02	-5.171-05	p ^{Control well-fed} =3.74E-06	-1.501-05
mir-310s (KT40/KT40)		2.34E+01	6.20	1.51	5.52E-01 ±9.51E-04	-4.54E-01
starved		±3.90E-03	±1.22E-02	±3.90E-03	p ^{Control well-fed} =2.67E-07	±1.18E-03

$Control (w^{1118})$		1.72E+01	-6.36E-07			
well-fed		±1.69E-02	±1.69E-02			
Control		1 70E±01	6 36E 07			
(w^{1118})		$+7.88E_{-03}$	+7 88E-03			
starved	Rn132	±7.00L-05	±7.00L-05			
mir-310s	110152	1 76E+01	0.00			
(KT40/KT40)		$\pm 3.77E-02$	$\pm 377E-02$			
well-fed		-5.112 02	-5.172 02			
mir-310s		1 72E+01	1 27E-06			
(KT40/KT40)		$\pm 1.16E-02$	$\pm 1.16E-02$			
starved						
<i>a</i> 1		T	No Reverse 7	Transcriptase	Γ	Γ
Control		0.10. 501			2 505 05	
(W^{1110})		3.19+E01	1.4/E+01	1.47E+01	3.70E-05	-4.43
well-fed						
Control		2 205 101	1.225+01	1.225+01	0.045.05	1.00
(W ¹¹⁰)		3.30E+01	1.33E+01	1.33E+01	9.94E-05	-4.00
starved	Rpl32					
mir-310s	-	2.02E+01	1.275+01	1.27E+01	1.505.04	2.92
$(\Lambda 140/\Lambda 140)$		3.03E+01	1.2/E+01	1.2/E+01	1.50E-04	-3.82
well-led						
mir-510s (VTAO/VTAO)		2.05E±01	1 22E±01	1 22E±01	0.04E.05	4.00
(KI40/KI40) starved		5.05E+01	1.55E+01	1.55E+01	9.94E-03	-4.00
Starved			Dlat			
Control			1 141		1.00	
(w^{1118})		2.69E+01	8.55	-3.18E-07	1.00 +2.36E.02	9.57E-08
(W) well-fed		±3.37E-02	$\pm 3.55 \text{E-}02$	±3.37E-02	±2.50E-02	$\pm 1.01E-02$
Control					1.10	
(w^{1118})		2.67E+01	8.41	-1.33E-01	+1 29E-02	4.01E-02
(<i>W</i>)		±1.68E-02	$\pm 5.16E-02$	±1.68E-02	$p^{Control well-fed} = 2.30 E_{-0.2}$	±5.07E-03
mir-310s	Obp44a				<u>p</u> <u>2.50L-02</u> 1 52	
(KT40/KT40)		2.68E+01	7.95	-6.01E-01	$\pm 389E-02$	1.81E-01
well-fed		±3.72E-02	$\pm 5.92 \text{E-}02$	±3.72E-02	p ^{Control} well-fed=3.42E-04	±1.12E-02
mir-310s		0.665.01	0.10	4.005.01	1.35	1.005.01
(KT40/KT40)		2.66E+01	8.12	-4.28E-01	±1.19E-02	1.29E-01
starved		±1.28E-02	±3./8E-02	±1.28E-02	p ^{Control well-fed} =1.98E-04	±3.84E-03
Control		2.57E+01	7 22	1.500.07	1.00	4 795 09
(w^{1118})		2.3/E+01 +2.06E.02	/.32 ⊥2.24E_02	-1.39E-07	±1.43E-02	4./8E-08
well-fed		±2.00E-02	±2.34E-02	±2.00E-02		±0.20E-03
Control		2 /0E+01	6 70	-6.17E-01	1.53	1.86E-01
(w^{1118})		+7.92F-03	+4 94F-02	+7.92E-03	±8.39E-03	+2 38E-03
starved	Ohn56a	±7.92E 05	±4.94E 02	±7.92E 05	p ^{Control well-fed} =5.50E-06	±2.50E 05
mir-310s	oopeou	2 79E+01	9.05	1 73	3.02E-01	-5 21E-01
(KT40/KT40)		±2.00E-02	±5.02E-02	$\pm 2.00E-02$	$\pm 4.16\text{E}-03$	$\pm 6.01E-03$
well-fed					p ^{Control wen-jed} =1.22E-06	
mir-310s		2.75E+01	9.00	1.68	3.11E-01	-5.07E-01
(K140/K140)		±5.34E-02	±6.41E-02	±5.34E-02	$\pm 1.17E-02$	±1.61E-02
starved					peomoti wenyeu=3.0/E-06	
Control		2.46E+01	6.25	0.00	1.00	0.00
(W°) well_fed		±3.45E-02	±3.63E-02	±3.45E-02	±∠.41E-0∠	±1.04E-02
Control					1 64E-01	
(w^{1118})		2.56E+01	7.36	1.11	+5 41F-03	-3.34E-01
starved		±1.69E-02	$\pm 5.16E-02$	±1.69E-02	n ^{Control well-fed} =2 63E-05	±5.10E-03
mir-310s	Obp56e				1 76E-01	_
(KT40/KT40)		2.76E+01	8.76	2.51	$\pm 1.45 \text{E}-03$	-7.55E-01
well-fed		±1.19E-02	±4.76E-02	±1.19E-02	p ^{Control well-fed} =4.35E-06	±3.59E-03
mir-310s		2 (05:01	0.26	2.11	2.32E-01	()55 01
(KT40/KT40)		2.09E+01	8.30	2.11	±3.47E-03	-0.35E-01
starved		±2.14E-02	±4.13E-02	±2.14E-02	p ^{Control well-fed=5} .96E-06	±0.43E-03

Control (w ¹¹¹⁸)		2.56E+01 ±2.63E-02	7.30 ±2.85E-02	1.59E-07 ±2.63E-02	1.00 ±1.83E-02	-4.78E-08 ±7.90E-03
Control		2.93E+01	1.10E+01	3.75	7.44E-02	-1.13
starved	Ohn99h	±5.85E-02	±7.62E-02	±5.85E-02	$\pm 3.05E-03$ $p^{Control well-fed} = 9.65E-07$	±1.76E-02
mir-310s (KT40/KT40)	000000	2.17E+01	2.88	-4.42	2.14E+01 ±7.86E-02	1.33
well-fed	-	±5.31E-03	±4.64E-02	±5.31E-03	p ^{Control well-fed} =1.48E-09	±1.60E-03
(KT40/KT40)		2.39E+01 +6.43E-03	5.36 +3.61E-02	-1.94 +6.43E-03	±1.71E-02	5.83E-01 +1.94E-03
starved Control		-0.15E 05	1.155.01	-0.152.05	$\frac{p^{Control well-fed}=3.68E-08}{1.00}$	
(w^{1118})		2.99E+01 ±3.09E-02	1.15E+01 ±3.29E-02	-3.18E-07 ±3.09E-02	±2.16E-02	9.57E-08 ±9.31E-03
Control	-	2 86E+01	1 04E+01	-1.15	2.21	3 45E-01
(w ¹¹¹⁸) starved		±5.96E-02	±7.70E-02	±5.96E-02	$\pm 8.97E-02$ $p^{Control well-fed} = 1.92E-04$	±1.79E-02
mir-310s	Obst-A	2.88E+01	9.92	-1.62	3.07 +1.04E_01	4.88E-01
well-fed	_	±4.78E-02	±6.64E-02	±4.78E-02	$p^{Control well-fed} = 3.97E-05$	±1.44E-02
mir-310s (KT40/KT40)		2.80E+01	9.46	-2.07	4.20 ±7.39E-02	6.24E-01
starved		±2.56E-02	±4.38E-02	±2.56E-02	p ^{Control well-fed} =2.00E-06	±/./1E-03
(w^{1118})		2.67E+01 ±3.29E-02	8.33 ±3.47E-02	3.18E-07 ±3.29E-02	±2.26E-02	-9.57E-08 ±9.89E-03
well-fed Control	-	2 (7E+01	9.46	1 27E 01	9.16E-01	2.925.02
(W ¹¹¹⁸) starved		$\pm 4.36E-02$	8.46 ±6.54E-02	±4.36E-02	$\pm 2.75E-02$ n ^{Control well-fed=7 73E-02}	-3.83E-02 ±1.31E-02
mir-310s	pro-PO-A1	3.62E+01	1.73E+01	8.99	1.96E-03	-2.71
(KT40/KT40) well-fed		±2.55E-01	±2.59E-01	±2.55E-01	$\pm 3.78E-04$ $p^{Control well-fed} = 1.56E-06$	±7.68E-02
mir-310s (KT40/KT40)		3.62E+01	1.77E+01	9.39	1.50E-03 ±6.56E-04	-2.83
starved		±5.30E-01	±5.31E-01	±5.30E-01	p ^{Control well-fed} =1.56E-06	±1.59E-01
(w^{1118})		1.83E+01 +1.11E-02	0.00 +1.11E-02			
well-fed Control	-	±1.11E-02	±1.11E-02	-		
(w^{1118})		1.82E+01 ±4.88E-02	0.00 ±4.88E-02			
mir-310s	Rpl32	1 89F+01	-6 36E-07			
(KT40/KT40) well-fed		±4.61E-02	±4.61E-02			
mir-310s		1.85E+01	0.00			
starved		±3.56E-02	±3.56E-02			
Control			No Reverse 7	Transcriptase	I	
(w^{1118})		3.06E+01 ±1.02E-01	1.22E+01 ±1.02E-01	1.22E+01 ±1.02E-01	9.15E-05	-4.04
well-fed -RT Control	-	2.005+01	1.075+01	1.075+01		
(w ¹¹¹⁸) starved -RT		3.08E+01 ±1.01E-01	1.2/E+01 ±1.01E-01	$\pm 1.2/E+01$ $\pm 1.01E-01$	1.05E-04	-3.98
mir-310s	Rpl32	3.06E+01	1.20E+01	1.20E+01		2.01
(KT40/KT40) well-fed -RT		±1.08E-01	±1.08E-01	±1.08E-01	1.39E-04	-3.86
mir-310s (KT40/KT40)		2.99E+01	1.17E+01	1.17E+01	9.03E-05	-4 04
starved -RT		±7.07E-01	±7.07E-01	±7.07E-01	9.05E-05	-4.04
			Plat	te 6		

<i>Control</i> (w ¹¹¹⁸) well-fed		2.38E+01 ±3.20E-02	5.40 ±4.19E-02	1.11E-06 ±3.20E-02	1.00 ±2.20E-02	-3.35E-07 ±9.62E-03	
<i>Control</i> (w ¹¹¹⁸) starved	Such	2.43E+01 ±2.38E-02	6.23 ±5.19E-02	8.30E-01 ±2.38E-02	5.62E-01 $\pm 9.29E-03$ $p^{Control well-fed}=5.23E-05$	-2.50E-01 ±7.16E-03	
<i>mir-310s</i> (<i>KT40/KT40</i>) well-fed	SUCD	2.39E+01 ±3.60E-02	5.24 ±6.33E-02	-1.59E-01 ±3.60E-02	$1.12 \pm 2.80E-02$ p ^{Control well-fed} =3.08E-02	4.78E-02 ±1.08E-02	
<i>mir-310s</i> (<i>KT40/KT40</i>) starved	•	2.43E+01 ±1.63E-02	5.99 ±4.23E-02	5.95E-01 ±1.63E-02	$6.62E-01 \pm 7.46E-03 p^{Control well-fed} = 1.30E-04$	-1.79E-01 ±4.90E-03	
<i>Control</i> (w ¹¹¹⁸) well-fed		1.84E+01 ±2.71E-02	1.27E-06 ±2.71E-02				
<i>Control</i> (w ¹¹¹⁸) starved	Rn132	1.81E+01 ±4.62E-02	-6.36E-07 ±4.62E-02				
<i>mir-310s</i> (<i>KT40/KT40</i>) well-fed	10152	1.86E+01 ±5.21E-02	6.36E-07 ±5.21E-02				
<i>mir-310s</i> (KT40/KT40) starved		1.83E+01 ±3.91E-02	-6.36E-07 ±3.91E-02				
	No Reverse Transcriptase						
<i>Control</i> (w ¹¹¹⁸) well-fed		3.06E+01 ±1.02E-01	1.22E+01 ±1.02E-01	1.22E+01 ±1.02E-01	2.11E-05 ±1.45E-05	-3.68 3.08E-02	
<i>Control</i> (w ¹¹¹⁸) starved	Pn122	3.08E+01 ±1.01E-01	1.27E+01 ±1.01E-01	1.27E+01 ±1.01E-01	1.51E-05 ±1.03E-05	-3.82 3.05E-02	
<i>mir-310s</i> (<i>KT40/KT40</i>) well-fed	147152	3.06E+01 ±1.08E-01	1.20E+01 ±1.08E-01	1.20E+01 ±1.08E-01	2.45E-05 ±1.81E-05	-3.61 3.24E-02	
<i>mir-310s</i> (<i>KT40/KT40</i>) starved		2.99E+01 ±7.07E-01	1.17E+01 ±7.07E-01	1.17E+01 ±7.07E-01	3.05E-04 ±1.43E-04	-3.52 2.13E-01	

 a The relative mRNA levels were calculated by $2^{\text{-}\Delta\Delta\text{CT}}.$

^b Average (AVE) and standard error of the mean (SEM) values were calculated based on three

replicates for each genotype/condition/gene value.

^c Significance was calculated using two-tailed non-paired Student's t-test.

Flies were fed with nutritionally rich or poor medium for 10 days before analysis.

Table S3, related to Figure S1. *mir-310s* mutants exhibit global defects associated with nutritional stress

-								-	
Genotype/Condi	tion	Control		mir-310s	T	Со	ntrol		mir-310s
		(w^{1118})		(<i>KT40/KT40</i>)		(พ	(w^{1118})		(KT40/KT40)
Phenotype		well-fed ^a		well-fed ^a	ı	sta	rved ^a		starved ^a
Crop diameter ^b :									
(in mm)									
(AVE±SEM)		0.65 ± 0.05		0.85±0.04	4	0.44	± 0.05		0.44 ± 0.04
n=number of crops	S	n=12		n=10		n	=10		n=10
analyzed				p ^{Control well-fed} =	0.007			p^ <i>C</i>	ontrol starved=1,00
Lipid Accumulation	n:								
µg TAG equivalents	per								
mg protein		(3 days)		(3 days)		(10 days)			(10 days)
(AVE±SEM)		386.77±35.68	3	210.67±28.	.57	582.07	/±217.43	1	581.0±202.03
n=number of female	es	n=30		n=20		n = 30			n=30
analyzed				p ^{Control well-fed} =	0.008	p ^{Control} w	$^{\text{ell-fed}}=0.04$	p ^{Cont}	trol well-fed=0.0002
								p^{Co}	ntrol starved=0.006
Fecundity:									
Eggs laid per fly per	day								
(AVE±SEM)		16.48 ± 1.76		6.03±0.4					
n=number of female	es	n=49		n=50					
analyzed				p ^{Control} =0.0	04				
Relative egg laying		well-fed		l day starved	2 da	y starved	3 day star	ved	4 day starved
efficiency under									
starvation									
Control		1±0.01		0.95 ± 0.08	0.4	49±0.08	0.14±0.0	3	0.06 ± 0.02
(w^{1118})									
n=50									
mir-310s		1±0.19		0.31 ± 0.01	0.2	28±0.04	0.12±0.0	3	0.11±0.04
(<i>KT40/KT40</i>)	p	Control well-fed_		$p^{Control \ 1 \ day} =$	p ^{Cor}	trol 2 day =	p ^{Control 3 da}	У=	p ^{Control 4 day} =
n=50		7.82E-04		5.48E-04	8	.9E-03	2.22E-0	2	4.5E-01

^a Flies were fed with nutritionally rich and starvation medium for 10 days prior to analysis.

^b Maximum crop diameters were measured from bright field images using Adobe Photoshop

software.

Three biological replicates were analyzed for each genotype/condition.

Significance was tested using two-tailed non-paired Student's t-test.

Table S4, related to Figure 3. The mir-310s target Rab23, DHR96, and ttk in vitro

<i>3'UTR</i> Reporter	Control 3'UTR without mir- 310s binding site	Rab23 3`UTR	DHR96 3`UTR	ttk 3`UTR	negative control short Dg 3'UTR without mir- 310s binding site ^a	positive control long <i>Dg 3'UTR</i> with <i>mir</i> -310s binding site ^b
Luciferase						
Signal (Renilla/Firefly)	7 76E-02	2 41E-02	3 75E-02	3 60E-02	9 16E-02	2.09E-02
AVE±SEM	$\pm 3.62E-03$	±3.96E-03	±2.10E-03	±3.18E-03	±1.96E-03	±8.29E-04
Relative						
Luciferase						
Signal	1.00	3.11E-01	4.83E-01	4.63E-01	1.18	2.69E-01
AVE±SEM	±4.67E-02	±5.10E-02	±2.71E-02	±4.10E-02	±2.52E-02	±1.07E-02
		p=2.09E-04	p=1.54E-04	p=3.48E-04	p=1.14E-02	p=1.03E-05

Luciferase reporter assays were performed in three biological replicates for each gene.

Significance was tested using two-tailed non-paired Student's t-test.

The short (a) and long (b) 3 UTRs of a confirmed *mir-310s* target gene, *Dystroglycan* (Dg)

(YATSENKO et al. 2014), were used as negative and positive controls, respectively.

qRT-PCR									
Genotype/ Condition	C _T ^{Rab23} AVE±SEM ^b	C _T ^{Rp/32} AVE±SEM ^b	ΔC_T AVE±SEM ^b	$\begin{array}{c} \Delta\Delta \ C_T \\ AVE \pm SEM^b \end{array}$	Relative <i>Rab23</i> mRNA level ^{a,c} AVE± SEM ^b				
$Control (w^{1118}) well-fed$	2.42E+01 ±2.7E-01	1.85E+01 ±1.97E-01	5.71 ±8.18E-02	0.00 ±8.18E-02	1.00 ±5.18E-02				
<i>mir-310s</i> (<i>KT40/KT40</i>) well-fed	2.41E+01 ±1.04E-01	1.9E+01 ±5.34E-02	5.06 ±6.22E-02	-6.48E-01 ±7.23E-02	$1.57 \pm 7.08E-02 p^{Control well-fed} = 2.9E-03$				
Control (w ¹¹¹⁸) starved	2.8E+01 ±3.1E-01	1.86E+01 ±1.21E-01	9.32 ±1.79E-01	3.61 ±2.67E-01	$8.17E-02 \pm 1.4E-02$ p ^{Control well-fed} =1.04E-05				
<i>mir-310s</i> (<i>KT40/KT40</i>) starved	2.59E+01 ±1.98E-01	1.87E+01 ±9.29E-02	7.2 ±1.15E-01	1.49 ±1.52E-01	3.56E-01 $\pm 3.47E-02$ $p^{Control starved} = 5.64E-04$				
	C _T ^{DHR96} AVE±SEM	C _T ^{Rpl32} AVE±SEM	ΔC_T AVE±SEM	ΔΔ C _t AVE±SEM	Relative DHR96 mRNA level AVE± SEM				
$Control (w^{1118}) well-fed$	2.66E+01 ±1.87E-01	1.83E+01 ±1.34E-01	8.24 ±1.21E-01	0.00 ±6.43E-02	1.00 ±3.23E-02				
<i>mir-310s</i> (<i>KT40/KT40</i>) well-fed	2.66E+01 ±1.52E-01	1.90E+01 ±5.72E-02	7.61 ±8.62E-02	-6.35E-01 ±1.11E-01	1.55 ±9.1E-02 p ^{Control} well-fed =5.52E-03				
Control (w ¹¹¹⁸) starved	2.85E+01 ±1.14E+01	1.86E+01 ±1.14E-01	9.93 ±9.17E-02	1.69 ±9.36E-02	3.12E-01 ±1.43E-02 p ^{Control} well-fed =7.99E-06				
<i>mir-310s</i> (<i>KT40/KT40</i>) starved	2.75E+01 ±1.1E-01	1.86E+01 ±5.7E-02	8.87 ±5.79E-02	6.28E-01 ±6.06E-02	$6.47E-01 \pm 1.53E-02 p^{Control starved} = 1.3E-04$				
	C _T ^{ttk} AVE±SEM	C _T ^{Rpl32} AVE±SEM	ΔC_T AVE±SEM	$\begin{array}{c} \Delta\Delta \ C_{T} \\ AVE \pm SEM \end{array}$	Relative <i>ttk</i> mRNA level AVE± SEM				
$Control (w^{1118}) well-fed$	2.56E+01 ±2.48E-01	1.89E+01 ±2.06E-01	6.67 ±1.72E-01	0.00 ±5.53E-02	1.00 ±4.04E-02				
<i>mir-310s</i> (<i>KT40/KT40</i>) well-fed	2.64E+01 ±9.0E-02	1.97E+01 ±2.12E-01	6.66 ±1.61E-01	-4.0E-03 ±1.22E-01	$1.002 \pm 8.94E-02 p^{Control well-fed=9.54E-01}$				
Control (w ¹¹¹⁸) starved	2.69E+01 ±1.18E-01	1.91E+01 ±1.08E-01	7.82 ±1.03E-01	1.16 ±3.42E-01	$0.45 \pm 4.2E-02$ p ^{Control well-fed} =5.63E-05				
<i>mir-310s</i> (<i>KT40/KT40</i>) starved	2.64E+01 ±1.13E-01	1.93E+01 ±1.53E-01	7.17 ±1.61E-01	5.06E-01 ±1.39E-01	$\begin{array}{c} 0.70 \\ \pm 9.93 \text{E-02} \\ \text{p}^{Control \text{ starved}} = 2.14 \text{E-02} \end{array}$				
		Та	qMan MicroRNA Ass	say					
	C _T ^{mir-310} AVE±SEM	C _T ^{2S rRNA} AVE±SEM	ΔC_T AVE±SEM	$\begin{array}{c} \Delta\Delta \ C_{T} \\ \text{AVE} \pm \text{SEM} \end{array}$	Relative <i>mir-310</i> level AVE± SEM				
Control (w ¹¹¹⁸ /Oregon-R-C) well-fed	2.54E+01 ±2.26E+00	1.05E+01 ±2.26E+00	1.49E+01 ±4.45E-02	0.00 ±5.86E-02	1.00 ±4.07E-02				
Control (w ¹¹¹⁸ /Oregon-R-C) starved	2.42E+01 ±2.01E+00	9.83E+00 ±2.01E+00	1.43E+01 ±6.58+E-02	-6.14E-01 ±1.03E-01	$1.54 \pm 1.12E-01$ p ^{Control well-fied} =1.07E-02				
	C _T ^{mir-312} AVE±SEM	C _T ^{2S rRNA} AVE±SEM	ΔC_T AVE±SEM	ΔΔ C _t AVE±SEM	Relative <i>mir-312</i> level AVE± SEM				
Control (w ¹¹¹⁸ /Oregon-R-C) well-fed	2.55E+01 ±2.26E+00	9.48E+00 ±1.60E+00	1.60E+01 ±6.67E-01	0.00 ±1.03E-01	1.00 ±6.62E-02				
Control (w ¹¹¹⁸ /Oregon-R-C) starved	2.86E+01 ±2.23E+00	1.13E+01 ±1.31E+00	1.54E+01 ±1.00E+00	-5.27E-01 ±2.54E-01	1.49 ±2.53E-01 p ^{Control} well-fed = 2.94E-02				

Table S5, related to Figure 2 and 3. Relative mRNA and miRNA expression levels

^a The relative mRNA levels were calculated by $2^{-\Delta\Delta CT}$.

^b Average (AVE) and standard error of the mean (SEM) values were calculated using at least three biological replicates for each genotype and condition.

° Significance was tested using two-tailed non-paired Student's t-test.

Flies were fed with nutritionally rich and poor medium for 10 days prior analysis.

Table S6, related to Figure 4. Rab23 is upregulated at the germarial niche upon mir-310s loss

Construe/Condition	Rab23-expressing CpC percentage AVE±SEM ^a					
Genotype/ Condition	nagativa	po				
	negative	low	high			
w ¹¹¹⁸ ; Rab23::YFP::4xmyc well-fed n=6	17.75±2.41%	36.33±5.34%	45.92±6.19%			
<i>mir-310s; Rab23::YFP::4xmyc</i> well-fed n=6	4.46±3.1% p ^{w1118; Rab23::YFP::4xmyc} well-fed =0.0035	51.19±9.4%	44.35±10.95%			
w ¹¹¹⁸ ; Rab23::YFP::4xmyc starved n=6	6.94±3.47%	72.22±4.36%	20.83±4.08%			
<i>mir-310s; Rab23::YFP::4xmyc</i> starved n=6	7.54±3.71%	35.19±3.09%	57.28±4.7% p ^{w1118; Rab23::YFP::4xmyc} starved =0.00082			

^a Averages and the standard errors of the means were calculated using five replicates.

Significances between the percentages of the cap cells (CpCs) that differentially express Rab23 protein: Rab23 negative CpCs under well-fed condition and the CpCs that have high Rab23 expression under starvation condition were calculated using a two tailed Student's t-test.

In order to analyze the significance between the frequencies of CpCs that differentially express Rab23 protein [negative or positive (high or low)] in control and *mir-310s* mutant germaria under well-fed and starved conditions, two-way tables and chi-squared test with 6 degrees of freedom were used. Chi-square value is 11.311 and p value is 0.079227.

Table S7, related to Figure 4. Upon mir-310s loss or Rab23 overexpression, the number of Hh-

Genotype	number Hh speckles AVE±SEM			
51	well-fed	starved		
Control (w ¹¹¹⁸ /Oregon-R-C)	92.67±3.66 n=9	55.11 ± 8.62 n=9 p ^{Control well-fed} =1.04E-02		
mir-310s (KT40/KT40)	198.67 ± 17.53 n=9 p ^{Control well-fed} =7.25E-05	$169.33\pm6.09 \\ n=9 \\ p^{Control \text{ starved}} = 9.04\text{E-}09 \\ p^{mir-310s \text{ well-fed}} = 1.33\text{E-}01$		
bab1>Rab23 (bab1-Gal4/UAS-Rab23)	260.0 ± 26.86 n=9 p ^{Control well-fed} =2.41E-05	198.89 ± 11.96 n=9 p ^{Control starved} = 3.89E-08 p ^{bab1>Rab23} well-fed = 5.41E-02		

positive speckles in the germarium increases

Confocal images were analyzed using the particle analyzer tool from ImageJ software to quantify Hedgehog (Hh) speckle numbers.

p-values were calculated using two-tailed non-paired Student's t-test.

Table S8, related to Figure 4. Rab23 co-immunoprecipitated proteins

CG	Gene name
CG2108	Rab23
CG7920	CG7920
CG2152	Pcmt
CG4916	me31B
CG7445	fln
CG30395	CG30395
CG6821	Lsp1gamma
CG6803	Mf
CG8867	Jon25Bi
CG9769	eIF3-S5-1
CG5887	desat1
CG5654	yps
CG7113	scu
CG4153	eIF-2beta
CG4466	Hsp27
CG1742	Mgstl
CG16765	ps
CG7178	wupA
CG11844	vig2;fdy
CG5330	Nap1
CG2229	Jon99Fii
CG4769	CG4769
CG10306	CG10306
CG3800	CG3800
CG4533	l(2)efl
CG4183	Hsp26
CG18811	Capr
CG8308	alphaTub67C
CG1633	Jafrac1
CG9641	CG9641
CG45077	fau
CG34069	mt:CoII
CG5422	Rox8
CG8871	Jon25Biii
CG5885	BEST:CK012 96
CG13425	bl
CG5258	NHP2
CG10922	La
CG10578	DnaJ-1
CG10849	Sc2
CG6543	CG6543
CG4302	BEST:GH093
	93

CG5641	CG5641
CG8053	eIF-1A
CG6341	Eflbeta
CG4008	und
CG4170	vig
CG4666	CG4666
CG10279	Rm62
CG1469	Fer2LCH
CG13849	Nop56
CG6987	SF2
CG8189	ATPsyn-b
CG4193	dhd
CG4912	eEF1delta
CG6258	RfC38
CG8427	SmD3
CG10851	B52
CG3972	Cyp4g1
CG14999	RfC4
CG6617	CG6617
CG4003	pont
CG17136	Rbp1
CG31362	Jon99Cii
CG14813	deltaCOP
CG14813 CG10206	deltaCOP nop5
CG14813 CG10206 CG5313	deltaCOP nop5 RfC3
CG14813 CG10206 CG5313 CG5352	deltaCOP nop5 RfC3 SmB
CG14813 CG10206 CG5313 CG5352 CG32701	deltaCOP nop5 RfC3 SmB l(1)G0320
CG14813 CG10206 CG5313 CG5352 CG32701 CG8231	deltaCOP nop5 RfC3 SmB l(1)G0320 Tcp-1zeta
CG14813 CG10206 CG5313 CG5352 CG32701 CG8231 CG4376	deltaCOP nop5 RfC3 SmB I(1)G0320 Tcp-1zeta Actn
CG14813 CG10206 CG5313 CG5352 CG32701 CG8231 CG4376 CG8142	deltaCOPnop5RfC3SmBl(1)G0320Tcp-1zetaActnCG8142
CG14813 CG10206 CG5313 CG5352 CG32701 CG8231 CG4376 CG8142 CG4978	deltaCOPnop5RfC3SmBI(1)G0320Tcp-1zetaActnCG8142Mcm7
CG14813 CG10206 CG5313 CG5352 CG32701 CG8231 CG4376 CG8142 CG4978 CG4611	deltaCOPnop5RfC3SmBl(1)G0320Tcp-1zetaActnCG8142Mcm7CG4611
CG14813 CG10206 CG5313 CG5352 CG32701 CG8231 CG4376 CG8142 CG4978 CG4611 CG13240	deltaCOPnop5RfC3SmBI(1)G0320Tcp-1zetaActnCG8142Mcm7CG4611I(2)35Di
CG14813 CG10206 CG5313 CG5352 CG32701 CG8231 CG4376 CG4978 CG4611 CG13240 CG11835	deltaCOP nop5 RfC3 SmB l(1)G0320 Tcp-1zeta Actn CG8142 Mcm7 CG4611 l(2)35Di CG11835
CG14813 CG10206 CG5313 CG5352 CG32701 CG8231 CG4376 CG8142 CG4978 CG4611 CG13240 CG11835 CG45076	deltaCOP nop5 RfC3 SmB I(1)G0320 Tcp-1zeta Actn CG8142 Mcm7 CG4611 I(2)35Di CG11835 fau
CG14813 CG10206 CG5313 CG5352 CG32701 CG8231 CG4376 CG4978 CG4611 CG13240 CG1835 CG45076 CG7172	deltaCOP nop5 RfC3 SmB l(1)G0320 Tcp-1zeta Actn CG8142 Mcm7 CG4611 l(2)35Di CG11835 fau CG7172
CG14813 CG10206 CG5313 CG5352 CG32701 CG8231 CG4376 CG4978 CG4611 CG13240 CG11835 CG45076 CG7172 CG7436	deltaCOP nop5 RfC3 SmB I(1)G0320 Tcp-1zeta Actn CG8142 Mcm7 CG4611 I(2)35Di CG11835 fau CG7172 Nmt
CG14813 CG10206 CG5313 CG5352 CG32701 CG8231 CG4376 CG4978 CG4611 CG13240 CG45076 CG7172 CG7436 CG6693	deltaCOP nop5 RfC3 SmB I(1)G0320 Tcp-1zeta Actn CG8142 Mcm7 CG4611 I(2)35Di CG11835 fau CG7172 Nmt CG6693
CG14813 CG10206 CG5313 CG5352 CG32701 CG8231 CG4376 CG4376 CG4142 CG4978 CG4611 CG13240 CG45076 CG7172 CG7436 CG69306	deltaCOP nop5 RfC3 SmB I(1)G0320 Tcp-1zeta Actn CG8142 Mcm7 CG4611 I(2)35Di CG11835 fau CG7172 Nmt CG69306
CG14813 CG10206 CG5313 CG5352 CG32701 CG8231 CG4376 CG4978 CG4611 CG13240 CG45076 CG7172 CG7436 CG6930 CG9306 CG7917	deltaCOP nop5 RfC3 SmB I(1)G0320 Tcp-1zeta Actn CG8142 Mcm7 CG4611 I(2)35Di CG11835 fau CG7172 Nmt CG6693 CG9306 Nlp
CG14813 CG10206 CG5313 CG5352 CG32701 CG8231 CG4376 CG4376 CG4142 CG4978 CG4611 CG13240 CG11835 CG45076 CG7172 CG7436 CG69306 CG7917 CG15092	deltaCOP nop5 RfC3 SmB I(1)G0320 Tcp-1zeta Actn CG8142 Mcm7 CG4611 I(2)35Di CG11835 fau CG7172 Nmt CG69306 Nlp Jabbaa
CG14813 CG10206 CG5313 CG5352 CG32701 CG8231 CG4376 CG4376 CG4142 CG4978 CG4611 CG13240 CG45076 CG7172 CG7436 CG693 CG9306 CG7917 CG15092 CG8977	deltaCOP nop5 RfC3 SmB I(1)G0320 Tcp-1zeta Actn CG8142 Mcm7 CG4611 I(2)35Di CG11835 fau CG7172 Nmt CG6693 CG9306 Nlp Jabba Cctgamma
CG14813 CG10206 CG5313 CG5352 CG32701 CG8231 CG4376 CG4376 CG4142 CG4978 CG4611 CG13240 CG11835 CG45076 CG7172 CG7436 CG69306 CG7917 CG15092 CG8977 CG13887	deltaCOP nop5 RfC3 SmB I(1)G0320 Tcp-1zeta Actn CG8142 Mcm7 CG4611 I(2)35Di CG11835 fau CG7172 Nmt CG6693 CG9306 Nlp Jabba Cctgamma CG13887
CG14813 CG10206 CG5313 CG5352 CG32701 CG8231 CG4376 CG4376 CG4142 CG4978 CG4611 CG13240 CG11835 CG45076 CG7172 CG7436 CG693 CG7917 CG15092 CG8977 CG13887 CG7637	deltaCOP nop5 RfC3 SmB I(1)G0320 Tcp-1zeta Actn CG8142 Mcm7 CG4611 I(2)35Di CG11835 fau CG7172 Nmt CG6693 CG9306 Nlp Jabba Cctgamma CG13887 CG7637

CG18067	CG18067
CG8844	Pdsw
CG17686	DIP1
CG5289	Pros26.4
CG5047	mTerf3
CG4799	Pen
CG11107	CG11107
CG5374	T-cp1
CG4422	Gdi
CG18591	SmE
CG8715	lig
CG4082	Mcm5
CG2216	Fer1HCH
CG12203	CG12203
CG10628	CG10628
CG3029	or
CG5167	CG5167
CG12306	polo
CG4729	CG4729
CG6519	Cp15
CG30185	Gr59f
CG7182	CG7182
CG17566	gammaTub37 C
CG11999	CG11999
CG16725	Smn
CG17280	levy
CG3446	CG3446
CG12400	CG12400
CG4553	CG4553
CG8322	ATPCL
CG3039	ogre
CG6094	CG6094
CG10097	CG10097
CG1489	Pros45
CG14207	HspB8
CG17611	eIF6
CG3333	Nop60B
CG7409	CG7409
CG3944	ND23
CG30008	CG12138
CG5371	RnrL
CG3267	1(2)04524
÷	
CG4824	BicC

CG15481	Ski6
CG14476	BcDNA.GH0
CG3436	CG3436
CG31249	CG7477
CG6746	CG6746
CG7581	Bub3
CG7378	CG7378
CG8905	Sod2
CG6013	CG6013
CG1616	dpa
CG1938	Dlic
CG4634	Nurf-38
CG7911	CG7911
CG3747	Eaat1
CG4164	CG4164
CG6202	Surf4
CG4619	CG4619
CG13126	CG13126
CG5703	CG5703
CG31523	CG9798
CG9155	Myo61F
CG8258	CG8258
CG30176	wibg
CG8947	26-29-р
CG3710	TfIIS
CG3606	caz
CG1249	SmD2
CG13163	CG13163
CG3683	CG3683
CG12984	CG12984
CG8547	CG8547
CG8542	Hsc70-5
CG7033	CG7033
CG4206	Mcm3
CG12163	CG12163
CG3564	CHOp24
CG10833	Cyp28d1
CG5826	Prx3
CG8190	eIF2B-gamma
CG5183	KdelR
CG7006	CG7006
CG12357	Cbp20
CG4274	fzy
CG7830	Ostgamma

CG16912	CG16912	CG2910	nito	CG30149	rig	CG9159	Kr-h2
CG5508	BcDNA	CG15735	CG15735	CG6235	tws	CG31717	CG31717
CG3416	Mov34	CG1877	lin19	CG3678	CG17556	CG18347	CG18347
CG7483	eIF4AIII	CG8749	snRNP-U1-	CG10210	tst	CG4038	CG4038
CG17437	wds	CG5548	70K	CG8548	Kap-alpha1	CG10498	cdc2c
CG4020	CG4020	CG8711	Cul 4	CG3068	aur	CG13472	CG13472
CG9548	CG9548	CG16083	slan A	CG2175	CG2175	CG6841	CG6841
CG18444	alphaTry	CG18559	SKpA Cyp309a2	CG6375	pit	CG9350	CG9350
CG1101	Refl	CG7946	CG7946	CG3295	CG3295	CG10472	CG10472
CG10297	Acp65Aa	CG3845	NAT1	CG9018	CG9018	CG6948	Clc
CG5000	msps	CG13298	CG13298	CG3959	pelo	CG12000	Prosbeta7
CG3420	CG3420	CG33104	eca:n24-2	CG9799	CG9799	CG1179	LysB;LysD;L
CG14309	CG14309	CG2014	CG2014	CG14224	Ubqn	CG11777	ysA;LysE CG11777
CG9987	CG9987	CG5555	CG5555	CG11092	Nup93-1	CG1685	nen
CG7123	LanB1	CG9741	Dhod	CG6866	loqs	CG33129	CG6089
CG1751	Spase25	CG3424	path	CG1119	Gnf1	CG33503	Cyn12d1-d
CG8680	CG8680	CG10687	Aats-asn	CG8625	Iswi	CG4039	Mcm6
CG6137	aub	CG2621	soo	CG9128	Sac1	CG9547	CG9547
CG3422	Pros28.1	CG13091	³⁵⁵ CG13091	CG3815	CG3815	CG10333	CG10333
CG10469	CG10469	CG42807	CG6183	CG4051	egl	CG9441	Pu
CG7619	Pros54	CG3917	Grin84	CG34074	mt:CoIII	CG3157	ru gammaTub23
CG1828	dre4	CG3909	CG3909	CG1091	CG1091		C C
CG34026	CG34026	CG3664	Rabs	CG13935	Cpr62Bb	CG5001	CG5001
CG3359	mfas	CG3059	NTPase	CG3299	Vinc	CG5193	TfIIB
CG7361	RFeSP	CG15877	CG15877	CG8397	CG8397	CG18124	mTTF
CG9054	Ddx1	CG32441	CG32441	CG2867	Prat	CG7929	ocn
CG8351	Tcp-1eta	CG6416	Zasp66	CG11015	CoVb	CG12128	CG12128
CG16904	CG16904	CG1548	cathD	CG9889	yellow-d	CG3320	Rab1
CG11804	ced-6	CG8409	Su(var)205	CG2071	Ser6	CG1401	Cul-5
CG9302	CG9302	CG13277	LSm7	CG3582	U2af38	CG3412	slmb
CG7697	CstF-64	CG10203	x16	CG3561	Dbp21E2	CG15433	Elp3
CG9172	CG9172	CG4115	CG4115	CG8648	Fen1	CG4152	l(2)35Df
CG9383	asfl	CG13570	spag	CG7833	Orc5	CG3501	CG3501
CG10045	GstD1	CG12908	Ndg	CG33141	sns	CG11397	glu
CG7488	CG7488	CG11785	bai	CG7288	CG7288	CG9253	CG9253
CG4760	bol	CG15531	CG15531	CG2031	Hpr1	CG4365	CG4365
CG1453	Klp10A	CG6249	Csl4	CG1307	CG1307	CG1/454	CG1/454
CG6782	sea	CG8827	Ance	CG9749	Abi	CG/9/0	UG/9/0
CG7008	Tudor-SN	CG3200	Reg-2	CG5272	gnu	CG1406	UZA
CG11876	CG11876	CG1703	CG1703	CG10159	BEAF-32	CG3099	msi
CG4463	Hsp23	CG4447	CG4447	CG31368	CG31368	CG3625	003625
CG4279	LSm1	CG11837	CG11837	CG11137	CG11137	CG5358	Art4
CG11989	vnc	CG7359	Sec22	CG3071	EG:25E8.3	CG8571	smid
CG5864	AP-1sigma	CG5670	Atpalpha	CG14788	ns3	CG10226	CG10226
CG44255	CG13644	CG10360	ref(2)P	CG4088	lat	CG10326	CG10326
CG10212	SMC2	CG2604	CG2604	CG7109	mts	CG1/018	CG1/018
CG10470	CG10470	CG5252	Ranbp9	CG3056	SSX	668553	SeiD
-		1	-				

CG9267	CG9267	CG11241	CG11241	CG1634	Nrg	CG7238	sip1
CG3262	CG3262	CG4857	tyf	CG2161	Rga	CG3151	Rbp9
CG5205	CG5205	CG7910	CG7910	CG6851	Mtch	CG6197	CG6197
CG12325	CG12325	CG5442	SC35	CG14213	Rcd-1	CG10622	Sucb
CG9191	Klp61F	CG2917	Orc4	CG2925	noi	CG17492	mib2
CG4609	fax	CG5266	Pros25	CG2789	CG2789	CG12878	btz
CG7375	CG7375	CG5923	DNApol-	CG12323	Prosbeta5	CG9050	psd
CG5726	CG5726	CC9295	alpha73	CG2051	CG2051	CG12050	CG12050
CG4097	Pros26	CG4303	Rif/91 Bap60	CG5942	brm	CG31322	Aats-met
CG11984	CG11984	CG1081	Bapoo	CG4901	CG4901	CG10189	CG10189
CG10327	ТВРН	CG8453	Cup6g1	CG17255	nocte	CG17337	CG17337
CG9829	poly	CG7382	Cypogr CG7382	CG9300	CG9300	CG8156	Arf51F
CG11007	CG11007	CG5677	Space 22 23	CG9399	CG9399	CG32549	CG32549
CG6601	Rab6;Rab39	CG5581	Ote	CG2358	twr	CG4091	CG4091
CG17608	fu12	CG1512	Cul-2	CG12473	stnB	CG18076	shot
CG12170	CG12170	CG10850	ida	CG14472	poe	CG9250	Mpp6
CG6450	lva	CG3265	Fb1	CG12320	CG12320	CG34387	futsch
CG17285	Fbp1	CG14542	LUI vps2	CG18259	CG18259	CG2684	lds
CG3509	CG3509	CG7626	vps2	CG6113	Lip4	CG12752	Nxt1
CG5655	Rsfl	CG10535	Spt3	CG18190	CG18190	CG12031	MED14
CG2034	anon-i1	CG7175	mTerf5	CG6768	DNApol-	CG12298	sub
CG9246	CG9246	CG11043	Nup205	CG6008	epsilon etn:Cdlo2	CG6967	CG6967
CG12333	CG12333	CG8454	Vps16A	CG4461		CG1490	Usp7
CG3605	CG3605	CG14802	MED18	CG3312	Rnp4F	CG4268	Pitslre
CG4086	Su(P)	CG6311	Fdc3	CG6582		CG14257	CG14257
CG1963	Pcd	CG6339	rad50	CG8705	nut	CG12217	PpV
CG12352	san	CG7704	Taf5	CG44248	Snp	CG32732	CG12542
CG10673	CG10673	CG5949	DNApol-delta	CG45076	CG45076	CG6354	Rb97D
CG31137	twin	CG1768	dia	CG10415	TfIIEalpha	CG10153	CG10153
CG14100	CG14100	CG8360	CG8360	CG1057	MED31	CG33113	Rtnl1
CG3224	CG3224	CG18125	Send2	CG12363	Dlc90F	CG1750	CG1750
CG11077	CG11077	CG10254	CG10254	CG4254	tsr	CG18273	CG18273
CG12343	Syf2	CG18543	mtrm	CG5198	CG5198	CG1216	mri
CG9802	Сар	CG9143	CG9143	CG6717	Spn28B	CG11981	Prosbeta3
CG2875	CG2875	CG33523	CG33523	CG3697	mei-9	CG6995	Saf-B
CG9621	Adgf-D	CG12702	CG12702	CG5222	IntS9	CG7351	PCID2
CG8323	CG8323	CG8306	CG8306	CG9742	SmG	CG8545	CG8545
CG33214	Glg1	CG3431	Uch-L5	CG7595	ck	CG6805	CG6805
CG5913	CG5913	CG9446	CG9446	CG4665	Dhpr	CG9323	CG9323
CG4241	att-ORFA	CG9890	CG9890	CG6958	Nup133	CG17259	CG17259
CG5495	Txl	CG1956	R	CG4118	nxf2	CG32075	CG6316
CG6907	CG6907	CG34325	CG34325	CG5989	CG5989	CG32211	Taf6
CG6796	CG6796	CG14995	CG14995	CG4215	spel1	CG18069	CaMKII
CG5553	DNApol-	CG4798	l(2)k01209	CG31671	tho2	CG9774	rok
CG2076	CG2076	CG32638	CG32638	CG11887	Elp2	CG9791	CG9791
CG11416	uri	CG10988	l(1)dd4	CG5208	Patr-1	CG17947	alpha-Cat
CG11875	Nup37	CG3808	CG3808	CG3291	pcm	CG8778	CG8778
	*			-	*		

CG12272	CG12272	CG7831	ncd	CG1911	CAP-D2	CG2244	MTA1-like
CG8602	CG8602	CG7108	DNApol-	CG7839	CG7839	CG2078	Myd88
CG7433	CG7433	CG31852	Tap42	CG31048	spg	CG13492	CG13492
CG6349	DNApol-	CG8448	mrj	CG14286	CG14286	CG1725	dlg1
CG5714	ecd	CG3173	IntS1	CG15701	CG15701	CG14215	CG14215
CG30021	metro	CG5465	MED16	CG6176	Grip75	CG11722	CG11722
CG34033	CG34033	CG16892	CG16892	CG8440	Lis-1	CG9601	CG9601
CG5819	CG5819	CG7718	CG7718	CG9916	Cyp1	CG12267	CG12267
CG4780	membrin	CG14444	APC7	CG1709	Vha100-1	CG31418	CG31418
CG12113	IntS4	CG8729	rnh1	CG4749	CG4749	CG33106	mask
CG1318	Hexo1	CG40300	AGO3	CG18780	MED20	CG7261	CG7261
CG6233	Ufd1-like	CG4379	Pka-C1	CG4261	Hel89B	CG10347	CG10347
CG1372	vl	CG3423	SA	CG2158	Nup50	CG11821	Cyp12a5
CG7899	Acph-1	CG31390	MED7	CG6875	asp	CG10923	Klp67A
CG10418	CG10418	CG34034	CG34034	CG9841	EfSec	CG6364	CG6364
CG33217	CG33217	CG1440	CG1440	CG33122	cutlet	CG5116	CG5116
CG6363	MRG15	CG9104	CG9104	CG9591	omd	CG6673	GstO2
CG34407	Not1	CG4764	CG4764	CG5008	GNBP3	CG10092	CG10092
CG6418	CG6418	CG6769	CG6769	CG7741	CG7741	CG12896	Prx2540-2
CG11414	CG11414	CG12372	spt4	CG4364	CG4364	CG15645	cerv
CG18176	defl	CG7338	CG7338	CG1666	Hlc	CG33180	Ranbp16
CG32721	NELF-B	CG18332	CSN3	CG7764	mrn	CG11061	GM130
CG8725	CSN4	CG8211	IntS2	CG4291	CG4291	CG14299	CG14299
CG10215	Erec1	CG32438	Smc5	CG9248	CG9248	CG8426	l(2)NC136
CG7670	WRNexo	CG11132	DMAP1	CG12785	Mat89Ba	CG31278	CG31278
CG10990	Pdcd4	CG5168	CG5168	CG1945	faf	CG2669	hd
CG3460	Nmd3	CG10261	aPKC	CG17665	IntS3	CG10582	Sin
CG11909	tobi	CG2146	didum	CG9755	pum	CG8610	Cdc27
CG1669	kappaB-Ras	CG12018	CG12018	CG2206	l(1)G0193	CG7180	CG7180
CG10545	Gbeta13F	CG2941	CG2941	CG5800	CG5800	CG8815	Sin3A
CG4165	CG4165	CG7003	Msh6	CG11990	hyx	CG33056	CG10517
CG8590	Klp3A	CG3699	EG:BACR7A	CG13957	CG13957	CG7825	Rad17
CG33505	U3-55K		4.14	CG7999	MED24	CG4700	Sema-2a
CG4845	psidin	CG34424	CG34424	CG8019	hay	CG42600	clos
CG10630	blanks	CG18/29	zwilch	CG9925	CG9925	CG8367	cg
CG3642	Clp	CG5643	wdb	CG11710	CG11710	CG11330	cort
CG18600	CG18600	CG9630	CG9630	CG2124	CG2124	CG4561	Aats-tyr
CG1276	TfIIEbeta	CG9623	1f	CG16865	CG16865	CG6814	Asun
CG12391	CG12391	CG31716	Cnot4	CG17912	CG17912	CG30463	pgant9
CG10572	Cdk8	CG6603	Hsc/0Cb	CG12819	sle;CG12592	CG1258	pav
CG42468	Sfp24F	CG8392	Prosbetal	CG9953	CG9953	CG42574	ctrip
CG10938	Prosalpha5	CG1009	Psa	CG9067	CG9067	CG3975	Pol32
CG3093	dor	CG30488	CG30488	CG9297	CG9297	CG8771	CG8771
CG4572	CG4572	CG7843	Ars2	CG16812	CG16812	CG11143	Inos
CG2699	Pi3K21B	CG11334	CG11334	CG9997	CG9997	CG11799	fd68A
CG5884	par-6	CG2072	Madl	CG4633	Aats-ala-m	CG6760	Pex1
CG1597	CG1597	CG32498	dnc	CG17242	CG17242	CG1664	sbr
1				r			1

CG34408	CG34408	CG4790	fs(1)M3		CG15737	wisp	CG2707	fs(1)Ya
CG9198	shtd	CG1569	rod		CG31793	CG17338	CG8153	mus210
CG7989	wcd	CG17704	Nipped-B	1	CG10042	MBD-R2	CG1915	sls
CG33139	Ranbp11	CG6379	CG6379	1	CG7660	Pxt	CG5859	IntS8
CG32473	CG32473	CG2049	Pkn	1	CG1031	alpha-Est1	CG12196	egg
CG9088	lid	CG6415	CG6415		CG6623	SIDL	CG13397	ESTS:172F5T
CG10726	barr	CG9911	CG9911		CG10837	eIF-4B	CG6206	LM408
CG8915	CG8915	CG1345	Gfat2		CG1782	Uba1	CG3520	CG3520
CG8318	Nf1	CG4069	CG4069		CG32562	xmas-2	CG12005	Mms19
CG10542	Bre1	CG3228	kz		CG12010	CG12010	CG33554	Nipped-A
CG11486	CG11486	CG9594	Chd3		CG11411	fs(1)N	CG6535	tefu
CG33484	zormin	CG2864	Parg		CG1433	Atu	CG31445	CG11955
CG6677	ash2	CG11120	CG11120		CG4453	Nup153	CG5874	Nelf-A
CG15811	Rop	CG7235	Hsp60C		CG42250	lqfR	CG6539	Gem3
CG4589	Letm1	CG7162	MED1		CG3041	Orc2	CG7337	CG7337
CG6170	HDAC6	CG4792	Dcr-1		CG43078	CG43078	CG44162	Strn-Mlck
CG2701	crm	CG12052	lola		CG4554	CG4554	CG2520	lap
CG31045	Mhcl	CG6511	CG6511	1	CG7487	RecQ4	CG14796	Mur2B
CG13142	CG13142	CG6606	Rip11	1	CG12153	Hira	CG2747	CG2747
CG18140	Cht3	CG17209	CG17209	1	CG32604	l(1)G0007	L	•
CG3999	CG3999	CG1643	Atg5	1	CG12090	CG12090		
CG3329	Prosbeta2	CG3510	СусВ	1	CG12499	CG12499		

Co-immunoprecipitated protein hits were filtered for 5-fold enrichment in the tagged Rab23 sample $(w^{1118}; Rab23::YFP::4xmyc)$ compared to control (w^{1118}) , resulting in 821 unique proteins.

COPI-associated proteins are highlighted.

Phenotype Genotype	Disorganized germarium architecture at region 2A/B	isorganized germarium chitecture at egion 2A/B Abnormal egg chamber encapsulation Multilayered stalk Persisting FasIII expression		Persisting FasIII expression	Multilayered follicular epithelium
Control (w ¹¹¹⁸ /Oregon-R-C)	26.7% n=30	0% n=20	5% n=20	0% n=35	$\begin{array}{c c} well-fed^a \\ 15\% \\ n=20 \end{array} \begin{array}{c} starved^a \\ 0\% \\ n=20 \\ p^{well-fed}=0.072 \end{array}$
mir-310s (KT40/KT40)	86.7% n=30 p ^{Control} <0.0001	35% n=20 p ^{Control} =0.004	75% n=20 p ^{Control} <0.0001	44.4% n=35 p ^{Control} <0.0001	$\begin{array}{c c} well-fed^{a} & starved^{a} \\ 45\% & 5\% \\ n=20 & p^{well-fed}=0.003 \end{array}$
mir-310s (w[*]; Df(2R)mir- 310-311-312-313 FRT42D)	66.7% n=30 p ^{Control} =0.002	5% n=20 p ^{Control} =0.311	65% n=20 p ^{Control} <0.0001	54.2% n=35 p ^{Control} <0.0001	50% n=20 p ^{Control} =0.018
mir-310s/Df6070 (w[1118]; KT40/Df(2R)Exel607 0, P{w[+mC]=XP- U}Exel6070)	80% n=30 p ^{Control} <0.0001	40% n=20 p ^{Control} =0.002	70% n=20 p ^{Control} <0.0001	59.1% n=35 p ^{Control} <0.0001	70% n=20 p ^{Control} <0.0001
bab1>hh (tub-Gal80 ^{ts} /+; bab1- Gal4/UAS-hh)	100% n=30 p ^{Control} <0.0001	95% n=20 p ^{Control} <0.0001	100% n=20 p ^{Control} <0.0001	48% n=35 p ^{Control} <0.0001	well-fed ^b starved ^b 100% 50% n=20 p ^{well-fed} <0.0001
bab1>Rab23 (bab1-Gal4/UAS- Rab23)	76.7% n=30 p ^{Control} <0.0001	35% n=20 p ^{Control} =0.004	70% n=20 p ^{Control} <0.0001	52.2% n=35 p ^{Control} <0.0001	35% n=20 p ^{Control} =0.144
Rescue <i>mir-310s</i> (<i>KT40/KT40; attB2</i> <i>mir-310s res long 2</i> /+)	33.3% n=30 p ^{KT40/Df6070} <0.0001	5% n=20 p ^{KT40/Df6070} =0.008	30% n=20 p ^{KT40/Df6070} =0.011	16% n=35 p ^{KT40/Df6070} =0.002	35% n=20 p ^{KT40/D/6070} =0.027
mir-310s; bab1>hh RNAi (KT40/KT40; bab1- Gal4/ UAS-hh-RNAi)	50% n=30 p ^{KT40/Df6070} =0.015	12% n=20 p ^{KT40/Df6070} =0.077	20% n=20 p ^{KT40/Df6070} =0.001	28.6% n=35 p ^{KT40/D/6070} =0.03	15% n=20 p ^{KT40/Df6070} <0.0001
mir-310s; bab1>Rab23 RNAi (KT40/KT40; bab1- Gal4/UAS-Rab23- RNAi)	46.7% n=30 p ^{KT40/D/6070} =0.007	20% n=20 p ^{KT40/Df6070} =0.168	20% n=20 p ^{KT40/Df6070} =0.001	25% n=35 p ^{KT40/D/6070} =0.015	40% n=20 p ^{KT40/D/6070} =0.057

Table S9, related to Figures 5 and 6. The frequencies of the analyzed ovarian phenotypes

^a Flies were kept on nutritionally rich or poor medium for 7 days prior to analysis.

^b tub-Gal80^{ts}/+; bab1-Gal4/UAS-hh flies were kept for 3 days at restrictive temperature (29°C).

Occurrences of the listed phenotypes per ovariole are indicated as percentages.

Significance was tested using Pearson's chi-Square test and IBM SPSS Statistics software.

Table S10, related to Figure 6. The high mitotic activity in *mir-310s* mutant egg chambers is rescued by downregulating Rab23 or Hh levels

Genotype	Number of PH3 ⁺ follicle cells (AVE±SEM) n=number of stage 2 egg chambers analyzed				
	well-fed (7 days)	Starved (7 days)			
Control	4.17±0.25	0.20±0.09			
$(w^{1118}/Oregon-R-C)$	n=30	n=30			
$babl>bh RNAj^a$	2.00 ± 0.34	0.27±0.12			
(tub-Gal80 ^{ts} /+: bab1-Gal4/UAS-hh-RNAi)	n=30	n=15			
	$p^{Control}=1.6E-05$	p ^{Control} =0.378			
bab1>Rab23 RNAi ^a	2.4±0.33	0.20±0.11			
(tub-Gal80 ^{is} /+; bab1-Gal4/ UAS-Rab23-	n=30	n=15			
RNAi)	$p^{\text{control}} = 1.04 \text{E-} 04$	p ^{common} =0.50			
bab1>hh	$8.4\pm0.68^{\circ}$	$1.0^{7}\pm0.23^{a}$			
(tub-Gal80 ^{ts} /+; bab1-Gal4/UAS-hh)	n=30	n=15			
	β	p=====================================			
bab1>Rab23	$0.3/\pm 0.08$	1.13 ± 0.29			
(tub-Gal80 ^{ts} /+; bab1-Gal4/UAS-Rab23)	n=50 $p^{Control}=0.0036$	$p^{Control}=0.007$			
mir-310s/Df6070	<u> </u>	0 70+0 16			
$(w[1118] \cdot KT40/Df(2R)Exel6070$	n=30	n=30			
$P\{w[+mC]=XP-U\}Exel6070\}$	$p^{Control}=0.0233$	$p^{Control}=0.011$			
	5.63±0.51	0.8±0.19			
mir-310s	n=30	n=30			
(KI40/KI40)	p ^{Control} =0.0222	p ^{Control} =0.015			
Pasaua min 210g	4.23±0.27	0.13±0.29			
(VT40/VT40; attP2 min 210s nos long 2/1)	n=30	n=15			
(K140/K140, ull B2 mir-510s res long 2/+)	p ^{KT40/Df6070} =0.0367	$p^{KT40/Df6070} = 0.0197$			
mir-310s; babl>hh RNAi	4.03±0.26	0.4±0.13			
(KT40/KT40: bab1-Gal4/UAS-bb-RNAi)	n=30	n=15			
	$p^{KT40/Df6070}=0.011$	$p^{KT40/Df6070} = 0.1075$			
mir-310s: bab1>Rab23 RNAi	4.2±0.27	0.33±0.13			
(KT40/KT40: bab1-Gal4/ UAS-Rab23-RNAi)	n=30	n=15			
(,	p ^{K140/DJ00/0} =0.0367	$p^{K140/Dj00/0}=0.0735$			

Significance was tested using Mann-Whitney U test and z statistic.

^a Flies were kept at restrictive temperature (29°C) for 7 days.

^b Flies were kept at restrictive temperature (29°C) for 3 days.

Table S11, related to Figures 1 and 3. Primers used in this study

	D-122	NotI	Forward	GCAAGCGGCCGCTTTTTGCATAGAATGCGAGCAGC			
2`I <i>\T</i> D	Rab23	XhoI	Reverse	GCAACTCGAGCCAAGCCCAGATCACAGGTCC			
Luciferase		XhoI	Forward	GCAACTCGAGAAGCGCAATCAAATAATAAACAAG			
reporter	ttk	NotI	Reverse	GCAAGCGGCCGCGCGAGAAAATTGCTGAAGGTT			
cloning ^a	DUDOC	XhoI	Forward	GCAACTCGAGTGTCTGTTTTATCTTGTCGCTTGT			
	DHR96	NotI	Reverse	GCAAGCGGCCGCTCCTTTTTGCACAGAACCCAC			
	D 1	22	Forward	AGCTGGCCATTAAAGTGGTCATT			
	Rab	23	Reverse	GATCTCGATCTGTCGCTCTAGGA			
	DU	207	Forward	CCTCAGCGCCCTGATGATGG			
	<i>D</i> НК90		Reverse	CAGCTGCAATAGCTTTGGGTTGTG			
		1-	Forward	CGAAACGATCAAAGAACTCCAAGG			
	111	ĸ	Reverse	CGCCTGCTCGTTGAGGTGACTAC			
	Dml	27	Forward	AAGATGACCATCCGCCCAGC			
	Крі	52	Reverse	GTCGATACCCTTGGGCTTGC			
	1	00E	Forward	GCGCCACCCGAGAGGAAGTA			
	ACIO	оог	Reverse	TGGAAGGTGGACAGCGAGGC			
	ad	-)	Forward	TTCCGTCGGTTTGCCTACATCA			
		22	Reverse	TCCGCGACGAGAAGCTCATTAG			
		- 2	Forward	GCCCAAACCCAAAGCCAAGG			
	aae	25	Reverse	CATCCAGCTGGTGGAGAAGTGC			
		1	Forward	CAGTCAGGATGCGAGGGATGC			
	Ari	r1	Reverse	CCCAGGGCTCCCAAGAAAAG			
	CC2	600	Forward	TCTGCCTGCGTGCCCTTCA			
	0.05	099	Reverse	CCGCCATCGCCCAAGTTCT			
	CC2	002	Forward	CACGGTGGCGATCTGATGCT			
adt dod	0.05	902	Reverse	GCGCAAGCAGTTCGGTGATG			
qK1-ICK	CG3	000	Forward	CCATCGACAATGGGCGTGTTC			
	0.039999		Reverse	CTGGGCATTCATGTTGGCTCC			
	CG9914		Forward	GGGACCCAGGAAGGCGTAGC			
			Reverse	GCCGGCATCCTGAATGTCAAG			
	CG11080		Forward	CCCGCAGGATCCACCAATGA			
	COTI	009	Reverse	GGGCCATGATGATACCGTGCTC			
	CGI	360	Forward	CGGTGCACCAAAAGTCCTCG			
	01.	509	Reverse	GTCCTTCGCCAGCAGCCAAT			
	CGI	5881	Forward	GCGATCGCGGGACCACTGT			
		0004	Reverse	GGCCACGGAAGCTACGGACAT			
	CG3	0360	Forward	CGATCAGCGGAGAGTGGGTAGT			
	COSt	500	Reverse	ACGCCGGGCAGGAACATCT			
	CG3	1733	Forward	CCAGCACGCAGACCAACATAGC			
	0.051	233	Reverse	GCCACCAGATCACCAAACCACA			
	Cnrb	2Be	Forward	CGTCTCCGGTGTGAGAGTCAGC			
		2DC	Reverse	GGTCACCACGACGAGGGAATC			
	Cnr7		Forward	CGCATCCTCATCGGTCAGACTC			
		2.EC	Reverse	GCGTGAGGAGGCGGACAGA			
	Cont	004	Forward	TCCAGCCAGCACTATCACCAGG			
	Сргтоол		Reverse	AGCTCCGAACTTTCCATCTCCG			

	Cal	Forward	CCAGACGCTTAGCGGGATTCA
	Gai	Reverse	CCGGTGGCGTCACCACTAAGTA
	Cam	Forward	CTCGCCGTTCCAGCAGTTCC
	Gasp	Reverse	CTCGCCTGTACGGCATCTTCC
	CrtD4	Forward	TCCCCAGCACACCATTCCC
	GSID4	Reverse	CCTTGCCGTACTTTTCCACCAG
	Lanlhota	Forward	CCCGCCCACGAGCAGTTCT
	Lspibela	Reverse	CGCACGGTCGAAGGGATAGC
	I)	Forward	TGCCCAACCGAATGATGCTG
	Lsp2	Reverse	CGGGCTGGTGGTACGGGTAG
	LumII	Forward	CGACTTGAATATGGGCGACAGC
	Стрп	Reverse	ACGGCATTGGCGACCTGAAC
	Mgstl	Forward	GATGTCCCCCAAGCTGAAGGTC
		Reverse	GGCGAAGAAGGGCAGGATGTT
	mus209	Forward	ACATCGACAGCTGCACTTGGGT
		Reverse	GCCGGTGACGCTGACATTTG
	Obp44a	Forward	TGCTCGCTCGGAGGAAACTGT
		Reverse	TGCGACATACCCACATTGAGCG
	Obp56a	Forward	CGCCTCCAAGTTGTACGATTGC
		Reverse	CCGAATCACAATTTGCCAAGCA
	Obp56e	Forward	CCGCCCTTGCAGCTCTATCTTT
		Reverse	TTGCCTCAGCCTTTTGGGAATC
	Ohn00h	Forward	CTCCTCGCTGGCGTGAACCT
	0009990	Reverse	TCACCATCACCATCACCACGAC
	obst 1	Forward	CATCCCACCGACTGCCAGAAG
	OUSI-A	Reverse	ATCGTTGTAGACCTCGCCCAGC
	PRO PO A1	Forward	GGCGGTCCACGTCCCTCAG
	pro-10-A1	Reverse	CCAGCACGAATAACCGCACCTA
	Such	Forward	TTGGCTGATCTGCGGTGGTAAC
	Suco	Reverse	CGGCGATTTTCGGTTGTGTTT

^a For cloning, cutting sites for indicated restriction enzymes were added to 5`end of the designed

primers.

All primers were designed using Lasergene Software.

File S1. Supplemental Experimental Procedures

SILAC labeling and MS/MS Analysis

Heavy amino acid-labeled (Lys-8, Lys-13C615N2, Cambridge Isotope Laboratories, Inc.) yeast and flies were cultivated as published (SURY et al. 2010). Lysine auxotrophic S. cerevisiae strain SUB62 (kindly provided by Matthias Selbach) was precultured 1:1000 for 24 hours and then inoculated for 1:100 and incubated for another 24 hours in defined, labeling medium before harvesting. Prior to feeding of Drosophila, incorporation of Lys-8 to yeast cells was measured by mass spectrometry and almost complete incorporation (>95%) was achieved. We used w^{1118} stock as the control strain. Control flies were grown with light-labeled (Lys-0, Lys-12C614N2, Sigma) and mir-310s mutant (KT40/KT40) flies with heavy-labeled yeast (Lys-8). In parallel, as a replicate experiment the reverse labeling was done, where control flies were fed with heavy and mir-310s mutant flies were fed with light-labeled yeast. Hatched flies were kept on the same medium with labeled yeast pellet for 3 days before harvesting. For sample preparation, 10 female flies were snap frozen in liquid nitrogen and homogenized in 100µl RIPA buffer (SURY et al. 2010) supplemented with 1X Protease inhibitor cocktail (Thermo). Total protein amounts were quantified using Bradford Reagent (Sigma). Samples containing 25µg of total protein from each labeling-genotype experiment were used for the analysis.

Proteins were separated by one-dimensional SDS-PAGE (4%–12% NuPAGE Bis-Tris Gel, Invitrogen) and stained with Coomassie Blue G-250 (Fluka). The complete gel lanes were cut into 23 equally sized slices. Proteins were digested as described previously (SHEVCHENKO *et al.* 2006). Briefly, proteins were reduced with 10 mM DTT for 50 min at 50°C, afterwards alkylated with 55 mM iodoacetamide for 20 min at 26°C. In-gel digestion was performed with Lys-C (Roche Applied Science) overnight. Extracted peptides from gel slices were loaded onto the in-house packed C18 trap column (ReproSil-Pur 120 C18-AQ, 5 µm, Dr. Maisch GmbH; 20 x 0.100 mm) at a flow rate of 5 µl/min loading buffer (2% acetonitrile, 0.1% formic acid). Peptides were separated on the analytical column (ReproSil-Pur 120 C18-AQ, 3 µm, Dr. Maisch GmbH; 200 x 0.050 mm, packed in-house into a PF360-75-15-N picofrit capillary, New Objective) with a 90 min linear gradient from 5% to 40% acetonitrile containing 0.1% formic acid at a flow rate of 300 nl/min using nanoflow liquid chromatography system (EASY n-LC 1000, Thermo Scientific) coupled to hybrid quadrupole-Orbitrap (Q Exactive, Thermo Scientific). The mass spectrometer was operated in data-dependent acquisition mode where survey scans acquired from m/z 350-1600 in the Orbitrap at resolution settings of 70,000 FWHM at m/z 200 at a target value of 1 x 10E6. Up to 15 most abundant precursor ions with charge states 2+ or more were sequentially isolated and fragmented with higher collision-induced dissociation (HCD) with normalized collision energy of 28. Dynamic exclusion was set to 18 s to avoid repeating the sequencing of the peptides.

The generated raw Mass Spectrometry files were analyzed with MaxQuant software (version 1.3.0.5, using Andromeda search engine) (COX AND MANN 2008) against UniProtKB *D. melanogaster* database containing 18826 entries (downloaded in April 2013) and Flybase *D. melanogaster* database (release 6.02) supplemented with common contaminants and concatenated with the reverse sequences of all entries. The following Andromeda search parameters were set: carbamidomethylation of cysteines as a fixed modification, oxidation of methionine and N-terminal

acetylation as a variable modification; and Lys-C specificity with no proline restriction and up to two missed cleavages. The MS survey scan mass tolerance was 7 ppm and for MS/MS 20 ppm. For protein identification minimum of five amino acids per identified peptide and at least one peptide per protein group were required. The false discovery rate was set to 1% at both peptide and protein levels. "Re-quantify" was enabled, and "keep low scoring versions of identified peptides" was disabled. Statistical analysis was performed with Perseus bioinformatics platform which is part of MaxQuant (COX AND MANN 2008).

qRT-PCR

Total RNA was extracted using Trizol (Ambion) followed by isolation using Direct-Zol RNA Miniprep (Zymo Research) following the manufacturers' protocols.

Relative transcript levels were measured using total RNA extracts from 10 females of control (*w*¹¹¹⁸) and *mir-310s* mutant (*KT40/KT40*) genotypes kept under well-fed or starved condition for 10 days using 3 biological replicates. To synthesize total cDNA, High-Capacity reverse transcription kit (Applied Biosystems) and random primers were used. Quantitative PCR (qPCR) was performed using SYBR green master mix (Applied Biosystems) using a StepOne Plus thermocycler (Applied Biosystems) according to manufacturer's instructions. The gene *Rpl32* was used as an endogenous control. Primers for qPCR for each gene were designed using Lasergene software (Table S11). The amplicons were selected to be intron spanning. If that was not possible, additional DNAse (Zymo Research) treatment of the RNA samples was performed and reverse transcriptase negative controls were included.

Relative miRNA levels were measured using RNA extracts from 5 ovaries from 7 day well-fed or starved control (*w*¹¹¹⁸/Oregon-R-C) females in at least 3 biological replicates. TaqMan microRNA assays (Applied Biosystems) and High-Capacity reverse transcription kit were used to synthesize cDNA specific to *mir-310, mir-312,* and *2S rRNA* as an endogenous control. qPCR was performed using the Taqman qPCR master mix (Applied Biosystems) using a StepOne Plus thermocycler.

For the relative quantitative analysis, average C_T values of technical replicates were first normalized by subtraction of the housekeeping gene expression (*Rpl32* for transcript expression and *2S rRNA* for miRNA expression) and then of the gene of interest expression in the well-fed controls. Relative expression levels were obtained with these calculated $\Delta\Delta C_T$ values using the formula $2^{-\Delta\Delta CT}$. Statistical analysis was done using non-paired two-tailed Student's t-test.

Immunohistochemistry

Adult ovaries were dissected in cold 1X PBS and fixed for 10-15 minutes in 4% formaldehyde (Polysciences Inc.) at room temperature. The subsequent staining procedure was performed as described (KONIG AND SHCHERBATA 2013). The following antibodies were used with the indicated dilutions: mouse monoclonal anti-Adducin (1:50), anti-LaminC (1:20), anti-Fasciclin III (1:50), and anti-β-Gal (1:25), rat monoclonal anti-DE-Cadherin (1:25) (Developmental Studies Hybridoma Bank); chicken polyclonal anti-GFP (1:5000, Abcam); guinea pig polyclonal anti-Hh (1:100, gift from Acaimo González-Reyes); rabbit polyclonal anti-PH3 (1:5000, Upstate Biotechnology); goat secondary antibodies Alexa 568 anti-mouse, Alexa 488 anti-rat, Alexa 488 anti-rabbit, Alexa 488 anti-chicken, and Alexa 568 anti-guinea pig (1:500, Invitrogen). To stain cell nuclei, DAPI dye

(Sigma) was used. All samples were mounted on glass slides in 1X PBS with 70% glycerol and 3% n-propyl gallate. Fluorescence images of the stained tissues were taken with confocal laser-scanning microscope (Zeiss LSM 700) and processed with Adobe Photoshop software.

Luciferase Assay

The reporter constructs with a short 3'UTR fragment of each gene containing the mir-310s binding site was cloned downstream of Renilla luciferase gene (Table S11). The same vector contained an unmodified Firefly luciferase gene, activity of which served as an internal transfection control for each experiment and for the normalization of Renilla luciferase signal. Drosophila S2 cells were kept in Schneider's Drosophila medium (Gibco) supplemented with 10% heat inactivated fetal bovine serum (GE healthcare), 100 units/ml penicillin, and 100 µg/ml streptomycin (Gibco). The cells were split 1:6 the day before transfection and seeded into 96 well plates. All wells were transfected with 5ng actin Gal4, 20ng of UAS-mir-310s (gifts from Eric Lai), and 10ng psiCHECK[™]-2 vectors (Promega) with or without the 3 UTR fragment of the respective gene using Effectene® Transfection Reagent (Qiagen). Experiments were done in triplicates. Firefly and Renilla luciferase activities were measured 72h after transfection using Dual-Glo® Luciferase Assay System (Promega) by Wallac 1420 luminometer (PerkinElmer). For analysis, the Renilla luciferase signal was divided by Firefly luciferase signal to normalize the data to the amount of cells transfected in each well. Next, this ratio was normalized to the control, unmodified Renilla luciferase signals, for each respective miRNA overexpression experiment.

Coupled Colorimetric Assay (CCA)

Total body fat content of the flies was measured by CCA as described (GALIKOVA et al. 2015). Five female flies were homogenized in 1000µl 0.05% TWEEN® 20 (Sigma) and incubated at 70°C for 5 minutes. Samples were cleared by centrifuging at 3000g for 3 minutes and the supernatant was used for subsequent colorimetric analyses. To measure the triglyceride (TAG) equivalent amounts, we used 200µl of prewarmed (37°C) Triglycerides Reagent (Thermo Scientific[™]) with 50µl of the wellfed and 75µl of the starved samples measuring the absorbance at 540nm after incubation at 37°C for 30 minutes. Absolute TAG equivalent amounts were calculated with help of serial dilutions of Thermo Trace Triglyceride standard (Thermo Scientific[™]) and calculated standard curve. For normalization, we measured total protein content of the samples using BCA Protein Assay Reagent (Thermo Scientific Pierce), where we used 50µl of the samples with 200µl BCA-mix and measured absorbance at 570nm after an incubation for 30 minutes at 37°C. Absolute protein contents of the samples were calculated with the help of a standard curve obtained using measurements of serial dilutions of bovine serum albumin standard. Both absorbance measurements were done in 96 well microtest plates (Sarstedt) using a Benchmark Microplate Reader (Biorad).

Fat bodies were visualized from non-fixed dorsal carcass preparations using Bodipy493/503 (38 μ M; Invitrogen) to label lipid droplets, CellMaskTM Deep Red (5 μ g/mL; Invitrogen) to label plasma membrane, and DAPI (3,6 μ M; Invitrogen) to label nuclei (GALIKOVA *et al.* 2015).

Co-immunoprecipitation

Whole lysates were prepared from approximately 1-week-old male and female flies, which were kept on nutrient rich food for 2-3 days and harvested by snap freezing in liquid nitrogen. Three biological replicates of 750mg of both control (w^{1118}) and *Rab23::YFP::4xmyc* flies were homogenized by grinding in 2ml buffer with 20mM Tris (pH 7.4), 150mM NaCl, 5% glycerol, 5mM EDTA, 0.1% TritonTM X-100 (Sigma) and 2X protease inhibitor cocktail (Roche) in a mortar with pestle using liquid nitrogen. Lysates were cleared by three centrifuging steps once for 10 minutes at 15000g and twice at 21000g at 4°C. Next, control and *Rab23::YFP::4xmyc* lysates were diluted with buffer to 5ml and were added 50µl agarose beads coupled with anti-myc antibodies (Sigma) in 15ml tubes and incubated rotating at 4°C for 100 minutes. To collect the beads, lysates were centrifuged at 100g for 2 minutes at 4°C. The beads were washed 10 times with 700µl buffer at 100g for 30 seconds at 4°C and finally eluted with 50µl warm 2X sample buffer (NuPAGE® LDS Sample Buffer, Novex®). The eluates were analyzed by mass spectrometry with the same workflow used in SILAC analysis described above with the exception for trypsin used for in-gel digestion.

Supplemental References

- Cox, J., and M. Mann, 2008 MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26: 1367-1372.
- Galikova, M., M. Diesner, P. Klepsatel, P. Hehlert, Y. Xu *et al.*, 2015 Energy Homeostasis Control in Drosophila Adipokinetic Hormone Mutants. Genetics 201: 665-683.
- Konig, A., and H. R. Shcherbata, 2013 Visualization of adult stem cells within their niches using the Drosophila germline as a model system. Methods Mol Biol 1035: 25-33.
- Shevchenko, A., H. Tomas, J. Havlis, J. V. Olsen and M. Mann, 2006 In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1: 2856-2860.
- Sury, M. D., J. X. Chen and M. Selbach, 2010 The SILAC fly allows for accurate protein quantification in vivo. Mol Cell Proteomics 9: 2173-2183.
- Yatsenko, A. S., A. K. Marrone and H. R. Shcherbata, 2014 miRNA-based buffering of the cobblestone-lissencephaly-associated extracellular matrix receptor dystroglycan via its alternative 3'-UTR. Nat Commun 5: 4906.