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Additivity property and emergence of power laws in nonequilibrium steady states
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We show that an equilibrium-like additivity property can remarkably lead to power-law distribu-
tions observed frequently in a wide class of out-of-equilibrium systems. The additivity property
can determine the full scaling form of the distribution functions and the associated exponents.
The asymptotic behaviour of these distributions is solely governed by branch-cut singularity in the
variance of subsystem mass. To substantiate these claims, we explicitly calculate, using the addi-
tivity property, subsystem mass distributions in a wide class of previously studied mass aggregation
models as well as in their variants. These results could help in thermodynamic characterization of
nonequilibrium critical phenomena.

PACS numbers: 05.70.Ln, 05.20.-y, 05.40.-a

I. INTRODUCTION

Simple power-law scaling is ubiquitous in nature [1].
They appear in the distributions of drainage area of
rivers [2], droplet size [3, 4], size of clusters formed in
polymerization processes [5], rain size [6], size of frag-
ments in fractured solids [7], population and wealth [8, 9],
and in stock market fluctuations [10], etc. Evidently,
power laws, which are usually associated with criticality
through emergence of a diverging length scale, are ob-
served in widely unrelated systems, suggesting existence
of some broad underlying principle. Recent evidence that
living systems might be operating, independent of most
of the microscopic details, in the vicinity of a critical
regime [11] indeed invoke further questions - how and
why systems adapt to near-criticality.
There have been several attempts to reveal the origin of

the power laws in nature, through studies of paradigmatic
nonequilibrium models - most appealing being sandpile
[12–14] and mass aggregation models [15–20]. Many of
these models - where there is a conservation law or, in
case of violation, the law is weakly violated in the sense
that the systems are slowly driven - are intimately con-
nected to each other. For example, the mass aggrega-
tion models [17–19, 21] are connected to directed abelian
sandpile model [22] or to the models of river network [2].
In this paper, we argue that power-law distributions

in out-of-equilibrium systems can arise simply from ad-
ditivity property, the tenet of equilibrium thermodynam-
ics. We find that the divergence in the response function
is the key: Diverging fluctuations can, in principle, arise
from distributions other than power laws, which are how-
ever prohibited if one imposes additivity and consequent
fluctuation-response (FR) relation. The response func-
tion determines the full scaling form of the distribution,
at as well as away from criticality, and critical exponents

∗Electronic address: punyabrata.pradhan@bose.res.in

originate from the singularity in the response function.
To demonstrate this, we consider mass aggregation mod-
els which are known to have nonequilibrium steady state
with scale invariant structures. At all mass densities, the
distribution function Pv(m) of mass m in a subsystem of
volume v, which is obtained solely from the FR relation,
is shown to have a scaling form Pv(m) ∼ m−τ exp(µ̃m).
The quantity µ̃(ρ) = µ(ρ) − µ(ρc), inverse of a cut-off
massm∗(ρ) = −1/µ̃(ρ), is an analogue of equilibrium-like
chemical potential and provides a useful thermodynamic
interpretation of the emergence of power laws in nonequi-
librium steady states. The exponent τ and the critical
properties of chemical µ(ρ) arise from a multiple-pole or
branch-cut singularity in the variance at a critical mass
density ρc. As the critical density is approached ρ → ρc,
nonequilibrium chemical potential vanishes µ(ρ) → 0,
leading to pure power laws. Beyond the critical density
ρ > ρc, there is a gas-liquid like phase coexistence.

The above result immediately provides answer to why
m−5/2 power law, at or away from criticality, appears
so often in mass aggregation models - especially in
higher dimensions, at all densities and irrespective of
that the motion of the diffusing masses is biased or not
[19, 21, 23, 24]. Interestingly, the same power law appears
in k-mer distribution in the classic Flory-Stockmayer [25]
theory of polymerization and also in particle number dis-
tribution in three dimensional ideal Bose gas near crit-
ical point, irrespective of whether the systems are in or
out of equilibrium - thus indicating a universality. We
demonstrate that the m−5/2 law is a consequence of a
simple-pole singularity in the variance. The whole anal-
ysis is extended also to nonconserved mass aggregation
models. We validate our theory by explicitly calculating
mass distributions in previously studied mass aggrega-
tion models and their variants and by comparing them
with simulations.

Organization of the paper is as follows. In section II.A,
we discuss additivity property; in section II.B, we discuss
the connection between singularity in the variance and
the asymptotic behaviour of the mass distribution func-
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tion. In section III, we illustrate our analytic methods
in a broad class of model systems, both in conserved-
mass aggregation models and its nonconserved versions.
Finally, we summarize our results with a concluding per-
spective.

II. THEORY

A. Additivity Property

We start by invoking an additivity property which a
wide class of systems, irrespective of that they are in or
out of equilibrium, could possess. Consider a continuous-
mass (generalization to discrete masses is straightfor-
ward) transport process on a lattice of size V and then
divide the system in ν = V/v identical subsystems or
cells, kth subsystem with mass mk, where total mass
M =

∑

k mk remains conserved. Provided the subsys-
tems are large compared to spatial correlation length,
they could be considered statistically almost independent
[27–30]. In that case, the joint subsystem mass distribu-
tion in the steady state can be written in a product form,

P [{mk}] ≃
∏ν

k=1 wv(mk)

Z(M,V )
δ

(

∑

k

mk −M

)

, (1)

where wv(mk) is an unknown weight factor (to be deter-
mined later; see Eq. 13) depending only on the subsys-
tem mass mk, Z =

∏

k

∫

dmkwv(mk)δ(
∑

k mk − M) ≡
exp[−V f(ρ)] the partition sum, f(ρ) a nonequilibrium
free energy density and ρ = M/V mass density. The
product form in Eq. 1 amounts to an equilibrium-like
additivity property, in the sense that a free energy func-
tion F =

∑

k lnwv(mk) is minimized in the macrostate.
Using standard statistical mechanics [26], Eq. 1 leads

to the probability distribution Prob[mk ∈ (m,m+dm)] =
Pv(m)dm for subsystem mass where

Pv(m) =
wv(m)eµm

Z (2)

with µ(ρ) a nonequilibrium chemical potential, and Z
the normalization constant. The weight factor wv(m)
and chemical potential µ(ρ) = df/dρ can be obtained
using a fluctuation-response relation [27–31],

dρ

dµ
= σ2(ρ), (3)

where the scaled variance σ2(ρ) = (1/v)(〈m2
k〉 − 〈mk〉2)

in the limit of v ≫ 1. The free energy density function
f(ρ) can be obtained through the relation µ(ρ) = df/dρ,
i.e., f(ρ) =

∫

µ(ρ)dρ+ β with chemical potential µ(ρ) =
∫

1/σ2(ρ)dρ+α (obtained from Eq. 3) and α and β arbi-
trary constants of integration. Then Laplace transform
of wv(m) is written as w̃v(s) =

∫

wv(m) exp(−sm)dm ≡
e−λv(s), i.e.,

e−λv(s) =

∫

wv(m)e−smdm. (4)

Then, the function λv(s) can be obtained from Legendre
transform of free energy density function f(ρ) [32],

λv(s) = v [infρ{f(ρ) + sρ}] = v[f(ρ∗) + sρ∗], (5)

where ρ∗(s) is the solution of

s = −µ(ρ∗). (6)

As discussed later, Eq. 5 requires concavity and differen-
tiability of f(ρ). In the discrete case, the weight factor
can be calculated as wv(m) = (1/2πi)

∫

C w̃v(z)/z
m+1dz

where w̃v(z) =
∑∞

m=0 z
mwv(m) is obtained from w̃(s) by

substituting s = − ln z with C a suitably chosen contour
in the complex z-plane.

B. Singularity in Variance and Mass Distribution

Importantly, the distribution function Pv(m) is deter-
mined solely by the functional form of the scaled variance
σ2(ρ). We argue below that singular response functions
generate only power-law distributions. Other functional
form of mass distribution Pv(m) with diverging variance
is also possible [33], which, we show, however are not al-
lowed if the FR relation holds. In this paper, we mainly
focus on multi-pole singularity at a finite density ρc,

σ2(ρ) =

{

g(ρ)
(ρc−ρ)n for ρ < ρc,

∞ otherwise.
(7)

This form, with 0 < n < ∞, is relevant in the con-
text of a wide class of mass aggregation models as dis-
cussed in section III. The analytic part g(ρ) is not par-
ticularly relevant in determining the asymptotic form of
the distribution Pv(m), however it contributes to the ex-
act form of Pv(m) (discussed in section II.B.IV). In fact,
other kinds of singularities, such as logarithmic singu-
larity σ2(ρ) ∼ [ln(ρc − ρ)]p or exponential singularity
exp[(ρc − ρ)−p] where p > 0, 1/|ρ − ρc|n, and the case
with n < 0 can also arise. One can show that they all
lead to power laws, possibly with logarithmic corrections
to the power-law scaling (discussed in the following sec-
tions).
The divergence in the variance, as in Eq. 7 (or in

the cases of logarithmic and exponential divergence), in-
deed has broad implications, not only in conserved-mass
aggregation models but also in their nonconserved ver-
sions. Note that the FR relation in Eq. 3 implies that
free energy density f(ρ) is not a strictly concave function
of ρ and has a linear branch of slope µ(ρc) for ρ ≥ ρc.
Moreover, f ′′(ρ = ρc) = µ′(ρ = ρc) = 0 (prime denotes
derivative w.r.t. ρ) implies a point of inflection in f − ρ
curve at ρ = ρc. That is, free energy density function
can be written as

f(x) =

{ ∫

µ(x)dx for x < ρc,
µ(ρc)(x − ρc) + f(ρc) otherwise.

(8)
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FIG. 1: (Color online) Schematic representation of conden-
sation transition. Panel (a): variance σ2(ρ) as a function of
density ρ; panel (b): chemical potential µ(ρ) as a function
of ρ; panel (c): free energy density f(ρ) as a function of ρ;
panel (d): Legendre transform λ(s) of free energy density as
a function of s.

Consequently, Legendre transform of f(ρ) develops a
branch-cut singularity (see Eq. 11); for schematic repre-
sentation of the above analysis, see Fig. 1. This construc-
tion of a nonequilibrium free energy function f(ρ) from
a general thermodynamic consideration readily explains
the phase coexistence between a fluid and a condensate,
as observed in the past in many out-of-equilibrium sys-
tems (discussed in section III).

1. Multi-pole singularity

To analyse the behaviour of λv(s) in the case of Eq. 7,
we integrate Eq. 3 near ρ = ρc and obtain

µ(ρ) ≃ − (ρc − ρ)n+1

(n+ 1)g(ρc)
[1 +O(ρ− ρc)] + α, (9)

which gives (ρc − ρ∗) ≃ [(n + 1)g(ρc)(s + α)]1/(1+n) by
using Eqs. 6 and 9. Integrating chemical potential µ(ρ),
we get free energy function

f(ρ) ≃ (ρc − ρ)n+2

(n+ 1)(n+ 2)g(ρc)
+ αρ+ β (10)

and write λv(s) = v[f(ρ∗) + sρ∗], in leading order, as

λv(s) ≃ v[a0 + a1(s+ α) + a2(s+ α)
n+2

n+1 ], (11)

where a0, a1, a2 are constants. Thus, we obtain w̃(s) =
exp[−λv(s)] ≃ const. × [1 − va1(s + α) − va2(s +

α)1+1/(1+n)] in leading orders of (s+ α), implying

wv(m) ∼ e−αm

mτ
,

where, for large subsystem masses m ≫ v, the power-law
exponent τ in the denominator is given by

τ =

[

2 +
1

(1 + n)

]

, (12)

with the following inequality 2 < τ < 3 (since 0 < n < ∞
in Eq. 7). This translates into the mass distribution
having a scaling form,

Pv(m) ∝ 1

mτ
eµ̃(ρ)m ≡ 1

(m∗)τ
Φ
( m

m∗

)

, (13)

where µ̃(ρ) =
∫ ρ

ρc
1/σ2(ρ)dρ = µ(ρ) − µ(ρc) is an effec-

tive chemical potential, inverse of which gives a cut-off
m∗ = −1/µ̃ in the distribution, and the scaling func-
tion Φ(x) = x−τ exp(−x). Later, we explicitly calculate
µ̃(ρ) in specific model systems. Note that µ̃(ρc) = 0 at
critical point ρ = ρc and consequently Pv(m) becomes
a pure power law. Moreover, by defining a critical ex-
ponent δ = 1 + n as µ̃(ρ) ∼ (ρc − ρ)δ, we get a scaling
relation δ(τ − 2) = 1.

2. Logarithmic singularity

Now, we consider the case of logarithmic singularity
where variance σ2(ρ) diverges logarithmically as given
below,

σ2(ρ) =

{

g(ρ)[ln(ρc − ρ)]p for ρ < ρc,
∞ otherwise.

(14)

Integrating Eq. 3 near ρ = ρc, we obtain chemical po-
tential, in leading order of (ρc − ρ),

µ(ρ) ≃ − (ρc − ρ)

g(ρc)[ln(ρc − ρ)]p
+ α, (15)

which gives (ρc−ρ∗) ≃ g(ρc)[ln(ρc−ρ∗)]p(s+α) from Eq.
6. Free energy density is obtained by integrating above
chemical potential µ(ρ),

f(ρ) ≃ − (ρc − ρ)2

2g(ρc)[ln(ρc − ρ)]p
+ αρ+ β, (16)

and, accordingly, its Legendre transform, in leading or-
ders,

λv(s) ≃ v[a0 + a1(s+α)+ a2(s+α)2{ln(s+α)}p]. (17)

For large mass m ≫ v, this implies that the weight factor
has a functional form of a power law with logarithmic
correction,

wv(m) ∼ (lnm)p−1

m3
e−αm,
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and the corresponding mass distribution function,

Pv(m) ∝ (lnm)p−1

m3
eµ̃(ρ)m, (18)

where effective chemical potential µ̃(ρ) = µ(ρ) − µ(ρc)
and the power-law exponent in the denominator is τ = 3,
the borderline case of Eqs. 7 and 12 with n = 0.

3. Exponential singularity

We also consider the case where the variance diverges
exponentially, σ2(ρ) ∼ exp(ρc − ρ)−p for ρ < ρc and
σ2(ρ) = ∞ otherwise. The analysis is similar to the
ones given above. Substituting chemical potential µ(ρ) ≃
const × (ρc − ρ)p+1 exp[−(ρc − ρ)−p] + α in Eq. 6 and
solving in leading order of (s + α), we get (ρc − ρ∗) ∼
{ln(s+ α)}−1/p and consequently

λv(s) ≃ v
[

a0 + a1(s+ α) + a2(s+ α){ln(s+ α)}−1/p
]

.

(19)
For large mass m ≫ v, this leads to the mass distribution
function

Pv(m) ∝ (lnm)−1−1/p

m2
eµ̃(ρ)m, (20)

where µ̃(ρ) = µ(ρ) − µ(ρc) and the power-law exponent
in the denominator is τ = 2, the borderline case of Eqs.
7 and 12 with n = ∞.

4. Subsystem mass distribution

For any finite v, it is not easy to find the distribution
function Pv(m) at small or intermediate values of masses
m ∼ v because, in that case, one requires to invert Eq.
4 using inverse Laplace transform, i.e., by evaluating the
integral,

wv(m) =
1

2πi

∫

C

e−λv(s)+msds, (21)

on the complex s-plane; the contour C on the complex
plane should be chosen such that the integral converges.
However, in the models we consider here, it is not possible
to get an exact functional form of λv(s) for all s, which
actually involves solving the transcendental Eq. 6. How-
ever, for large subsystem size v ≫ 1, the analysis sim-
plies as the function −(1/v) lnwv(m) is simply related to
λv(s)/v by Legendre transformation [32] and therefore,
in leading order of m, is the free energy density function
f(m/v) itself, which has been already constructed in Eq.
8 (see Fig. 1 and related discussions). The subsystem
mass distribution function now can be written as

Pv(m) ∝ e−vf(m/v)+µ(ρ)m

(a+m)2.5
, (22)

where the denominator is essentially a sub-leading cor-
rection to the free energy function, with a ∼ O(v) being
a model-dependent cut-off mass. The correction term is
obtained from the fact that, for large masses m ≫ v, free
energy function f(x) has a linear branch (see Eq. 8) and
the mass distribution function must have the asymptotic
form Pv(m) ∼ m−τ exp(µ̃m) as in Eq. 13.

III. MODELS AND ILLUSTRATION

A. Conserved Mass Aggregation Models (CMAM)

We now substantiate the above claims in a broad class
of nonequilibrium models which were studied intensively
in the last couple of decades. In this paper, we mainly
focus on the models having multi-pole singularity in the
variance. Other singularities, e.g., exponential or log-
arithmic, are possible, however not as common as the
multi-pole one. For the purpose of illustrations, we
specifically consider the case with n = 1 and mass distri-
bution at a single site, i.e., v = 1. We define a generalized
version of conserved mass aggregation models (CMAM)
studied in [19–21, 35], for simplicity on a one dimen-
sional lattice of L sites. We mainly focus on symmetric
mass transfer, i.e., masses are transferred symmetrically
to either of the neighbours. Here masses (or particles)
diffuse, fragment and coalesce stochastically with either
of the nearest-neighbour masses according to the follow-
ing dynamical rules: (1) diffusion of mass mi at site i to
i±1 with mass-dependent rate D(mi) where mi → 0 and
mi±1 → mi±1 +mi and (2) fragmentation of a discrete
mass ∆ at site i, provided ∆ ≤ mi, and coalescence of
the mass to either of the sites i± 1 with mass-dependent
rate w(∆) where mi → mi −∆ and mi±1 → mi±1 + ∆
with ∆ = 1, 2, . . . (continuous ∆ considered later). Total

mass M =
∑V

i=1 mi is conserved in this process. Even
for these simple dynamical rules, the steady state weight
in general is not exactly known. However, as spatial cor-
relations are small, the additivity property as in Eq. 1,
to a good approximation, is expected to hold.
We calculate the variance σ2(ρ) of mass at a single

site in various special cases, using the additivity property
Eq. 1 with v = 1. We take diffusion rate D(mi) = 1,
independent of mass mi, w(∆ = 1) = w1 (rate of single
particle chipping), w(∆ = mi − 1) = w2 (rate of all-but-
one particle chipping) and w(∆) = 0 otherwise.

1. Case I: CMAM with w1 = 1, w2 = 0

For w1 = 1 and w2 = 0 and symmetric mass transfer,
the model becomes the symmetric one studied in [19, 21]
(our model is a variant of those studied in [15, 16]). For
ρ ≤ ρc, using additivity property, we exactly calculated
the variance and consequently chemical potential with
the critical density ρc =

√
2 − 1 We can calculate the
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FIG. 2: (Color online) Single-site (v = 1) mass distribution
functions P1(m) (points - simulations) in conserved-mass ag-
gregation models (CMAMs) is compared with analytic expres-
sion in Eq. 13 (lines - theory) for various densities. Panel (a):
mass chipping rates w1 = 1, w2 = 0; panel (b): mass chipping
rates w1 = 0, w2 = 1. In all cases, mass diffusion rate D = 1
and system size L = 5000.

variance as given below (for details, see Appendix A)

σ2(ρ) =
ρ(1 + ρ)(1 + ρ2)

(1− 2ρ− ρ2)

=
ρ(1 + ρ)(1 + ρ2)

(ρc − ρ)(
√
2 + 1 + ρ)

, (23)

with ρc = (
√
2 − 1), for which one can obtain a chemi-

cal potential µ(ρ) and free energy function f(ρ), by in-
tegrating the fluctuation-response relation as in Eq.2 in
the main text,

µ(ρ) =

∫

1

σ2(ρ)
dρ = −2 tan−1 ρ+ ln

(

ρ

1 + ρ

)

+ α(24)

and, upon one more integration,

f(ρ) =

∫

µ(ρ)dρ = −2ρ tan−1 ρ+ ρ ln

(

ρ

1 + ρ

)

− ln

(

1 + ρ

1 + ρ2

)

+ αρ+ β (25)

where α and β are two arbitrary constants of integration.
For large mass m ≫ 1, the mass distribution function is

calculated to be P1(m) ∝ m−5/2 exp[(µ(ρ) − µ(ρc))m].
(for details, see Appendix B).
In panel (a) of Fig. 2, we have plotted single-site

(v = 1) mass distribution function P1(m), obtained from
simulations, as a function of mass m for various values
of densities ρ = 0.1, 0.2, 0.3, 0.414 and 1.0 and compare
them with the theoretical expression in Eq. 13. The
theoretical results have a quite good agreement with the
simulation results, especially at large mass m ≫ 1. In
panel (a) of Fig. 3, we have plotted subsystem mass
distribution function Pv(m), with v = 100, for densities
ρ = 0.1 and 0.2 and compare them with the theoretical
expression in Eq. 22 with cut-off mass a ≈ 20; agreement
between simulations and theory is reasonably good.

2. Case II: CMAM with w1 = 0, w2 = 1

The CMAM with w1 = 0, w2 = 1 is a variant of the
models studied in [20]. In this case, for ρ ≤ ρc, the
variance and chemical potential can be exactly obtained
using additivity property (for details, see Appendix A).
The variance is given by

σ2(ρ) =
ρ(1− ρ)(2ρ2 − 2ρ+ 1)

2ρ2 − 4ρ+ 1

=
ρ(1− ρ)(2ρ2 − 2ρ+ 1)

(ρc − ρ)(2 +
√
2− 2ρ)

. (26)

There is a simple pole at the critical density ρc = 1 −
1/

√
2. By integrating fluctuation-response relation Eq.

3, we get chemical potential

µ(ρ) = 2 tan−1(1− 2ρ)− ln

[

1

2ρ(1− ρ)
− 1

]

+ α, (27)

and then free energy density

f(ρ) = 2ρ tan−1(1− 2ρ)− ln(1− ρ) + ln(1− 2ρ+ 2ρ2)

−ρ ln

[

1

2ρ(1− ρ)
− 1

]

+ αρ+ β .(28)

In panel (b) of Fig. 2, we have plotted single-site (v = 1)
mass distribution function P1(m), obtained from sim-
ulations, for various values of densities ρ = 0.1, 0.15,
0.2, 0.292 and 1.0. We find that the simulation results
agree remarkably well with the analytical scaling form
P1(m) ∝ m−5/2 exp[(µ(ρ) − µ(ρc))m] as in Eq. 13 with
τ = 5/2 (for details of the derivation, see Appendix B). In
panel (b) of Fig. 3, we have plotted subsystem mass dis-
tribution function Pv(m) for v = 100 for densities ρ = 0.1
and 0.15 and compared them with theory, Eq. 22 with
a ≈ 25; agreement between simulations and theory is
reasonably good.

3. Other Cases

We have also studied, through simulations, various
other cases (with D = 1): Case III. - w(∆ = 1) = w1,
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FIG. 3: (Color online) Subsystem mass distribution functions
Pv(m) (points - simulations) in conserved mass aggregation
models (CMAMs) is compared with analytic expression in
Eq. 22 (lines - theory) for various densities. Panel (a): mass
chipping rates w1 = 1, w2 = 0 and a ≈ 20; panel (b): mass
chipping rates w1 = 0, w2 = 1 and cut-off mass a ≈ 25. In
all cases, mass diffusion rate D = 1, system size L = 105 and
subsystem size v = 100.
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σ2 (ρ
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FIG. 4: (Color online) Variance σ2(ρ) vs. (ρc − ρ). Black
line is const.× (ρc − ρ)−n with n = 1. Red rectangles are for
Case III (one and two particle fragmentation), blue triangles
are for Case IV [∆ = 1, 2, . . . is discrete with fragmentation
rate w(∆) = exp(−∆)] and red circles are for case V [∆ >

0 is continuous with fragmentation rate w(∆) = exp(−∆)].
Diffusion rate D(m) = 1 throughout.

w(∆ = 2) = w2 and w(∆) = 0 otherwise, Case IV. -
a discrete-mass model with w(∆) = exp(−∆) and Case
V. - a continuous-mass model with w(∆) = exp(−∆).
In these cases, in the absence of an analytical expres-
sion of σ2(ρ), we checked in simulations (see Fig. 4) that
the variance near critical point indeed has the behaviour
σ2 ∼ (ρc−ρ)−n, with n = 1, which therefore leads to the
same power-law exponent τ = 5/2.
One can also define an asymmetric version of the

CMAMs discussed above. In one dimension, there are
some nontrivial spatial correlations and the above mean-
field analysis fails to capture the mass fluctuations in the
system. However, in higher dimensions, the above results
qualitatively remain same also for the asymmetric mass
transfer and is consistent with [24].
Interestingly, the exponent τ = 5/2 appears also in

the distribution of particle numbers in ideal Bose gas
in three dimensions (3D) near the critical point where
Bose-Einstein condensation (BEC) occurs. This could
be easily understood from the fact that particle-number
fluctuation in the case of 3D Bose gas has the same crit-
ical behaviour σ2(ρ) ∼ (ρc − ρ)−n, with n = 1, as in
these ‘mean-field’ nonequilibrium systems having negli-
gible spatial correlations. That, on a mean-field level, the
nonequilibrium aggregation models belong to the univer-
sality class of equilibrium Bose gas in 3D, so far has not
been realized.
It is quite instructive to consider a limiting case of

Eq. 7 with n = 0, ρc = ∞ and g(ρ) ∼ ρ1−δ at large
density, i.e., the variance σ2(ρ) ∼ ρ1−δ, with δ < −1,
diverges algebraically at infinite density. As there is
no singularity in the variance at any finite density, our
analysis quite straightforwardly shows that condensation
transition cannot occur, consistent with the past observa-
tions in the CMAM with mass-dependent diffusion [34].
Asymptotic scaling of the mass distribution can be ob-
tained as follows. Using Eq. 3, we get µ(ρ) ∼ ρδ (setting
α = 0 without loss of any generality) and, consequently,
Laplace transform of weight factor wv(m),

w̃v(s) ≃ a0 + a1s
1+1/δ, (29)

immediately leading to mass distributions having a scal-
ing form Pv(m) ∝ m−τ exp(µ̃m) ≡ (m∗)−τΦ(m/m∗).
Here, the scaling function Φ(x) = x−τ exp(−x) with
m∗ ∼ ρ−δ and power law exponent τ = 2 + 1/δ with
1 < τ < 2 (as δ < −1), leading to a relation δ(τ −2) = 1.
The scaling form was numerically observed in [34]. In-
terestingly, the borderline case with δ = −1 generates
gamma distributions, which are found in a broad class
of mass transport processes [31] and have been also ob-
served in a limiting case of conserved-mass aggregation
models studied in Ref. [34].

B. Nonconserved Mass Aggregation Models

In this section, we discuss a nonconserved version of
the mass aggregationmodels where systems can exchange
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mass, though weakly, with environment. In this case, in
addition to the earlier defined two processes (1) diffusion
and (2) fragmentation of masses, a particle now can be
adsorbed with rate q and desorbed at a site with rate p,
provided the site is occupied, where p, q → 0 (i.e., weak
exchange) with the ratio r = q/p finite. Due to adsorp-
tion and desorption processes, total mass in the system
is not conserved. This model is related to several mod-
els studied in the past for finite p and q [17, 19, 35, 36].
Interestingly, in the limit of p, q → 0, mass fluctuation
in a nonconserved model can be obtained from the occu-
pation probability of a site in its conserved version (i.e.,
p = q = 0) [37, 38]. Let us first define, in the space of
total mass M , a transition rate TM+1,M from mass M to
M + 1. In the steady state, the probability P (M) that
the system has mass M satisfies a balance condition

P (M)TM+1,M = P (M + 1)TM,M+1

where the mass distribution P (M) can be obtained as

P (M + 1) =

[

M
∏

M=0

T (M → M + 1)

T (M + 1 → M)

]

P (0). (30)

As the ratio of transition rates can be written as

TM+1,M

TM,M+1
=

q

pS(ρ)
where S(ρ) is the occupation probability and ρ = M/V ,
the distribution function can be written, upto a normal-
ization factor, as

P (M) ∝ e
∑

M [ln(q/pS)] ≃ e−V
∫

ρ

0
dρ[µ(ρ)−µ0] (31)

where µ0 = ln(q/p) an effective chemical potential and
f(ρ) =

∫

dρµ(ρ) =
∫

dρ lnS(ρ) an effective free energy
(canonical) density function. The steady state mass
density as a function of adsorption to desorption ratio
r = q/p can be obtained by minimizing the grand poten-
tial or the large deviation function for the density fluctu-
ation h(ρ) = f(ρ)−µ0ρ, leading to the relation S(ρ) = r
(for details, see Appendix C).
Till now, the analysis is exact. However, it may not

always be possible to exactly calculate the occupation
probability S(ρ). For the purpose of demonstration, let
us proceed by considering a model with diffusion and
fragmentation rate as in Case I. We obtain an approx-
imate expression, obtained within mean-field theory, of
the occupation probability (see Appendix C)

S(ρ) = ρ(1− ρ)

(1 + ρ)
.

Then, Eq. 31 implies the subsystem mass distribu-
tion having a form Pv(m) ∝ wv(m) exp(µm) and con-
sequently a FR relation as in Eq. 3 follows. Then, for
ρ < ρc or equivalently for r < rc, one can immediately
calculate the scaled variance as

σ2(ρ) =

(

dµ0

dρ

)−1

=
ρ(1− ρ)(1 + ρ)

(1− 2ρ− ρ2)
, (32)

where critical density ρc =
√
2− 1. The variance in non-

conserved case is different from that in the conserved-
mass case, implying that the canonical and grand canon-
ical ensembles are not equivalent [37, 38]. However,
the nature of singularity in the variance remains the
same near criticality where σ2(ρ) ∼ (ρc − ρ)−n with
n = 1. Therefore the additivity property leads to the
same power law scaling in the single-site mass distribu-
tion P1(m) ∼ m−τ exp(µ̃m), for large m, where τ = 5/2
and µ̃ = µ0 − lnS(ρc) = ln(r/rc) with rc = S(ρc).
The above results are consistent with what was found,

on the mean-field level, for general p and q in ‘in-out’

model [35] - a special case of the above nonconserved
model with w = 0. One can interpret the results in the
light of equilibrium BEC: The critical density signifies
that, for r > rc = S(ρc) = 3 − 2

√
2, there is a conden-

sate as in the BEC. In the grand-canonical setting (i.e.,
with no mass conservation), that would imply a phase
with a diverging mass density, similar to the ‘Takayasu
phase’ where mass density actually diverges. For p and q
finite, form of the subsystem mass distribution as written
in Eq. 31 remains the same, but only that the expres-
sion of S(ρ), due to the presence of spatial correlations,
is different. However, the similarity with the BEC still
persists.

IV. SUMMARY AND CONCLUDING
PERSPECTIVE

In this paper, we argue that an additivity property can
possibly explain why simple power-law scaling appears
generically in nonequilibrium steady states with short-
ranged correlations. We demonstrate that the existence
of a fluctuation-response relation, a direct consequence
of additivity, with a singular response function leads to
power-law distributions with nontrivial exponents. The
simplest form of the singularity, a simple pole, gives rise
to the exponent 5/2, which was often observed in the
past in apparently unrelated systems. We substantiate
the claims by analytically calculating the response func-
tion, which diverges as critical point is approached, in
paradigmatic nonequilibrium mass aggregation models
and the corresponding single-site as well as subsystem
mass distributions. Most remarkably, the analysis, being
independent of dynamical rules in a particular system,
equally extends to critical properties in equilibrium and
nonequilibrium.
Thermodynamic characterization of phase coexistence

in driven systems is a fundamental problem in statistical
physics and has been addressed in the past [28, 29, 39–
43], either numerically or analytically only for exactly
known steady-states mostly having a product measure.
From that perspective, it is quite encouraging that, even
when steady-state weights are a priori not known, our
analytical method not only gives insights into the steady-
state structure but can also be applied to identify a chem-
ical potential, which equalizes in the coexisting phases
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and vanishing of which at the criticality gives rise to pure
power laws.

Note that, in our formulation, the mass distribution
functions, though approximate, have been calculated
solely from the knowledge of the variance. This formula-
tion is perhaps not surprising in equilibrium where free
energy function (or entropy, for an isolated system) es-
sentially determines fluctuation properties of a system.
However, in nonequilibrium scenario, it is a-priori not
clear that such equilibrium thermodynamic approach can
indeed be applied in systems having a steady state with
nontrivial spatial structure. Here, it is worth mention-
ing that one requires, in principle, all the moments to
specify a probability distribution function. However, ad-
ditivity property, provided it holds, puts a strong con-
straint on the mass distribution function Pv(m) through
a fluctuation-response relation and thus helps to uniquely
determine Pv(m), only from the knowledge of the vari-
ance as a function of density.

We believe that our analysis, being based on a general
thermodynamic principle, would be applicable in many
other driven systems where phase coexistence is known
to occur (e.g., in active matters [44, 45]). As a concluding
remark, we mention that additivity property is expected
to be quite generic for systems having short-ranged cor-
relations and, therefore, it would be indeed interesting to
actually verify additivity, through the predictions con-
cerning fluctuations, on a case-by-case basis. Also, it
remains to be seen whether the principle of additivity
can be extended to systems having long-ranged spatial
correlations, at least in the cases where the strength of
these correlations are weak.
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APPENDIX

In this Appendix, we provide the details of the calcu-
lations to obtain the mass distributions, using additivity
property, in mass aggregation models (both conserved
and nonconserved versions) which were studied over the
last couple of decades. The generalized models intro-
duced here cover some of those studied in the past and
their variants [15, 16, 19–21, 24, 35]

APPENDIX A: CALCULATION OF VARIANCE
IN CONSERVED MASS AGGREGATION

MODELS (CMAM)

We define here a class of conserved mass aggregation
models (CMAM) on a one dimensional lattice with pe-
riodic boundary and calculate the variance of mass at a
single site in the steady state, assuming that the additiv-
ity property (Eq. 1) holds. For, simplicity, we consider
only the discrete-mass cases.

The mass at each site undergoes either diffusion (where
whole of the mass is transferred to either of neighbouring
sites) or chipping, with certain transition rates; in the
models considered below, there are two types of chipping
process. The diffusing mass or the chipped-off mass are
coalesced with the mass at either of the neighbouring
sites with a pre-assigned rates. In this process, the total
mass of the system is conserved.

Provided a site i is occupied, particles hop to either of
the nearest neighbour sites according to the transition
rates specified below.

A. Diffusion with rate 1: All particles at a site i
hop with rate 1 to left or right, i.e., mi → 0 and
mi±1 → mi±1 +mi.

B. Chipping with rate w1: This chipping process
involves a particle at site i being chipped off and thrown
to left or right neighbour, i.e., mi → (mi − 1) and
mi±1 → mi±1 + 1.

C. Chipping with rate w2: This chipping process
involves mi − 1 particles going to either left or right
neighbour and the rest of the particles remaining at site
i, i.e., mi → 1 and mi±1 → mi±1 +mi − 1.

Assuming transition rates are Poissonian, we have
the following stochastic update rules where mass
mi(t+dt) at time t+dt takes a particular value, depend-
ing on mass mi(t) at time t, with certain probabilities
as shown below.

Loss terms at site i:

mi(t+ dt) =















value: probability:
0 dt
mi(t)− 1 + δmi(t),0 w1dt
1− δmi(t),0 w2dt.

Gain terms from (i− 1)
th

site:

mi(t+ dt) =















value: prob.:

mi(t) +mi−1(t)
dt
2 ,

mi(t) + 1− δmi−1(t),0 w1
dt
2 ,

mi(t) +mi−1(t)− 1 + δmi−1(t),0 w2
dt
2 .
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Gain terms from (i+ 1)
th

site:

mi(t+ dt) =















value: prob.:

mi(t) +mi+1(t)
dt
2 ,

mi(t) + 1− δmi+1(t),0 w1
dt
2

mi(t) +mi+1(t)− 1 + δmi+1(t),0 w2
dt
2 .

Mass remains unchanged at site i:

mi(t+ dt) =

{

value: prob.:
mi(t) (1− 2dt− 2w1dt− 2w2dt).

Now we define the occupation probability
〈(1 − δmj ,0)〉 = S(ρ), i.e., the probability that a
site is occupied. We deal with steady-state averages
throughout. We assume that the additivity property
(as in Eq. 1) is valid at single site level and therefore
n-point (n ≥ 2) correlation factorizes.

n-th moment equation: The time evolution of
n-th moment 〈mn

i 〉 can be written as

〈mn
i (t+ dt)〉 = 〈mn

i (t)〉 = 〈[mi(t)− 1 + δmi(t),0]
n〉w1dt+ 〈[mi(t) +mi−1(t)]

n〉dt
2

+ 〈[1− δmi(t),0]
n〉w2dt

+〈[mi(t) + 1− δmi−1(t),0]
n〉w1

dt

2
+ 〈[mi(t) +mi−1(t)− 1 + δmi−1(t),0]

n〉w2
dt

2
+ 〈[mi(t) +mi+1(t)]

n〉dt
2

+〈[mi(t) + 1− δmi+1(t),0]
n〉w1

dt

2
+ 〈[mi(t) +mi+1(t)− 1 + δmi+1(t),0]

n〉w2
dt

2
+〈mn

i (t)〉(1 − 2dt− 2w1dt− 2w2dt), (33)

which, in the steady state where 〈mn
i (t+ dt)〉 = 〈mn

i (t)〉,
gives a BBGKY hierarchy where n-point correlations
are coupled to (n + 1)-point correlations. To get a
closed set of equations for the moments, we use the
factorization property of n-point correlations. As
mentioned in the paper, the mass distributions are
solely obtained from the response function (or the
variance of the mass distribution) and therefore we are
interested in only calculating the variance, or equiv-
alently the second moment, which can be done as follows.

2nd moment equation: If we put n = 2 in the
above equation, the second moment 〈m2

i 〉 however
cancels out from the above equation. Using factorization
of two-point correlation, i.e., 〈mimj〉 ≈ ρ2 for i 6= j, we
get an expression for the occupation probability S(ρ) as
a function of mass density ρ,

ρ2(1 + w2) = w+(ρ− S) − w−ρS, (34)

where w± = w1 ± w2. This gives

S(ρ) = w+ρ− (1 + w2)ρ
2

w+ + w−ρ
. (35)

3rd moment equation: Similarly, for n = 3, we
obtain an equation where the third moment 〈m3

i 〉
cancels out and we actually get, using factorization of
both two-point and three-point correlation, a relation
for the second moment

〈m2〉 = ρ
w+(1 + S)− 2w2ρ

w+ − 2(1 + w2)ρ− w−S
(36)

Using the expression of occupation probability in Eq. 35,
we obtain

〈m2〉 = ρ
w2

+ + 2w+w−ρ− (w+ + 3w1w2 − w2
2)ρ

2

w2
+ − 2w+(1 + w2)ρ− w−(1 + w2)ρ2

(37)

which leads to the desired expression of the variance as
a function of density,

σ2(ρ) =
w2

+ρ+ w+(w1 − 3w2)ρ
2

w2
+ − 2w+(1 + w2)ρ− w−(1 + w2)ρ2

+
(w+ − w1w2 + 3w2

2)ρ
3 + w−(1 + w2)ρ

4

w2
+ − 2w+(1 + w2)ρ− w−(1 + w2)ρ2

.(38)

The variance σ2(ρ) has a singularity at ρ = ρc, i.e., it di-
verges at a critical density ρ = ρc, which can be obtained
by putting the denominator of Eq. 38 zero and solving

w2
+ − 2w+(1 + w2)ρc − w−(1 + w2)ρ

2
c = 0. (39)

This gives a simple pole at the critical density

ρc =
w+

w−

(√

1 +
w−

1 + w2
− 1

)

. (40)

Nonequilibrium free energy function can be calculated
by integrating nonequilibrium chemical potential w.r.t.
density ρ,

µ(ρ) =
df

dρ
⇒ f(ρ) =

∫

µ(ρ)dρ. (41)

The function λv(s) = − ln w̃(s), which is the Legendre
transform of the free energy density f(ρ), can be obtained
as given below,

λv(s) = v[f(ρ∗) + sρ∗], (42)
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where ρ∗ is the solution of

s = −µ(ρ∗). (43)

APPENDIX B: CALCULATION OF MASS
DISTRIBUTION IN THE CONSERVED MASS

AGGREGATION MODEL

Here we provide the essential steps of the calculations
to obtain single-site (i.e., v = 1) mass distribution func-
tion P1(m) ∝ w1(m) exp[µ(ρ)m] where w1(m) is the
single-site weight factor and µ(ρ) is a chemical potential.
We first analyse the behaviour of λ1(s) near the singu-
larity at s = sc by expanding µ(ρ) and f(ρ) near critical
density in the power series of ρ− ρc where ρ− ρc < 0 is
small,

µ(ρ) = µ(ρc) +
µ′′(ρc)

2
(ρ− ρc)

2 + . . . (44)

f(ρ) = f(ρc) + µ(ρc)(ρ− ρc) +
f ′′′(ρc)

3!
(ρ− ρc)

3 + . . .

where we have used Eq. 41 and µ′(ρc) = f ′′(ρc) = 0
(see Fig. 1). Using Eq. 43 in Eq. 44 and substituting
s+ µ(ρc) ≃ −µ′′(ρc)(ρ

∗ − ρc)
2/2, we get

(ρ∗ − ρc) = −
√

2

|µ′′(ρc)|
(s− sc)

1/2 (45)

where sc = −µ(ρc) and µ′′(ρc) < 0. Therefore λ1(s) =
f(ρ∗) + sρ∗ near s = sc, in the leading order of (s− sc),
can be approximated as

λ1(s) ≃
[

f(ρc)− sc(ρ
∗ − ρc) +

f ′′′(ρc)

3!
(ρ∗ − ρc)

3

]

+ sρ∗

= λ1(sc) + ρ∗(s− sc) +
f ′′′(ρc)

3!
(ρ∗ − ρc)

3

=
[

a0 + a1(s− sc) + a2(s− sc)
3/2
]

(46)

where a0 = λ1(sc) = f(ρc) + scρc, a1 = ρc and a2 =

−(2/3)
√

2/|µ′′(ρc)|. The inverse Laplace transform of
the weight factor w1(m) can be written as

w̃1(s) = e−λ1(s) ≃ e−a0 [1−a1(s−sc)−a2(s−sc)
3/2] (47)

which, for m ≫ 1, translates into

w1(m) ∼ escm

m5/2
. (48)

Consequently the mass distribution can be written as

P1(m) ∼ escm

m5/2
eµ(ρ)m =

e−(α+µ0(ρc))m

m5/2
e(µ0(ρ)+α)m (49)

P1(m) ∼ 1

m5/2
e[µ0(ρ)−µ0(ρc)]m. (50)

Note that effective chemical potential µ̃(ρ) = µ0(ρ) −
µ0(ρc) is zero at the critical density ρc = (

√
2 − 1). The

mass distribution in Eq. 50 is precisely what was found
in [19] at ρ = ρc and describes the simulation data re-
markably well (see Fig. 1).

APPENDIX C: CALCULATION OF MASS
DISTRIBUTION IN THE ABSENCE OF MASS

CONSERVATION

As shown in the paper, the probability distribution
function P (M) of total mass M can be written, up to a
normalization factor, as

P (M) = const.× e−V
∫

ρ

0
dρ[µ(ρ)−µ0] (51)

Now, if we assume that the joint mass distribution
P [{mi}] has a product form on single-site level (v = 1),
i.e., product of single-site mass distribution function
p(mi),

P [{mi}] =
V
∏

i=1

p(mi), (52)

the probability distribution function P (M) of mass M in
the system can be written as

P (M) =

V
∏

i=1

[
∫

dmip(mi)

]

δ

(

M −
∑

i

mi

)

. (53)

From the Laplace transform P̃ (s) =
∫

dMP (M) exp(−sM) = [p̃(s)]V of the mass dis-
tribution P (M), the Laplace transform p̃(s) =
∫

dmip(mi) exp(−smi) of single-site mass distribu-
tion p(m) can be written as

p̃(s) = const.× e−λ1(s), (54)

where

λ1(s) = infρ[h(ρ) + sρ]. (55)

Here we have used inverse transform

P̃ (s) = const.×
∫

dρe−V [h(ρ)+sρ], (56)

which has been obtained from Eq. 51 and where grand
potential or the large deviation function for density fluc-
tuation h(ρ) = f(ρ)−µ0ρ =

∫ ρ

0
[µ(ρ)−µ0]dρ and chemical

potential µ(ρ) = lnS(ρ) = ln[ρ(1−ρ)/(1+ρ)], as given in
the paper. Note that the function S(ρ) is the occupation
probability in the conserved mass aggregation model and
has been obtained by putting w1 = 1 and w2 = 0 in Eq.
35.
Now the function λ1(s), Legendre transform of grand

potential h(ρ), can be written as

λ1(s) = h(ρ∗) + sρ∗, (57)

where ρ∗ is the root of the equation d[h(ρ) + sρ]/dρ = 0
or µ(ρ∗)− µ0 + s = 0, i.e., ρ∗ is the root of

ln

[

ρ∗(1− ρ∗)

1 + ρ∗

]

= µ0 − s. (58)
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The critical density is obtained by putting scaled variance
as σ2(ρ) = (dµ0/dρ)

−1 = ∞ or 1/σ2(ρ) = 0,

(1− 2ρc − ρ2c)

ρc(1− ρc)(1 + ρc)
= 0, (59)

and thus ρc =
√
2− 1. In the macrostate (most probable

state), we have S(ρ) = r, implying that the critical den-
sity is related to the ratio r = q/p through S(ρc) = rc. To
obtain the large-mass behaviour, we expand µ(ρ) around
ρ = ρc,

µ(ρ) = µ(ρc) +
µ′′(ρc)

2
(ρ− ρc)

2, (60)

to obtain

(s− sc) ≃
|µ′′(ρc)|

2
(ρ∗ − ρc)

2, (61)

λ1(s) ≃ a0 + a1(s− sc) + a2(s− sc)
3/2, (62)

in leading order in (ρ∗−ρc) where sc = µ0−µ(ρc), leading
to the desired result in the paper,

p(m) ∼ 1

m5/2
escm =

1

m5/2
e[µ0−µ(ρc)]m. (63)
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