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Role of interfacial friction for flow instabilities in a thin polar ordered active fluid layer
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We construct a generic coarse-grained dynamics of a thin inflexible planar layer of polar-ordered
suspension of active particles, that is frictionally coupled to an embedding isotropic passive fluid
medium with a friction coefficient Γ. Being controlled by Γ, our model provides a unified framework
to describe the long wavelength behaviour of a variety of thin polar-ordered systems, ranging from
wet to dry active matters and free standing active films. Investigations of the linear instabilities
around a chosen orientationally ordered uniform reference state reveal generic moving and static
instabilities in the system, that can depend sensitively on Γ. Based on our results, we discuss
estimation of bounds on Γ in experimentally accessible systems.

I. INTRODUCTION

The emergence of large-scale collective dynamics is one of the most intriguing and fascinating features of a large
variety of driven, active systems made of active particles [1]. These are generally elongated and their direction of
self-propulsion is set by their own anisotropy (i.e., the two ends are distinguishable, hence polar), instead of being
determined by an externally imposed field. In contrast, active nematics [2], made of active particles which are head-
tail symmetric, do not show any self-propulsion. These active systems, polar or nematic, are generically characterised
by the existence of orientationally ordered states. These are nonequilibrium analogues of the equilibrium nematic
liquid crystals. There are numerous examples, which include both living systems (living matter) as well as their
artificially prepared non-living analogues. Biological examples of active systems include both small and large in-vitro
and in-vivo systems, e.g., reconstituted bio-filaments and the associated motor proteins [3], the cytoskeleton of living
cells and bacterial suspensions [4], cell layers [5], and also larger-size objects, e.g., flock of birds or school of fishes [6].
Analogous non-living examples of active matter systems also arise in various contexts, e.g., layers of vibrated granular
rods [7] and colloidal or nanoscale particles propelled through a fluid by catalytic activity at their surface [8]. All
these examples of active systems are distinguished by a local energy supply in the bulk that drives the systems away
from equilibrium. This is in contrast to other well-known examples of driven systems, e.g., sheared systems, where
the external drives act at the boundaries. For instance, in cell biology contexts, this supply of energy takes place due
to the hydrolysis of adenosine triphosphate (ATP) to adenosine diphosphate (ADP) and other phosphates (Ph) by
the molecular motors, thus converting the chemical fuel into mechanical motion.
Despite hugely varying microscopic details, different active matter systems display a host of intriguing nonequilib-

rium phenomena with generic features independent of system details, e.g., pattern formations, wave propagations,
oscillations and unusually strong fluctuations [9–11]. Due to the large number of diverse microscopic variables present
(especially in the cell biology context), the level of complexities in active matter systems at microscopic levels is very
high. Instead, it is convenient to formulate the coarse-grained dynamics of the active systems based on identifying
global features, e.g., the presence or absence of conservation laws, symmetries, the presence of appropriate broken
symmetry variables and the nature of the underlying momentum damping. These are similar in spirit and nonequi-
librium generalisation of the general principles and laws developed to describe the statistical mechanics and dynamics
of the ordered phases in equilibrium systems [12]. These active fluid theories, parametrised by a set of phenomeno-
logical constants [2, 13–17], serve as as generic coarse-grained descriptions for a driven orientable fluid with nematic
or polar symmetries and are particularly useful to uncover and elucidate the long wavelength behaviour observed in
very different physical systems and at very different length scales [6, 9, 10, 18].
In a bulk fluid (both active and passive) the viscosity damps out any local momentum gradient and thus reduces

any relative velocities between neighbouring regions. The total momentum of the system is however kept conserved;
such systems are known as wet active matters in the language of Ref. [16]; see, e.g. Refs. [9, 19]. In contrast, for
systems resting on a rigid substrate (e.g., a layer of active fluid on a solid substrate) there is a drag on the system
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acted typically through a no-slip boundary condition on the active matter velocity at the active matter-rigid substrate
interface. This drag leads to nonconservation of the momentum of the active system and cuts off any long-ranged
hydrodynamic interactions. These are known as dry active matter in the classification used in Ref. [16] and have been
studied extensively, see, e.g., [6, 7, 10, 20]. The properties of active matter systems are often considered in the form
of thin, quasi two-dimensional (2D) layer. Such quasi-2D active matter systems exist both in-vivo and in-vitro: cell
cortex [21] or the cortical actin layers and cell ruffles, e.g., lamellipodia [22] are examples belonging to the former
category, where as reconstituted actin layers on liposomes [23] are examples of 2D in-vitro active fluid systems.
Inspired by the current studies on both wet and dry active matters and their significant differences in terms of

their long wavelength properties, we study a generic 2D polar active matter layer, where the active particle system
is embedded inside a three-dimensional (3D) bulk isotropic passive fluid. The active fluid and the embedding passive
fluid interact via a mutual friction at the interfaces of the active fluid-bulk fluid interface, leading to momentum
damping of the active particles. To this end, we construct a set of 2D continuum equations of motion for the local
orientation and number density of the polar active species. Our model, parametrised by the interfacial friction Γ,
provides a unified coarse-grained description of the dynamics of polar ordered 2D wet and dry active matters and free
standing 2D films. In a linearised treatment about a chosen orientationally ordered uniform state, we find the linear
instabilities in the system. We also study the nematic limit of the dynamics. The nature of the linear instabilities
are found to depend sensitively on the magnitude of Γ relative to the viscous damping. Our results may be used to
estimate bounds on Γ in possible physical realisations of our model, e.g., reconstituted actin filaments deposited on
a liposome embedded in a fluid medium. In addition, in an in-vivo system of two eukaryotic cells with a substantial
area of contact, the dynamics of the cortical actin layers of the two cells on both sides of the contact plane should be
describable by our dynamical equations at a coarse-grained level. Nonetheless, our formulation is sufficiently general
and does not specifically relate to any particular cell biological example. The rest of the article is organised as follows:
In Sec. II, we define our model and set up the basic equations of motion. Then in Secs. III A, III B and III C, we analyse
the instabilities for high, intermediate and low values of the mutual friction. Then in Sec. IV we briefly compare the
linear instabilities in the different regimes of the model, delineated by the magnitude of the mutual friction. In the
next Sec. V, we analyse the nematic limit of our model dynamics. We discuss and summarise in Sec. VI. Finally, we
provide some calculational details and then obtain the ambient velocity profiles in the Appendices.

II. MODEL EQUATIONS

We consider an inflexible thin planar layer of a viscous active fluid with a vanishingly small thickness, located at the
xy-plane, i.e., at z = 0. We treat it as a quasi 2D system, for which a 2D description should be appropriate. The local
number densities of the active species and the solvent are ρ(x) and φ(x), x = (x, y), respectively. The active fluid
layer, with a 2D viscosity η, is embedded in a 3D passive incompressible ambient fluid with a 3D viscosity η′, both
above (z > 0) and below (z < 0); see Fig. 1 for a schematic diagram of our model system. It is not unusual to treat
thin active fluid layers as quasi-2D systems; see, e.g., Ref. [24]. We expect this 2D description with a 2D viscosity to
be good for really very thin system such that any variation of the physical quantities along the thin direction may be
neglected.
The centre of mass velocity of the active particles and the solvent combined is given by v. The total number of

both the active and solvent particles are separately conserved: The continuity equations for ρ and φ are written as

∂tρ+∇ · Jρ = 0, (1)

∂tφ+∇ · Jφ = 0. (2)

Here, ∇ ≡ x̂∂/∂x + ŷ∂/∂y is the 2D gradient operator, x̂, ŷ are the unit vectors along x- and y-directions. The
particle currents Jρ and Jφ can be expressed in terms of the 2D centre-of-mass velocity v and the diffusion current j.

Jρ = ρv + j, (3)

Jφ = φv − j. (4)

Here, the molecular masses of both the active and solvent particles are assumed to be equal to unity for calculational
convenience. We are interested in an orientationally ordered state of the model system. To this end, we introduce a
2D local polarisation vector p = (px, py), with a fixed magnitude, p2 = 1, as appropriate for an orientationally ordered
state. Microscopically, it describes the local orientations of the actin filaments or bacteria. We consider the active
fluid to be overall incompressible, i.e., ∇ ·v = 0. Our chosen reference state is defined by px = 1 with no macroscopic
overall flow, i.e., 〈vα〉 = 0. Note that this does not rule out finite velocity of propagation (or a nonzero macroscopic
current) of the active particles (see below). In the Stokesian limit of the flow dynamics, the force balance equation

∇ασαβ − ∂βΠ+ Fβ = 0, with α, β = x, y (5)
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FIG. 1: (Color online) Schematic diagram of our model active fluid layer spread along the xy-plane. Arrows indicate polar
active particles, aligned predominantly along the x-direction (see text).

yields the generalised Stokes equation for v. The 2D pressure Π may be eliminated by using the incompressibility
condition (∇ · v = 0). Here, σαβ is the total stress tensor and external forces Fβ are the tangential stresses of the
embedding fluid on the two sides (top and bottom) of the active fluid layer

Fβ = η′(∂zv
′
β + ∂βv

′
z)|z=ǫ − η′(∂zv

′
β + ∂βv

′
z)|z=−ǫ, (6)

where ǫ → 0; v′(r) (with r = (x, y, z)) is the 3D ambient fluid velocity.

z=−ε

εz=

z=0

ambient fluid

active fluid layer

FIG. 2: (Color online) Schematic diagram of our model active fluid layer spread along the xy-plane (z = 0). The interfacial
friction acts at z = ±ǫ, ǫ → 0 (see text).

In the spirit of linear response theories [12], the dynamics of the active fluid layer is described in terms of linear
relations between the thermodynamic fluxes (σs

αβ , jα, Pα) and the corresponding generalised forces (vαβ , ∂αµ, hα) [9,
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14, 25, 26]. Here, σs
αβ is the symmetric part of the deviatoric stress

σs
αβ = σαβ + ρtvαvβ − σa

αβ , (7)

with σa
αβ = (pαhβ−pβhα)/2 is the antisymmetric part of the stress tensor, hα being the thermodynamic force conjugate

to polarisation pα. Further, ρt = ρ+φ is the total density of the two species combined and vαβ = (∂αvβ + ∂βvα)/2 is
local strain rate tensor. The term ρtvαvβ is the Reynold’s stress in the active fluid. In addition, P is the convected
co-rotational derivative of the polarisation vector given by

Pα =
D

Dt
pα = ∂tpα + vβ∂βpα + ωαβpβ , (8)

with ωαβ = 1
2 (∂αvβ − ∂βvα) is the vorticity tensor. Furthermore, µ̄ = µρ − µφ is the effective chemical potential;

µρ and µφ are individual chemical potentials of the active particles and the solvent molecules, respectively. For
simplicity we consider the dilute limit of the active particles ρ ≪ φ or ρt ≈ φ, i.e., Jφ ≈ φv. In this limit, the overall
incompressibility (which implies ρt = const.) is equivalent to considering φ = const., so that the dynamics of φ can be
neglected and we consider the dynamics of ρ alone. In this dilute limit, µ may be replaced by the chemical potential
µρ for the active particles.
The stress field is assumed to contain a nonequilibrium active stress of the form

σact
αβ = ζ′(ρ)∆µpαpβ . (9)

Microscopically, σact
αβ is due to the local nonequilibrium dynamics of the active particles. The coarse-grained form

(9) may be obtained [9] by noting that the force applied by an active particle on the fluid surrounding it is same as
that applied by the fluid on it, considering the total forces exerted by a collection of active particles with a given
centre, each exerting a point force proportional to and parallel to ±p and expanding it up to the lowest order in
spatial gradients. Therefore, the magnitude of σact

αβ should depend on the local density ρ of the active particles; hence

the form ζ′ = ζ′(ρ). We write ρ = ρ0 + δρ, where ρ0 is the mean active particle density and δρ are fluctuations
(assumed small) about ρ0. Expanding for small δρ, we write ζ′(ρ) = ζ + ζδρ, where ζ = ζ′(ρ0) and ζ = ∂ζ′/∂ρ|ρ=ρ0

.
Parameter ∆µ represents the strength of σact

αβ ; the latter is said to be contractile or extensile depending on whether

∆µ is negative or positive, respectively; ∆µ is a measure of the rate of supply of (free) energy that pushes the system
out of equilibrium; in the context of the cortical actins in a cell, it is the hydrolysis of the ATP molecules to ADP and
phosphates that supplies this energy; ∆µ = µATP −µADP −µPh where µATP , µADP , µPh are the chemical potentials of
ATP, ADP and phosphate molecules. Parameter ∆µ has the dimension of energy/(mass.mole). Numerical estimation
of ∆µ is not easy: In the particular context of cell biology, one may use the fact that approximately 7 kCal energy
released per mole of ATP due to its hydrolysis. Since 1 molar mass of ATP ∼ 500, we obtain from its definition
∆µ ∼ 7kCal/(500gm/1023), the free energy release per unit mass per molecule.
The relevant linear flux-force relations [16, 25], that include the active stress contribution to the stress and allow

for polar terms, i.e., not invariant under p → −p, are

σs
αβ = 2ηvαβ + ζ′(ρ)∆µpαpβ +

ν1
2
(pαhβ + pβhα)−

ǫ0
2
(pα∂βµ̄ρ + pβ∂αµ̄ρ), (10)

jα = −γρρ∂αµρ + λ̄hα + κρpα∆µ+ w∆µ∂β(ρpαpβ)−
ǫ0
2
pβ(∂αvβ + ∂βvα), (11)

Pα =
hα

γ0
+ λ1pα∆µ+ ν1pβvαβ − λ∂αµρ + λ2(p · ∇)pα∆µ+ λρ∂αρ∆µ. (12)

Coupling constant ν1 denotes the equilibrium flow-orientation coupling [27]; similarly, ǫ0 denotes symmetry-allowed
equilibrium couplings between the flow and the particle current [25]. Parameter γρρ > 0 is a mobility coefficient
(an equilibrium coupling constant) and related to the diffusion coefficient. In addition, particle current jρ should
have active contributions κρ∆µp and w∆µ∂β(ρpαpβ), such that there should be an active macroscopic current of the

particles in the direction of p, with amplitudes proportional to ∆µ. In addition, λ is a cross-coupling equilibrium
coupling constant. (In general, λ may be a tensor reflecting the anisotropy of the polar ordered state; we neglect this
here.) Notice that in (12) we include two symmetry-permitted active terms with coefficients λ2 and λρ, respectively;
the λ2-term is a self-advection term, (not considered in Refs. [25, 26]). Since the active particles tend to display
macroscopic motion with respect to the embedding fluid even in their fully ordered state (no distortion), microscop-
ically the λ2-term represents advection of the local distortions in p by p. The λρ-term is a nonequilibrium partial
pressure term, modelling motion of the active particles along or opposite to the concentration gradient (depending
upon the sign). Coefficients ζ′, κρ, λ1, λ2, w and λρ are ”active coefficients”, i.e., coefficients of different active terms
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in Eqs. (10-12). Out of these, κρ, λ2 and λρ are coefficients of the different polar terms, which break the symmetry

under p → −p, where as w, ζ and ζ are coefficients of the nematic active terms in the dynamics. Thus, in the nematic
limit of the model, κρ, λ2 and λρ are all zero, and the only source of nonequilibrium drive is the active stress (9) and
the active particle current represented by the w-term. For reasons similar to the ρ-dependence of ζ′, active coefficient
κρ should depend on ρ. We write for small density fluctuations [9]

κρ(ρ) = κ0 + κρρδρ, κρρ =
∂κρ

∂ρ
|ρ=ρ0

, (13)

where κ0 = κρ(ρ0) depends on the mean density and κρρ incorporates the effects of the fluctuations of ρ about ρ0. We
ignore any ρ-dependence of λρ and λ2 and treat them as a constant, since we are interested in a linearised treatment.
Thermodynamic forces h and µρ are defined as follows

hα = −
δF0

δpα
, µρ =

δF0

δρ
, (14)

where F0 is a free energy functional that controls the relaxation of the system to its thermal equilibrium state in the
absence of any activity. At the bilinear order in fields

F0 =

∫

d2x
1

2
[D(∇αpβ)

2 +A(δρ)2 + 2χρ∇ · p], (15)

where D is a 2D Frank elastic constant (we have assumed equal Frank’s constants for simplicity), A ∼ Tρ0 is an
osmotic modulus with T being the temperature when the system is in thermal equilibrium, χ provides a symmetry-
allowed coupling between the density fluctuations and splay. Assuming the minimum free energy configuration to be
given by a uniform configuration p = const. and ρ = ρ0 everywhere, we must have χ2 < AD. From (15), we find
hα = − δF0

δpα
= D∇2pα + χ∂αρ and µρ = δF0

δ(δρ) = Aδρ + χ∇ · p. Eliminating Π and using the forms of h and µρ, we

obtain to the lowest order in spatial gradients (see Appendix A)

η∇2vβ + ζ∆µPβγ∂xpγ + ζ∆µPβx∂ypy + ζ̄∆µPβx∂xρ = −Fβ, (16)

where we have linearised about px = 1, ρ = ρ0.
For an isotropic, passive ambient fluid medium, in the low Reynolds number limit and for small masses, its velocity

v′i, i = x, y, z satisfies the Stokes Eq.:

η′∇2
3v

′
i = ∇3iΠ

′, (17)

valid for both the super- (z > 0) and sub- (z < 0) phases, Π′ is the ambient fluid pressure and ∇3 is the 3D gradient
operator. The boundary conditions on v′i are as follows:

• No flow at infinity: At both z → ±∞, v′i should vanish.

• Balance of the normal stresses of the ambient fluid at the 2D active fluid layer,

• Due to the assumed inflexibility of the active fluid layer, the normal velocity of the ambient fluid at the active
fluid layer should be zero: v′z(z = ǫ) = 0 = v′z(z = −ǫ).

• Boundary conditions at the active fluid-bulk fluid interfaces requires careful consideration; see Fig 2. The most
common boundary condition used in this context is the ”no-slip” condition, i.e., equality of the active fluid
velocity and the in-plane component of the 3D ambient fluid velocity at the top and bottom interfaces between
the ambient fluid and the active fluid layer. We generalise this by allowing a slip. We implement this by
introducing a slip coefficient of friction, such that the shear stresses are balanced by the friction forces at the
interfaces. This implies (using v′z = 0 at z = ±ǫ)

η′∂zv
′
β |z=ǫ = Γ(v′β |ǫ − vβ), (18)

η′∂zv
′
β |z=−ǫ = −Γ(v′β |−ǫ − vβ), β = x, y (19)

where Γ is the slip coefficient of friction at the upper and lower interfaces (we assume equal friction at the upper
and lower interfaces for simplicity); this allows us to define a slip length ls ∼ η′/Γ.
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Notice that for a finite Γ, boundary conditions (20) implies partial slip between vβ(x, y) and v′β(x, y, z = ±ǫ), β = x, y.
While the no-slip boundary condition is more conventionally used, on mesoscopic scales, however, instances of violation
of the no-slip boundary conditions are known. For instance, Ref. [28] has shown that beyond a critical shear stress that
depends strongly on the surface roughness, departure from the no-slip conditions may be observed. It has also been
found that upon addition of surfactant in the fluid, the boundary condition changes from no-slip to partial slip [29].
In addition, there are now strong evidences in favour of slip in polymer melts; see, e.g. Refs. [30, 31]. Furthermore,
it has been demonstrated in Ref. [32] how a large slip at a liquid-liquid interface may be introduced experimentally.
Friction has been considered in various active fluid flow problems as well; see, e.g., Refs. [33–37] for various theoretical
and expreimental studies. While no systematic measurements of slip at interfaces involving active fluids are known,
the above existing results suggest that considering the complex internal structure of the active fluid (e.g., the presence
of actin filaments), a partial slip at the interfaces between the active fluid layer and the 3D embedding fluid cannot be
ruled out. Recently, it has been shown that a significant reduction of the sliding frictional forces between two bundled
F-actine filaments may be achieved by coating the F-actins with polymeric brushes [38]. Thus it is important to study
implications of finite slips in an active fluid problem in a simple set up, which we set out to do below by using our
model system. Notice that vanishing v′z at z = ±ǫ implies that the shear forces Fβ on the active fluid layer as given
in (6) take the simpler form

Fβ = η′(∂zv
′
β |z=ǫ − ∂zv

′
β |z=−ǫ). (20)

By using the boundary conditions prescribed above, together with the incompressibility of the ambient fluid∇3·v
′ = 0,

Stokes’ Eq. (17) may be solved to yield v′i, i = x, y, z (see Appendix) and obtain Fβ .
Equation of motion for the orientational field pα may be written combining equations (8) and (12).

∂tpα + vβ∂βpα + ωαβpβ =
hα

γ0
+ λ1pα∆µ+ ν1pβvαβ − λ̄∂αµρ + λ2(p ·∇)pα∆µ+ λρ∂αρ∆µ. (21)

With px = 1 defining the reference state, py is a broken symmetry (slow) mode. We linearise (21) above about px = 1
for small py. This yields

∂tpy =
(D∇2py + χ∂yρ)

γ0
+ λ2∆µ∂xpy + λρ∆µ∂yρ+

(ν1 − 1)

2
∂yvx +

(ν1 + 1)

2
∂xvy − λ̄A∂yρ− λ̄χ∂2

ypy. (22)

Note that in Eq. (22), ρ enters into the dynamics of py through both equilibrium and nonequilibrium contributions.
Both are equally relevant being the lowest order terms in gradient expansions.
The equation of motion for ρ is obtained by using Eqs. (1), (3) and (11). Up to the order q2 the equation of motion

for ρ in the Fourier space, linearised about px = 1, is obtained as (set A = 1)

∂tρ = −γρρq
2ρ+ w∆µq2xρ+ w∆µρ0qxqyρ− i∆µκ0qypy − i∆µκρρqxρ+ iDλ̄qyq

2py + λ̄χq2yρ, (23)

where q = (qx, qy) is the in-plane Fourier wavevector, conjugate to x = (x, y).
Notice that in the linear equations (16), (22) and (23) there are seven active coefficients (excluding ∆µ), which are

introduced in the standard active fluid models [14, 16, 17]. Out of these, λ2, λρ, κ0 and κρρ control the conditions
for instabilities (along with the sign of ∆µ) for both the high friction and intermediate friction cases (see below).
In terms of an underlying equivalent agent-based microscopic dynamics, we expect all these coefficients to depend
upon the local density of the active particles and the specific alignment rules (favouring nematic or polar alignment).
Thus, it is reasonable to expect that all the seven active coefficients are not independent parameters. On dimensional
ground we argue that the two nematic active coefficients ζ and ζ should be related as ζ ∼ ρ0ζ and the pairs of polar
active coefficients in the active particle current (κ0, κρρ) and in the active alignment (λ2, λρ) are related as κρρρ0 ∼ κρ

and λρρ0 ∼ λ2, respectively. With the expectation that the polar alignment polar and active current terms originate
from same underlying (polar) microscopic rules, we expect them to be mutually simply related. Again on dimensional
ground we expect λ2 ∼ κρρ. Note however that in the all the above heuristic relations, there are dimensionless
proportionality constants which we cannot obtain on simple physical ground. We would like to emphasise that all
these parameters are just phenomenological constants, similar to the parameters which appear in the continuum
theories to describe the statistical mechanics and dynamics of the ordered phases in equilibrium systems [12] and
cannot be calculated within our theory. It should in-principle be possible to relate these coefficients to and calculate
them from the specific microscopic rules for agent based models for active systems; see, e.g., Refs. [39–41]. These are,
however, outside the scope of the present study. In what follows below, we ignore this issue for simplicity and treat
all the seven coefficients as independent model parameters. In addition to these seven active coefficients, the friction
coefficient Γ is not an active coefficient. This enters into the dynamics through the boundary conditions and is a
model parameter that has been introduced by us and is central to the present discussion. To our knowledge, no good
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estimate about the magnitude of Γ is available; we therefore treat Γ as a free parameter in our model. In general,
Eqs. (16), (22) and (23) can be solved in principle for arbitrary values of Γ. Nonetheless, it is instructive to consider
three different limits of Γ, characterised by ls, η

′, system size L and thickness d of the 2D active system, and analyse
them separately, as discussed below.

A. High friction limit

We consider a ”large” Γ: Γ ≫ η′/L. Formally, we consider the dynamics in the limit Γ → ∞ (equivalently, ls → 0);
this is valid for wavectors qls ≪ 1, or for a system of linear size L, ls/L ≪ 1. Thus, the system size must be much
larger than the slip length. The stress balance equations (18) and (19) yield

v′α|z=ǫ = v′α|z=−ǫ = vα, α = x, y. (24)

Thus, there is no slip between the ambient fluid velocity at the active fluid layer v′α|z=±ǫ and the active fluid velocity
vα. Equation (24) forms one of the boundary conditions on the ambient fluid velocity v′α.
Forces (shear stresses) Fα then may be expressed as (see Appendix B; see also Ref. [42]),

Fx = −2qvxη
′, (25)

Fy = −2qvyη
′, (26)

where q = (qx, qy) is the in-plane Fourier wavevector. Putting the values of (25) and (26) in the Stokes equation (16),
the expressions for vx and vy can be derived up to the lowest order in q linearising about px = 1 and ρ = ρ0.

vx = −i
ζq2xqy
2η′q3

∆µpy + i
ζq3y
2η′q3

∆µpy + i
ζ̄q2yqx

2η′q3
∆µρ, (27)

vy = −i
ζq2yqx

2η′q3
∆µpy + i

ζq3x
2η′q3

∆µpy − i
ζ̄q2xqy
2η′q3

∆µρ. (28)

Thus, vα at O(q0) has only active contributions.
Equation (22) may be written by substituting for vx and vy from Eqs. (27) and (28). We thus obtain

∂tpy =
−Dq2py + iχqyρ

γ0
+ iλρ∆µqyρ+ iλ2∆µqxpy − iλ̄qyρ− λ̄χq2ypy

−
1

4η′q
[(ν1 − 1)q2y − (ν1 + 1)q2x]

[

ζ∆µ

(

1−
2q2x
q2

)

py +
ζ̄∆µqxqy

q2
ρ

]

, (29)

in the Fourier space.

B. Intermediate friction

For intermediate values of Γ, there are a considerable slip between the ambient fluid velocity v′α|z=±ǫ and the active
fluid velocity vα, α = x, y. We consider the limit q ≫ Γ/η′ (equivalently q ≫ l−1

s ), (18) and (19) reduce to (see
Appendix C)

η′∂zv
′
β |ǫ = −Γvβ, (30)

η′∂zv
′
β |−ǫ = Γvβ , . (31)

Clearly, these would be valid for wavevector qls ≫ 1 or a system with size L ≪ ls. In addition, we should have
ηq2 ≪ Γ. Since η ∼ η′d, where d is the thickness of the 2D active fluid layer, we obtain L ≫ (lsd)

1/2, yielding
ls ≫ L ≫ (lsd)

1/2.
Substituting (30) and (31) in (16) and linearising about px = 1 and ρ = ρ0, the generalised Stokes equations for vx

and vy are obtained as (see Appendix C)

vx = i
ζ∆µqy
2Γ

(

1−
2q2x
q2

)

py + i
ζ̄∆µqxq

2
y

2Γq2
ρ, (32)

vy = i
ζ∆µqx
2Γ

(

1−
2q2y
q2

)

py − i
ζ̄∆µq2xqy
2Γq2

ρ, (33)
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where we have neglected ηq2vα in the limit ηq2 ≪ 2Γ. This should be valid in the wavevector range satisfying
ηq2 ≪ Γ ≪ η′q. With η ∼ η′d, taking d ∼ 10−7m for a cortical actin layer and η′ ∼ 10−3N.sec/m2 for water,
the above inequality should hold over a wide range of q. As before, vα has only active contributions at the lowest
order in q. Similar to an ordered active polar fluid layer on a solid substrate, the hydrodynamic interactions here are
completely cut off by the friction Γ and consequently v ∼ O(q) to the lowest order in the wavevector. Not surprisingly,
Eqs. (32) and (33) are identical in structure with the form of the velocities of an active polar fluid layer resting on
a solid surface. This is due to the fact that for qls ≫ 1, v′i, i = x, y are effectively very small and hence ignored.
This background fluid thus effectively behaves as a fixed background with the force on the 2D flow being given by
−Γvα (similar to a rigid substrate). Thus, with an intermediate value for Γ, our model active system corresponds
surprisingly to a dry active matter, despite being in contact with an embedding bulk fluid.
Using the above Eqs. (32) and (33) in eq. (22), the equation for py can be written as

∂tpy = i(
χ

γ0
+ λρ∆µ)qyρ−

1

4Γ
[(ν1 − 1)q2y − (ν1 + 1)q2x]

[

ζ∆µ

(

1−
2q2x
q2

)

py +
ζ̄∆µqxqy

q2
ρ

]

−
Dq2py
γ0

+ iλ2∆µqxpy − iλ̄qyρ− λ̄χq2ypy. (34)

Density ρ of the active particles still follows Eq. (23). Notice that Eqs. (34) and (23) are the linearised version of the
model Eqs. for a polar flock in Ref. [6], which is a coarse-grained model for an active polar flock in a frictional medium.
Thus, with (lsd)

1/2 ≪ L ≪ ls, the long wavelength dynamics of our model is identical to that of a polar-ordered layer
of a suspension of active particles on a solid substrate, an example of dry active matters. In this regime, our model
is a representation of Ref. [6].

C. Weak friction limit

In this case, Γ is so small that ηq2 ≫ Γ, or, q2 ≫ Γ/η ∼ Γ/(η′d) ∼ 1/(lsd); equivalently, L ≪ (lsd)
1/2. Since d is

small for a quasi-2D system, ls must be very large or Γ very small for a physical system to display the weak friction
limit. From the generalised Stokes Eq. for v (valid now for system size L < (η/Γ)1/2) we find

vx = −i
ζq2xqy
ηq4

∆µpy + i
ζq3y
ηq4

∆µpy + i
ζ̄q2yqx

ηq4
∆µρ, (35)

vy = −i
ζq2yqx

ηq4
∆µpy + i

ζq3x
ηq4

∆µpy − i
ζ̄q2xqy
ηq4

∆µρ. (36)

Thus, v ∼ O(1/q) at the lowest order, in contrast to the q-dependences of the velocities for large or intermediate
Γ above. The differences are due to the lack of any screening of the hydrodynamic interactions in the present case.
Effectively, in this limit, the active fluid layer is a free standing system being completely decoupled dynamically from
the ambient fluid. The dynamical equation for py takes the form

∂tpy = i(
χ

γ0
+ λρ∆µ)qyρ−

1

2ηq2
[(ν1 − 1)q2y − (ν1 + 1)q2x]

[

ζ∆µ

(

1−
2q2x
q2

)

py +
ζ̄∆µqxqy

q2
ρ

]

−
Dq2py
γ0

+ iλ2∆µqxpy − iλ̄qyρ− λ̄χq2ypy. (37)

see, e.g., Ref. [9]. Equation of motion of ρ is still given by Eq. (23).

III. LINEAR INSTABILITIES

We now analyse the linear stability of the system from the dynamical equations obtained above by assuming a
time-dependence for py and ρ of the general form exp(Λt). There are two independent modes, which may be static
or moving, stable or unstable, given by two values of Λ. We calculate Λ up to the lowest order in wavevector q for
the different cases elucidated above.
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A. High friction limit

Consider first strong nonequilibrium partial pressure, i.e., χ/γ0 − λ̄ ≪ λρ∆µ. The eigenvalues Λ of the stability
matrix corresponding to Eqs. (29) and (23) in polar coordinates q = (q cos θ, q sin θ), where θ is the angle between the
wavevector q and the ordering direction (x-axis), up to the linear order in q are

Λ = i
(λ2 − κρρ)∆µ

2
q cos θ +

Bζ∆µ

8η′
q cos 2θ ±

q∆µ

2
[{i(λ2 − κρρ) cos θ +

Bζ

4η′
cos 2θ}2

+4λρκ0 sin
2 θ + i

Bζ̄κ0

2η′
sin θ sin 2θ + i

Bκρρζ

η′
cos θ cos 2θ

−4λ2κρρ cos
2 θ]1/2 = Λh

+,Λ
h
−. (38)

where, B = (ν1+1) cos2 θ−(ν1−1) sin2 θ. Clearly, both Λh
+,Λ

h
− scale with q and ∆µ. Thus, Λh

+,Λ
h
− ∼ q, the coefficients

of proportionality are generally unequal and should in general be complex functions of θ (hence anisotropic) and other
model parameters. This linear q-dependence is different from q-independent eigenmodes in bulk polar active fluids
(see, e.g., Ref. [9]) and is a consequence of the hydrodynamic interactions mediated by the ambient fluid. In Figs. 3,
representative plots of Λh

+,Λ
h
− as functions of θ are shown for two different values of ζ, namely ζ = 1 and ζ = 5 for

fixed values of other parameters and q = 1,∆µ > 0. The plots clearly display a significant change in the amplitude of
the real part with ζ in one of the eigenvalues and in the amplitude of the imaginary part with ζ in the other one. It
may thus be concluded that the amplitude of the unstable mode and as well as the propagating mode changes with
change in the magnitude of ζ or the active stress coefficient. Figures 4 show plots of the eigenvalues as function of θ
for negative values of ζ, keeping all other parameters fixed, which again shows the change in amplitude of the real and
the imaginary parts in the two different eigenvalues, with change in value of |ζ|. Figures 5 compare the eigenvalues
for different signatures of ζ̄ (the coefficient of the small fluctuations of the active stress), keeping all other parameters
fixed. From the plots it is quite clear that the dependence of Λh

+ and Λh
− on ζ̄ is very weak. In Figs. 6 the plots of

Λh
+ and Λh

− are shown for different signs and values of λρ, other parameters kept constant. The plots bring out the

changes in the imaginary parts. Furthermore, although the real part of Λh
+ is always found to be positive (for these

choices of the parameters) and signifies instability in the system, the real part of Λh
− shows a transition from typically

negative values for λρ > 0 to positive values for λρ < 0. This suggests a very strong dependence of the eigenmodes
on the value and signature of λρ or the active osmotic pressure coefficient.
Consider in detail the limit B → 0, or,

tan2 θ =
ν1 + 1

ν1 − 1
≡ tan2 θ0, (39)

yielding θ = ±θ0,±(θ0 + π), such that B(θ0) = 0. The eigenvalues in this case are

Λ(θ0) = i
(λ2 − κρρ)∆µ

2
q cos θ0 ±

∆µq

2
[−(λ2 + κρρ)

2 cos2 θ0 + 4λρκ0 sin
2 θ0]

1/2. (40)

It is evident from Eq. (40) that for λρκ0 < 0, Λ(θ0) is fully imaginary i.e., two propagating modes, which are oppositely
moving, are present in the system with an anisotropic q-independent wave speed. Thus, θ0 gives the direction in the
plane along which small fluctuations propagate without growth or decay at O(q). On the other hand, for λρκ0 > 0

and |4λρκ0 sin
2 θ0| > |(λ2 + κρρ)

2 cos2 θ0|, Λ(θ0) has a real part in addition to propagating modes. The real part
comes from

± [−(λ2 + κρρ)
2 cos2 θ0 + 4λρκ0 sin

2 θ0]
1/2. (41)

Evidently, the real part displays instability for both signs of ∆µ in this case, with anisotropic decay/growth rates
which scale with q. Thus, unlike the case with λρκ0 < 0, there is no particular significance of the angle θ0 here.
A schematic plot of κ0λρ vs θ for chosen values of κρρ and λ2 is shown in Fig. (7), clearly indicating the unstable

regions and propagating modes. That the expression (41) determines the stability at θ = θ0 be understood heuristically
as follows. If all other parameters are set to to zero, the combination λ2+κρρ gives the relative speed of propagations
of the fluctuations of py and ρ in the linearised theory, with py and ρ being decoupled from each other. On the other
hand the product κ0λρ controls the wavespeed or the growth rate of the fluctuations in the linearised coupled system
of py and ρ, depending on its sign, with all other parameters set to zero. Thus, in a situation where all the above
four parameters are nonzero, it is generally expected that λ2 + κρρ has the effect of stabilising the instabilities due
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FIG. 3: (Color online) Representative plots of the real (blue line) and imaginary (green line) parts of (a) eigenmode Λh
+ vs θ

for ζ = 1, (b) eigenmode Λh
− vs θ for ζ = 1, (c) eigenmode Λh

+ vs θ for ζ = 5, and (d) eigenmode Λh
− vs θ for ζ = 5 with fixed

values of the other parameters; λ2 = 1, κρρ = 1/2,∆µ = 1, ν1 = 3, η′ = 1, ζ̄ = 1, κ0 = 1, λρ = 2, and q = 1. Here ∆µ > 0 for all
the plots. Nonzero imaginary part implies propagating modes (see text).

to κ0λρ (assuming it has the sign that corresponds to instability), by allowing reduction of local inhomogeneities to
disperse by means of wave propagation.
Consider the case when there are only propagating modes at O(q) at, say, θ = θ0. Now assume θ very close to θ0;

we write θ = θ0 + δθ, where δθ is very small. In that case B ≈ −2ν1 sin 2θ0δθ, up to order O(δθ). The eigenvalues
corresponding to θ = θ0 + δθ are given by

Λ(θ0 + δθ) = Λ(θ0)−
ζ∆µν1
4η′

q sin 2θ0 cos 2θ0δθ + iO(δθ). (42)

Noting that Λ(θ0) is fully imaginary, (42) shows that Λ(θ0 + δθ) has real parts, whose signs depend on ∆µ for a given
δθ. Thus, we conclude that the system shows instability for either sign of ∆µ along with generic propagating modes
with an anisotropic wave speed proportional to ∆µ. Considering Λ in the (q, θ) plane, we thus notice that there are
special directions given by θ = ±θ0,±(θ0 + π) along which (small) perturbations move as waves without any growth
or damping (to the linear order in q), provided ∆ = 4λρκ0 sin

2 θ0 − (λ2 + κρρ)
2 cos2 θ0 < 0 is satisfied; see Fig. 8.

Additional values of θ for which for which the real parts of Λh
+ or Λh

− vanish may be found from (38). However,
both the real parts will not vanish simultaneously at these angles; see Fig. 3. Along all other directions, at least one
of Λh

± should have a real part, and hence perturbations will grow/decay and move. If ∆ > 0, there are no special
directions with only propagating modes. Since, py(x, t) and ρ(x, t) depend on py(q, t) and ρ(q, t) for all q, hence,
the two eigenmodes for all q, py(x, t) and ρ(x, t) show generic moving instabilities at O(q) for both signs of ∆µ for

arbitrary choice for the active coefficients. It is also clear that at O(q), the system can be stable only if ζ = 0 = ζ
and λρκ0 < 0. Thus, the active stresses clearly distablise the system. Of course, at higher order in q, the system will
be stabilised by large enough D or γρρ.
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FIG. 4: (Color online) Representative plots of the real (blue line) and imaginary (green line) parts of (a) eigenmode Λh
+ vs θ

for ζ = −1, (b) eigenmode Λh
− vs θ for ζ = −1, (c) eigenmode Λh

+ vs θ for ζ = −5, and (d) eigenmode Λh
− vs θ for ζ = −5

with fixed values of the other parameters; λ2 = 1, κρρ = 1/2,∆µ = 1, ν1 = 3, η′ = 1, ζ̄ = 1, κ0 = 1, λρ = 2, and q = 1. Nonzero
imaginary part implies propagating modes.

It is useful to analyse the stability of the system for some particular values of θ. First we start with θ = 0. In this
limit the eigenvalues are given by

Λ(θ = 0) = iλ2∆µq +
(ν1 + 1)ζ∆µ

4η′
q,−i∆µκρρq. (43)

Thus there are two modes; one is purely imaginary and hence just a propagating mode, the other has both real and
imaginary parts. The sign of the real part is determined by ∆µ. Thus this eigenvalue is moving and either growing
(unstable) or decaying (stable) in time, respectively, when (ν1 + 1)ζ∆µ > 0, or, < 0.
For θ = π

2 , the stability eigenvalues are given by

Λ(θ =
π

2
) =

(ν1 − 1)ζ∆µ

8η′
q ±

∆µq

2

[

(

(ν1 − 1)ζ

4η′

)2

+ 4λρκ0

]1/2

. (44)

From Eq. (44), we note that for λρκ0 > 0, the system is unstable for both ∆µ > 0 and ∆µ < 0. Next, for λρκ0 < 0
and (ν1 − 1)ζ > 0,

• If |4λρκ0| >
(ν1−1)2ζ2

4η′2 and ∆µ > 0, the modes are unstable and oppositely moving.

• However, when |4λρκ0| <
(ν1−1)2ζ2

4η′2 with ∆µ > 0, both the modes are unstable. There are no propagating waves.
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FIG. 5: (Color online) Representative plots of the real (blue line) and imaginary (green line) parts of (a) eigenmode Λh
+ vs θ

for ζ̄ = 3, (b) eigenmode Λh
− vs θ for ζ̄ = 3, (c) eigenmode Λh

+ vs θ for ζ̄ = −3, (d) eigenmode Λh
− vs θ for ζ̄ = −3, with fixed

values of the other parameters; λ2 = 1, κρρ = 1/2,∆µ = 1, ν1 = 3, η′ = 1, ζ = 3, κ0 = 1, λρ = 2, and q = 1. Nonzero imaginary
part implies propagating modes.

In the special case with ζ̄ = 0 = λρ in Eq. (38), i.e., if we ignore the density dependences of the active coefficients,
the eigenvalues of the stability matrix take a simpler form

Λ(ζ̄ = 0 = λρ) = iλ2∆µq cos θ +
Bζ∆µ

4η′
q cos 2θ,−iκρρ∆µq cos θ, (45)

which indicates the presence of propagating modes and instability for both signs of ∆µ above or below θ = π
4 .

Now briefly consider the instabilities with |χ/γ0 − λ̄| ≫ |λρ∆µ| (weak nonequilibrium partial pressure): Neglecting
λρ∆µ in comparison with χ/γ0 − λ̄, the eigenvalues Λ are given by

Λ =
∆µq

2
[−iκρρ cos θ +

ζB

4η′
cos 2θ + iλ2q cos θ]±

q

2
{[−

ζB cos 2θ

4η′
− iλ2 cos θ + iκρρ cos θ]

2∆µ2

+4[
i∆µ

4η′
ζB sin2 θ cos θ + (

χ

γ0
− λ̄) sin2 θ]κ0∆µ+ 4iκρρ∆µ2 cos θ[iλ2 cos θ +

ζB

4η′
cos 2θ]}1/2. (46)

Thus, Λ are no longer homogeneous functions of ∆µ. In order to progress further, assume a ”small” ∆µ. Then, in an
expansion in powers of ∆µ, we obtain to the lowest order in q and ∆µ

Λ = ±

√

(
χ

γ0
− λ̄)κ0∆µq sin θ, (

χ

γ0
− λ̄)κ0∆µ > 0, (47)

Λ = ±iq sin θ

√

|(
χ

γ0
− λ̄)κ0∆µ|, (

χ

γ0
− λ̄)κ0∆µ < 0. (48)
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FIG. 6: (Color online) Representative plots of the real (blue line) and imaginary (green line) parts of (a) eigenmode Λh
+ vs

θ for λρ = 2, (b) eigenmode Λh
− vs θ for λρ = 2, (c) eigenmode Λh

+ vs θ for λρ = 0, (d) eigenmode Λh
− vs θ for λρ = 0, (e)

eigenmode Λh
+ vs θ for λρ = −2, (f) eigenmode Λh

− vs θ for λρ = −2, with fixed values of the other parameters; λ2 = 1, κρρ =
1/2,∆µ = 1, ν1 = 3, η′ = 1, ζ = 3, κ0 = 1, ζ̄ = 1, and q = 1. Nonzero imaginary part implies propagating modes.

Thus, in the former case, we find instabilities for either sign of ∆µ, where as in the second case, we find oppositely
moving propagating waves.
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FIG. 7: (color online) A plot of κ0λρ vs θ0 for some chosen values of κρρ and λ2 is shown. The regions inside the upward
parabolas indicate the presence of moving instabilities and all other regions outside have propagating modes without damping
or growth at O(q) (see text).
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FIG. 8: Schematic diagram (κ0λρ < 0 or ∆ < 0) displaying the special angular directions given by θ = θ0 in the plane along
which there are only propagating modes up to O(q) (see text).

B. Intermediate friction

We again consider |χ/γ0 − λ̄| ≪ |λρ∆µ| first.To the lowest order (linear order) in q, the eigenvalues of the linear
stability matrix are

Λ = −
i∆µq

2
(κρρ − λ2) cos θ ±

iq∆µ

2

[

cos2 θ(κρρ + λ2)
2 − 4κ0λρ sin

2 θ
]1/2

= Λ+,Λ−, (49)

which are independent of Γ. We can make the following general conclusions about the mode structures from (49).
First of all, none of the active stress coefficients ζ and ζ appear in (49). Thus the active stress is irrelevant in the
dynamics to the linear order in q. The dynamics at this order in q is controlled by the remaining active coefficients, viz,
κ0, κρρ, λ2 and λρ. This is clearly in contrast to the situation with large Γ. Secondly, if κ0λρ < 0, then the discriminant
is positive for all values of θ to the linear order in q. Then only propagating modes will be present for all values of θ.
As before, there should be two oppositely moving propagating modes with the speed of wave being anisotropic and
proportional to ∆µ. If on the other hand κ0λρ > 0, the discriminant in (49) is negative for all magnitudes of κ0λρ 6= 0
at least at θ = π/2, giving rise to instability in the system for both signs of ∆µ. These instabilities are moving in the
opposite directions. In general, for any value of θ satisfying cos2 θ(κρρ + λ2)

2 − 4κ0λρ sin
2 θ > 0 and for both signs of

∆µ, both the modes are propagating without damping (or growth). Thus, any perturbation in a region of the polar
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plane satisfying the above condition moves without any growth or decay in the amplitude (up to O(q)). Else, in the
remaining region of the polar plane, one of the modes is unstable and the other stable. The speed of the moving
stabilities are unsurprisingly anisotropic and proportional to ∆µ. The above consideration for κ0λρ > 0 allows us to

define an angle θ̃ such that

cos2 θ̃(κρρ + λ2)
2 − 4κ0λρ sin

2 θ̃ = 0. (50)

Then, for κ0λρ > 0 in the shaded region in Fig. 9 characterised by θ̃ there are only propagating waves at O(q), outside
of this region, the system is linearly unstable at O(q).

π/2−θ

q

q
x

y

θ

FIG. 9: Schematic diagram (κ0λρ > 0) depicting the regions of directions in the plane (shaded region) in which only propagating
modes exist at O(q). Outside of the region, the system is unstable at O(q). In contrast, pure propagating modes without any
damping or gworth are found for ls → 0 (Γ → ∞) only along four special lines for κ0λρ < 0 (see text; see also Fig. 8).

The growth rate or relaxation rates of the unstable and stable modes are also anisotropic and scale with ∆µ.
Representative plots of the real and imaginary parts of Λ+,Λ− as functions of θ for some chosen parameter values are
shown in Fig. (10) showing the presence of propagating modes. The regions of instabilities and propagating modes
are clearly indicated. In particular, there are a few notable features as displayed by Fig. 10, consistent with the forms
of the eigenvalues (49). For instance, for κ0λρ < 0, Λ+,Λ− are wholly imaginary for all θ and unequal, i.e., the speed
of the two modes are different in magnitude. In contrast, for κ0λρ > 0, the real parts vanish over an identical range of
θ for both the modes, that belongs to the shaded region in Fig. 9, with unequal imaginary parts, i.e., different speeds
for the two modes. For the other values of θ, the real parts are nonzero with mutually opposite signs, representing
stable and unstable modes, with same speeds of propagation. The overall differences with the eigenvalues for large
(diverging) Γ are clearly visible. Evidently, the model is overall stable at the linear order in q, provided, λρκ0 ≤ 0.
In this stable sector of the parameter space, the results of Ref. [6] that includes the effects of the nonlinearities and
noises should directly apply here. Lastly, dry active matters are characterised by density segregation in the steady
states [43, 44]. Our linearised treatment is unable to capture this.
We now consider briefly the case with |χ/γ0 − λ̄| ≫ |λρ∆µ|. Proceeding as in Sec. III A above, the eigenvalues to

the lowest order in q and ∆µ are given by

Λ = ±

√

(
χ

γ0
− λ̄)κ0∆µq sin θ, (51)

yielding instability for (χ/γ0− λ̄)κ0∆µ > 0 and oppositely moving propagating modes for (χ/γ0− λ̄)κ0∆µ < 0. These
results are identical to the corresponding results in Sec. III A.

C. Weak friction limit

We now analyse the linear instabilities for ηq2 ≫ Γ. One of the eigenvalues Λ of the linear stability matrix is
non-zero at O(q0). We find

Λ =
ζ∆µ

2η
(cos2 θ − sin2 θ)

[

(ν1 − 1) sin2 θ − (ν1 + 1) cos2 θ
]

. (52)
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FIG. 10: (Color online) Representative plots of the real (thin black line) and imaginary (thick line) parts of Λ+ and Λ−

(calculated up to O(q)) vs θ for some chosen parameter values λ2 = 1, κρρ = 2, ∆µ = 1 and q = 1. (a) Λ+ vs θ for κ0λρ = 4,
(b) Λ− vs θ for κ0λρ = 4, (c) Λ+ vs θ for κ0λρ = −4, and (d) Λ− vs θ for κ0λρ = −4. In (a) the real part (thin line) is located in
the region of negative Λ+ indicating stability and the imaginary part (thick line) indicates the presence of propagating modes.
In (c) and (d) there are no real parts (black thin line) when κ0λρ < 0. Unlike the case for ls → 0, there are ranges of directions
in the plane where there are only propagating modes at O(q) (see text).

With a given choice for the sign of ζ∆µ (say positive), Λ > (<)0 for cos2 θ− sin2 θ and (ν1 − 1) sin2 θ− (ν1 +1) cos2 θ
having the same (opposite) signs and vice versa for ζ∆µ < 0, suggesting instabilities for either sign of ζ∆µ. These
results are identical to those in Ref. [9] for a bulk polar ordered active fluid. It is not a surprise that our results are
same as those in Ref. [9], for in the weak Γ limit, the active fluid layer in our model is effectively dynamically decoupled
from the ambient fluid and hence acts as a free standing system, and hence, identical to the system considered in
Ref. [9].

IV. LINEAR INSTABILITIES AND MEASUREMENTS OF Γ

As our results above reveal, the magnitude of Γ delineates different regimes of the model. While all these regimes
display generic long wavelength instabilities in the different regions of the parameter space, the detailed nature of
the instabilities and the regions in the parameter space where they are present, vary depending on Γ. For easy
comparison, we provide here a table (Table I) which differentiates between the instabilities in the three different
regimes, as delineated by Γ (assume |χ/γ0 − λ̄| ≪ |λρ∆µ|):
Despite the loose similarities between the nature of the long wavelength instabilities for large and moderate Γ, closer

inspection reveals significant differences between the two cases. With a large (formally diverging) Γ (ls/L ≪ 1), the
active fluid velocities vα ∼ O(q0), where as, for moderate Γ, vα ∼ O(q), α = x, y. Furthermore, with a diverging Γ,
the system is unstable in the full parameter space to the lowest order in q along all angles in the polar plane, except
for along the lines θ = ±θ0,±(θ0 + π). Along these special directions, there are only propagating modes without
any damping or growth (to the linear order in q). At every other value of θ, one mode is unstable. Thus, for all
(finite) values of the parameters and both signs of ∆µ, there are moving instabilities with anisotropic speeds. In
contrast, with intermediate interfacial friction (ls/L ≫ 1), there are regions in the parameter space where there are
only propagating modes with no instabilities at the lowest order in q for any θ; only in a subspace of the parameter
space, one encounters moving instabilities for either sign of ∆µ. Even in such a parameter subspace, there are only
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High friction (L ≫ ls) Intermediate friction (L ≪ ls) Weak friction [L ≪ (lsd)
1/2]

Eigenvalues vanish at O(q0). Again eigenvalues vanish at O(q0). Nonzero eigenvalues: generic linear
instabilities for at O(q0) for both
signs of ∆µ; no propagating modes.

O(q): Generically linearly unstable at O(q) for
both signs of ∆µ. In the plane at an angle θ0
(measured with respect to the direction of the
reference orientation) given by tan2 θ0 = (ν1 +
1)/(ν1 − 1) for λρκ0 < 0, or, for λρκ0 > 0 and
4λρκ0 sin

2 θ0 < (λ2 + κρρ)
2 cos2 θ0: only propa-

gating modes at O(q). Else instability even at
θ = θ0.

O(q): Only propagating modes for κ0λρ <
0. Else, for κ0λρ > 0, there are only
propagating modes without any damping
or growth for angles θ in the plane satis-
fying cos2 θ(κρρ + λ2)

2
− 4κ0λρ sin

2 θ > 0
and instability elsewhere in the plane.

-

TABLE I: Table describing the instabilities in different frictional regimes.

propagating modes at O(q) for a range of θ; for other values of θ, moving instabilities are present.
At this stage, it is useful to compare with available experimental results. To do this, numerical estimates of the slip

length ls or the slip coefficient Γ are needed. To our knowledge, systematic measurements of Γ or ls for active fluids
are lacking. Nonetheless, based on the available information we can make the following comments. Ref. [24] reports

a hydrodynamic length l̃ = (η/Γ)1/2 to be of the order of 10 µm. Assuming η ∼ η′d and d ∼ 200nm [45] as the

thickness of actin cortex, we find ls ∼ l̃2/d ∼ 103µm, larger than the typical size of cortical action layers (∼ 100µm).
Nevertheless, our estimation of ls is not precise and hence it is difficult to comment upon the experimental realisability
of the high friction case of in-vitro cortical actin layers in water based upon our estimates. On the other hand, L
smaller than ls should correspond to the intermediate friction case; we expect this to be realised in experiments on
cortical actin layers in water. Lastly, for L < (lsd)

1/2 ∼ 10−1µm, which is certainly small, the system should behave
as a free standing system. Equivalently, for a larger system with L > 10−1µm, the dynamics of a free standing
film will be observed if the system is probed at length scales much smaller than ∼ 10−1µm; see, e.g., Ref. [24].
The sensitive dependences of the long wavelength dynamics of the model on Γ may be used to make experimental
estimates of Γ in a given system (i.e., for a fixed values of all other parameters including L). We note that directly
connecting our theoretical predictions with experimental results is not an easy task. Nonetheless, given the generic
nature of our continuum active fluid theories and noting that since an experiment is necessarily performed on finite
systems, long wavelength limit should imply 2π/q → L, where q is a wavevector of interest and L the system size,
it is expected that all experiments that may be described by the same long wavelength continuum equations should
display similar long wavelength linear instabilities, characterised by their growth rates or thresholds of the linear
instabilities. In general, these properties should allow us to compare the theoretical predictions with experiments,
at least qualitatively, although varying L experimentally is expected to be a challenging task. More specifically, we
can make the following comments. First of all, if linear instabilities are found to persist for all θ, then our above
results indicate that ls/L ≪ 1 or a large Γ: Γ ≫ η′/ls, hence, Γ ≫ η′/L, setting a lower bound for Γ ∼ η′/L.
On the other hand, if linear instabilities are not found at O(q) or found only over a range of θ, we can conclude
ls/L ≫ 1, or, Γ ≪ η′/L, giving an upper bound on Γ. At the same time, we must have ηq2 << Γ, η ∼ η′d, yielding
Γ ≫ η′d/a2, where a is a small scale (∼ molecular cut off), such that for a−1 . q, the continuum theory breaks
down. This provides a lower limit on Γ. In contrast, the system behaves as a free standing 2D film for L ≪ (η/Γ)1/2.
Information on Γ may also be obtained by measuring the correlation functions of the local velocity fields, orientation
and density fluctuations and using the relations (32) and (33) when the system is stable with an intermediate Γ, i.e.,
with κ0λρ < 0. Velocity fields may be measured, e.g., by attaching a small bead with the actin filament and tracking
its instantaneous positions. Orientation and density fluctuations may be measured by optical methods and scattering
experiments, respectively. Lastly, as we have shown in Appendices (D 1), (D 2) and (D 3) that the magnitude of bulk
3D fluid velocity depends strongly on Γ for η′/L ≫ Γ ≫ η′d/a2. Thus, measurement of the ambient 3D velocity field,
e.g., by tracking the position of a tracer particle, should also be helpful in extracting numerical estimates on Γ.

V. NEMATIC LIMIT OF THE DYNAMICS

Until now we have considered polar active particles, so that the corresponding dynamics is not invariant under
p → −p. In the nematic limit, the dynamics is invariant under p → −p. Hence, active coefficients λ2, λρ, κ0 and κρρ

and equilibrium couplings χ and λ are zero. Thus, to the lowest order, the dynamical equations in the strong friction
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case are

∂py
∂t

= −
1

4η′q
[(ν1 − 1)q2y − (ν1 + 1)q2x]

[

ζ∆µ

(

1−
2q2x
q2

)

py +
ζ̄∆µqxqy

q2
ρ

]

, (53)

∂ρ

∂t
= −γρρq

2ρ+ w∆µq2xρ+ wρ0∆µqxqypy. (54)

As before, assume a time dependence of the form exp(Λt) for the fluctuations. Then, to the lowest order in q

Λ = 0,
ζ∆µq

4η′
(cos2 θ − sin2 θ)

[

(ν1 − 1) sin2 θ − (ν1 + 1) cos2 θ
]

. (55)

Thus, with positive ζ∆µ, Λ is positive (negative) for cos2 θ− sin2 θ and (ν1−1) sin2 θ− (ν1+1) cos2 θ having the same
(opposite) signs. Similarly for ζ∆µ < 0. Thus, the system is unstable for both signs of ∆µ.
For a finite Γ, to the lowest order in q, the corresponding dynamical equations with nematic symmetry are

∂py
∂t

= −
Dq2

γ0
py −

ζ∆µ

4Γ

[

(ν1 − 1)q2y − (ν1 + 1)q2x
]

(

1−
2q2x
q2

)

py, (56)

∂ρ

∂t
= −γρρq

2ρ+ w∆µq2xρ+ wρ0∆µqxqypy. (57)

Interestingly, Eqs. (56) and (57) are identical to those in Ref. [10] for active nematics on a substrate. Thus, the
results of Ref. [10] are to hold here. We do not discuss these here in details. Regardless of the details, in the nematic
limit there are no propagating waves and the instabilities are always static or localised. In contrast, active polar
ordered systems are characterised by the presence of generic propagating modes and moving instabilities. Finally, the
eigenmodes in both the nematic and polar ordered systems with strong interfacial friction with the embedding fluid
scale with q. However, for intermediate friction, the eigenmodes for the nematic system scale as q2, where as for the
corresponding polar ordered system, they scale as q.

VI. SUMMARY

In this work, we have set up the generic coarse-grained dynamics of a thin layer of polar ordered active particle
suspensions frictionally coupled to the bulk isotropic passive fluid with an arbitrary friction coefficient Γ. In a linearised
treatment for small fluctuations around uniformly polar ordered states, we show that our model describes a layer of
wet active matter, dry active matter and a free standing film, respectively, for L ≫ η′/Γ, η′/Γ ≫ L ≫ (η′d/Γ)1/2 and
η′d/Γ ≫ L2. The nature and the conditions for linear instabilities in the long wavelength limit depend sensitively on
Γ. These features may be used to find estimates about Γ in a given 2D active fluid layer embedded in a bulk passive
fluid. We also discuss the nematic limit of the dynamics and compare it with their polar analogues.
Our results evidently highlight the crucial role played by the interfacial friction and demonstrate how experimental

knowledge about the linear instabilities may be used to extract information about the friction coefficient. Actual
biological realisations of quasi-2D active fluids have more complicated structures. Our work should be considered
only as a first step towards a more complete physical understanding of such systems. We expect our results to be
useful in understanding in-vitro experiments on reconstituted layers of ordered actin filaments with molecular motors
in an embedding fluid (e.g., water). Experimental validation of the Γ-dependences of the linear instabilities are
expected to be highly challenging tasks. Nevertheless, we look forward to possible experimental attempts to study
the issues highlighted here. Lastly the formal similarities between the dynamical equations with moderate interfacial
friction and those for a polar ordered system resting on a solid substrate open up the possibilities of studying the
physics of moderate friction by performing experiments on an analogous system resting on a solid substrate.
Our analyses are valid for small fluctuations around an ordered state. Thus no conclusions may be drawn from

our studies about the eventual steady states in the event of the linearly unstable uniform initial states. Numerical
solutions of the full model equations should yield valuable information in this regard. We made several simplifying
assumptions while setting up our framework. For instance, we have assumed the active fluid layer to be inflexible and
hence the out-of-plane fluctuations are prohibited. However, this condition may be violated for reconstituted actin
filaments on a liposome. Thus for better quantitative understanding of the experimental results, a thin layer of active
fluid with finite flexibility (i.e., with a finite surface tension or bending modulus) should be studied. Secondly, the
system may not even be overall flat and may have a finite curvature. In this case, our results should hold over scales
smaller than the radius of curvature. Our assumption of equal friction coefficients on both the sides of the active
system is also a simplification. Generalisation to unequal frictions on both sides may be done in a straightforward
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way. It will be interesting to study the diffusivity of a test particle inside the 2D active polar system. It is well-known
that the diffusivity of a test particle in a free standing thin active fluid layer shows starkly unusual properties, e.g.,
dependences on the thickness [46], in contrast to the diffusivity of a small particle in a quasi-2D passive fluid [47].
Given our results here, it is expected that the diffusivity of a test particle in a 2D polar ordered medium is affected
by the interplay of hydrodynamic interactions by the embedding medium and the strength of the interfacial friction.
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Appendix A: Derivation of the full 2D generalised Stokes equation for vi

Here, we derive the full 2D generalised Stokes equation. Using Eqs. (7), (10) in Eq. (5), the generalised Stokes Eq.
may be written as

η∇2vβ +∆µ∂α(ζ
′(ρ)pαpβ) +

ν1
2
∂α(pαhβ + pβhα)−

ǫ0
2
∂α(pα∂βµρ + pβ∂αµρ) +

1

2
∂α(pαhβ − pβhα) = ∂βΠ− Fβ .(A1)

Using incompressibility Π can be derived from (A1) as

Π = ∆µ
∂α∂β
∇2

(ζ′(ρ)(pαpβ) +
ν1
2

∂α∂β
∇2

(pαhβ + pβhα)

−
ǫ0
2

∂α∂β
∇2

(Apα∂βρ+Apβ∂αρ+ χpα∂β∇ · p+ χpβ∂α∇ · p) +
∂βFβ

∇2
, (A2)

where 1/∇2 is the inverse of ∇2.
Using this value of Π in (A1), the Stoke’s equation is derived as

η∇2vβ + ∆µPβγ∂α[ζ
′(ρ)pαpγ ] +

ν1
2
Pβγ∂α(pαhγ + pγhα)− ǫ0Pβγ∂α(Apα∂γρ+Apγ∂αρ+ χpα∂γ∇ · p+ χpγ∂α∇ · p)

+
1

2
Pβγ∂α(pαhγ − pγhα) = −PγβFγ , (A3)

where Pαβ is the transverse projection operator written as Pαβ = δαβ −
∂α∂β

∇2 . Let us redefine PγβFγ as Fβ given by
(6). Linearising about px = 1, the Stokes equation (A3) is simplified to

η∇2vβ + ∆µPβx∂α[ζ
′pα] + ∆µPβγ∂x[ζ

′pγ ] +
ν1
2
Pβx∂αhα +

ν1
2
Pβγ∂xhγ −

1

2
Pβx∂αhα +

1

2
Pβγ∂xhγ

−A
ǫ0
2
Pβγ∂x∂γρ− χ

ǫ0
2
Pβγ∂x∂γ∇ · p−A

ǫ0
2
Pβx∂

2
αρ− χ

ǫ0
2
Pβx∂

2
α∇ · p = −Fβ , (A4)

Now using Eq. (15), we find hy = − ∂F
∂py

= D∇2py +χ∂yρ. In addition, hx acts as a Lagrange multiplier to enforce the

constraint p2 = 1. Notice that hy contributes terms which are higher order in gradients in Eq. (A4). Thus neglecting
all the higher order terms, the generalised Stokes equation up to the lowest order in gradients is given by Eq. (16).

Appendix B: Fβ for high friction (L ≫ ls)

The velocity and hydrodynamic pressure for the subphase and superphase are given by Eqs. (B5)-(B12). We impose
incompressibility on the 3D ambient fluid:

∂zv
′
z = −∇iv

′
i with i=x,y, (B1)
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for both z > 0 and z < 0. Fourier transforming the in-plane coordinates x = (x, y),

η′(−q2 + ∂2
z )v

′
z = ∂zΠ

′, (B2)

η′(−q2 + ∂2
z )v

′
i = iqiΠ

′, and (B3)

(−q2 + ∂2
z )Π

′ = 0, (B4)

where i = x, y; q = (qx, qy) is the in-plane Fourier wavevector. The above equations can be solved together to obtain
the solutions for v′x, v

′
y, v

′
z and Π′. We write

v′x = (A1 +B1z) exp(−qz) for z > 0, (B5)

= (A2 +B2z) exp (qz) for z < 0, (B6)

v′y = (A3 +B3z) exp (−qz) for z > 0, (B7)

= (A4 +B4z) exp (qz) for z < 0, (B8)

v′z = (C1 +D1z) exp (−qz) for z > 0, (B9)

= (C2 +D2z) exp (qz) for z < 0, and (B10)

Π′ = E1 exp (−qz) for z > 0, (B11)

= E2 exp (qz) for z < 0, (B12)

where coefficients A1, A2, ..., E2 are real or imaginary functions of q.
The incompressibility condition (B1) yields

D1 = −iqxA1 − iqyA3 + qC1 = i
qx
q
B1 + i

qy
q
B3, (B13)

D2 = −iqxA2 − iqyA4 − qC2 = −i
qx
q
B2 − i

qy
q
B4. (B14)

The continuity of velocity or Eq. (24) gives

A1 = A2 = vx (B15)

A3 = A4 = vy (B16)

C1 = C2 (B17)

As the active fluid film is two dimensional, there is no discontinuity over the vertical gradient of v′z (since vz = 0).
This allows us to write

∂zv
′
z|z=ǫ = ∂zv

′
z |z=−ǫ, (B18)

which yields using Eqs. (B9) and (B10)

D1 = 2qC1 +D2. (B19)

The tangential stress Fi may be evaluated using the Stokes equation (17). The Stokes equation for v′i yields

η′∇2
3∇3 × v′i = 0. (B20)

Eq. (B20) gives us further relations

B3 = −i
qy
q
D1 =

qy
qx

B1 and (B21)

B4 = i
qy
q
D2 =

qy
qx

B2. (B22)

Using Eqs. (B13)-(B17), (B19), (B21) and (B22), the x-component of 3D force F is obtained as

Fx = η′(∂zv
′
x + ∂xv

′
z)|ǫ − η′(∂zv

′
x + ∂xv

′
z)|−ǫ

= η′[−2
q2x
q
vx − 2qvx − 2

qxqy
q

vy + i
qx
q
(D1 +D2) +B1 −B2]

= η′[−2
q2x
q
vx − 2qvx − 2

qxqy
q

vy]

= −2η′qvx, (B23)

where we have used incompressibility of the 3D velocity in the last line. Similarly we get the y-component of F as

Fy = −2η′qvy , (B24)

using the no-slip condition equating v with the in-plane components of v′ at the active fluid layer.
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Appendix C: Form of Fβ for intermediate friction (ls ≫ L ≫ (lsd)
1/2)

We start with

η′
∂v′α
∂z

|z=ǫ = Γ(v′α|z=ǫ − vα), α = x, y. (C1)

A similar condition exists at z = −ǫ. Now using the forms of v′x, v
′
y and v′z as given by (B5), (B7) and (B9) we obtain

η′(−A1q +B1) = Γ(A1 − vx), (C2)

η′(−A3q +B3) = Γ(A3 − vy). (C3)

In the weak friction limit, Γ ≪ O(η′q) in the wavevector range of interest. Thus,

η′(−A1q +B1) = Γ(−vx), (C4)

η′(−A3q +B3) = Γ(−vy). (C5)

or, equivalently,

η′
∂v′x
∂z

= −Γvx, (C6)

η′
∂v′y
∂z

= −Γvy (C7)

at z = ǫ. Similar considerations at z = −ǫ finally yields

η′[
∂v′α
∂z

|z=ǫ −
∂v′α
∂z

|z=−ǫ] = −2Γvα. (C8)

This yields for the 2D generalised Stokes equation which vα satisfy

η∇2vα + ζ∆µPαγ∂xpγ + ζ∆µPαx∂ypy + ζ̄∆µPαx∂xρ− 2Γvα = 0, . (C9)

Now write Eq. (C9) in the Fourier space and neglect ηq2vα assuming ηq2 ≪ 2Γ. This yields Eqs. (32) and (33).

Appendix D: Velocity profiles of the ambient fluid

It is instructive to obtain the flow profiles of three-dimensional velocity fields, that are created by the (small)
fluctuations in ρ and py, in the three different regimes of our model as delineated by the values of Γ.

1. Large Γ (L ≫ ls)

In this case v′i(x, y, z = ±ǫ) = vi(x, y), i = x, y. Since v′z(z = ±ǫ) = 0, from (B9) and (B10), C1 = 0 = C2. Using

the no-slip condition on v′i(z = ±) and the 3D incompressibility of v′α, α = x, y, z, (iqxv
′
x+ iqy)|z=±ǫ = 0 =

∂v′

z

∂z |z=± in
the Fourier space. This yields D1 = 0 = D2. Thus, v

′
z = 0 everywhere above and below the active fluid layer. Hence,

the flow in the surrounding fluid is actually 2D, parallel to the active fluid layer. We further find B1 = 0 = B2 and
B3 = 0 = B4. Thus in the Fourier space,

v′i(qx, qy, z) = vi(qx, qy) exp(−qz), z > 0,

= vi(qx, qy) exp(qz), z < 0. (D1)

Therefore, v′i has the same form as vi with an exponentially damped amplitude by a factor exp(−q|z|) and hence
shows the same instabilities at O(q).
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2. Intermediate Γ (ls ≫ L ≫ (lsd)
1/2)

In the intermediate friction case, the 3D shear stress balance is given by

η′
∂v′i
∂z

|ǫ = −Γvi|ǫ, (D2)

η′
∂v′i
∂z

|−ǫ = Γvi|−ǫ. (D3)

Using the above equations and (B5), (B6), (B7) and (B8), we get a set of relations between the couplings given by

− qA1 +B1 = −
Γ

η′
vx, (D4)

qA2 +B2 =
Γ

η′
vx, (D5)

−qA3 +B3 = −
Γ

η′
vy, (D6)

qA4 +B4 =
Γ

η′
vy . (D7)

Now using (D4), (D5), (D6), (D7), 3D incompressibility (∇·v′ = 0) of ambient fluid, 2D incompressibility (∇⊥ ·v =
0) of active fluid layer and equations (B21) and (B22), we can show that

B1 = B2 = B3 = B4 = 0 and, (D8)

D1 = D2 = 0. (D9)

Hence we obtain, v′z = 0 for all z identically and v′i(qx, qy, z) = Γvi exp(−q|z|)/(η′q) and has the same dependences
on ρ and py as for large Γ. Thus, v′α, α = x, y, z is again 2D. Nonetheless, v′i for moderate Γ is different from v′i for
large Γ, since the solutions for ρ and py have very different explicit forms for moderate Γ. In particular, v′i(x, y, z)
shows instability only if κ0λρ > 0, the same condition for instability for the 2D active fluid layer. Notice that in the
present case in addition to the exp(−q|z|) factors, v′i is further scaled down in comparison with vi by a factor Γ/(η′q),
and hence should be small in magnitude.

3. Small Γ (L2
≪ lsd)

In the limit of very small Γ, we have η′ ∂vi∂z |z=± ≈ 0. i.e., we effectively have the stress-free boundary condition on
v′i at z = 0. In addition, v′z = 0 at z = 0. Now using the results in Sec. C, we find A1 = A2 = B1 = B2 = A3 = A4 =
B3 = B4 = 0, i.e., v′i = 0 at all z > 0 and z < 0 identically. In addition, v′z = 0 everywhere. Thus, the 3D velocity
field vanishes.
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[3] T. Surrey, F. J. Ned́élec, S. Leibler, and E. Karsenti (2001), Science 292, 1167.
[4] C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein, and J. O. Kessler, Phys. Rev. Lett. 93, 098103 (2004).
[5] R. Kemkemer, D. Kling, D. Kaufmann, and H. Gruler, Eur. Phys. J. E 1, 215 (2000).
[6] J. Toner and Y. Tu, Phys. Rev. E 58, 4828 (1998).
[7] V. Narayan, N. Menon and S. Ramaswamy, J. Stat. Mech., P01005 (2006); V. Narayan, S. Ramaswamy, and N. Menon,

Science 317 (5834), 105 (2007).
[8] W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. S. Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H.

Crespi, J. Am. Chem. Soc. 126, 13424 (2004).
[9] R. A. Simha and S. Ramaswamy, Phys. Rev. Lett. 89 058101 (2002).

[10] S. Ramaswamy, R. A. Simha, and J. Toner, Europhys. Lett. 62, 196 (2003).
[11] V Schaller, C Weber, C Semmrich, E Frey, AR Bausch, Nature 467, 73 (2010).



23

[12] P. C. Martin, O. Parodi, and P. S. Pershan Phys. Rev. A 6, 2401 (1972).
[13] I. S. Aranson and L. S. Tsimring, Granular Patterns (Oxford University press, New-York, 2009), Chap. 9.
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[33] K Kruse, J F Joanny, F Jülicher and J Prost, Phys. Biol. 3, 130 (2006).
[34] G. Salbreux, J. Prost,1,2 and J. F. Joanny, Phys. Rev. Lett. 103, 058102 (2009).
[35] J.-Y. Tinevez et al, Proc. Nat. Acad. Sc. (USA) 106, 18581 (2009).
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