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The statistical significance of network properties is conditioned on null models which satisfy spec-
ified properties but that are otherwise random. Exponential random graph models are a principled
theoretical framework to generate such constrained ensembles, but which often fail in practice, ei-
ther due to model inconsistency, or due to the impossibility to sample networks from them. These
problems affect the important case of networks with prescribed clustering coefficient or number of
small connected subgraphs (motifs). In this Letter we use the Wang-Landau method to obtain a
multicanonical sampling that overcomes both these problems. We sample, in polynomial time, net-
works with arbitrary degree sequences from ensembles with imposed motifs counts. Applying this
method to social networks, we investigate the relation between transitivity and homophily, and we
quantify the correlation between different types of motifs, finding that single motifs can explain up
to 60% of the variation of motif profiles.

PACS numbers: 05.10.Ln, 64.60.aq, 89.75.Hc

Networks form the basis of an ample class of com-
plex systems. The observed topological patterns of such
systems often yield the only available evidence for the
underlying principles behind their formation. However,
the significance of any observed property can only be
assessed in comparison to a properly defined network en-
semble that acts as a “null” model [1–3]. For instance,
clustering (i.e. high density of triangles), skewed degree
distributions, and community structure are considered
significant in real networks because they are absent in
Erdős-Renyi networks. To perform such comparisons, it
is essential not only to properly define such null mod-
els, but also to correctly sample network realizations
from them. This is relatively straightforward when the
ensemble generates networks where the edges are sam-
pled independently (e.g. Erdős-Renyi and configuration
models [4, 5], the stochastic block model [6, 7]) and it
remains feasible when strict edge independence is vio-
lated due to hard constraints [8–10]. However, for en-
sembles with more generic constraints the sampling is
significantly more challenging. A particularly important
example is ensembles with a prescribed density of con-
nected subgraphs (“motifs”) [11–13]. For this class of
models, one often finds abrupt phase transitions, where
sampled networks possess either very high or very low
motif density [12, 13], excluding intermediary values of-
ten encountered in real systems. Furthermore, they often
show strong non-ergodic behavior, with very slow relax-
ation that forbids unbiased sampling in practical compu-
tational time [13]. Since the edge placement is not inde-
pendent, the densities of different motifs are correlated
with each other and also with large-scale network struc-
tures [14, 15]. Without addressing the issue of correct
sampling, these correlations cannot be properly identi-
fied, which makes the occurrence of these patterns in
real systems difficult to interpret. In particular, it is
not possible to conclude whether a particular motif den-

sity profile indicates a topology optimized towards ro-
bustness [16, 17] or whether it is merely a byproduct of
a specific large-scale structure [14, 18], of combinatorial
constraints [19], or of correlations between motifs.

In this Letter we show how to sample from ensembles
with prescribed motif densities in polynomial time. We
employ a multicanonical Monte Carlo method [2] that
allows the entire range of the order parameter to be
explored. In this manner, not only the non-ergodicity
problem is explicitly avoided, but it also becomes pos-
sible to sample networks with arbitrary motif densities,
even those at intermediate values that are unattainable
via traditional importance sampling. This allows us to
quantitatively investigate two fundamental problems in
social networks: the homophily-transitivity relationship
and the interdependence of different motif types.

We are interested in network ensembles that possess
one particular observable s of interest, but that are oth-
erwise maximally random. The last requirement is es-
sential to ensure that the ensemble is representative of
the networks with a given s and is not subject to addi-
tional (hidden) constraints. Both features are achieved
by sampling the network from an exponential random
graph model (ERGM) [3, 10, 22–25] G, where each graph
g ∈ G occurs with probability

Πβ(g) =
eβs(g)

Zβ
, where Zβ =

∑
g∈G

eβs(g), (1)

where s(g) is the observable associated with network g,
and β is an inverse-temperature parameter, in analogy
to the canonical ensemble in statistical physics. The
distribution of s is ρβ(s) =

∑
g∈G δ(s(g) − s)Πβ(g) =

ρ0(s)eβs/Zβ , where ρ0(s) ≡ ρβ=0(s) is called the state
density (the fraction of networks g in the ensemble that
have observable equal to s). The ensemble that acts as a
null model for an empirical network with s = s∗ is usually
constructed fixing β in such a way that 〈s〉β ≡

∑
s sρβ(s)
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FIG. 1. (Color online) Multicanonical sampling of exponen-
tial random graphs with imposed clustering avoids the limi-
tations of canonical sampling. The ensemble G corresponds
to k-regular undirected networks with N = 640 and degree
k = 4. The observable is the clustering coefficient s = c
(proportional to the number of triangles, n4). The main
plot shows 〈c〉 (and standard deviation) as a function of the
inverse temperature β obtained by canonical (symbols) and
multicanonical (continuous thick line) sampling. Inset: the
distribution ρβ(c) for β = 3.54 ≈ βPT obtained by the two
methods. Canonical samplings used 5× 105 MCMC steps for
equilibration, before another 5× 105 steps were used for esti-
mation. After these steps, the value of β was slowly increased
(β ↑) or decreased (β ↓) and the process repeated. The mul-
ticanonical sampling used 20 Wang-Landau steps to estimate
ρ0(c) (each step used 5 tunneling steps) [2, 21].

equals s∗. The number of networks in this ensemble
typically grows exponentially with the number of nodes,
and, thus, besides a small set of observables s that can
be treated analytically, investigation of ERGMs requires
sampling networks g from G using Monte Carlo meth-
ods [24].

The usual approach of sampling from G is via Markov
chain Monte Carlo (MCMC) method works as follows:
starting from one network g ∈ G, a new network g′ ∈ Gn
is proposed by choosing two links at random and ex-
changing one of the nodes of each link, which preserves
the degree-sequence of the network [26]. The proposed
network is accepted with the Metropolis-Hastings prob-
ability A(g 7→ g′) = min{1, eβ(s(g′)−s(g))} and the pro-
cess is repeated from g′ (g) if the proposal is accepted
(rejected) [27]. Since the moves fulfill ergodicity and de-
tailed balance, for sufficiently long times the values of
s in the sampled networks g are distributed as ρβ(s).
However, despite this asymptotic guarantee, in practice
this method often fails because the time to approximate
ρβ(s) grows exponentially with the number of nodes N .
This happens whenever ρβ possesses more than one local
maximum (minimum of the free energy) and the barri-

ers between them grow with N . As we show below, this
generically happens when the observables s are related
to motifs.

As an alternative to the canonical (simple Metropo-
lis) sampling method described above, we propose a
multicanonical sampling to overcome the aforementioned
problem. This method aims to sample networks uni-
formly on a pre-defined observable range [smin, smax],
thus overcoming the minima of ρβ(s) that are respon-
sible for the weak performance of the canonical method.
This is done by sampling the states according to aux-
iliary ensemble with probabilities Π′(g) ∝ 1/ρ0(s(g)),
achieved by simply changing the acceptance to A(g 7→
g′) = min{1, ρ0(s(g′))/ρ0(s(g))} [2]. However, in order
to perform this sampling we need to know the state den-
sity ρ0(s). In order to estimate it, we use the Wang-
Landau algorithm [1, 2], which, in short, constructs an
adaptive histogram to approximate ρ0(s(g)) [3]. After
convergence, ρβ(s) is estimated for all β’s reweighting
ρ0(s) through ρβ(s) = ρ0(s) exp(−βs)/Zβ [2]. Hence, the
auxiliary ensemble allows to explore the original canoni-
cal ensembles without being restricted to the most prob-
able regions. More importantly, we can impose the de-
sired value of the observable as a hard constraint a pos-
teriori, i.e., only sample networks with s(g) = s∗. The
multicanonical approach has recently been applied to in-
vestigate the spectral gap of networks [30], and related
approaches have been used to investigate percolation [31]
and resilience properties of networks [32].

In Fig. 1 we show how the application of multicanoni-
cal sampling solves the limitations of canonical sampling
in the classical problem of introducing clustering in a k-
regular network [11, 13]. Here, nodes are forced to have
the same degree k and the observable of interest is the
number of triangles, s(g) = n4. Fixing n4 is the same
as fixing the clustering coefficient c = 3n4/n∧, where n∧
is the number of connected triples (a constant for all net-
works with the same degree sequence) [3]. This model ex-
hibits a transition at a specific value of β = βPT (≈ 3.54
for k = 4), separating low and high-clustering phases [13].
The canonical sampling is unable to compute 〈c〉 close
to the phase-transition because it yields different esti-
mations of 〈c〉, depending whether β is slowly increased
(β ↑, lower branch) or decreased (β ↓, upper branch).
This hysteresis is typical around first-order phase transi-
tions (coexisting phases) and indicates that the canonical
sampling is in a metastable state. Indeed, ρβPT

(c) has
two local maxima in which the canonical sampling be-
comes trapped (inset in Fig. 1). On the other hand, the
multicanonical sampling is immune to these problems: it
correctly characterizes 〈c〉 at β = βPT and reveals the full
distribution ρβ=βPT

. Hence, the method is not only ca-
pable of computing the correct ensemble average for any
β, it yields typical networks with any value of c, including
the significant gap c ∈ [.2, 1] which is unattainable with
the canonical sampling. In Fig. 2 we confirm that the
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FIG. 2. (Color online) Efficiency of the multicanonical
method to sample networks with constraints. The compu-
tational cost (in number of MCMC steps) to generate an in-
dependent realization of a network in the k-regular ensemble
with k = 3 is plotted as a function of N . In the canoni-
cal method close to the critical β, this requires passing the
minimum of ρβ(c) (inset of Fig. 1). We measured that the
height of this barrier increases as ∆ρ ≈ 0.4N , which leads
to an exponential increase in the cost (dashed line). Sam-
pling independent realizations in the multicanonical method
requires, at most, a tunneling (the number of MCMC steps
to do c = 0 7→ c = 1 7→ c = 0) [21]. The measured tunneling
time (circles and full line) scales polynomially. Inset: con-
vergence of the relative error in the logarithm of the density
of states (entropy) during convergence of the Wang-Landau
algorithm, estimated comparing the measured value with the
exact value on c=1. The saturation of the error observed for
large number of steps does not hinder the sampling of any c
(see Ref. [33] for methods to overcome the saturation).

computational cost of the multicanonical method scales
polynomially with system size, a dramatic improvement
over the exponential scaling of the canonical method.

Next we use the multicanonical method to investi-
gate two important problems of social networks. The
first problem we consider is to distinguish between ho-
mophily (the tendency of “similar” nodes to connect to
each other) and transitivity (the tendency of nodes that
already share a common neighbor to connect to each
other) in social networks [2, 14, 35–38]. We use the
(undirected) network of email exchange within a univer-
sity [34]. It consists of N = 1, 133 users, and M = 5, 451
email exchanges, and a roughly exponential degree dis-
tribution. As observables we consider the clustering co-
efficient c and the degree assortativity r [39], for which
we obtain c∗ = 0.166(12) and r∗ = 0.08(3) (uncertainties
in the last digit estimated using the order-10 Jackknife
method). We assess the significance of these values by
comparing them to those obtained in the following three
network ensembles with the same degree sequence as in
the original network:
(i) Same weight to all networks g (i.e. the configuration
model). Canonical sampling with β = 0 yields 〈c〉β=0 =
0.028(1) and 〈rβ=0〉 = −0.017(13), much smaller than c∗

and r∗ as typically found in social networks.
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FIG. 3. (Color online) Relationship between clustering c
and assortativity r in the email network of Ref. [34]. The
assortativity r∗ is higher than in a random network with the
same degree sequence, but lower than in a typical network
with a fixed clustering c∗. The plot shows r and c of different
networks: the email network (green), a typical fully random
network (red), a typical random network with c = c∗ (black),
and networks sampled using the multicanonical method from
an ensemble with equal probability for networks with the same
c (blue dots). Inset: 〈c〉 obtained using the canonical method.

(ii) ERGMs with 〈c〉 = c∗. In order to determine whether
the assortativity is a consequence of high clustering [14]
we would like to measure 〈r〉 from the null model with
〈c〉 = c∗. This canonical sampling fails because 〈c〉β vs.
β shows an hysteresis around s = c∗ (inset of Fig. 2, in
agreement with our previous discussion).
(iii) Hard constraints with c(g) = c∗, obtained using mul-
ticanonical sampling. As mentioned before, this type
of hard constraint is unfeasible with canonical sampling,
even if the desired observable value is realizable. With
the multicanonical method we sample points after a num-
ber of Monte Carlo steps proportional to the tunneling
time, which guarantees that the sampled points are inde-
pendent and unbiased [21]. We performed multicanonical
sampling for a desired c and measured the assortativity
r. The results are shown in Fig. 3 and reveal that ran-
dom networks with the same clustering of the email net-
work c = c∗ typically show a much larger assortativity
〈r〉 > r∗. Therefore, although both c∗ and r∗ are larger
than one would expect for a fully random network, the
actual value of r∗ is significantly less than one would ex-
pect by knowing only c∗. From this we conclude that the
degree homophily is not explained alone by transitivity.

The second problem we address is the extent to which
the occurrence of different motifs (connected subgraphs)
are related to each other and the impact of such correla-
tions on the so-called motif profiles [17]. Here we focus on
directed networks, and the observable of interest is the
number ni of occurrences of a specific motif i. Again,
traditional sampling methods are not suited to address
this problem because of the existence of (potentially mul-
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FIG. 4. (Color online) Motifs are correlated to each other in blocks. (a) The Pearson correlation coefficient [Rij = (〈ninj〉 −
〈ni〉〈nj〉)/σniσnj ] between motifs i and j, computed by varying the constrained motif (in a range which includes the values of the
real and random networks seem [41] ). (b) Upper panel: Motif profile [17] built from the z-score zj vs. j (zj = (nj −〈nj〉)/σnj ,
where nj is the number of motifs j and 〈. . .〉 and σj are the average and standard deviation in the β = 0 ensemble). Different
lines correspond to the zj of the real network (z∗j , blue line) and the expected zj ’s in the constrained ensemble in which ni is
equal to the n∗i of the real network, where i is the constrained motif shown in the legend (zj = z∗j for j = i). Middle panel: the
correlation between the profiles shown in the upper panel, i.e., between the profile z of the real network and the profile z′ of the
motif-i constrained network (as a function of i), computed as Rzz′ = (〈zz′〉 − 〈z〉〈z′〉)/σ2

z , where 〈. . .〉 and σz were computed
over j 6= i. Lower panel: comparison of the z-score shown in the upper panel (blue line) and the alternative z-score obtained
computing 〈. . .〉 and σj in the ensemble constrained by ni = n∗i , where i is indicated in the legend (zj ≡ 0 for j = i).

tiple [13]) discontinuous phase transitions. Instead, using
the multicanonical method, we reliably sample networks
with a prescribed count of one particular motif. By mea-
suring the counts of all other motifs, we obtain the corre-
lations between them and the constrained motif. In this
manner, we obtain [41] the interdependence between all
13 different 3-node motifs in a directed acquaintance net-
work between physicians [40] (with N = 241 nodes and
M = 1, 098 edges). The results in Fig. 4 reveal strong
positive and negative correlations between pairs of mo-
tifs. Two blocks of motifs can be identified (1, 2, 3, 7, 8
and 4, 5, 6, Fig. 4a). Motifs show positive correlations
within their blocks and are anti-correlated with motifs
in the other blocks (the motifs 9 to 13 show a mixed
behavior). Given that one motif is over (under) repre-
sented, one should expect also an over representation in
motifs positively (negatively) correlated with it. As a
consequence of this correlation, we find that single mo-
tifs explain up to 60% of the variance of the motif profile
across the other 12 motifs (Fig. 4b, upper and middle
panel). Furthermore, if the constrained ensembles are
used to compute alternative z-scores, we find that the re-
sulting motif profiles vary dramatically depending on the
constraint, with some motifs j showing variations from
zj � 0 to zj � 0 (Fig. 4b, lower panel). This sensitiv-
ity of the motif profile zj shows that such profiles bring
limited insights on the over- or under-representation of
individual motifs in a network. In particular, since such
non-trivial profiles as those seen in Fig. 4b can be ob-

tained by imposing the occurrence of a single motif, it is
questionable whether conclusions regarding the underly-
ing formation mechanisms can be reliably reached from
them [17, 18]. Nevertheless, the null models considered
here represent a principled approach of assessing the rela-
tive significance of motif occurrences that is more mean-
ingful than the usual comparison to fully random net-
works.

In summary, we have shown that multicanonical sam-
pling allows for an improved network generation and for
the investigation of problems which were otherwise in-
tractable. In particular, we characterize ERGMs in cases
where the usual canonical sampling fails and we sam-
ple networks imposing hard constraints, an alternative
to a direct sampling of ERGMs even when the usual
algorithms are feasible. Our analysis of empirical net-
works demonstrates that using the multicanonical sam-
pling allows the investigation of the interdependence be-
tween network properties. In particular, we quantified
the correlation between clustering and assortativity, and
between different motifs, as well as the extent to which
their significance profiles can be explained by single mo-
tifs. This opens the possibility of investigating the corre-
lation between motifs as well as other local-scale proper-
ties and the large-scale structure of networks [14], such as
communities, core-peripheries and many others. The sys-
tematic disentangling of these diverse features is a crucial
and open problem in the identification of fundamental
models of network formation.
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Supplemental Material

Wang-Landau algorithm to sample networks

The sampling algorithms used in the paper perform
random walks in the space of constrained networks. In
our case, this space is built by networks with a fixed num-
ber of nodes and a fixed degree sequence (e.g. the degree
sequence of the e-mail network). Besides this space, the
observable we are interested in characterizing s(g) (e.g.
number of triangles of the network g) and its range of
interest [smin, smax] are also chosen a priori.

The Wang-Landau algorithm performs a random walk
in the space of constrained networks that aims to visit
equally often any value of s ∈ [smin, smax]. The outputs
of this algorithm are: 1. a numerical approximation of
the state density ρ0(s); and 2. a set of random networks g
such that their observables s(g) are uniformly distributed
in [smin, smax]. Below we describe the main steps of the
Wang-Landau algorithm.

The following quantities have to be initialized and
evolve in time:

• a network g, initially set to be an arbitrary network
with s(g) ∈ [smin, smax]; s = s(g) represents its
observable.

• a histogram-like list S(s), for s ∈ [smin, smax]
(binned if s is continuous), that represents a dis-
crete approximation of log ρ(s); it is initialized for
all s to S(s) = 0.

• the Wang-Landau refinement parameter f , initial-
ized at f = 1 (the minimum value fmin is set a
priori, e.g. fmin = 2−12).

The algorithm evolves according to the following rules:

1. Repeat until a pre-defined number (e.g., 10) of
round-trips are achieved:

(a) Randomly propose a new network g′ in the
space of constrained networks, and compute
s′ = s(g′) (see how below);

(b) Update g, s to g = g′, s = s′ if log(r) <
a(s′, s) = S(s′) − S(s) where r is a random
number drawn from a uniform distributed in
[0, 1];

(c) Update S(s) = S(s) + f .

2. update f to f = f/2, go to 1. if f ≥ fmin.

After the convergence of the evolution (f < fmin) de-
scribed above, S(s) is an approximation of log ρ(s) up to
a normalization constant. Setting f = 0 at this point and
repeating loop 1 generates networks g such that s(g) is
uniformly distributed in [smin, smax] (multicanonical en-
semble).

Notes:

i) A round-trip is achieved in step 1. when, for the
first time, the observable went from s = smin to
s = smax and returned back.

ii) The network g′ is constructed by selecting two
edges of the original network g and exchanging one
of the nodes of one edge by one of the nodes of
the other edge. This guarantees that the degree
sequence is preserved. For more complicated con-
straints on which this procedure is not feasible, one
can reject a proposed g′ if it is not in the space of
constrained networks.

iiii) In order to achieve a faster computation of s′ =
s(g′) in 1(a) it is useful to store which motifs
any given edge belongs to. Then, instead of re-
computing all motifs of g′ to compute s′ = s(g′),
one can calculate s′ from the number of motifs de-
stroyed and created when passing from g to g′ using
the procedure described in the note [ii)].

iv) A canonic ensemble with fixed β is obtained by
running loop 1. with a(s′, s) = −β(s′ − s).

For a more formal description of the Wang-Landau al-
gorithm and for further details we refer to Refs. [1, 2]. In
Ref. [3] we provide an implementation of the algorithm
described above for the case of triangles in undirected
networks.

[1] F. Wang and D. P. Landau, Physical Review Letters 86,
2050 (2001).

[2] D. Landau and K. Binder, A guide to Monte Carlo simu-
lations in statistical physics (Cambridge University Press,
2013).

[3] A C++ code demonstrating the usage of Monte
Carlo flat-histogram to sample constrained networks,
https://dx.doi.org/10.5281/zenodo.30626.

http://dx.doi.org/10.1103/PhysRevLett.86.2050
http://dx.doi.org/10.1103/PhysRevLett.86.2050
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