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Abstract We investigate Hawking radiation from a five-dimensional Lovelock black

hole using the Hamilton-Jacobi method. The behavior of the rate of radiation is plotted

for various values of the ultraviolet correction parameter and the cosmological constant.

The results show that, owing to the ultraviolet correction and the presence of dark

energy represented by the cosmological constant, the black hole radiates at a slower

rate in comparison to the case without ultraviolet correction or cosmological constant.

Moreover, the presence of the cosmological constant makes the effect of the ultraviolet

correction on the black hole radiation negligible.
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1 Introduction

Hawking radiation, which is closely related to the existence of a black hole’s event hori-

zon, is an important quantum phenomenon. Hawking radiation from black holes [1–11]

is one of the most striking effects known or at least widely agreed to arise from the com-

bination of quantum mechanics and general relativity. As one of the most important
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achievements of quantum field theory in curved spacetimes, the discovery of Hawking

radiation lent support to the idea that a classical black hole could radiate a thermal

spectrum of particles. Since Hawking’s original work, several derivations of Hawking

radiation have been proposed in the literature. Kraus and Wilczek [9,10] considered the

modification of the formulas for black hole radiation resulting from the self-gravitation

of the radiation and found that the particles no longer move along geodesics and that

the action along the rays is no longer zero for a massless particle. They concluded that

the radiation is no longer thermal but can be corrected in a definite way that they

calculated. In 2000, Parikh and Wilczek, elaborating upon Kraus and Wilczek’s work,

presented another new derivation of Hawking radiation, in which Hawking radiation is

treated as a quantum tunneling process [11]. By using this method, many studies were

conducted to evaluate the black hole radiation from massless particles [12], massive

particles [13], charged massive particles [1,14,15], and Dirac particles [16–18]. In 2012,

Jiang and Han investigated black hole spectroscopy via adiabatic invariance by com-

bining the black hole property of adiabaticity with the oscillating velocity of the black

hole horizon obtained from the tunneling framework [19]. Recently, some related works

have developed Jiang-Hans method to investigate the entropy spectra of different black

holes [20–26]. Many other works involving the Hamilton-Jacobi method to investigate

Hawking radiation can be found in the literature [13,27–32]. These works highlight the

fact that black holes are not exclusively absorbing; they are also emitting radiation.

Recently, Cai et al. [33] investigated Hawking radiation of an apparent horizon

in a Friedmann-Robertson-Walker universe using the Hamilton-Jacobi method. Using

the same method, Gohar and Saifullah [34] investigated scalar field radiation from

dilatonic black holes. In this paper, a five-dimensional Lovelock black hole is considered

to investigate Hawking radiation by including the influence of the ultraviolet correction

to the black hole.

2 Hawking radiation of the black hole

The five-dimensional Lovelock black hole metric is given by [35,36]

ds2 = f(r)dt2 − f(r)−1dr2 − r2dΩ2
3 , (1)

where dΩ2
3 = dθ2 + sin2 θdϕ2 + sin2 θ sin2 ϕdψ2,

f(r) =
4α− 4M + 2r2 − Λr4/3

4α+ r2 +

√

r4 + 4
3αΛr

4 + 16Mα

, (2)

M is the black hole mass, Λ is the cosmological constant, and α is the coupling constant

of an additional term that represents the ultraviolet correction to Einstein theory.

For Λ = 0, the radial function (2) reduces to

f(r) =
4α− 4M + 2r2

4α+ r2 +
√
r4 + 16Mα

, (3)

and the horizon radius is

rH =
√

2(M − α). (4)
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When Λ 6= 0, the horizon radii, r+ and r−, for this background are given by

r+ =

√

3

Λ
(1 +

√

1− 4Λ(M − α)/3) (5)

and

r− =

√

3

Λ
(1−

√

1− 4Λ(M − α)/3). (6)

We can then convert the metric into the following form:

f(r) =
−Λ

3 (r
2 − r2+)(r2 − r2−)

4α+ r2 +

√

r4 + 4
3αΛr

4 + 16Mα

(7)

The Hamilton-Jacobi method is an alternate method for calculating black hole

tunneling that makes use of the Hamilton-Jacobi equation as an ansatz [37]. This

method is based on the work of Padmanabhan and his collaborators [38–40]. In general,

the method involves using the WKB approximation to solve a wave equation. The

simplest case to model is that of scalar particles, which therefore involves applying the

WKB approximation to the Klein-Gordon equation. The result, to the lowest order of

the WKB approximation, is a differential equation that can be solved by substituting

a suitable ansatz. The ansatz is chosen by using the symmetries of the spacetime to

assume separability. After substituting a suitable ansatz, the resulting equation can

be solved by integrating along the classically forbidden trajectory, which starts inside

the horizon and finishes at the outside observer (usually at infinity). Because this

trajectory is classically forbidden, the equation will have a simple pole located at the

horizon. Consequently, the method of complex path analysis must be applied to deflect

the path around the pole.

Scalar particles under a gravitational background obey the Klein-Gordon equation.

For a scalar particle moving in spacetime, the radiated particle obeys the Klein-Gordon

equation for a scalar field φ:

gµν∂µ∂νφ− m2

h̄2
φ = 0. (8)

Applying the WKB approximation by assuming an ansatz of the form

φ(t, r, θ, ϕ) = exp[
i

h̄
I(t, r, θ, ϕ) + I1(t, r, θ, ϕ) +O(h̄)], (9)

where I and I1 are the components of the action approximated at the zeroth and first

order, respectively, and then inserting this back into the Klein-Gordon equation will

result in the Hamilton-Jacobi equation to the lowest order in h̄:

gµν∂µI∂νI +m2 = 0. (10)

For the Hamilton-Jacobi ansatz, the classically forbidden trajectory from inside to

outside the horizon is given by [37]

Γ ∝ exp(−2ImI). (11)
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For the five-dimensional Lovelock black hole metric, the Hamilton-Jacobi equation is

explicitly
−f−1(r)(∂tI)

2 + f(r)(∂rI)
2 + 1

r2
(∂θI)

2

+ 1
r2 sin2 θ

(∂ϕI)
2 + 1

r2 sin2 θ sin2 ϕ
(∂ψI)

2 +m2 = 0.
(12)

Considering the symmetry of the black hole metric, we perform the following separation

of variables for the action I :

I(t, r, θ, ϕ) = −ωt+W (r) + J(θ, ϕ). (13)

As a consequence, we have

∂tI = −ω; ∂rI =W ′(r); ∂θI = Jθ; ∂ϕI = Jϕ, (14)

where Jθ and Jϕ are constants. Since ∂t is the time-like killing vector for this coordinate

system, ω is the energy of the particle as detected by an observer at infinity.

Having these expressions, we can transform Eq. (12) to

− ω2f−1(r) + f(r)(W ′(r))2 + r−2(Jθ)
2 + r−2 sin−2 θ(Jϕ)

2 +m2 = 0. (15)

Solving for W (r) yields

W±(r) = ±
∫

dr

f(r)

√

ω2 − f(r)(m2 + r−2J2
θ
+ r−2 sin−2 θJ2

ϕ) (16)

since the equation was quadratic in terms of W (r).

One solution corresponds to scalar particles moving away from the black hole and

the other solution corresponds to particles moving toward the black hole. Imaginary

parts of the action can only result from the pole at the horizon. The probability of

crossing the horizon for outgoing particle is

Prob(out) ∝ exp(−2ImI) = exp(−2ImW+). (17)

By using the residue theorem, the expression for the quantity W+ is

W+ =
2iπω

f ′(rAH)
, (18)

where rAH represents the apparent horizon.

When Λ = 0, substituting Eqs. (3) and (4) into Eq. (18) yields

W+ =
2iπ(M + α)ω
√

2(M − α)
, (19)

and the rate of radiation,

Γ ∝ exp

(

− 4π(M + α)
√

2(M − α)
ω

)

, (20)

is plotted in Figure 1.

For Λ 6= 0, the quantity W+ transforms to

W+ = −
3iπ(4α+ r2+ +

√

r4+ + 4
3αΛr

4
+ + 16Mα)ω

Λr+(r2+ − r2
−
)

. (21)
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Fig. 1 Variation of W+ with respect to the ultraviolet correction parameter α, for Λ = 0.

The relation between the outgoing wave and the incoming wave is given by

Ψout = exp
(

− πω

κ

)

Ψin, (22)

where κ =
∣

∣

f ′(rAH)
2

∣

∣ is the surface gravity of the black hole and Ψout and Ψin are the

outgoing wave and the incoming wave, respectively.

The scattering rate of the black hole horizon with a wave function is

∣

∣

∣

Ψout
Ψin

∣

∣

∣

2

= exp
(

− 2πω

κ

)

= exp(−2ImW+), (23)

since the classical theory of black holes tells us that an incoming particle is absorbed

with a probability of one.

By substituting into Eq. (17), the probability Γ of the outgoing particle can be

expressed as

Γ ∝ exp(−2ImW+) = exp
(6π(4α+ r2+ +

√

r4+ + 4
3αΛr

4
+ + 16Mα)ω

Λr+(r2+ − r2
−
)

)

. (24)

Its behavior is plotted in Figure 2.

We can see that the probability Γ of the outgoing particle decreases for an increas-

ing cosmological constant. This confirms the fact that dark energy reduces the rate of

radiation, as demonstrated for the Reissner-Nordström black hole [32].

The actual value of the cosmological constant is slightly less than these values

(∼10−120) [41]. Considering that assertion, we plot the behavior of the quantity W+
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Fig. 2 Variation of W+ with respect to the ultraviolet correction parameter α, for different
values of the cosmological constant Λ.

with respect to the ultraviolet correction parameter α in Figure 3. From this figure, we

can remark that, for the given value of Γ , this quantity seems to be independent of the

ultraviolet correction parameter α, indicating that, when dark energy is considered,

the effect of the ultraviolet correction becomes less perceptible.

3 Conclusion

In summary, we have used the Hamilton-Jacobi method to investigate Hawking radia-

tion of a five-dimensional Lovelock black hole. Explicitly, we have plotted the behavior

of the rate of radiation from the black hole. Figure 1 represents the variation of the rate

of radiation with respect to the ultraviolet correction parameter a, when Λ = 0, while

Figure 2 represents the variation of the rate of radiation with respect to the ultraviolet

correction parameter a, for different values of the cosmological constant Λ 6= 0. We can

conclude through these figures that the black hole radiates at a slower rate when the ul-

traviolet correction or the cosmological constant are increased. The actual value of the

cosmological constant is Λ ∼ 10−120 and so the presence of the cosmological constant

makes the effect of the ultraviolet correction on the black hole radiation negligible.
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