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Abstract

The Hilbert-Schmidt distance between a mixed three-qubit state and its closest state is used to

quantify the amount of pairwise quantum correlations in a tripartite system. Analytical expressions

of geometric quantum discord are derived. A particular attention is devoted to two special classes of

three-qubit X states. They include three-qubit states of W, GHZ and Bell type. We also discuss the

monogamy property of geometric quantum discord in some mixed three-qubit systems.
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1 Introduction

Quantum correlations in multipartite systems have been intensively investigated during the last two

decades in the context of quantum information science. This is mainly motivated by the fact that

quantum correlations constitute a key ressource for many quantum information processing tasks (see

for instance [1, 2, 3, 4]). Also, the understanding of the basic features of quantum correlations is essen-

tial to provide a comprehensive way to distinguish the frontier between quantum and classical physics.

Nowadays, quantum correlations have become an important tool in studying several aspects in many-

body systems such as quantum phase transition in strongly correlated systems. A rigorous quantitative

and qualitative way to decide about the existence of quantum correlation, between the compounds of a

composite system, remains an open problem. Various measures to quantify the degree of quantumness

in multipartite quantum systems have been discussed in the literature from different perspectives and

for several purposes (for a recent review see [5]). Among these several quantifiers of non-classicality,

concurrence and entanglement of formation [6, 7] have attracted considerable attention. But, recently

it was realized that entanglement of formation does not reveal all non classical aspects of quantum

correlations. In this sense, quantum discord was introduced to capture the essential of quantum corre-

lations in composite quantum systems. This measure, which goes beyond entanglement of formation,

is defined as the difference between the total amount of nonclassical mutual information and classical

correlation present in a bipartite system [8, 9]. The explicit expression of quantum discord requires an

optimization procedure that is in general a challenging task. To overcome this problem, a geometric

variant of quantum discord was proposed in [10]. Geometric quantum discord was explicitly evaluated

between qubit-qubit as well as qubit-qudit systems (see [11] and references therein). In the literature,

a particular attention was devoted to quantum correlations in the so-called two-qubit X states [12-21,

23-27] In the computational basis, these states have non-zero entries only along the diagonal and

anti-diagonal and look like the alphabet X. Their algebraic structures [28] simplify many analytical

calculation in deriving entanglement of formation [29] and quantum discord [14, 25, 30]. Interestingly,

algebraic aspects of multi-qubit states have been generalized to describe X states of quantum systems

encompassing more than two qubits [31]. The generalized X states cover a large class of multi-qubit

states including W [32, 33], GHZ [34] and Dicke states [35].

The study of genuine correlations in multipartite quantum systems is complex from conceptual as

well as computational point of view. Various approaches, inspired by the results obtained of bipartite

systems, were discussed in the literature to tackle this issue. In this paper, we extend the geometric

measure of quantum discord for two qubits, to tripartite systems comprising three qubits. The focus

will be maintained strictly on two special families of three-qubit X states for which the explicit ex-

pressions of quantum discord are explicitly derived using the Hilbert-Schmidt norm. In other hand,

another important question in systems, comprising more than two parts, concerns the distribution

of quantum correlations among the subsystems and it is constrained by the the so-called monogamy
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relation. In fact, denoting by Q a bipartite measure of quantum correlations in a tripartite system

1−2−3, the sum of quantum correlations Q1|2 (the shared correlation between 1 and 2) and Q1|3 (the

shared correlation between 1 and 3) is always less or equal to the correlation Q1|23 shared between 1

and the composite subsystem 23. The concept of monogamy was introduced by Coffman, Kundo and

Wootters in 2001 [36] in investigating the distribution of entanglement in three qubit systems. The

monogamy property was analyzed for other measures of quantum correlations to understand the distri-

bution of correlations in multipartite systems and to establish the conditions limiting the shareability

of quantum correlations. The entanglement of formation [37, 38], quantum discord [39, 40, 41, 42, 43]

and its geometrized variant [44, 45, 46] do not follows in general the monogamy property, contrarily

to squared concurrence [36].

This paper is organized as follows. In section 2, we introduce two families of three-qubit X states.

The first one is given by three-qubit states where a subsystem comprising two qubits possesses parity

invariance. The second class corresponds to the situation where the three qubits are all invariant under

parity symmetry. In section 3, we derive the geometric measure of quantum discord. We also give

the explicit forms of classical tripartite states presenting zero discord. To investigate the monogamy

property in three-qubit X states, we give the general expression of geometric quantum discord in

reduced states containing two qubits after tracing-out the third qubit in the global quantum state.

The explicit expressions of resulting pairwise quantum discord are derived in section 4. To illustrate our

calculations, we consider some special instances of three qubit systems for which geometric quantum

correlations are given. In addition, we discuss the distribution of geometric quantum discord to decide

about the monogamy property. Illustrations for some specify three-qubit mixed states are given.

Concluding remarks close this paper.

2 Three-qubit X states

X states of two qubits have already found applications in many studies of entanglement and discord

[12-27]. As mentioned in the introduction, the interest in generalized X states is motivated by the fact

that they cover many different states of interest in quantum information such as W and GHZ and Dicke

states. The generalized X states are of paramount importance in investigating quantum correlations

for a collection of spin-1/2 particles possessing discrete symmetries like particle exchange symmetry

and/or parity invaraince. For instance, the reduced density matrices of multipartite Schrödinger

cat states, which are invariant under permutation symmetry, are X structured operators (see for

instance the reference [47]). Completely symmetric systems, including Dicke states, are relevant in

many experimental situations such as spin squeezing which may have potential applications in atomic

interferometers and high atomic clocks (see [48] and references therein) . Also, The multi-qubit X

states arise naturally in describing the dynamics tripartite quantum spin states interacting with a

large environment [49]. This is of crucial importance in analyzing the decoherence effects induced by
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the environment in such systems.

In Fano-Bloch representation, a two qubit state writes as

ρ12 =
1

4

4
∑

α,β=0

Tαβσα ⊗ σβ (1)

where the Fano-Bloch parameters are given by Tαβ = Tr(ρ12σα ⊗ σβ) and σα are the Pauli matrices.

The symmetry of two qubit systems is fully characterized by the algebra su(4) spanned by the 4 ×

4 Pauli matrices (see [28, 29, 30] and references therein). An interesting family of two-qubit states

which is relevant in several problems of quantum optics and quantum information is the subset whose

density matrices resemble the letter X. They especially arise in physical systems possessing parity

symmetry such as Werner, Bell-diagonal and Dicke states. The X states are parameterized by seven

real parameters (three real parameters along the diagonal and two complex parameters at off-diagonal

positions). The underlying symmetry is characterized by the sub-algebra su(2)× u(1)× su(2) ⊂ su(4)

spanned by seven linearly independent generators. Specifically, X states can be written as

ρ12 =













ρ11 0 0 ρ14

0 ρ22 ρ23 0

0 ρ32 ρ33 0

ρ41 0 0 ρ44













. (2)

in the computational basis for two qubits (|00〉, |01〉, |10〉, |11〉) or equivalently (| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉)

in two spin basis. Clearly, the states of the form (2) commute with the operator σ3 ⊗σ3 reflecting the

invariance under parity transformation. The tools developed for two qubit systems are of paramount

importance for three or more qubits. The X states for multi-qubit systems and their underlying

symmetries were discussed in [11, 28, 29, 30]. In this paper we shall mainly focus on three-qubits

X states. We consider a tripartite system 1 − 2 − 3 with each party holding a qubit. The state

shared between three parties 1, 2 and 3 is given by the unit trace operator ρ123 acting on the tensor-

product Hilbert space H1 ⊗H2 ⊗H3 where each single Hilbert space is two-dimensional spanned by

the vectors |0〉 and |1〉. The three qubit system lives in a 23-dimensional Hilbert space. As mentioned

in the introduction, two types of X states are studied in this work. The first type concerns the states

commuting with the operator σ3 ⊗ σ3 ⊗ σ0 and the second class corresponds to density matrices that

commute with the operators σ3 ⊗ σ3 ⊗ σ3.

2.1 Three-qubit X states: first class

The first family of three-qubit states, that we introduce in this section, corresponds to density matrices

commuting σ3⊗σ3⊗σ0. The states of the subsystem 1−2 of the tripartite system 1−2−3 are invariant

under parity transformation. It is simply verified that, in the usual 23-dimensional computational

basis, the general form of such states is
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ρ123 =

































ρ11 0 0 ρ14 ρ15 0 0 ρ18

0 ρ22 ρ23 0 0 ρ26 ρ27 0

0 ρ32 ρ33 0 0 ρ36 ρ37 0

ρ41 0 0 ρ44 ρ45 0 0 ρ48

ρ51 0 0 ρ54 ρ55 0 0 ρ58

0 ρ62 ρ63 0 0 ρ66 ρ67 0

0 ρ72 ρ73 0 0 ρ76 ρ77 0

ρ81 0 0 ρ84 ρ85 0 0 ρ88

































. (3)

In the Fano-Bloch representation, the three-qubit state (3) takes the following form

ρ123 =
1

8

∑

αβγ

Rαβγ σα ⊗ σβ ⊗ σγ (4)

where α,β and γ take the values =0, 1, 2, 3 and the the correlation matrix elements Rαβγ are

Rαβγ = Tr
(

ρ123(σα ⊗ σβ ⊗ σγ)
)

with R000 = 1 (Tr(ρ123) = 1). The operators σα stands for Pauli basis with σ0 is the identity.

The parity invariance reduces the number of the non vanishing correlation matrix elements Rαβγ in

equation (4). Indeed, it is easy to verify that the non vanishing ones are those corresponding to

(α, β, γ) belonging to the following set of triplets

(000), (001), (002), (003), (030), (031), (032), (033)

(110), (111), (112), (113), (120), (121), (122), (123)

(210), (211), (212), (213), (220), (221), (222), (223)

(300), (301), (302), (303), (330), (331), (332), (333). (5)

Accordingly, the state (4) expand as

ρ123 =
1

8

[

R000σ0 ⊗ σ0 ⊗ σ0 +
∑

i

(

Ri00 σi ⊗ σ0 ⊗ σ0 +R0i0 σ0 ⊗ σi ⊗ σ0 +R00i σ0 ⊗ σ0 ⊗ σi
)

+
∑

ij

(

Rij0 σi ⊗ σj ⊗ σ0 +Ri0j σi ⊗ σ0 ⊗ σj +R0ij σ0 ⊗ σi ⊗ σj
)

+
∑

ijk

Rijk σi ⊗ σj ⊗ σk

]

, (6)

in terms of 32 operators which span the subalgebra su(2)⊗ u(1)⊗ su(2)⊗ u(1)⊗ su(2)⊗ u(1)⊗ su(2)

of the full symmetry algebra su(8) characterizing an arbitrary three-qubit system [28, 29, 30]. The

explicit relation between the non vanishing Fano-Bloch parameters Rαβγ and the matrix elements of

ρ123 will be given here after. It is interesting to note that density matrix (3) encompasses four two

qubit X states (four sub-blocks, each one is X shaped). In fact, the matrix (3) can be written as

ρ123 =
∑

i,j=0,1

ρij ⊗ |i〉〈j| (7)
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where the vectors |i〉 and |j〉 are related to the qubit 3. From equation (3), the density matrices ρij

appearing in (7) write as

ρij =













ρ1+4i 1+4j 0 0 ρ1+4i 4+4j

0 ρ2+4i 2+4j ρ2+4i 3+4j 0

0 ρ3+4i 2+4j ρ3+4i 3+4j 0

ρ4+4i 1+4j 0 0 ρ4+4i 4+4j













, (8)

in the computational basis spanned by two-qubit product states of 1 and 2 {|0〉1⊗|0〉2, |0〉1⊗|1〉2, |1〉1⊗

|0〉2, |1〉1 ⊗ |1〉2}. The Fano-Bloch representations of the two qubit X states ρij (8) are

ρij =
1

4

∑

αβ

Rij
αβσα ⊗ σβ (9)

where α, β = 0, 1, 2, 3 and the Fano-Bloch parameters Rij
αβ defined by

Rij
αβ = Tr(ρij σα ⊗ σβ),

are given by

Rij
00 = 1

Rij
30 = ρ1+4i 1+4j + ρ2+4i 2+4j − ρ3+4i 3+4j − ρ4+4i 4+4j

Rij
03 = ρ1+4i 1+4j − ρ2+4i 2+4j + ρ3+4i 3+4j − ρ4+4i 4+4j

Rij
11 = ρ1+4i 4+4j + ρ4+4i 1+4j + ρ2+4i 3+4j + ρ3+4i 2+4j

Rij
12 = i(ρ1+4i 4+4j − ρ4+4i 1+4j − ρ2+4i 3+4j + ρ3+4i 2+4j)

Rij
21 = i(ρ1+4i 4+4j − ρ4+4i 1+4j + ρ2+4i 3+4j − ρ3+4i 2+4j)

Rij
22 = ρ2+4i 3+4j + ρ3+4i 2+4j − ρ1+4i 4+4j − ρ4+4i 1+4j

Rij
33 = ρ1+4i 1+4j − ρ2+4i 2+4j − ρ3+4i 3+4j + ρ4+4i 4+4j). (10)

By inserting the Fano-Bloch representations (9) into the expression (7), the tripartite correlations

elements Rαβγ can be written in terms of the bipartite correlation parameters Rij
αβ . Indeed, equation

(7) can be rewritten as

ρ123 =
1

2

[

(ρ00 + ρ11)⊗ σ0 + (ρ00 − ρ11)⊗ σ3 + (ρ01 + ρ10)⊗ σ1 + i(ρ01 − ρ10)⊗ σ2

]

(11)

and similarly, we rewrite (2.1) as

ρ123 =
1

8

∑

αβ

[

Rαβ0 σα⊗σβ⊗σ0+Rαβ1 σα⊗σβ⊗σ1+Rαβ2 σα⊗σβ⊗σ2+Rαβ3 σα⊗σβ⊗σ3

]

. (12)

By Replacing the expressions (9) and (2.1) in (11), and identifying with the equation (12), one gets

Rαβ0 = R++
αβ = R00

αβ +R11
αβ
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Rαβ3 = R−−
αβ = R00

αβ −R11
αβ

Rαβ1 = R+−
αβ = R01

αβ +R10
αβ

Rαβ2 = R−+
αβ = iR01

αβ − iR10
αβ . (13)

where the pairs (αβ) belong to the set {(00), (03), (30), (12), (21), (11), (22), (33)}. The relations (2.1)

specify completely the tripartite correlation tensor Rαβγ in terms of the Fano-Bloch parameters Rij
αβ

encoding the correlations in the two qubit subsystem 1 − 2 (9). As we shall discuss, these recursive

relations play a central role in deriving the geometric measure of quantum discord.

2.2 Three-qubit X states: second class

Now we consider three-qubit states, denoted by σ123, possessing the symmetry invariance under the

parity transformation Z2 ⊗ Z2 ⊗ Z2. As they commute with the parity operator σ3 ⊗ σ3 ⊗ σ3, they

write

σ123 =

































σ11 0 0 σ14 0 σ16 σ17 0

0 σ22 σ23 0 σ25 0 0 σ28

0 σ32 σ33 0 σ35 0 0 σ38

σ41 0 0 σ44 0 σ46 σ47 0

0 σ52 σ53 0 σ55 0 0 σ58

σ61 0 0 σ64 0 σ66 σ67 0

σ71 0 0 σ74 0 σ76 σ77 0

0 σ82 σ83 0 σ85 0 0 σ88

































(14)

in the standard computational basis. The density matrix σ123 is built of four blocks. The diagonal

blocks appear as X alphabet with non-zero density matrix elements only along the diagonal and anti-

diagonal contrarily to the two off diagonal blocks which have vanishing elements along the diagonal

and anti-diagonal. This gives another family of extended three-qubit X state (see [28, 29, 30] where

such states were originally termed X states). The underlying symmetry is su(2)⊗u(1)⊗su(2)⊗u(1)⊗

su(2)⊗ u(1)⊗ su(2). In the Fano-Bloch representation, the matrix density (14) expands as

σ123 =
1

8

[

T000σ0 ⊗ σ0 ⊗ σ0 +
∑

i

(

Ti00 σi ⊗ σ0 ⊗ σ0 + T0i0 σ0 ⊗ σi ⊗ σ0 + T00i σ0 ⊗ σ0 ⊗ σi
)

+
∑

ij

(

Tij0 σi ⊗ σj ⊗ σ0 + Ti0j σi ⊗ σ0 ⊗ σj + T0ij σ0 ⊗ σi ⊗ σj
)

+
∑

ijk

Tijk σi ⊗ σj ⊗ σk

]

(15)

where the the matrix correlation elements are

Tαβγ = Tr
(

σ123(σα ⊗ σβ ⊗ σγ)
)

with T000 = 1 (Tr(σ123) = 1). The non vanishing correlation elements Tαβγ occurring in (2.2) are those

with a triplet (αβγ) in the following list

(000), (003), (011), (012), (021), (022), (030), (033)
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(101), (102), (110), (113), (120), (123), (131), (132)

(201), (202), (210), (213), (220), (223), (231), (232)

(300), (303), (311), (312), (321), (322), (330), (333). (16)

Analogously to the previous class of three-qubit states, we write the density matrix (14) as

σ123 =
∑

i,j=0,1

σij ⊗ |i〉〈j| (17)

where |i〉 and |j〉 are eigenvectors associated with the third qubit. In equation (17), the matrices σii

(with i = 0, 1) write, in the computational basis spanned by two-qubit product states of the subsystems

1 and 2 {|0〉1 ⊗ |0〉2, |0〉1 ⊗ |1〉2, |1〉1 ⊗ |0〉2, |1〉1 ⊗ |1〉2}, as

σii =













σ1+4i 1+4i 0 0 σ1+4i 4+4i

0 σ2+4i 2+4i σ2+4i 3+4i 0

0 σ3+4i 2+4i σ3+4i 3+4i 0

σ4+4i 1+4i 0 0 σ4+4i 4+4i













. (18)

For (i = 0, j = 1) and (i = 1, j = 0), we have

σij =













0 σ1+4i 2+4j σ1+4i 3+4j 0

σ2+4i 1+4j 0 0 σ2+4i 4+4j

σ3+4i 1+4j 0 0 σ3+4i 4+4j

0 σ4+4i 2+4j σ4+4i 3+4j 0













. (19)

The Fano-Bloch representations of the matrices σii are

σii =
1

4

∑

αβ

T ii
αβ σα ⊗ σβ (20)

where α, β = 0, 1, 2, 3 and the vanishing correlation parameters T ij
αβ are given by

T ii
00 = 1

T ii
30 = σ1+4i 1+4i + σ2+4i 2+4i − σ3+4i 3+4i − σ4+4i 4+4i

T ii
03 = σ1+4i 1+4i − σ2+4i 2+4i + σ3+4i 3+4i − σ4+4i 4+4i

T ii
11 = σ1+4i 4+4i + σ4+4i 1+4i + σ2+4i 3+4i + σ3+4i 2+4i

T ii
12 = i(σ1+4i 4+4i − σ4+4i 1+4i − σ2+4i 3+4i + σ3+4i 2+4i)

T ii
21 = i(σ1+4i 4+4i − σ4+4i 1+4i + σ2+4i 3+4i − σ3+4i 2+4i)

T ii
22 = σ2+4i 3+4i + σ3+4i 2+4i − σ1+4i 4+4i − σ4+4i 1+4i

T ii
33 = σ1+4i 1+4i − σ2+4i 2+4i − σ3+4i 3+4i + σ4+4i 4+4i). (21)
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Similarly, for the two-qubit matrices σij (19), the corresponding Fano-Bloch representations are

σij =
1

4

∑

αβ

T ij
αβ σα ⊗ σβ i 6= j (22)

where the non zero matrix elements T ij
αβ are given by

T ij
01 = σ2+4i 1+4j + σ1+4i 2+4j + σ4+4i 3+4j + σ3+4i 4+4j

T ij
02 = i(−σ2+4i 1+4j + σ1+4i 2+4j − σ4+4i 3+4j + σ3+4i 4+4j)

T ij
10 = σ1+4i 3+4j + σ3+4i 1+4j + σ2+4i 4+4j + σ4+4i 2+4j

T ij
13 = σ1+4i 3+4j + σ3+4i 1+4j − σ2+4i 4+4j − σ4+4i 2+4j

T ij
20 = i(σ1+4i 3+4j − σ3+4i 1+4j + σ2+4i 4+4j − σ4+4i 2+4j)

T ij
23 = i(σ1+4i 3+4j − σ3+4i 1+4j − σ2+4i 4+4j + σ4+4i 2+4j)

T ij
31 = σ1+4i 2+4j + σ2+4i 1+4j − σ3+4i 4+4j − σ4+4i 3+4j)

T ij
32 = i(σ1+4i 2+4j − σ2+4i 1+4j − σ3+4i 4+4j + σ4+4i 3+4j). (23)

Using (17), one obtains

σ123 =
1

2

[

(σ00 + σ11)⊗ σ0 + (σ00 − σ11)⊗ σ3 + (σ01 + σ10)⊗ σ1 + i(σ01 − σ10)⊗ σ2

]

. (24)

The three-qubit state (2.2) rewrites also as

σ123 =
1

8

∑

αβ

[

Tαβ0 σα ⊗ σβ ⊗ σ0 + Tαβ1 σα ⊗ σβ ⊗ σ1 + Tαβ2 σα ⊗ σβ ⊗ σ2 + Tαβ3 σα ⊗ σβ ⊗ σ3

]

(25)

Inserting (20) and (22) in the equation (24), one verifies the following relations

Tαβ0 = T++
αβ = T 00

αβ + T 11
αβ

Tαβ3 = T−−
αβ = T 00

αβ − T 11
αβ (26)

where (αβ) belongs to the set {(00), (03), (30), (12), (21), (11), (22), (33)} and

Tαβ1 = T+−
αβ = T 01

αβ + T 10
αβ

Tαβ2 = T−+
αβ = iT 01

αβ − iT 10
αβ (27)

where (αβ) are in the set {(01), (02), (10), (20), (13), (23), (31), (32)}, so that the total number of non

vanishing correlation matrix Tαβγ elements is 32 to be compared with (2.2). The relations (2.2) and

(2.2) reflect that the tensor element Tαβγ can be explicitly expressed in terms of two-qubit correlations

factors.
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3 Geometric measure of quantum discord

A bipartite quantum system exhibits quantum correlation if its two subsystems contain more in-

formation than taken separately. This concept is captured by the mutual information I(A : B) =

H(A) + H(B) − H(A,B) where A and B are random variables. In classical information theory

H(.) stands for the Shannon entropy H(p) = −
∑

i pi log pi where p = (p1, p2, · · · ) is the prob-

ability distribution. For a quantum density matrix ρ, H(.) denotes the von Neumann entropy

H(ρ) = −Trρ log ρ. In the classical case, an equivalent expression for the mutual information is

given by I(A : B) = H(A)−H(A|B) where H(A|B) is the Shannon entropy of A conditioned on the

measurement outcome of B. In the quantum case, the two expressions are different and the difference

defines the so-called quantum discord [8, 9]. The von Neumann entropy-type quantum discord involves

complicated optimization procedures [25]. In the literature there are few examples for which closed

analytical expressions for quantum discord were obtained (see the review [5]). Alternatively, distance-

type quantifiers of quantum discord have been considered. This is essentially motivated by their

presumably simple evaluation in comparison with the original quantum discord definition. Several

distances are possible (trace distance, Bures distance, ...) with their own advantages and drawbacks.

In this paper we shall especially consider the geometric discord variant based on Hilbert-Schmidt norm

[10]. Thus, given a tripartite system 1 − 2 − 3, we shall consider the bipartite splitting 1|23. The

pairwise quantum correlation between the subsystems (1) and (23) in three-qubit X states of type (3)

or (14) is determined in complete analogy with two qubit X state. It is defined as the distance from

the set of classically correlated states using Hilbert-Schmidt trace. In this respect, the explicit form

of states of type (3) or (14) presenting vanishing quantum correlation can be derived by optimizing

the Hilbert-Schmidt norm by means of which quantunmness is quantified. This issue constitutes the

main of this section.

3.1 Closest classical states to two qubit X states

To begin, we shall present the procedure leading to the closest classically correlated state to the

two-qubit X state (2). The Fano-Bloch representation (1) reads

ρ12 =
1

4

[

σ0 ⊗ σ0 + T03σ0 ⊗ σ3 + T30σ3 ⊗ σ0 +
∑

kl

Tklσk ⊗ σl

]

(28)

where the correlation matrix elements are obtainable from (2.1) modulo some obvious substitutions.

The geometric measure of quantum discord is defined as the distance the state ρ12 and its closest

classical-quantum state presenting zero discord [10]

Dg(ρ12) = min
χ12

||ρ12 − χ12||
2 (29)

where the Hilbert-Schmidt norm is defined by ||X||2 = Tr(X†X) and the minimization is taken over

the set of all classical states. When the measurement is performed on the qubit 1, the classical states

10



write

χ12 = p1|ψ1〉〈ψ1| ⊗ ρ21 + p2|ψ2〉〈ψ2| ⊗ ρ22 (30)

where {|ψ1〉, |ψ2〉} is an orthonormal basis related to the qubit 1, pi (i = 1, 2) stands for probability

distribution and ρ2i (i = 1, 2) is the marginal density of the qubit 2. The classically correlated states

χ12 can also be written as

χ12 =
1

4

[

σ0 ⊗ σ0 +

3
∑

i=1

tei σi ⊗ σ0 +

3
∑

i=1

(s+)i σ0 ⊗ σi +

3
∑

i,j=1

ei(s−)j σi ⊗ σj

]

(31)

where

t = p1 − p2, ei = 〈ψ1|σi|ψ1〉, (s±)j = Tr
(

(p1ρ
2
1 ± p2ρ

2
2)σj

)

.

It follows that the distance between the density matrix ρ12 and the classical state χ12, as measured

by Hilbert-Schmidt norm, is then given by

||ρ12 − χ12||
2 =

1

4

[

(t2 − 2te3T30 + T 2
30) +

3
∑

i=1

(T0i − (s+)i)
2 +

3
∑

i,j=1

(Tij − ei(s−)j)
2

]

(32)

The minimization of the distance (32), with respect to the parameters t, (s+)i and (s−)i, gives

t = e3T30

(s+)1 = 0 (s+)2 = 0 (s+)3 = T03

(s−)i =
3

∑

j=1

ejTji. (33)

Inserting these solutions in (32), one has

||ρ12 − χ12||
2 =

1

4

[

TrK − ~etK~e

]

(34)

where the matrix K is defined by

K = xx† + TT † (35)

with

x† = (0, 0, T30) T =







T11 T12 0

T21 T22 0

0 0 T33






.

From equation (34), one see that the minimal value of Hilbert-Schmidt distance (34) is reached for

the largest eigenvalue of the matrix K. We denote by λ1, λ2 and λ3 the eigenvalues of the matrix K

(35) corresponding to the X state (2) or equivalently (28). They are given by

λ1 = 4(|ρ14|+ |ρ23|)
2, λ2 = 4(|ρ14| − |ρ23|)

2, λ3 = 2[(ρ11 − ρ33)
2 + (ρ22 − ρ44)

2]. (36)
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To get the minimal value of the Hilbert-Schmidt distance (34) and subsequently the amount of geo-

metric quantum discord, one compares λ1, λ2 and λ3. As λ1 is always greater than λ2, the largest

eigenvalue λmax is λ1 or λ3. It follows that the geometric discord is given by

Dg(ρ12) =
1

4
min{λ1 + λ2, λ2 + λ3}. (37)

To write down the explicit expressions of the closest classical state χ12 to ρ12, one has to determine the

eigenvector ~emax associated with the largest eigenvalue λmax. In this respect, two cases ( λmax = λ1

and λmax = λ3) are separately discussed. We begin by density matrices ρ12 (2) whose entries satisfy

the condition λmax = λ3. The associated eigenvector is given by ~e3 = (0, 0, 1). Replacing in the set of

constraints (3.1), one has

χ3
12 =

1

4

[

σ0 ⊗ σ0 + T30 σ3 ⊗ σ0 + T03 σ0 ⊗ σ3 + T33 σ3 ⊗ σ3

]

(38)

In the second situation, the eigenvector corresponding to λ1 is given by ~e1 = (cos φ
2 ,− sin φ

2 , 0) where

eiφ = ρ14ρ23
|ρ14||ρ23| . Reporting the components of ~e1 in (3.1), one gets the closest classical state

χ1
12 =

1

4

[

σ0 ⊗ σ0 + T30 σ3 ⊗ σ0 +

2
∑

i=1

2
∑

j=1

T̃ij σi ⊗ σj

]

(39)

where

T̃11 = cos
φ

2
(cos

φ

2
T11 − sin

φ

2
T21) T̃12 = cos

φ

2
(cos

φ

2
T12 − sin

φ

2
T22)

T̃21 = − sin
φ

2
(cos

φ

2
T11 − sin

φ

2
T21) T̃22 = − sin

φ

2
(cos

φ

2
T12 − sin

φ

2
T22).

As we already mentioned, the geometric quantifiers of quantum correlations in bipartite systems can

be extended to embrace three-qubit X states of type (3) or (14).

3.2 Closest classical states to three-qubits X states

Along similar lines of reasoning, we determine first the closest classical states to generalized X states

of the form ρ123 (3) and σ123 (14). The algebraic structures of both three-qubit density matrices offer

many simplification in quantifying geometric quantum discord. To deal with the states ρ123 (3) and

σ123 (14) in a common framework, it is interesting to note that ρ123 as well as σ123 have a similar

Fano-Bloch representation. That is

̺123 =
1

8

[

T000 σ0⊗σ0⊗σ0+T300 σ3⊗σ0⊗σ0+
∑

(β,γ)6=(0,0)

T0βγ σ0⊗σβ⊗σγ+
∑

i

∑

(β,γ)6=(0,0)

Tiβγ σi⊗σβ⊗σγ

]

(40)

where the notation Tαβγ stands for the correlations coefficients Rαβγ (resp. Tαβγ) of the states ̺123

of type ρ123 (3)(resp. σ123 (14)). The evaluation of the geometric quantum discord (29) requires a

minimization procedure over the set of all classically correlated states, i.e., the states of the form (31).

In a bipartition of type 1|23, a zero discord state is necessarily of the form

χ1|23 = p1|ψ1〉〈ψ1| ⊗ ̺231 + p2|ψ2〉〈ψ2| ⊗ ̺232 (41)
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where {|ψ1〉, |ψ2〉} is an orthonormal basis related to the qubit 1. The density matrices ̺23i (i = 1, 2)

corresponding to the subsystem 23 write as

̺23i =
1

4

[

∑

α,β

Tr(̺23i σα ⊗ σβ)σα ⊗ σβ

]

.

The Fano-Bloch form of the tripartite classical state (41) is

χ1|23 =
1

8

[

σ0 ⊗ σ0 ⊗ σ0 +

3
∑

i=1

tei σi ⊗ σ0 ⊗ σ0

+
∑

(α,β)6=(0,0)

(s+)α,β σ0 ⊗ σα ⊗ σβ +

3
∑

i=1

∑

(α,β)6=(0,0)

ei(s−)α,β σi ⊗ σα ⊗ σβ

]

(42)

where

t = p1 − p2 ei = 〈ψ1|σi|ψ1〉 (s±)α,β = Tr
(

(p1̺
23
1 ± p2̺

23
2 )σα ⊗ σβ

)

.

The Hilbert-Schmidt distance between the state ̺123 (40) and a classical state of type (3.2) gives

||̺1|23−χ1|23||
2 =

1

8

[

(t2−2te3T300+T
2
300)+

∑

(α,β)6=(0,0)

(T0αβ−(s+)α,β)
2+

3
∑

i=1

∑

(α,β)6=(0,0)

(Tiαβ−ei(s−)α,β)
2

]

.

(43)

Setting zero the partial derivatives of Hilbert-Schmidt distance (43) with respect to the variables t

and (s±)α,β, one has

t = e3T300 (s+)α,β = T0αβ (s−)α,β =
3

∑

i=1

eiTiαβ . (44)

Reporting the results (44) in (43), one obtains

||̺1|23 − χ1|23||
2 =

1

8

[

T 2
300 − e23T

2
300 +

3
∑

i=1

∑

(α,β)6=(0,0)

T 2
iαβ −

3
∑

i,j=1

∑

(α,β)6=(0,0)

eiejTiαβTjαβ

]

(45)

to be optimized with respect to the three components of the unit vector ~e t = (e1, e2, e3). The equation

(45) can re-expressed as

||̺1|23 − χ1|23||
2 =

1

8

[

||x||2 + ||T ||2 − ~e t(xxt + TT t)~e
]

(46)

in terms of the 3× 1 matrix x defined by

xt = (0, 0, T300) (47)

and the 3× 15 matrix given by

T = (Tiαβ) with i = 1, 2, 3 (α, β) 6= (0, 0). (48)

The minimal value of the Hilbert-Schmidt distance (46) is reached when ~e is the eigenvector associated

with the largest eigenvalue kmax of the matrix defined by

K = xxt + TT t. (49)

13



It follows that the minimal value given by

Dg(̺1|23) =
1

8
(k1 + k2 + k3 − kmax) (50)

is the measure quantifying the pairwise quantum discord in the state ̺123 divided into the subsystems

1 and 23. Note that the sum of the eigenvalues k1, k2 and k3 of the matrix K is exactly the sum of

the Hilbert-Schmidt norms of the matrices x and T (k1 + k2 + k3 = ||x||2 + ||T ||2). For the state ρ123

(3) as well as σ123 (14), the matrix K takes the form

K =







K11 K12 0

K21 K22 0

0 0 K33






. (51)

The geometric measure of quantum discord is determined in terms of the eigenvalues

k1 =
1

2
(K11 +K22) +

1

2

√

(K11 +K22)2 − 4(K11K22 −K12K21)

k2 =
1

2
(K11 +K22)−

1

2

√

(K11 +K22)2 − 4(K11K22 −K12K21)

k3 = K33. (52)

Noticing that k1 is always greater that k2, the geometric quantum discord (50) rewrites as

Dg(̺1|23) =
1

4
(k2 +min(k1, k3)). (53)

The minimal Hilbert-Schmidt is obtained for the vector ~e (see equation (46)) associated with the

largest eigenvalue of the matrix K (51). In this sense, to write the explicit form of closest classical

states, one distinguishes two situations: kmax = k1 or kmax = k3. For states ̺123 with entries satisfying

the condition kmax = k1, it is easy to verify that the maximal eigenvector is given by

~et1 = (cos θ,− sin θ, 0) with tan θ =
K11 − k1
K12

,

and subsequently the closest classical states write

χ
(1)
1|23 =

1

8

[

σ0⊗σ0⊗σ0+
∑

(α,β)6=(0,0)

T0αβ σ0⊗σα⊗σβ+
∑

(α,β)6=(0,0)

T
(1)
1αβ σ1⊗σα⊗σβ+

∑

(α,β)6=(0,0)

T
(1)
2αβ σ2⊗σα⊗σβ

]

(54)

where

T
(1)
1αβ = cos2 θT1αβ − cos θ sin θT2αβ T

(1)
2αβ = sin2 θT2αβ − cos θ sin θT1αβ.

For states satisfying kmax = k3, the maximal eigenvector is

~et3 = (0, 0, 1),

and it follows that the closest classical state takes the form

χ
(3)
1|23 =

1

8

[

σ0⊗σ0⊗σ0+T300 σ3⊗σ0⊗σ0+
∑

(α,β)6=(0,0)

T0αβ σ0⊗σα⊗σβ+
∑

(α,β)6=(0,0)

T3αβ σ3⊗σα⊗σβ

]

. (55)
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It is worth noticing that the entries of the matrixK defined by (49) can be explicitly expressed in terms

of the correlations factors and subsequently in terms of the density matrices elements. Obviously, this

will provides us with the analytical expressions of quantum discord (53) in terms the matrix elements

of states ρ123 and σ123. This issue is discussed in what follows.

3.2.1 States of type ρ123

For three-qubit states ̺123 (40) belonging to class of states of type (2.1), we have

ρ123 =
1

8

[

R000 σ0⊗σ0⊗σ0+R300 σ3⊗σ0⊗σ0+
∑

(β,γ)6=(0,0)

R0βγ σ0⊗σβ⊗σγ+
∑

i

∑

(β,γ)6=(0,0)

Riβγ σi⊗σβ⊗σγ

]

.

(56)

To obtain the matrix K (51), we replace the correlations coefficients Tαβγ , in the matrices x (47) and

T (48), with their counterparts Rαβγ . In this way, after straightforward algebra, one shows

Kij =

2
∑

k=1

3
∑

l=0

RiklRjkl with i, j = 1, 2 (57)

and

K33 =
∑

i=0,3

3
∑

j=0

R2
3ij . (58)

Furthermore, using the relations (2.1), these quantities are expressed as

K11 = 2[(R00
11)

2 + (R11
11)

2] + 2[(R00
12)

2 + (R11
12)

2] + 4[R01
11R

10
11 +R01

12R
10
12], (59)

K22 = 2[(R00
21)

2 + (R11
21)

2] + 2[(R00
22)

2 + (R11
22)

2] + 4[R01
21R

10
21 +R01

22R
10
22], (60)

K33 = 2[(R00
30)

2 + (R11
30)

2] + 2[(R00
33)

2 + (R11
33)

2] + 4[R01
30R

10
30 +R01

33R
10
33], (61)

K12 = K21 = 2[R00
11R

00
21+R

11
11R

11
21+R

00
12R

00
22 +R

11
12R

11
22]+ 2[R10

11R
01
21+R

01
11R

10
21+R

10
12R

01
22 +R

01
12R

10
22], (62)

in terms of two qubit correlation elements related to the two qubit correlations matrices ρij given by

(2.1). Subsequently, the entries of the matrix K (51) are

K11 = 8

(

|ρ23 + ρ41|
2 + |ρ67 + ρ85|

2 + |ρ36 + ρ18|
2 + |ρ54 + ρ72|

2

)

K22 = 8

(

|ρ23 − ρ41|
2 + |ρ67 − ρ85|

2 + |ρ36 − ρ18|
2 + |ρ54 − ρ72|

2

)

K12 = K21 = −16

(

|ρ23||ρ14| sin(γ23+γ14)+|ρ58||ρ67| sin(γ58+γ67)+|ρ18||ρ36| sin(γ18−γ36)+|ρ27||ρ45| sin(γ27−γ45)

)

K33 = 4

(

(ρ11−ρ33)
2+(ρ22−ρ44)

2+(ρ55−ρ77)
2+(ρ66−ρ88)

2+|(ρ15−ρ37)+(ρ26−ρ48)|
2+|(ρ15−ρ37)−(ρ26−ρ48)|

2

)

(63)

where γij =
ρij
|ρij | for i < j. The results (3.2.1) give the explicit forms of the matrix elements of K.

Clearly, reporting them in (3.2), one can get the explicit expression of the geometric quantum discord
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(53) in terms of the density matrix elements of ρ123. In the particular case where the matrix elements

ρij are all reals, we have K12 = K21 = 0 and the eigenvalues k1, k2 and k3 (3.2) of the matrix K

coincide respectively with K11, K22 and K33. In other hand, if one ignores the qubit 3, the matrix

elements (3.2.1) reduces to ones of two qubit X states and it simply verified that one recovers the

results (36).

3.2.2 States of type σ123

Similarly, for states of type σ123, we write the matrix density (2.2) as follows

σ123 =
1

8

[

T000 σ0⊗σ0⊗σ0+T300 σ3⊗σ0⊗σ0+
∑

(β,γ)6=(0,0)

T0βγ σ0⊗σβ⊗σγ+
∑

i

∑

(β,γ)6=(0,0)

Tiβγ σi⊗σβ⊗σγ

]

(64)

Identifying the coefficients Tαβγ occurring in (40) with Tαβγ , one obtains the corresponding matrix K

(51) whose elements determine the geometric measure of quantum discord. Explicitly, we have

Kkl =
∑

i=1,2

∑

j=0,3

TkijTlij + TkjiTlji (65)

for k, l = 1, 2, and

K33 =
∑

i=0,3

∑

j=0,3

T 2
3ij +

∑

i=1,2

∑

j=1,2

T 2
3ij . (66)

They can be rewritten in terms of the bipartite correlations matrix T ij associated with the two qubit

density matrices σ01, σ01, σ10 and σ11 given by (2.2) and (2.2). Indeed, using the relations (2.2) and

(2.2), one shows that the diagonal elements are given by

K11 = 2[(T 00
11 )

2 + (T 11
11 )

2] + 2[(T 00
12 )

2 + (T 11
12 )

2] + 4|T 01
10 |

2 + 4|T 01
13 |

2 (67)

K22 = 2[(T 00
21 )

2 + (T 11
21 )

2] + 2[(T 00
22 )

2 + (T 11
22 )

2] + 4|T 01
20 |

2 + 4|T 01
23 |

2 (68)

K33 = 2[(T 00
30 )

2 + (T 11
30 )

2] + 2[(T 00
33 )

2 + (T 11
33 )

2] + 4|T 01
31 |

2 + 4|T 01
32 |

2 (69)

where we have used the relation T 01
α,β = T 10

α,β . The non zero off-diagonal element K12 rewrites

K12 = K21 = 2(T 00
21 T

00
11 + T 11

21 T
11
11 ) + 2(T 00

22 T
00
12 + T 11

22 T
11
12 )

+2(T 01
20 T

01
10 + T 01

20 T
01
10 ) + 2(T 01

23 T
01
13 + T 01

23 T
01
13 ). (70)

Finally, using the relations (2.2) and (2.2), one gets

K11 = 8
[

|σ41 + σ23|
2 + |σ85 + σ67|

2
]

+ 4
[

|σ17 + σ35 + σ28 + σ46|
2 + |σ17 + σ35 − σ28 − σ46|

2
]

, (71)

K22 = 8
[

|σ41 − σ23|
2 + |σ85 − σ67|

2
]

+ 4
[

|σ17 − σ35 + σ28 − σ46|
2 + |σ17 − σ35 − σ28 + σ46|

2
]

, (72)

K33 = 4

[

(σ11−σ33)
2+(σ22−σ44)

2+(σ55−σ77)
2+(σ66−σ88)

2+|σ16−σ38−σ47+σ25|
2+|σ16−σ38+σ47−σ25|

2

]

,

(73)
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and

K12 = −16

[

|σ23||σ14| sin(α23+α14)+|σ58||σ67| sin(α58+α67)+|σ35||σ17| sin(α17−α35)+|σ28||σ46| sin(α28−α46)

]

(74)

where αij =
σij

|σij | for i < j. Substituting the quantities (71), (72), (73) and (74) in the expressions

(3.2), we have the geometric discord (53) in terms of matrix elements of σ123 (2.2). In the special

situation where all the entries of the density matrix σ123 are reals, we have k1 = K11, k2 = K22 and

k3 = K33.

4 Monogamy of geometric discord in three-qubit X states

The quantum correlation can be transferred between the components of a quantum system comprising

many parties. This shareability is however subject to the monogamy relation which is given for a three-

qubit system by

Q1|23 ≥ Q1|2 +Q2|3

where Q denotes a measure of pairwise quantum correlation in the system. This inequality means

that the amount of quantum correlation shared between the qubits 1 and 2 restricts the possible

amount of quantum correlation between the qubits 2 and 3 so that the sum is always less than the

total bipartite correlation between the qubit 1 and the subsystem containing the qubits 2 and 3.

This important property was originally proposed by Coffman, Kundo and Wootters in 2001 [36] for

squared concurrence and extended since then to other correlation quantifiers such as entanglement of

formation [37, 38], quantum discord [39, 40, 41, 42, 43] and its geometric variant [44]. In particular,

the geometric discord was proven to follow the monogamy property on all pure three-qubit states.

Here, we shall investigate the distribution among the three qubits in the mixed states of type ρ123 (3)

and σ123 (14).

4.1 Monogamy conditions

We consider first the states of type (3). The corresponding reduced matrices ρ12 = Tr3 ρ123 and

ρ13 = Tr2 ρ123 are

ρ12 =













ρ11 + ρ55 0 0 ρ14 + ρ58

0 ρ22 + ρ66 ρ23 + ρ67 0

0 ρ32 + ρ76 ρ33 + ρ77 0

ρ41 + ρ85 0 0 ρ44 + ρ88













(75)

ρ13 =













ρ11 + ρ22 ρ15 + ρ26 0 0

ρ51 + ρ62 ρ55 + ρ66 0 0

0 0 ρ33 + ρ44 ρ37 + ρ48

0 0 ρ73 + ρ84 ρ77 + ρ88













. (76)

The reduced two qubit states ρ12 (75) is X-shaped. The bipartite geometric discord can be derived

using the results (36). Therefore, the bipartite quantum correlation in the state ρ12, as measured by
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Hilbert-Schmidt distance, is

Dg(ρ12) =
1

4
(q2 +min(q1 + q3)) (77)

where

q1 = 4(| ρ14 + ρ58 | + | ρ23 + ρ67 |)
2

q2 = 4(| ρ14 + ρ58 | − | ρ23 + ρ67 |)
2

q3 = 2[(ρ11 + ρ55 − ρ33 − ρ77)
2 + (ρ22 + ρ66 − ρ44 − ρ88)

2]. (78)

The state ρ13 (76) is classically correlated. The quantum correlation between the qubits 1 and 3

is zero. This is easily verified using the prescription described previously to get the discord in an

arbitrary two qubit state. In this special case, the eigenvalues of the analogue of the matrix K (35)

are

p1 = p2 = 0

p3 = 2[(ρ11 + ρ22 − ρ33 − ρ44)
2 + (ρ55 + ρ66 − ρ77 − ρ88)

2]

which implies that the geometric discord is indeed zero:

Dg(ρ13) = 0. (79)

It follows that the geometric discord in the three-qubit states ρ123 (3) is monogamous when

Dg(ρ1|23) ≥ Dg(ρ12) (80)

where Dg(ρ1|23) and Dg(ρ12) are respectively given by (53) and (77).

Analogously, for the states of type σ123 (14), the reduced two qubit states are

σ12 =













σ11 + σ55 0 0 σ14 + σ58

0 σ22 + σ66 σ23 + σ67 0

0 σ32 + σ76 σ33 + σ77 0

σ41 + σ85 0 0 σ44 + σ88













(81)

σ13 =













σ11 + σ22 0 0 σ17 + σ28

0 σ55 + σ66 σ53 + σ64 0

0 σ35 + σ46 σ33 + σ44 0

σ71 + σ82 0 0 σ77 + σ88













. (82)

The two qubit density matrices σ12 and σ13 are X shaped. It follows that the geometric measure of

pairwise quantum discord arises directly from the results (36) modulo the appropriate substitutions.

Accordingly, for σ12, the geometric quantum discord is

Dg(σ12) =
1

4
min(l1 + l2, l3 + l2) (83)

where

l1 = 4(|σ14 + σ58|+ |σ23 + σ67|)
2
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l2 = 4(|σ14 + σ58| − |σ23 + σ67|)
2

l3 = 2[(σ11 + σ55 − σ33 − σ77)
2 + (σ22 + σ66 − σ44 − σ88)

2].

In the same way, for the subsystem described by σ13, one gets

Dg(σ12) =
1

4
min(m1 +m2,m3 +m2) (84)

where

m1 = 4(|σ17 + σ28|+ |σ53 + σ64|)
2

m2 = 4(|σ17 + σ28| − |σ53 + σ64|)
2

m3 = 2[(σ11 + σ22 − σ33 − σ44)
2 + (σ55 + σ66 − σ77 − σ88)

2].

The geometric discord satisfy the monogamy properly when the entries of the density matrix σ123

satisfy the inequality

Dg(σ1|23) ≥ Dg(σ12) +Dg(σ13) (85)

where the Dg(σ1|23) is evaluated from (53). To exemplify these results, we consider some special

instances of mixed three-qubit states.

4.2 Some special mixed states

4.2.1 Mixed GHZ-states

We consider the mixed three-qubit GHZ state defined by

ρGHZ =
p

8
I+ (1− p) |GHZ〉〈GHZ| (86)

where the pure GHZ-state is given by |GHZ〉 = 1√
2
(|000〉+ |111〉). The states ρGHZ belong to the class

of mixed three-qubit states of type ρ123 (3). Subsequently, using the expressions (3.2.1), it is simple

to verify that the eigenvalues of the matrix K are

λ1 = λ2 = λ3 = 2(1 − p)2

and thus the geometric measure of the pairwise discord between the subsystems 1 and 23 is

Dg(ρGHZ) =
1

2
(1− p)2. (87)

The maximal value of quantum correlation is reached for p = 0 (pure GHZ state), and for p = 1

the discord is vanishing as expected. To discuss the monogamy, we determine the pairwise geometric

discord in the subsystems containing the qubits 1− 2 and the qubits 1− 3. We denote the associated

states by ρGHZ12
and ρGHZ23

respectively. Using the results (77) and (79), one obtains

Dg(ρGHZ12
) = 0 Dg(ρGHZ13

) = 0.

Using the result (87), one has

Dg(ρGHZ) ≥ Dg(ρGHZ12
) +Dg(ρGHZ13

), (88)

reflecting that the quantum discord in the states ρGHZ, as quantified by Hilbert-Schmidt norm, follows

the monogamy constraint.
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4.2.2 Mixed W-states

The second example deals with a special type of three-qubit states σ123 (14). They are given by

σW =
p

8
I+ (1− p) |W〉〈W|. (89)

in terms of the W state: |W〉 = 1√
3
|100〉 + |010〉 + |001〉. Using the expressions (71)-(74), one gets

λ1 = λ2 =
16

9
(1− p)2 λ3 =

20

9
(1− p)2

and the geometric discord reads as

Dg(σW) =
4

9
(1− p)2. (90)

In other hand, from the equations (83) and (84), one has

Dg(σW12
) = Dg(σW13

) =
1

6
(1− p)2. (91)

where ρW12
and ρW23

are the two qubit states corresponding to the subsystems comprising the qubits

1-2 and 1-3 respectively. It is clear that

Dg(ρW) ≥ Dg(ρW12
) +Dg(ρW13

). (92)

The geometric measure of quantum discord in the states σW satisfies the monogamy condition.

4.2.3 Three-qubit state of Bell type

Finally, we consider the three-qubit

ρB =
1

8

(

σ0 ⊗ σ0 ⊗ σ0 +

3
∑

i=0

ciσi ⊗ σi ⊗ σi

)

. (93)

which can be viewed as the extended version of two-qubit Bell state. The state ρB has non vanishing

matrix elements only along the diagonal and off diagonal. Indeed, in the computational basis, it writes

ρB =
1

8

































1 + c3 0 0 0 0 0 0 c1 + ic2

0 1− c3 0 0 0 0 c1 − ic2 0

0 0 1− c3 0 0 c1 − ic2 0 0

0 0 0 1 + c3 c1 + ic2 0 0 0

0 0 0 c1 − ic2 1− c3 0 0 0

0 0 c1 + ic2 0 0 1 + c3 0 0

0 c1 + ic2 0 0 0 0 1 + c3 0

c1 − ic2 0 0 0 0 0 0 1 + c3

































. (94)

From equations (3.2.1), one has

K11 = c21 K22 = c22 K33 = c23 K21 = K21 = 0
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and the geometric discord in the bipartition 1|23 is

Dg(ρB) =
1

8
(c21 + c22 + c23 − c2) (95)

where c2 = max(c21, c
2
2, c

2
3). It is remarkable that the reduced two qubit states given by

ρB12
= ρB13

=
1

4
σ0 ⊗ σ0

do not present quantum correlations when measured by the Hilbert-Schmidt distance (i.e.,Dg(ρB12
) =

Dg(ρB13
) = 0). The quantum Dg(ρB) is always non negative and therefore the geometric discord in

the states ρB is monogamous.

5 Concluding remarks

In this work, we have investigated the analytical derivation of quantum correlations in mixed states

describing quantum systems comprising three qubits. We have deliberately considered the square

norm (Hilbert-Schmidt distance) instead of entropic based quantifiers. In fact, despite the informa-

tion meaning of based entropy measures, determining explicit expressions of quantum correlations

requires optimization procedures that are in general very complicated to achieve even in two qubit

systems. In this respect, the geometric quantifiers are advantageous in obtaining closed computable

expressions of the information contained in a tripartite quantum system. In this picture, through the

geometrized variant of quantum discord, we characterized the bipartite quantum correlations in mixed

three-qubit states and their analytic expressions are explicitly derived for two families of generalized

three-qubit X- states. In addition, we have determined the explicit Fano-Bloch expressions of clas-

sically correlated (zero discord) states. In other hand, we have studied the monogamy property and

the shareability limitations of geometric quantum discord for two kinds of generalized three-qubit X

states. To exemplify our results, we discussed the monogamy property in mixed three-qubit states of

W, GHZ and Bell types.

Finally, it worth to notice that the geometric measure of quantum discord obtained in this paper

are useful for many purposes. First, it provides the explicit amount of quantum correlation in mixed

three-qubit X states that is generalizable to arbitrary quantum systems of arbitrary number of qubits.

Also, it offers a computable tool to get the multipartite quantum correlation defined as the sum of

all pairwise partition in a multi-components system (see for instance [45]). In this sense, the present

approach constitutes a good alternative to evaluate tripartite correlation in mixed states generalizing

the analysis done for pure tripartite systems [44, 45, 46]. In other hand, this approach is ready to

adapt in investigating the dynamics of geometric discord in quantum systems subjected to decoherence

mechanisms in the spirit of the results recently presented in [49]. Further study in this direction might

be worthwhile.
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