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Magnetic excitations in the strong-leg quantum spin ladder compound (C7H10N)2CuBr4 (known
as DIMPY) in the field-induced Tomonaga-Luttinger spin liquid phase are studied by means of high-
field electron spin resonance (ESR) spectroscopy. The presence of a gapped ESR mode with unusual
non-linear frequency-field dependence is revealed experimentally. Using a combination of analytic
and exact diagonalization methods, we compute the dynamical structure factor and identify this
mode with longitudinal excitations in the antisymmetric channel. We argue that these excitations
constitute a fingerprint of the spin dynamics in a strong-leg spin-1/2 Heisenberg antiferromagnetic
ladder and owe their ESR observability to the uniform Dzyaloshinskii-Moriya interaction.

PACS numbers: 75.40.Gb, 76.30.-v, 75.10.Jm

The investigation of spin systems where quantum ef-
fects play a dominant role has become a very active
branch of quantum many-body physics. Although the
spin Hamiltonian describing quantum magnets is quite
simple and often very well controlled [1], the interplay of
all spin degrees of freedom can be very complex, lead-
ing to a large diversity of phases ranging from long-range
magnetic order to spin liquids of various types [2]. In ad-
dition, the ground state can possess not only local types
of order but also more complex and subtle non-local topo-
logical orders [3, 4]. Understanding such behavior is thus
a frontier of fundamental knowledge, providing, on the
other hand, a potential means for quantum computa-
tion [5] or quantum simulators of some itinerant problems
[6, 7].

Due to enhanced quantum effects, one- and quasi-one-
dimensional (1D) spin systems, such as spin chains and
ladders, are of particular interest [8]. In these systems,
interactions between excitations can play a very impor-
tant role, giving rise to exotic states [9], including quasi-
long-range order, known as Tomonaga-Luttinger liquids
(TLL), or phases where correlations between magnetic
excitations are of short range (e.g., in the case of Hal-
dane spin-1 chains [3]).

Recent progress in material science makes it possible
to synthesize new materials with exchange parameters
permitting the manipulation of the ground states by ac-
cessible magnetic fields, with drastic effects on the phys-
ical properties. This, and the progress in both analyti-
cal and numerical techniques provide access to a host of

novel physics, allowing, e.g., the observation of the Bose-
Einstein condensation of magnons [6, 10], the quantita-
tive test for TLL predictions [11, 12], the observation of
fractionalization of spin excitations [13, 14], spinon at-
traction [15], and remarkable effects of disorder [16–18].

Even very tiny anisotropies can play an important
role, reducing local symmetries and drastically affecting
the low-energy spin dynamics. Electron spin resonance
(ESR) spectroscopy has proven to be one of the most
sensitive tools to probe such interactions and effects in
exchange-coupled spin systems [19]. One remarkable ad-
vantage of this technique is that ESR allows experiments
in very high magnetic fields, far beyond the supercon-
ducting magnet limit [20–23]. Theoretical studies of pre-
dicted ESR parameters are available for spin chains and
ladders [24–29], and have been applied with good suc-
cess to, e.g., spin chains [30–32] and strong-rung ladders
[33, 34]. However, relatively little is known about the
spin dynamics in strong-leg ladder systems, which can be
very different from that in spin chains and strong-rung
ladders in terms of the spinon interactions.

In this work, we report on high-field ESR stud-
ies of the spin ladder (C7H10N)2CuBr4 [bis(2,3-
dimethylpyridinium) tetrabromocuprate(II) or (2,3-
dmpyH)2-CuBr4, abbreviated as DIMPY], currently
known as the best realization of a strong-leg spin-1/2
Heisenberg antiferromagnetic ladder [35] with moderate
exchange coupling constants. We reveal experimentally
the presence of a novel ESR excitation mode in the TLL
phase that is absent in a strong-rung ladder and was not
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FIG. 1. (color online) Schematic view of the crystal struc-
ture of DIMPY [35]. The copper (Cu) ions form a ladder-like
structure with the dominant exchange couplings indicated in
the figure.

observed in previous ESR work on DIMPY either [36].
We describe the unusual excitation spectrum of DIMPY,
using a combination of analytic techniques and exact-
diagonalization (ED) methods. We demonstrate that the
appearance and magnetic-field dependence of parameters
of the new mode can be understood by taking into ac-
count the dynamic spin-spin correlation function for the
strong-leg spin-1/2 Heisenberg antiferromagnetic ladder
model, thus providing important information on the spin
excitations as well as the anisotropy of magnetic interac-
tions in this system.

DIMPY crystallizes in a monoclinic lattice with space
group P2(1)/n and lattice constants a = 7.504Å, b =
31.61Å, c = 8.202Å, β = 98.98◦ (number of formula
units per unit cell Z = 4) [35] with S = 1/2 Cu2+ ions
arranged in a ladder-like structure (Fig. 1). Each unit
cell contains two rungs, each from a different symmetry-
equivalent ladder, running parallel to the a axis. The
spin Hamiltonian of DIMPY can be written as

H = Jleg
∑

〈l,j〉

Sl,j · Sl+1,j + Jrung
∑

〈l〉

Sl,1 · Sl,2

− gµBH
∑

l,j

Sz
l,j +Hδ, (1)

where Jleg and Jrung are exchange coupling constants
along the legs and rungs, respectively, Sl,j are the spin
operators on site l of the leg j = 1, 2 of the ladder,
gµBH is the Zeeman term (g is the g factor, µB is the
Bohr magneton, H is the applied magnetic field). The
fourth term represents various possible, usually small,
anisotropic contributions. Exchange constants along the
rungs and legs of the ladder have been determined by use
of inelastic neutron scattering (INS) as Jrung/kB ≈ 9.5 K
and Jleg/kB ≈ 16.5 K, respectively (Jleg/Jrung ∼ 1.73)
[37]. The ladders are coupled via very weak exchange in-
teractions, J ′/kB <∼ 5−7 mK [35–37], resulting in a tran-
sition into a field-induced magnetically ordered phase at
temperatures below ∼ 0.35 K [38].

In a strong-leg ladder, the transverse interchain inter-
action couples two spin chains. As a result, two spinons

are confined to magnons, opening a spin gap in the ex-
citation spectrum. In the presence of a magnetic field
the gap in DIMPY closes at a critical field Hc1 = 2.8 T,
where the system undergoes a transition into the gapless
TLL phase [39]. Above Hc2 = 29 T, the system is in
the magnetically saturated spin-polarized phase [40]. In-
elastic neutron scattering experiments revealed the pres-
ence of several gapless continua as well as a number of
gapped excitations in DIMPY [37, 41, 42]; some of the
excitations have been interpreted theoretically. Investi-
gating the field-induced evolution of the magnetic exci-
tation spectrum of a strong-leg ladder in the TLL state
is of particular interest, so far not covered in detail by
theory and experiments. Such a study would allow to
obtain a better understanding of peculiarities of the spin
dynamics in a strong-leg ladder in the TLL phase, which
is, as shown below, rather different from that known for
quantum spin-1/2 chains and strong-leg ladders.
ESR experiments were performed at the Dresden

High Magnetic Field Laboratory (Hochfeld Magnetlabor-
Dresden), using transmission-type ESR spectrometers
(similar to that described in Ref. [43]) equipped with
16 T superconducting and 50 T pulsed-field [44] mag-
nets. VDI modular transmitters (product of Virginia
Diodes Inc., USA) and backward-wave oscillators (PO Is-
tok, Russia) were employed as sub-mm radiation sources.
High-quality single-crystal samples of DIMPY with typ-
ical sizes of 2× 1× 1 mm3 were used in our experiments.
The magnetic field was applied along the b axis. In our
experiments 2,2-diphenyl-1-picrylhydrazyl (DPPH) with
g = 2.0036 was used a standard ESR marker.

A single resonance line (Mode A, Fig. 2) was observed
at temperatures above ∼ 4 K. At lower temperatures, the
ESR spectrum undergoes remarkable changes. In addi-
tion to Mode A we detected a relatively broad resonance
absorption line (Mode B, Fig. 2). With decreasing tem-
perature, Mode B becomes more intensive and narrower,
shifting towards higher fields. Corresponding examples
of the ESR spectra as well as the dependences of ESR
linewidth (Mode B) on temperature and magnetic field
are shown in Fig. 2 and Fig. 3, respectively.

The frequency-field diagram of the magnetic excita-
tions in DIMPY is shown in Fig. 4. Mode A (white
boxes in Fig. 4) can be described using the equation hν =
gbµBH , where h is the Planck’s constant, ν is the excita-
tion frequency, and gb = 2.23. Mode B (white circles in
Fig. 4) has a more complex behavior: this mode is gapped
for all fields and has a non-linear frequency-field depen-
dence. From the extrapolation of the frequency-field de-
pendence to zero field, the energy gap, ∆ ∼ 350 GHz,
can be estimated. This value agrees well with the size of
the gap between the spin-singlet ground and first-excited
triplet states observed by means of INS in zero magnetic
field at k = 0 [41, 42], where the system is in the gapped
spin-liquid state.

It is worth mentioning that the ESR excitation spec-
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FIG. 2. (color online) Left panel: Examples of ESR spectra
obtained at a frequency of 324 GHz at 1.5, 2, 2.8, and 4.6 K.
Right panel: Examples of pulsed-field ESR spectra obtained
at the frequencies 189, 235, 280, and 314.4 GHz (T = 1.5 K).
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FIG. 3. (color online) (a) Temperature dependence of the
linewidth of Mode B at a frequency of 328.8 GHz. (b)
Linewidth of Mode B for different values of resonance fields
(T = 1.5 K). Lines are guides to the eye.

trum in DIMPY is very different from that in the strong-
rung spin ladder BPCB [34], where only one gapless mode
was observed in the TLL phase. The comparison of our
ESR data with results of INS studies and ED calculations
for DIMPY in the TLL regime [41] strongly suggests that
the observed ESR Mode A corresponds to magnetic exci-
tations in the S±

0 channel, while Mode B corresponds to
ESR excitations in the channel Szz

π , which are nominally
forbidden in the purely isotropic case. To demonstrate
that Szz

π indeed gives rise to Mode B, we calculated the
field dependence of the dynamical structure factor em-
ploying ED of the model (1), where the anisotropic con-
tribution Hδ has been omitted. We used the parameters
Jleg/Jrung = 1.73, Jrung = 9.51 K, and g = 2.23 as de-
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FIG. 4. (color online) The frequency-field diagram of mag-
netic excitations in DIMPY. Data of the structure factors Szz

π

and S±

0 obtained by use of exact-diagonalization calculations
for chains from N = 32 to N = 64 sites are given in bright
colors [46]. Blue and red solid lines are guides to the eye.
First and second critical fields are denoted by vertical dashed
lines.

termined above from the frequency-field dependence of
Mode A [47]. The transverse dynamical structure factor
S±
0 in the symmetric channel of the legs and the longitu-

dinal dynamical structure factor Szz
π in the antisymmet-

ric channel are calculated for finite systems of up to 64
sites using the expression

Sαβ
k⊥

(ω) =
1

π

∑

n

Im
〈0|Sα

k⊥
|n〉 〈n|Sβ

k⊥
|0〉

ω − (ǫn − ǫ0 + i η)
, (2)

for T = 0, where |n〉 are the eigenstates with energy ǫn
(|0〉 is the ground state). η is a Lorentzian broadening
that we set to η = 0.05 Jrung. The Fourier-transformed
spin operators are given by

Sα
k⊥

=
1√
N

∑

l,j

exp(i k⊥ j)Sα
l,j . (3)

Thus, k⊥ is the momentum perpendicular to the ladder,
while we have assumed zero momentum along the ladder
direction, as is common for ESR.
We exploit the conservation of total Sz of the model

(1). When the dimension of the subspace is sufficiently
small, we use full diagonalization to evaluate (2) while
for bigger dimensions we use first the Lanczos algorithm
[59, 62] to find the ground state |0〉 and then a continued-
fraction expansion [60–62] to obtain the spectral function
(2).
Our ED results for the zero-temperature dynamical

structure factors S±
0 and Szz

π are shown as intensity plots
in Fig. 4. Finite-size effects are strongest for low mag-
netic fields where they may amount to errors of up to
50 GHz for Mode B [46]. For magnetic fields H > 12.5 T,
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the main finite-size effects are the steps observed in “line”
B and thus one may estimate them to not exceed 10 GHz
here. The agreement of the position of the intensity max-
ima for H >∼ 7 T with the experimental ESR and INS
[41] data is excellent, including not only the downward
slope, but also the curvature of Mode B. We note further
that application of ED to finite temperature [46] also
reproduces the qualitative trends observed in Fig. 2 and
Fig. 3 (a), in particular a substantial thermal broadening
of Mode B.

As mentioned, ESR transitions corresponding to Mode
B are nominally forbidden in the purely isotropic case.
On the other hand, Fig. 1 shows that there is no in-
version center on bonds along the ladder legs in the
crystal structure of DIMPY and successive tetrabro-
mocuprate units are related by unit cell translations [35].
This allows for the presence of a uniform Dzyaloshinskii-
Moriya (DM) interaction along the legs of the form
∑

l

∑

j=1,2(−1)jD·(Sl,j×Sl+1,j). It is important to men-
tion that the uniform DM interaction has been found re-
sponsible for a number of unusual effects, including, e.g.,
broadening of resonance line A, observed in DIMPY by
means of low-frequency ESR spectroscopy [36] and the
zero-field gap opening in the triangular-lattice antiferro-
magnet Cs2CuCl4 [52]. On the other hand, such a term
accounts for the intensity of Mode B, that is directly pro-
portional to the spin-spin correlations as discussed above
[46]. In the low-field limit, Mode B can be described using
the non-Abelian bosonization approach [53], where it is
understood as a complex of two Majorana fermions [46].
The magnetic field couples symmetrically to the two legs
of the ladder whereas the Majorana fermions are anti-
symmetric under the exchange j = 1 ↔ j = 2 of the two
legs. Thus, to first approximation, Mode B is not affected
by the applied field. This accounts for the almost flat be-
havior of Mode B observed in Fig. 4 up to about 15 T
[46]. At higher magnetic fields, renormalization effects of
these Majorana fermions are more important, resulting
in the observed non-linear frequency-field dependence of
Mode B.

Our observations of the Szz
π mode can have broader im-

pact in the context of the SO(5) ladder model [54, 55]. In
this model, the quantum phase transition driven by the
chemical potential can be mapped to the field-induced
phase transitions in the Heisenberg ladder. In that case,
the gapless excitations in the TLL state of spin ladders
(Mode A) are interpreted as massless ti+ bosons, while
the gapped excitations (Mode B) correspond to massive
ti,0 bosons [55]. The former contribution is characteris-
tic of the TLL state and is commonly found in spin-1/2
Heisenberg chains (and can be interpreted as originating
from the Bose condensate of ∆Sz = 1 magnons), while
the latter have ∆Sz = 0 magnons as their origin. The
boson mass is determined by the Luttinger constant K
(describing the nature of interactions between particles)
and the velocity u; both parameters are field dependent

[37]. The complex contributions of these two variables to
the gapped excitation give a hint for understanding the
non-linear dependence of Mode B in a magnetic field as
observed in our experiments.

To summarize, the excitation spectrum in DIMPY, a
spin-1/2 Heisenberg antiferromagnetic strong-leg ladder
compound, was probed by means of high-field ESR in
magnetic fields up to 50 T. Two ESR modes were ob-
served. One of them has a linear frequency-field depen-
dence, and corresponds to Zeeman-split massless S±

0 ex-
citations, commonly found in spin-1/2 Heisenberg chains
and strong-rung ladders in the Tomonaga-Luttinger liq-
uid regime. On the other hand, we show that a key
property of the ESR spectrum in a spin-1/2 Heisen-
berg strong-leg ladder in the TLL phase is the presence
of gapped Szz

π excitations that derive from the gapped
∆Sz = 0 boson. Good agreement between results of
exact-diagonalization calculations and the experimental
data was demonstrated.

This work was partially supported by the Helmholtz
Gemeinschaft via the Virtual Institute “New states of
matter and their excitations”, Deutsche Forschungsge-
meinschaft (DFG, Germany), Swiss SNF under Division
II, and ERC synergy UQUAM project. We acknowledge
the support of the HLD at HZDR, member of the Euro-
pean Magnetic Field Laboratory (EMFL).

Supplemental Material

UNIFORM DZYALOSHINSKII-MORIYA

INTERACTION

Here, we show that a uniform Dzyaloshinskii-Moriya
(DM) interaction along chains but staggered between
chains can explain that the dynamical structure factor
Szz
π leads to an ESR signal and that there is, conse-

quently, a nontrivial Mode B.

The symmetry of the crystal structure of DIMPY
(Fig. 1 of the main manuscript) allows the occurrence
of a uniform DM interaction along the leg, but staggered
from leg to leg

HDM =
∑

l

∑

j=1,2

(−1)jD · (Sl,j × Sl+1,j), (4)

that corresponds to the term Hδ of the Hamiltonian (1)
in the main text. We choose coordinates in spin space
such that the vectorD points in the y direction, D = Dŷ,
where ŷ is the unit vector along the y axis.

Since the DM interaction is very small, it hardly affects
most physical quantities. One noteworthy exception is
the selection rule of ESR excitations. The mode allowed
in the ESR spectrum strongly depends on weak perturba-
tions breaking the spin-rotational symmetry. Normally,
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the ESR experiment measures S±
0 at k = 0. The dynam-

ical structure factor

S±
0 (ω) = − 1

1− e−ω/T
ImGR

S+S−(ω) (5)

is proportional to the imaginary part of the retarded
Green’s function at k = 0,

GR
S+S−(ω) = −i

∫ ∞

0

dteiωt〈[S+(t), S−(0)]〉, (6)

where S+ =
∑

l

∑

j=1,2 S
+
l,j . Since the prefactor in

Eq. (5) does not have special resonances in frequency, the
ESR modes A and B mentioned in the main manuscript
come from the frequency dependence of the retarded
Green’s function (6). In order to investigate the origin of
these modes, we utilize the following identity (compare
with the appendix of Ref. [56])

GR
S+S−(ω) =

2〈Sz〉
ω − gµBH

− 〈[A, S−]〉
(ω − gµBH)2

+
1

(ω − gµBH)2
GR

AA†(ω) , (7)

where A is the operator A = [HDM, S+]. According to
the identity (7), in the absence of the DM interaction
(i.e., A = 0), one finds a single mode at ω = gµBH , which
is Mode A. The ESR mode B is absent unless anisotropic
interactions breaking the spin-rotational symmetry are
present. The identity (7) also shows that Mode B
comes from the last term, the retarded Green’s function
GR

AA†(ω). The operator A is given by

A =
∑

l

∑

j=1,2

(−1)jD(Sy
l,jS

x
l+1,j − Sx

l,jS
y
l+1,j). (8)

The above formula is exact and valid for arbitrary mag-
netic field.
We can get an approximation valid for low energy, long

wavelength by replacing Sx,y
l+1,j → Sx,y

l,j . In that case

Eq. (8) becomes A = −iD
∑

l

∑

j=1,2(−1)jSz
l,j . and one

obtains

Szz
π ≈ −D−2 (1− e−ω/T )−1 ImGR

AA†(ω) (9)

Mode B is thus directly connected to the zz spin spin
correlation function in the absence of DM interactions.
In order to complement the above description of Mode

B we employ a bosonization approach dealing with the
rung interaction, Jrung, perturbatively. The bosonization
provides a perfectly controllable treatment of the low-
energy theory for Jrung/Jleg ≪ 1. Although for DIMPY
the ratio is too high to expect quantitative agreement we
can expect a very good qualitative description.
The standard non-Abelian bosonization calculation

leads to [57]

A ≈ D

πα

∫

dx
∑

j=1,2

(−1)j [Jz
jR(x) − Jz

jL(x)], (10)

where α is the short-distance cutoff. JjR(x) and JjL(x)
are, respectively, the right-moving and the left-moving
components of the SU(2) current on the jth leg. Note
that the spin Sl,j is written as Sl,j ≈ JjR(x) + JjL(x) +
(−1)l+j

N(x), where N(x) is the Néel order parameter.
According to Ref. [58], we can rewrite the operator (10)
by using two Majorana fermions,

A ≈ γD

∫

dx (ξRρR − ξLρL). (11)

Here, γ is a non-universal constant. ξR(L) and ρR(L) are
the right-moving (left-moving) component of the Majo-
rana fermions ξ and ρ. The Majorana fermion ξ, when
it is applied to the singlet ground state at zero magnetic
field, generates a triplon with Sz = 0. Although Ref. [58]
formulated the refermionized theory for the H = 0 case,
one can easily extend it to the high-field case of our in-
terest. At the level of the bosonized and refermionized
theory, the Hamiltonian of the spin ladder at H = 0 is
split into two parts: a symmetric and an antisymmet-
ric part with respect to the permutation of the leg index
j = 1 ↔ j = 2. The magnetic field affects the symmetric
sector only and can induce a quantum phase transition
from the gapped phase at low field into the field-induced
Tomonaga-Luttinger liquid phase. Conversely the Majo-
rana fermions ξ and ρ belong to the antisymmetric sec-
tor [58], are thus in first approximation unaffected by
the magnetic field, and retain a gapful excitation spec-
trum. If we call ∆0 the excitation gap of ξ at k = π,
the other Majorana fermion ρ has a higher excitation
gap 3∆0 at k = 0 [58]. Hence, the operator (11) gen-
erates multi-particle excitations whose excitation gap at
k = 0 equals to 4∆0. For zero magnetic field the triplet
gap ∆0 is estimated from our exact diagonalization data
as ∆0 ≈ 4.3 K (see section below) leading to a value
4∆0 ≈ 17.2 K ≈ 360 GHz of the resonance frequency of
Mode B in good agreement with ∆ ∼ 350 GHz obtained
from the extrapolation of the frequency-field dependence
of the Mode B to zero field (see Fig. 4 in the main text).
At finite magnetic field the decoupling of the symmet-
ric and antisymmetric mode would naively yield a field-
independent frequency. However there are irrelevant op-
erators that couple these two sectors. Although they do
not change the asymptotic physics they can renormalize
the value of the parameters, hence a field dependence of
the resonance that must be computed numerically.

EXACT DIAGONALIZATION OF FINITE

LADDERS

Zero temperature

The field dependence of the dynamical structure fac-
tors in the S±

0 and Szz
π channels at k = 0 along the legs

has been computed at T = 0 using exact diagonalization
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(ED) of the model Hamiltonian [Eq. (1) in the main text]
for finite systems of sizes up to 64 sites. For N ≤ 20 and
in the high Sz sectors we use full diagonalization, oth-
erwise a combination of the Lanczos algorithm with a
continued fraction expansion [59–62].

The action of the operators S± changes the quantum
number Sz by ±1, rendering the computation of S±

0 more
challenging than Szz

π . Nevertheless, only a strong line at
frequency ω = g µB H has been observed in S±

0 with an
intensity subject to small finite-size effects. Since fur-
thermore the mixing of the two channels depends on pa-
rameters like the length of the DM vector D that are not
really known, we manually added a line for S±

0 with a
suitable intensity in Fig. 4 of the main text.

We now focus on the channel Szz
π since this exhibits

a more complex behavior. For completeness, we start
with the case of zero magnetic field in the top panel
of Fig. 5 even if this has been investigated previously
[15, 37, 41, 42]. The low-field region is particularly chal-
lenging for ED since on the one hand the numerical effort
is maximal and on the other hand finite-size effects are
largest, compare the position of the main peak in Fig. 5.
Nevertheless, the inset of the top panel of Fig. 5 demon-
strates that the peak position ωpeak at H = 0 can be
extrapolated to ∆ ≈ 360 GHz in the thermodynamic
limit N → ∞. Note that a similar extrapolation can
also be performed for the spin gap ∆0: a fit with an ex-
ponential function gives rise to ∆0 ≈ 4.3 K ≈ 90 GHz,
corresponding to a first critical field Hc1 ≈ 2.9 T. As
a consistency check of these two independent extrapola-
tions, we mention that the ratio ∆/∆0 reproduces the
field-theory prediction ∆/∆0 = 4 very accurately.
The higher magnetic fields that are our main concern

are more favorable for two reasons. Firstly, exact diag-
onalization is performed for lower particle numbers and
one can reach bigger system sizes. In addition, finite-size
effects become less important. The case gµBH = 3Jrung
shown in the middle panel of Fig. 5 demonstrates a well-
behaved case. In this case the ground state is in the
sector Sz = N/4 (half of the saturation magnetization)
for all considered systems and finite-size effects are virtu-
ally absent, as is demonstrated by the lines for all system
sizes falling on top of each other in the middle panel of
Fig. 5.

Finally, the bottom panel of Fig. 5 illustrates the more
typical behavior with the case gµBH = 4Jrung. In this
case, the ground state is in the sector Sz = 3N/8 for
those N that are divisible by 8, i.e., N = 24, 32, 40,
and 48 in the figure. For these system sizes, again no
finite-size effects are observable. On the other hand, if N
is not divisible by 8, Sz = 3N/8 cannot be realized and
the corresponding system sizes (N = 20, 28, and 36 in the
figure) scatter a bit around the thermodynamic limit. For
systems with N ≥ 32 spins and in the high-field region,
these finite-size shifts of the main line should not exceed
10 GHz. Above this main peak there is always a bit of
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FIG. 5. (color online) Finite-size dependence of the Szz

π

structure factor at the temperature T = 0 and magnetic
fields H = 0 (top panel), H = 19.05 T (middle panel), and
H = 25.40 T (bottom panel). A Lorentzian broadening of
η = 0.05 Jrung ≈ 10 GHz is applied. The inset of the top
panel shows a finite-size extrapolation of the frequency of the
peak ωpeak using a quadratic fit in the inverse system size
1/N .

spectral density corresponding to continua of excitations.
Since these continua need to be approximated by a finite
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FIG. 6. (color online) Frequency-field diagram of a finite lad-
der of N = 32 sites. The shading encodes the value of the
structure factor Szz

π
.

number of peaks for fixed N , one naturally observes that
these continua are more strongly affected by finite-size
effects.
Figure 6 shows the field dependence of Szz

π for a fixed
system size of N = 32 spins. The jumps of the “line”
in the low-field region in Fig. 6 reflect again the finite-
size effects discussed above, but for higher magnetic fields
the main effect is that only discrete values of Sz/N are
realized for a fixed system size. Fig. 4 of the main text
is based on a composite of the largest available system
sizes and coincides with the present Fig. 6 in the region
H < 13.65 T (in Fig. 4 of the main text we have used
N = 36 for H > 13.65 T, N = 40 for H > 18.86 T,
N = 48 for H > 23.17 T, and N = 64 for H > 26.03 T).
Note that Szz

π (ω) ≡ 0 in the sector with Sz = N/2 − 1
just before saturation. In the case N = 32 shown in
the present Fig. 6 this implies a vanishing signal already
at a field of ≈ 27.9 T, i.e., below the saturation field
Hc2 = 29 T. In the case of Fig. 4 of the main text we
have used data for N = 64 spins just below saturation.
Accordingly, this apparent saturation field is closer to the
true saturation field, namely at ≈ 28.2 T.

Finite temperature

Finally, we take a brief look at T > 0. First, we need
a generalization of Eq. (2) of the main text

Sαα
k⊥

(ω) =
1

π

∑

n,m

e
− ǫm

kB T

Z
Im

∣

∣〈n|Sα
k⊥

|m〉
∣

∣

2

ω − (ǫn − ǫm + i η)
, (12)

where Z =
∑

m e−ǫm/(kB T ) is the partition function.
Here we present ED results for N = 28 sites. In this
case, we can no longer obtain the full spectrum, but we
need to restrict the sums over m to low energies ǫm. Af-
ter performing such a restriction, the spectral sum over
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FIG. 7. (color online) Temperature dependence of the Szz

π

structure factor at a magnetic fields H = 12.70 T (upper
panel) and H = 19.05 T (lower panel). The size of the system
is fixed at N = 28 sites and a Lorentzian broadening of η =
0.05 Jrung ≈ 10 GHz is applied.

n is again evaluated by a continued fraction expansion
[60–62]. This approximation would break down at high
temperatures, but is accurate for the region of interest,
i.e., temperatures kB T < Jrung/2. Since we need to com-
pute excited states with the Lanczos algorithm [59, 62],
we have to work with smaller systems than for zero tem-
perature. At least 20 states have been retained for each
sector with a given Sz and momentum ~k.

Figure 7 presents results for two cases, namely H =
2 Jrung/(g µB) ≈ 12.70 T (upper panel) and H =
3 Jrung/(g µB) ≈ 19.05 T (lower panel). The T = 0 limit
of the latter case has been presented before in the mid-
dle panel of Fig. 5 where finite-size effects were observed
to be small. At finite T , finite-size effects are still vis-
ible as wiggles in the detailed lineshape. Still, Fig. 7
clearly demonstrates a substantial broadening and cor-
responding damping as temperature is raised to 4.6 K.
This is in qualitative agreement with the experimental
findings (left panel of Fig. 2 and 3(a) of the main text).
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At H = 3 Jrung/(g µB) ≈ 19.05 T there is no observable
shift of the position of the line with temperature whereas
for H = 2 Jrung/(g µB) ≈ 12.70 T one observes a shift of
the center of mass of the line to lower frequency ω with
rising temperature, at least for the N = 28 system shown
in Fig. 7. Given the downward slope of Mode B with in-
creasing magnetic field H , this translates to a shift of
the mode to lower fields with rising temperature when
one translates the present frequency scans at constant
field to field scans at constant frequency. Thus, the shift
observed in the upper panel of Fig. 7 is consistent with
the shift of Mode B observed experimentally (left panel
of Fig. 2 of the main text). Between T = 0 and 1.5 K
there is generally a bit of broadening, but no significant
shift of the main line, justifying the comparison of T = 0
computations with experiments performed at 1.5 K.

∗ Present Address: FELIX Laboratory, Radboud Univer-
sity, 6525 ED Nijmegen, The Netherlands
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