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Abstract

The advent of high throughput sequencers has lead to a dramatic increase in the size of
available genomic data. Standard methods, which have worked well for many years, are
not suitable for the analysis of big data sets, due to their reliance on a time-consuming
alignment step. In this thesis, a new alignment-free approach for phylogeny reconstruction is
introduced. The corresponding program, andi, is orders of magnitude faster than classical
approaches and also superior to comparable alignment-free methods.

The central data structure in andi is the enhanced suffix array. It is used to find long
exact matches between sequences. In this thesis, various approaches to the construction of
enhanced suffix arrays, including novel ones, are evaluated with respect to performance.
Additionally, a new parallel algorithm for the computation of suffix arrays is introduced.

Zusammenfassung

Mit der Einführung von Next-Generation-Sequenzierer-Techniken ist die verfügbare Menge
von Genomdaten erheblich gewachsen. Standardansätze, wie das Alignment, die über
Jahre hinweg gut funktionierten, kommen bei großen Datenmengen an ihre Grenzen. In
dieser Arbeit wird ein neuer, alignment-freier Ansatz zur Phylogenierekonstruktion vorge-
stellt. Dessen Implementierung, andi, ist um Größenordnungen schneller als klassische
Methoden und auch vergleichbaren alignment-freien Programmen überlegen.

Die zentrale Datenstruktur in andi ist das sogennante Enhanced Suffix Array (ESA). Es
wird dazu benutzt, lange exakte Übereinstimmungen zwischen Sequenzen zu finden. Um
diesen Prozess schnellstmöglich zugestalten, werden in dieser Arbeit verschiedene Kon-
struktionsansätze für ESAs evaluiert. Dazu gehört auch ein neuer, paralleler Algorithmus
zur Berechnung von Suffix Arrays.
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1 Introduction

Creating a phylogeny is a standard step done early in analysis of related genomes. With it,
the genomes are clustered, outliers can be detected, and further analyses can be planned.
Thus, phylogenies are an integral part of most multi-genome studies.

Given a set of genomic sequences, a phylogeny can be computed via different ap-
proaches: maximum parsimony and maximum likelihood search for the tree that best explains
the data, where best is some criteria based on the method. However, for n genomes, the
number of possible rooted phylogenetic trees is Cn = 1/(n+ 1)

(
2n
n

)
the nth Catalan num-

ber. Cn can be approximated as Cn ≈ 4n n− 3/2 π − 1/2. Thus, the Catalan numbers and the
number of possible phylogenies, grow nearly exponentially.

A third approach is based on a matrix of pairwise distances. From this matrix, a phy-
logeny can be generated using standard algorithms, such as neighbor joining. So for this
approach, only a single tree is computed, based on n2 evolutionary distances. These dis-
tances are traditionally computed via an alignment (see Section 2.2). However, alignments
are slow and thus, unfeasible, if n is large: For the biggest data set in this thesis, consisting
of 3085 S. pneumoniae genomes, an alignment would take 3.2 years. Thus, in recent years,
alignment-free methods have been developed, which also estimate evolutionary distances,
but are much faster than an alignment.

In this thesis, a new method, called anchor distance or simply andi, for the estimation of
evolutionary distances is developed. Simulations show that andi is accurate for closely
related sequences, even when combined with high levels of recombination. Applications
to real data show that andi is more accurate than existing estimation methods.

Furthermore, through careful engineering, andi has supreme performance. When ap-
plied to big datasets, it is orders of magnitude faster than the classic alignment, and still
significantly faster than all other alignment-free methods evaluated in this thesis. For ex-
ample, on the same data set of 3085 genomes, andi takes only a few hours.

The central data structure of andi is the suffix array. This array includes the indices to all
suffixes of a text in lexicographic order. Various so-called suffix array construction algorithms
have been developed in the past 15 years. In this thesis, a new algorithm is introduced,
targeted at the parallel construction of a suffix array.

Chapter 2 goes into further detail in the computation of phylogenies. It includes short
descriptions on previous approaches for the estimation of evolutionary distances. These
distances are then evaluated, with respect to their accuracy and performance on simulated
data.

To set the stage for an introduction to andi, all the necessary algorithms and data struc-
tures are explained in Chapter 3. This includes text-book approaches, like the enhanced
suffix array, as well as new ideas, such as the first variant character. The algorithms for the
creation of suffix arrays have been separated into Chapter 4. In that chapter, a new parallel
algorithm is introduced, its correctness proven, and its complexity analyzed.

The anchor distance for the estimation of evolutionary distances is defined in Chapter 5.
This method is analyzed for its computational complexity, and worst-case accuracy. Also

1



1 Introduction

the pseudocode, as well as hints, for an efficient implementation, are given.
In Chapter 6, both andi, and the new suffix array construction algorithm, are evalu-

ated for precision and efficiency. andi and other distance estimators are applied to various
simulated test, to measure their accuracy. For performance evaluations, all methods are
applied to real sets of bacterial genomes. Similarly, the new algorithm is tested on engi-
neered corpi, as well as common text inputs.

Chapter 7 concludes this thesis with an analysis of the results. It also includes sug-
gestions for improvements of both andi and the new algorithm. For andi, ideas for better
accuracy and improved performance are proposed.
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2 Biological Background

2.1 Evolutionary Distances and Phylogenies

There are approximately 1.9 million described and 11 million undescribed species in the
world [Chapman, 2009]. These numbers are only a rough estimate with new species con-
tinuously being born and going extinct. Efforts to bring order into these vast numbers
date back to Linné 1758 [Campbell and Reece, 2011] and thus, predate Darwin’s theory of
evolution [Darwin, 1859] and even more so modern genetics [Morgan et al., 1915]. In the
absence of evolutionary data, Linné build the now classical taxonomy of all living things
on morphological features with the smallest unit being a species.

»I can entertain no doubt, [. . . ] that the view which most naturalists enter-
tain, and which I formerly entertained—namely, that each species has been
independently created—is erroneous. I am fully convinced that species are
not immutable; but that those belonging to what are called the same genera
are lineal descendants of some other and generally extinct species, in the same
manner as the acknowledged varieties of any one species are the descendants
of that species.«
— Charles Darwin, The Origin of Species; p. 61

In the above quote from the introduction of The Origin of Species Darwin expresses the
idea that species, classified in a common genus because of shared morphological features,
are descendants from a single ancestral species. So at one point in time there was a species
with certain features and over time its descendants gradually differentiated into the di-
verse taxa that can be observed today. It is this claim which shows that the taxonomy by
Linné, which is based on shared morphology, represents evolution.1

Figure 2.1 depicts a beautiful tree of life. It shows, for example, that the last common
ancestor of mammals and reptiles lived about 250 millions years ago and that birds di-
verged 110 million years ago. So today’s reptiles are more closely related to birds than to
mammals. This relatedness is called evolutionary distance.

Intuitively, evolutionary distance is measured in time, as seen above. However, the unit
depends on the available data: millions of years for fossils, generations in experiments
with microbes, and mutation rates in genomics. In the latter case, the molecular clock is
used to translate substitution rates to years [Zuckerkandl and Pauling, 1962].

Throughout this thesis an evolutionary distance of genomes is defined as a real number
from the interval [0,∞). A distance of d = 0 means that two sequences are identical
whereas a distance d ≥ 1 means that they are presumably unrelated. This is especially
true for simulated sequences without a common ancestor.

1Since the concept of evolution was unknown to Linné his taxonomy resembles the contemporary belief in
the fixity of species. This becomes apparent in that the lower levels of his taxonomy closely relate to an
evolutionary history, whereas the higher levels are rather artificial [Campbell and Reece, 2011].
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2 Biological Background
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2.2 Estimating Evolutionary Distances

D =


0 0.1 0.25 0.3

0.1 0 0.3 0.3
0.25 0.3 0 0.05
0.3 0.3 0.05 0


A B C D

Figure 2.2: A simple phylogeny of four imaginary species M = {A,B,C,D}. The se-
quences C and D are closer related than the pair A and B. Each pair forms
its own clade in the phylogenetic tree. The tree (a rooted phylogram) was com-
puted from the distance matrix using the UPGMA algorithm as implemented in
the TikZ phylogeny drawing package [Mäusle, 2012].

Let M be a set of genome sequences. Then a function d : M ×M → [0,∞) represents
the evolutionary distances on M if it is a metric.2 From this a matrix Dij = d(i, j) can be
derived. This distance matrix is symmetric and its main diagonal contains only zeros.

Given these distances—either via d or implicitly via D—the underlying phylogenetic
tree can be reconstructed [Felsenstein, 2004]. It represents the evolution of the given or-
ganisms with each internal node being the common ancestor of all its subspecies. The
species from set M are the leaves of the tree. An example matrix and its corresponding
tree is given in Figure 2.2.

2.2 Estimating Evolutionary Distances

In the previous section we established that the phylogeny of a group of organisms can be
reconstructed via their evolutionary distances. In this section various approaches are ex-
plained to estimate distances from genome sequences [Haubold, 2014], before introducing
the new method I codeveloped in Chapter 5.

Mutation Rate

One of the essential forces behind evolution is mutation. On the level of deoxyribonucleic
acid (DNA) the simplest mutation is the substitution of one nucleotide with a different
one (e. g., Adenine to Thymine, A→ T). Assuming that all species are subject to the same
mutation rate, their mutual single nucleotide polymorphism (SNP) rate may be a good
estimator for the evolutionary distance [Zuckerkandl and Pauling, 1962].

Let Q and S be the sequences TTAAGTAAGG and TTACGTCAGG, respectively. Then the
Hamming distance is defined as the ratio of mismatches, dH(S,Q) = 0.2. But this only
accounts for the observed substitutions. Given enough time the nucleotide at a certain
position may mutate multiple times, resulting in a neutral mutation (e. g., A → T → A).
Such an invisible mutation accounts for two or possibly more substitutions. The simplest
model to correct for these is known as the Jukes-Cantor correction [Jukes and Cantor, 1969].

Definition 1. Let d be an evolutionary distance. Then the Jukes-Cantor correction is

JC(d) = −3

4
ln

(
1− 4

3
d

)
.

2Some models use evolutionary distances which are ultra metric e. g., [Daskalakis and Roch, 2013] These
models lead to equal branch lengths for all leaves but are rarely used in practice.
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2 Biological Background

S : A T T C G T

Q : A – T C C T

Figure 2.3: The table shows one possible alignment for the sequences ATTCGT and ATCCT.
A gap is denoted by »–«. Another possible alignment would have first the T at
position 2 in Q, followed by the gap. All other alignments would require more
than two edits (one gap and one mismatch).

Unfortunately, substitutions are not the only mutations; but indels,3 unequal crossing
over and inversions move chunks of genomic sequences along genomes. This renders the
simple Hamming distance useless, unless applied only to homologous sequences. The an-
chor distance strategy for finding pairs of homologous sequences is presented in Chapter 5.

Alignment

To overcome the limitation of the Hamming distance with respect to indels, the Levenshtein
distance dL (also known as edit distance) is used instead. It is defined as the smallest number
of insertions, deletions or substitutions one has to do in order to transform one sequence
into the other. This can be visualized by aligning the two sequences in question (see Fig-
ure 2.3). The value dL is then called the score of the alignment.

The optimal alignment of two sequences (i. e., the alignment with fewest edits) with
lengths n andm, can be computed inO(nm) time andO(min{n,m}) space, using dynamic
programming [Ohlebusch, 2013, p. 397]. Heuristic methods are known that compute ap-
proximate alignments in expected linear time [Altschul et al., 1990]. Optimally aligning
more than two sequences (i. e., a multiple sequence alignment), however, has been proven to
be NP-complete [Wang and Jiang, 1994].

Interestingly, when calculating the evolutionary distance from an alignment, indels are
disregarded [Felsenstein, 2004]. Instead, only the relative amount of mismatches is cal-
culated. Thus, if an alignment-free method can avoid the computation of indels, it may
estimate of the evolutionary distance much faster in practice.

Exact Word Count

A consecutive sequence of k nucleotides is known as a k-mer or k-tuple. Computing the
frequency profile of all k-mers allows for easy comparison of two sequences. Let qi be the
frequency of pattern i in sequence Q then a simple distance definition is

dkmer (Q,S) =

4k∑
i=1

(qi − si)2 . (2.1)

This method can be implemented efficiently [Marçais and Kingsford, 2011]. Unfortunately,
it lacks accuracy when applied to closely related genomes [Haubold, 2014]. Efforts have
been made to correct this defect, but they still either lack power or they have no freely
available reference implementation [Maurer-Stroh et al., 2013]. Further, the choice for the
best k remains unknown [Tang et al., 2014].

3As it is often impossible to distinguish between insertions and deletions in pairwise alignments, they are
commonly referred to as indels.
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2.2 Estimating Evolutionary Distances

Inexact Word Count

A number of strategies use patterns rather than words. These patterns, also called spaced
words or structures are approximate matches. Consider the sequence ACCGCTG; then the 5-
mer ATCGC is not contained, but the pattern AxCxC matches at position4 0, where x denotes
a do-not-care or wild-card position.

Recently, [Morgenstern et al., 2014] devised a generalization of the exact word count.
They use a bit pattern to reduce a k-mer to a l-mer where the l positions marked with a 1
are picked from the k-mer. The implementation by [Leimeister et al., 2014] uses multiple
patterns to compute more accurate distances.

Definition 2. For a nucleotide α the relative frequency is fα and further f := f2A+f2C +f2G+f2T .
The spaced word distance is then defined as

dsw(Q,S) = −3

4
ln

(
4

3
k

√
N bin(Q,S,P)

|P| (|Q| − l + 1)
− 2 · (|S| − l) · fk − 1

3

)
,

where N bin(Q,S,P) is the number of words matched by a pattern P ∈ P in both Q and S.

Unlike the previous distances, the method by [Yi and Jin, 2013] tries to find different
matches across sequences rather than common patterns. Let P be a bit pattern e. g., 11011.
Then ACxCT is a context on the sequence TTACGCTGA with the so-called object G being the
sole nucleotide matching the do-not-care. On the other hand, TxA has two possible objects
T and G. So TxA is not a valid context.

As usual, let Q,S be two sequences and CQ, CS be their set of contexts, respectively.
Further δ : CQ × CS → {0, 1} is 0 iff the given contexts share a common object. With
R = CQ ∩ CS the context-object distance is defined as

dco(Q,S) =

∑
c∈R δ(c, c)

|R| . (2.2)

Substitutions from Common Substrings

One of the most widely referenced alignment-free distance estimation methods is dkr by
[Haubold et al., 2009]. It is based on the following characteristic.

Definition 3. Let S,Q be sequences over a common alphabet Σ. ThenmS(Qi) is the longest prefix
of Qi matching somewhere in S (compare Section 3.6). Further, the matching statistics of Q with
respect to S is

ms[i] = |mS(Qi)| .

A glocal alignment—local in S and global in Qi—is assumed. Then ms[i] is the distance
from i to the next mutation.5 The average distance to the next mutation is assumed to be
approximately the inverse of the mutation rate, which is true under a uniform distribution
of mutations.

4All indices in this thesis are zero-based.
5The implementation kr by [Domazet-Lošo and Haubold, 2009] uses local shortest unique substrings or shus-

trings which are ms[i] + 1.
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Figure 2.4: Estimation of the substitution rates for different distances. Shown are means
and variance. An ideal estimator would have all its data points on the straight
line. For the used implementations and parameters consult Table 2.1.

Definition 4. Let ms be the matching statistics of Q with respect to S. Then the distance
dkr(Q,S) is defined as

dkr(Q,S) = JC

(
1

|Q|
∑
i

ms[i]

)
. (2.3)

2.3 Comparison of Prior Art

The previously described distance estimation methods vary widely in accuracy and per-
formance. To motivate the need for better alignment-free methods we present a small
comparison based on the distance estimation for two sequences with varying substitution
rates.

Accuracy

Figure 2.4 shows measurements for the previously described distances. Each data point is
the mean of one hundred runs. For each run a sequence pair of length 100 kbp is simulated
with a substitution rate K (Jukes-Cantor corrected). An ideal distance estimation method
would calculate the exact substitution rate of the input and hence, have all its data points
on the straight line.

As can be seen in Subfigure 2.4a, the k-mer based estimation is monotone, but at least
one order of magnitude smaller than expected. This lack of accuracy makes it inferior to
all other methods.

The high number of substitutions makes good estimations for all methods increasingly
difficult beyond a rate of 0.4. For a higher K value, dco becomes downwards biased and
stops working at 0.7. da fails beyond rates of K ≥ 0.5. dkr rapidly overestimates the
distance for K ≥ 0.7. For improved clarity its datapoints beyond K = 0.7 are omitted
in Subfigure 2.4b. The best results for high substitution rates are produced by dsw. Its
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2.3 Comparison of Prior Art

Table 2.1: Performance Comparison; sorted by runtimes.

Method Implementation Time (s) Memory (KB)

dkr kr 292.45 9940
dco cophylog 399.57 156 852
da andi 604.87 22 932
dkmer , k = 20 jellyfish 673.66 3980
alignment mugsy, dnadist 842.24 66 816
dsw , k = 20 spaced 2595.59 4396

estimations are reliable up to K = 0.8. Beyond that, they become upwards biased and
start fluctuating heavily.

As a reference, mugsy was used to compute alignments under the same conditions
[Angiuoli and Salzberg, 2011]. From the alignment, the program dnadist from the Phylip

toolbox was used to compute Jukes-Cantor corrected distances [Felsenstein, 2005]. Un-
surprisingly, the alignment is among the most accurate estimations up to K = 0.3. For
K = 0.4 its reported distances are one order of magnitude too small. For bigger K, no
alignment is produced.

Performance

The fundamental reason for the invention of alignment-free distance estimation methods
is their superior performance. Here performance has two characteristics: runtime and
memory usage. The memory usage becomes more important for bigger data sets, because
excessive memory usage may exceed the available memory and thus, limits a method’s
usability.

As a simple test, the runtime and maximum memory for the computation of all data
points in Figure 2.4 were measured. Thus, for each of the 22 different K values, every
method had to compute distances for 100 pairs of randomly generated 100 kbp sequences.
The measurements taken by UNIX command time are presented in Table 2.1.6 All imple-
mentations were run on a standard desktop computer (see Section 6.1; single-threaded;
with default parameters, unless stated otherwise).

All alignment-free methods, except for spaced, were faster than the reference mugsy.
This may be due to the chosen value for k, which is double the default k = 10, but pro-
duces more accurate results. As with dkmer , the optimal value for k is unknown.

cophylog is the only method using more memory than mugsy. Manually changing some
magic numbers in its code might result in a smaller hashmap and thus, reduced memory
usage. However, a heuristic for the optimal hash size is missing.

6Some overhead due to input creation, formatting, and shell scripts may apply.
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3 Algorithms and Data Structures

Looking for short patterns within long texts is a common problem in computer science. In
fact, it arises so frequently that in Introduction to Algorithms by Cormen, Leiserson, Rivest,
and Stein [Cormen et al., 2009] an entire chapter is devoted to String Matching. They for-
malize the string-matching problem as follows.

Definition 5 (String-Matching Problem). Let Σ be an alphabet of size |Σ| = σ. Further let u, v
be words over Σ so that u ∈ Σn and v ∈ Σm with m ≤ n. Then v is called a substring of u iff
there exists an i such that u[i..i+m− 1] = uiui+1 · · ·ui+m−1 = v.

Now let u, v satisfying the above conditions be given. The string-matching problem is then
the task of

a) checking if v is a substring of u,

b) finding all indices i for which the above is true.

In the past, various techniques for matching strings have been developed. Among the
fastest is the well-known algorithm by Knuth, Morris, and Pratt. Its runtime is linear
Θ(m + n) with the space requirement being just O(1) [Cormen et al., 2009]. Less well-
known algorithms have an expected sublinear runtime [Cantone and Faro, 2014].

DNA is a sequence of nucleotides, of which there are four kinds: Adenine, Cytosine,
Guanine and Thymine.1 So a DNA sequence can be considered a word over the alpha-
bet Σ = {A,C,G, T}. If two DNA sequences are closely related, they share common
subsequences, interrupted by mutations. Thus, if one can locate equal subsequences, the
complement gives the mutations necessary for the calculation of evolutionary distances
(see Section 2.2). So resorting to the string matching problem allows us to indirectly find
mutations.

Let S be a subject DNA sequence and q be a short l-mer from a longer sequence Q
(|Q| = |S| = n). Checking if q is a substring of S takes time O(l+n) with the algorithm by
Knuth, Morris, and Pratt. Since Q consists of n/l many l-mers, a full comparison would
take O(n/l · (l+n)) time.2 But in each comparison S does not change, so we are interested
in a comparison method with an asymptotic runtime of O(n + n/l · l) = O(n); that is, a
procedure, which processes the subject and the query only a fixed number of times. In
this chapter we establish the algorithms and data structures that achieve this goal at the
cost of memory and increased preprocessing time.

3.1 Suffix Arrays

A suffix array (SA) of a text T contains all suffixes in lexicographic order. This requires a
total order on the letters in the alphabet, which is then extended onto words.

1The field of epigenetics differentiates between even more kinds, which are not relevant for our analysis.
2In our analysis we do not care about every l-mer, but only the non-overlapping ones; thus, n/l.
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3 Algorithms and Data Structures

i SA SSA[i]

0 4 AAGG

1 0 AAGTAAGG

2 5 AGG

3 1 AGTAAGG

4 7 G

5 6 GG

6 2 GTAAGG

7 3 TAAGG

Figure 3.1: A suffix array for the string AAGTAAGG. The suffixes are usually not stored
explicitly, but shown here for didactical purposes. Also, the empty suffix—
sometimes written as ε or λ—is ignored.

Definition 6 (Lexicographic Order). Let u, v ∈ Σ∗ be two distinct words with |u| ≤ |v|. Then
u is called lexicographically smaller than v if

1. u is the empty word (|u| = 0),

2. u is a prefix of v (u = v[0..|u|]), or

3. ∃n ≥ 0: un < vn ∧ ∀i < n : ui = vi.

Given a word S, let Sj = S[j..] be the jth suffix. Then the suffix array SA is defined as
SA[i] = j with ∀k < i : Sk < Sj i. e., position i stores the index of the ith smallest suffix.
Figure 3.1 displays such a suffix array for the string AAGTAAGG.

Given the suffix array for a subject sequence S, one can look up a query q via a binary
search in time O(l log n). Instead of executing a full string comparison O(l) at each step,
one can remember the prefix of q already matched (see Listing 3.1). This does not speed
up the theoretical time bound, but is useful in practice [Grossi, 2011]. To make the search
independent of the size of S, additional data structures are introduced in Section 3.2.

A suffix array can be constructed in time Θ(n) with O(1) auxiliary workspace. Further
details are discussed in Chapter 4.

3.2 Enhanced Suffix Arrays

In the previous section SAs were introduced. So far they allow us to match a query q
against a subject S in O(l log n) time with O(n) preprocessing. In order to improve the
matching step, the SA is enhanced with additional information. One useful data structure
is the longest common prefix (LCP) array. For each entry i in the SA the LCP holds the
length of the longest common prefix between the suffixes SSA[i] and SSA[i−1].

12



3.2 Enhanced Suffix Arrays

1 fn find_matches
2 requires S, SA
3 input q
4

5 let upper ← |S|
6 let lower ← 0
7 let upper_i ← 0
8 let lower_i ← 0
9

10 // do a binary search
11 while lower 6= upper do
12 let mid← (upper + lower) / 2
13 let i ← min( lower_i, upper_i)
14

15 // find the common prefix
16 while S[SA[mid]][i] = q[ i ] do
17 i ← i + 1
18 if i >= |q| then
19 output mid
20 end
21 end
22

23 // compare the new middle to q
24 if S[SA[mid]][i] < q[ i ] then
25 upper ← mid
26 upper_i ← i
27 else
28 lower ← mid
29 lower_i ← i
30 end
31 end
32

33 if S[SA[lower ].. SA[lower]+|q|] = q then
34 output lower
35 else
36 output ⊥
37 end

Listing 3.1: This algorithm matches a query q to a SA inO(l log n) time. It is improved
over a binary search, in that the algorithm remembers the prefix of q,
which has already been found and avoids recomparison of its characters
[Manber and Myers, 1990].
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3 Algorithms and Data Structures

i SA LCP SSA[i] lcp− intervals

0 4 −1 AAGG

0

1
3

2

1

1 0 3 AAGTAAGG

2 5 1 AGG

3 1 2 AGTAAGG

4 7 0 G

5 6 1 GG

6 2 1 GTAAGG

7 3 0 TAAGG

8 −1

Figure 3.2: The enhanced suffix array for the string AAGTAAGG. It includes the SA and the
LCP array. Note that the LCP array has one more entry than the SA. The
common prefix of a suffix w. r. t. its predecessor is underlined. The character
thereafter, the first variant character, is set in bold.

Definition 7 (Longest Common Prefix). Let SA be the suffix array over a string S. Then the
LCP values are defined as

LCP [i] := max
{
m | ∀j ≤ m : S

SA[i]
j = S

SA[i−1]
j

}
.

For convenience, the first and the nth entry in the LCP array are set to −1. The compound
structure of an LCP array with a SA is called enhanced suffix array (ESA). Figure 3.2
shows an example ESA.

The theoretically fastest sequential algorithms, creating an LCP array from a SA, have
an asymptotic time complexity of O(n) [Kasai et al., 2001, Manzini, 2004]. They require
Θ(n) additional memory besides the space for the LCP, SA and the string. In practice they
are much faster than the accompanying SA construction.

The LCP array also allows the definition of lcp-intervals, written l − [i, j], meaning that
all suffixes in SA[i..j] share a single common prefix of length l. For example, in Figure 3.2,
all suffixes in the interval [4, 6] start with G.

Definition 8 (LCP-Intervals, from [Abouelhoda et al., 2002]). Given 0 ≤ i < j < n, then
l − [i, j] is an lcp-interval of lcp-value l if

1. LCP [i] < l,

2. ∀k ∈ [i+ 1, j] : LCP [k] ≥ l,

3. ∃k ∈ [i+ 1, j] : LCP [k] = l, and

4. LCP [j + 1 ] < l.

Given an interval [i, j] the length l is the smallest number in LCP [i + 1..j]. This yields
the definition of range minimum querys (RMQs) in the following Section.
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3.3 Range Minimum Queries

3.3 Range Minimum Queries

The lcp-intervals created the need of finding the smallest value within a subarray from the
LCP values. This can defined as follows.

Definition 9. Let A be an array of integers. Then a range minimum query (RMQ) is the smallest
element from a subinterval [i, j] ⊆ [0, |A|),

RMQA(i, j) := arg mini≤k≤jA[k] .

With a naive implementation, each RMQ would iterate the interval and return the small-
est element. In the worst case this requires Θ(j − i) = Θ(n) time. Fortunately, there exists
a strategy with O(n) preprocessing time, which allows subsequent RMQs to be answered
in time O(1) [Fischer and Heun, 2007]. This additionally requires look-up tables of size
Θ(n). The algorithm for constant time RMQ is beyond the scope of this thesis. The in-
terested reader is referred to [Fischer and Heun, 2007] or [Ohlebusch, 2013] for a detailed
explanation. In the context of ESAs, a RMQ is always applied to the LCP array.

Using RMQs, lcp-intervals can be computed easily. Listing 3.2 displays the algorithm
get_interval that, given an interval for a common prefix, finds subintervals for the
next letter. Subsequent calls to get_interval with the starting interval 0− [0, |S|] allow
for matching a query letter by letter to the subject. Each call takes time O(|Σ|), so in total
O(|q| · |Σ|) steps need to be taken to solve the string-matching problem for a query q.
The matching step is now independent of the length of the subject with O(n) additional
runtime and Θ(n) memory for the creation of the ESA.

3.4 Child Arrays

The child array is an alternative to RMQs [Abouelhoda et al., 2004]. As can be seen in
Figure 3.2, the lcp-intervals are nested and do not overlap; thus conceptually, they form a
tree (compare suffix tree in Section 3.7). To allow its fast traversal, as with RMQs, a Super-
Cartesian tree is built.

Definition 10 (Super-Cartesian tree, taken from [Ohlebusch, 2013]). Let A[l..r] be an array
of integers. The Super-Cartesian tree C(A[l..r]) is recursively constructed as follows:

• If l > r, then C(A[l..r]) is the empty tree.

• If l ≤ r, then the minima of A[l..r] appear at positions p1 < p2 < · · · < pk. In this case,
create k nodes v1, . . . , vk and label each vi with pi. Node v1 is the root of C(A[l..r]). For
each j with 1 < j ≤ k , the node vj is the right sibling of node vj−1. Recursively construct
C1 = C(A[l..p1 − 1]), C2 = C(A[p1 + 1..p2 − 1]), . . . , Ck+1 = C(A[pk + 1..r]). For each
i ∈ [1, k) , the left child of vj is the root of Cj . The left and right children of vk are the roots
of Ck and Ck+1, respectively.

Note that a node has either a right child or a right sibling, but not both. Figure 3.3
shows a Super-Cartesian tree for the LCP array from Figure 3.2. As each node has exactly
one ingoing edge, the whole tree can be represented using a child array with n entries. This
array can be created in timeO(n) with o(n) auxiliary workspace [Ohlebusch, 2013, p. 109].
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1 fn get_interval
2 requires S, SA, LCP, RMQ
3 input ( l−[i .. j ], m), a
4

5 do
6 if S[ SA[m] + l] ≤ a then
7 i ← m // continue in the upper half
8 else
9 j ← m − 1 // continue in the lower half

10 end
11

12 if i = j then
13 break // ‘a‘ not found, exit early
14 end
15

16 m← RMQ(i + 1, j)
17 while LCP[m] = l // loop over all subintervals
18

19 if S[SA[i] + l ] = a then
20 l ← LCP[m]
21 output ( l−[i .. j ], m)
22 else
23 output ⊥
24 end

Listing 3.2: The procedure get_interval takes three parameters, an lcp-interval, a
special value m and a character a. It returns the subinterval with all strings
whose character at position l is a.
The procedure is a binary search over all possible subintervals one level
deeper. If the interval for a is found, that is returned, otherwise the null
interval ⊥ is returned.
The parameter m is the first middle for the binary search. Additionally, the
last middle, one that is a level deeper, is returned. This strategy allows the
reuse of RMQs and thus, speeds up the code (compare [Ohlebusch, 2013,
p. 118]).
Note that in Line 20 the l value of the new lcp-interval is not necessarily
l + 1 (one level deeper) but LCP [m], which may be bigger than that.
The loop runs at most O(|Σ|) times, depending on the RMQ implementa-
tion used. All other operations, including the RMQ are constant, thus, the
total runtime is also O(|Σ|).
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0

4

2

1 3

5 6

7

8

Figure 3.3: The Super-Cartesian tree for the array −1, 3, 1, 2, 0, 1, 1, 0,−1. Each node rep-
resents a border of an lcp-interval in Figure 3.2.
Nodes 0 and 8 form the 0− [0, 7] interval. Its two subintervals of prefix length 1
are created by the nodes 0, 4 and 7 corresponding to 1− [0, 3] and 1− [4, 6]. All
deeper subintervals can be iterated likewise in a top-to-bottom manner.

The child array (CLD) may be used as an alternative to RMQs in the get_interval
function. A modified version can be found in Section A.3. Its runtime is O(|Σ|), just as the
RMQ version.

3.5 First Variant Character

Consider Line 6 from the get_interval method (Listing 3.2).

if S[ SA[m] + l] ≤ a then

That is already an optimized version of the following.

if S[ SA[m] + LCP[m]] ≤ a then

Even though this code is constant in theory, it is far from optimal in practice. The reason
is that S and SA are large; usually n and 4n byte.3 Even for small bacterial genomes of
multiple Mbp, they require megabytes of memory. Thus, the ESA does not fit into a CPUs
cache and instead, parts of it are stored in main memory.

Caches are most efficient if memory is accessed in a predictable and sequential manner.
In the above code, m increases until a new subinterval is found and then the search is re-
cursively continued within. So with each call, the amount of memory accessed, is reduced.
This means, the lookup SA[m] is well optimized. Unfortunately, by definition, S[SA[m]]
is not predictable and lookups for sequential m, are almost never sequential. This renders
the caching strategies used by common central processing units (CPUs) useless, resulting
in cache misses and stalled instructions.

Fortunately, all values, except for m, are known in advance and thus, I propose to pre-
compute the value of the expression S[ SA[m] + LCP[m]]. It shall be called the first variant
character (FVC) array, as S[ SA[m] + LCP[m]] is just one character past the LCP4 and thus,
varies between the current suffix and its predecessor. In Figure 3.2 the FVC is printed in
bold face type.

3Assuming the test S contains only ASCII characters and SA is implemented using 32 bit integers.
4Remember that all indices in this thesis are zero-based; Hence the index for the character past the LCP of

length l is l.
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Definition 11 (First Variant Character). The FVC is an array of length |S| = n with characters
from the extended alphabet Σ ∪ {⊥}. The first entry is the special value ⊥ 6∈ Σ. For 1 ≤ m < n
the FVC is defined as

FVC [m] = SSA[m][LCP [m]] .

The FVC array overcomes the problem of memory locality. Its entries are small—usually
one byte—and accessed in a dense manner, resulting in better memory locality and finally
reduced access times. Measurements for the expected performance improvement are pre-
sented in Section 6.6.

The FVC array is designed to optimize Line 6 from Listing 3.2. Unfortunately a simple
replacement cannot be used for the Line 19.

if S[SA[i] + l ] = a then

The reason for this is that l does not have to equal LCP[i], because i is the beginning of
an interval. In fact, i may be the beginning of multiple lcp-intervals, but only one FVC
can be stored. In all other cases however, we can apply our optimization leading to the
following code.

let c ← FVC[i]
if LCP[i] 6= l then

c ← S[SA[i] + l ]
end
if c = a then

The definition of the FVC can be immediately converted into a construction algorithm
(see Section A.2 in the Appendix). This algorithms has a runtime of Θ(n) and O(1) auxil-
iary workspace. Other algorithms, based on [Kasai et al., 2001] and merging with the LCP
computation, are conceivable. But these strategies turn out to be slower than the naive
implementation (see Section 6.6).

3.6 Matches and Anchors

In the previous sections various techniques were established to solve the substring-matching
problem. But in our comparison method for genomes, the length of a substring to match
is not known in advance (see Chapter 5). So instead, the following longest match problem
has to be solved.

Definition 12 (Longest Match Problem). Let S,Q be strings over a common alphabet and 0 ≤
i < |Q| be given. Find the biggest l so that Qi[0..l] is a substring of S.

The solution to that problem is a prefix p of Qi which is also a substring of S. Since by
definition p cannot be extended by another character to the right (otherwise it would no
longer be a substring of S), it is called right maximal. As no restrictions are applied to i,
the starting point of p, the latter need not be left maximal. Additionally, p is defined to be
unique, if it matches exactly once in S.5

5This differs from a common definition of a maximum unique match (MUM) in that the latter also requires the
match to be unique in Q [Ohlebusch, 2013].
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2

TAC

4

C

1

TAC

3

C

0

ATAC

A

Figure 3.4: This is a suffix tree for the string AATAC. Each leaf represents a suffix and is
labeled with its starting position. The leaves are sorted in lexicographic order
from left to right.

Definition 13 (Anchors). Let p be a right maximal match. If it is unique in S and of some
minimal length L, it is termed an anchor [Haubold et al., 2014].

Computing matches and anchors is straightforward with the techniques established in
the last sections. Preprocess S to compute its ESA and call the get_match procedure
of Listing 3.3, which subsequently calls get_interval at most once for each character.
Thus, the resulting runtime is O(|p| · |Σ|), with p being the longest prefix of Qi matching
in the subject S.6

The return type of get_match is a lcp-interval. Though it may not be apparent, more
than one match can be encoded by this interval or even zero if the character Qi never
appears in S. Consider the subject AAGTAAGG and the query AAGA. The result to the call
get_match(Q0) is 3 − [0, 1]. Both positions SSA[0] and SSA[1] feature the common prefix
of length 3 with Q but neither can be extended by another character (compare Figure 3.2).
Hence the computed match is not unique.

3.7 Suffix Trees

Using an ESA and the accompanying procedures is not the only index structure to solve
the longest match problem. The invention of the ESA is predated by the suffix tree. The latter
is a tree of a string S where each leaf represents a suffix Si in the sequence. The edges in
the tree are labeled with substrings of S, so that each path from the root to a leaf is just the
suffix Si. Figure 3.4 shows a suffix tree for the string AATAC.

The time and space complexity for creating a suffix tree is exactly the same as that for an
ESA (both O(n)). Furthermore, both data structures can be used to solve the string match-
ing and the longest prefix problem, with identical complexity [Ohlebusch, 2013]. But in
practice, ESAs have a lower memory requirement, which is crucial in whole-genome com-
parisons. So in recent applications the ESA has replaced the suffix tree as the data structure
of choice [Abouelhoda et al., 2002].

6The implementation for get_match, as given in Listing 3.3, is required to be called with Q[i..] as the query,
to correctly solve the longest match problem. Also, to satisfy the stated time complexity, computing the
length of a string has to be an O(1) operation. This can be achieved by storing the length explicitly along
with the characters.
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1 fn get_match
2 requires S, SA, LCP, RMQ
3 input Q
4

5 let m← RMQ(0, |S|)
6 let I ← ( 0−[0, |S|], m)
7

8 let k ← 0
9 let q ← |Q|

10

11 // Loop over the query until a mismatch is found
12 do
13 I ← get_interval ( I , Q[k])
14

15 // If the match cannot be extended further, return.
16 if I = ⊥ then
17 output I
18 end
19

20 (d−[i, j ], m)← I // Destructuring assignment
21

22 l ← q
23 if i < j and d < l then
24 l ← d // Reduced RMQ
25 end
26

27 // Extend the match
28 p ← SA[i]
29 while k < l do
30 if S[p+k] 6= Q[k] then
31 output (k−[i , j ])
32 end
33 k ← k + 1
34 end
35 while k < q
36

37 output (q−[i, j ])

Listing 3.3: This procedure computes a right maximal match. For each character
get_interval is called at most once. So the resulting runtime is
O(n · |Σ|) with a smaller constant than [Ohlebusch, 2013, p. 119] due to
a lower number of RMQs.
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Since the invention of suffix arrays [Manber and Myers, 1990], various suffix array con-
struction algorithms (SACAs) have been devised [Puglisi et al., 2007]. They differ greatly
in their resource consumption (see Table 4.1).

The skew algorithm was one of the first with an asymptotically linear worst-case run-
time [Kärkkäinen and Sanders, 2003]. divsufsort and msufsort are among the fastest algo-
rithms in practice [Mori, 2005, Maniscalco and Puglisi, 2006]. The worst-case runtime of
radixSA is super-linear, but its expected runtime is Θ(n) [Rajasekaran and Nicolae, 2014].
The bucket pointer refinement algorithm has no known precise upper boundary for the
runtime, but performs well in practice [Schürmann, 2007]. The biggest disadvantage of
radixSA and BPR is their need for an additional array storing the bucket pointers, which
requires additional 4n byte of memory.

Some of the given algorithms are not easily parallelizable (BPR), others can be paral-
lelized using a parallel random access memory (PRAM) model, but no freely available
reference implementation exists (radixSA, msufsort). Some research has been done on the
parallelization of SACAs for graphics processing units (GPUs) [Kulla and Sanders, 2006,
Osipov, 2012, Deo and Keely, 2013] and distributed mesh networks [Navarro et al., 1997].
But barely any effort has been made to achieve a practical improvement on contemporary
multi-core CPUs, with the exception of divsufsort, which also features a multi-threaded
version, but has poor CPU utilization (see Section 6.5). Thus, in this chapter an algorithm
is introduced, which is easily parallelizable and scales well across common multi-core
processors. It is a variant of a known fast and lightweight (meaning o(n) auxiliary space)
algorithm. In this chapter, the new algorithm is explained and analyzed in detail.

Table 4.1: Worst-Case Complexities for Various SACAs.

Implementation Runtime Space (byte)

skew Θ(n) Θ(n)
radixSA O(n log n) 9n+ o(n)

divsufsort O(n log n) 5n+O(1)
msufsort O(n2 log n) 6n+ o(n)

BPR Ω(n2/ log n) 9n+O(1)

4.1 The Improved Two-Stage Algorithm

Recall from Section 3.1 that the SA of a text T contains the indices to its suffixes in lex-
icographic order. So the simplest algorithm for its construction is filling the SA1 with

1The notation SA is used to refer to the concept of suffix arrays as introduced in Section 3.1. The in-memory
representation SA, is simply an array of numbers, which may not be a valid SA in intermediate steps in a
SACA; hence, the different notation.
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S G T G A G G T $

Types S* L L S- S- S* L S*

Figure 4.1: Below each character of the string GTGAGGT is the classification for the suffix
starting at that position. The $ represents the end of the string and is equivalent
to the NULL byte in C-style strings.

the numbers 0 to |T | and then sort them according to the order of their suffixes using a
suitable algorithm [Bentley and McIlroy, 1993]. That leads to O(n2 log n) runtime in the
worst case, if a multikey introsort is used [Musser, 1997]. For long texts such a run-
time is unacceptable. The two-stage algorithm [Itoh and Tanaka, 1999] and its successor,
the improved two-stage algorithm [Mori, 2005] reduce the number of suffixes that need to
be sorted explicitly, to a subset. The other suffixes are placed into the SA by induced
sorting. Variants of this algorithm have already been implemented and are in wide use
[Mori, 2005, Maniscalco and Puglisi, 2006]. However, I here present the first thorough de-
scription and proof of this process in four steps. A complete pseudocode implementation
is given in the Appendix, starting at Page 53.

Step 1. Initialization

First, each element in the SA is initialized to the special value ⊥, representing an empty
memory cell. Then, each suffix is classified into one of three types—Type L, S- or S*—
according to the following definition.

Definition 14 (Suffix Types). Let T i be a suffix and T i+1 its successor. Then T i is of

1. Type L iff T i > T i+1,

2. Type S- iff T i < T i+1 and T i+1 is not of Type L,

3. Type S* iff T i < T i+1 and T i+1 is of Type L.

Furthermore, the empty suffix T |T | is defined to be of Type S*. Additionally, each suffix of Type S-

or Type S* is said to be also of Type S.2

Figure 4.1 displays the classification of suffixes for the string GTGAGGT. This can be done
in a single scan of the text (see Listing 4.1). Thereto the algorithm uses the following
lemma.

Lemma 1. Let T i be a suffix of text T . If T i is of

1. Type L then Ti ≥ Ti+1,

2. Type S- then Ti ≤ Ti+1, and

3. Type S* then Ti < Ti+1.

2In the original short description [Mori, 2005] these types are called A, B and B*. However, their definition
differs from the types A and B in [Itoh and Tanaka, 1999] and instead resembles [Ko and Aluru, 2003].
Hence the latter naming scheme (L and S) is adopted here.
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4.1 The Improved Two-Stage Algorithm

1 fn classify
2 requires T, Bucket_L, Bucket_S∗, Bucket_S−

3

4 Bucket_S∗[$].size ← 1
5 i ← n−1
6 goto line 18
7

8 while i ≥ 0 do
9 if T[i ] ≥ T[i+1] do

10 Bucket_L[T[i ]]. size ++
11 i ← i−1
12 goto line 8
13 end
14

15 Bucket_S∗[T[i], T[i +1]]. size ++
16 i ← i−1
17

18 while i ≥ 0 and T[i] ≤ T[i+1] do
19 Bucket_S−[T[i], T[i +1]]. size ++
20 i ← i−1
21 end
22 end

Listing 4.1: This algorithm scans the text T once from right to left. During this pro-
cess the suffixes are classified and the size counter of their corresponding
bucket is increased.

Proof. Case 1 and 2 follow immediately from the definition. I now prove Case 3 by con-
tradiction.

Assume T i is of Type S*, but Ti = Ti+1 (Ti > Ti+1 is trivially false). Then, Ti+1 ≥ Ti+2 as
T i+1 is Type L; but equally Ti+2 ≥ Ti+1 has to hold, to satisfy the Type S* property for T i.
So now with Ti = Ti+1 = Ti+2, the prerequisite T i < T i+1 transfers to T i+1 < T i+2. This is
a contradiction to the definition which states that T i+1 has to be of Type L.

When the type of a suffix is established, it is sorted into a bucket. For Type L suffixes
there is one bucket per character from the alphabet. For Type S- and Type S* the first two
characters are used.

Lemma 2. Let the suffix T i be of Type L, and T j of Type S and they begin with a common character
c ∈ Σ. Then T i is lexicographically smaller than T j .

Proof. Let c0 be the first non c character in T i. As T i is of Type L it has to hold that c0 < c.
Similarly, for the first non c in T j , c1 > c. Let k be the smaller of the indices for these
characters. Then c0 = T i[k] < T j [k] ≤ c or c ≤ T i[k] < T j [k] = c1 holds and thus,
T i < T j . If no such characters c0 or c1 exist, then T i is a prefix of T j and the inequality
still holds.
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i Bucket SA SSA[i]

0 S*[$] 7 ε

1 S-[AG] 3 AGGT

2 L[G] 2 GAGGT

3 S-[GG] 4 GGT

4
S*[GT]

5 GT

5 0 GTGAGGT

6
L[T]

6 T

7 1 TGAGGT

Figure 4.2: This figure shows the SA for the string GTGAGGT. Its suffixes were sorted using
the relations for their types.

Lemma 3. Let the suffixes T i be of Type S* and T j of Type S-, beginning with the common char-
acters c and d. Then T i is lexicographically smaller than T j .

Proof. By definition, T i+1 is of Type S and T j+1 is of Type L. Using Lemma 2, their order,
and the order of their predecessors can be inferred as T i < T j .

Once the size of each bucket is computed, using the relations above, their starting points
in the SA can be calculated. Finally, the indices of the Type S* suffixes are inserted into the
SA. Figure 4.2 displays the relations from Lemma 2 and Lemma 3 in the SA, for the suffixes
from Figure 4.1.

Lemma 4. The algorithm from Listing 4.1 correctly classifies all suffixes.

Proof. By definition, every character is greater than the sentinel ($), so the algorithm places
the empty suffix into its own bucket and jumps to Line 18, thus, continuing with the first
regular suffix Tn−1.

The correct classification for all other suffixes is proven by induction over i, descending
from n − 1. Assume all suffixes, including i + 1, have already been classified. Now the
algorithm can be in one of two states:

1. T i+1 is of Type S and the algorithm is currently on Line 18. If T i is of Type S-, then the
condition Ti ≤ Ti+1 holds by Lemma 1, and it is sorted into its bucket. Conversely,
for T i of Type L the condition is false and the suffix is instead classified by Line 10.
(The combination T i of Type L, T i+1 of Type S, and Ti = Ti+1 is impossible.)

2. T i+1 is of Type L and the algorithm is currently on Line 8. If T i is also of Type L,
then by Lemma 1, the condition Ti ≥ Ti+1 is true and T i is also classified as Type L.
However, if that condition is false, T i has to be of Type S*, by Definition 14.

Thus, iteratively, all suffixes are classified to a type and sorted into their buckets, until i
reaches 0.
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4.1 The Improved Two-Stage Algorithm

1 fn induce
2 requires T, SA, Bucket_S−

3

4 for i=n to 0 do
5 j ← SA[i]
6

7 if j 6= ⊥ and T[j−1] ≤ T[j] do
8 B← Bucket_S−[ T[j−1], T[j]]
9 SA[B.start + B. size − 1] ← j−1

10 B. size ← B.size − 1
11 end
12 end

Listing 4.2: This algorithm scans the suffix array once from right to left. Each encoun-
tered suffix is checked, whether its predecessor is of Type S-. If so, the
latter is placed to the end of its bucket in the SA.

Step 2. Sorting Type S* Suffixes

Now each bucket of Type S* suffixes is sorted using a string sorting algorithm. This differs
from sorting integers, in that a comparison of two strings may take timeO(n). Even worse,
the more alike two strings are, the longer their common prefix is, and thus, the longer the
comparison takes.

To optimize for the multi-key nature of strings, a ternary-split quicksort is applied char-
acter by character [Bentley and McIlroy, 1993]. It splits the groups of strings into three
sets, those whose first character is less than, equal to, or greater than the pivot. This al-
lows the recursion in the equal part to continue with the next character and thus, avoid
unnecessary recomparisons.

To avoid the worst case quadratic runtime of quicksort, it should be combined with a
heapsort into an introsort [Musser, 1997]. For a bucket of m Type S* suffixes, this results in
a runtime of O(nm logm).

Step 3. Induce Type S- Suffixes

The major advantage of the improved two-stage algorithm over its predecessor is the capa-
bility to induce the order of the Type S- suffixes from the Type S*. This means that fewer
suffixes need to be sorted explicitly using a super-linear algorithm. Instead, Listing 4.2
shows an algorithm to place all Type S- correctly.

Lemma 5. The algorithm in Listing 4.2 correctly places all suffixes of Type S- into the SA.

Proof. Before the algorithm is invoked, all Type S* suffixes are already at their correct posi-
tion within SA. Now let T j be the Type S- suffix to be placed at position i. We now prove,
by induction over i, that when the scan reaches SA[p] = T j+1, the suffix T j is correctly
placed at position i, the end of its corresponding bucket.

Assume, that the scan has reached a certain i, where the Type S- suffix T j needs to be
placed, and all Type S suffixes to the right of that position are already placed correctly.
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4 Parallel Suffix Array Construction

Then also the successor T j+1 has been encountered, at position p. For every suffix T k

from the same bucket as T i the following holds

• T k+1 < T i+1 iff T k < T i, and

• T k+1 > T i+1 iff T k > T i.

Thus, when the scan reached p, all the suffixes greater than T i have already been placed
correctly. Likewise, no smaller suffix from that same bucket has yet been inserted, since
their predecessors were not seen, so far. So at that moment, the bucket counter pointed at
i and T i was inserted correctly.

The initial condition for this induction is that for every Type S- suffix there is a lexico-
graphically greater Type S* suffix, already in place. This is trivially true by Definition 14,
and thus, in the SA exists a right most Type S* suffix, with no Type S- suffixes that might
be lexicographically greater.

Furthermore, this algorithm does not accidentally insert a suffix of Type L. Assume a
suffix T i of Type S, whose predecessor is of Type L. Then T i−1 would ‚slip through‘ the
condition in Line 7, if Ti−1 = Ti was satisfied. But since Ti ≤ Ti+1, that would require T i−1

to also be of Type S, a contradiction.

Step 4. Induce Type L Suffices

Finally, all suffixes of Type L are induced in a similar manner to Listing 4.2 by scanning
SA from left to right: For each encountered suffix T i, if T i−1 is of Type L, insert T i−1 into
the lowest free position of its bucket.

Lemma 6. During the scan, when the position SA[i] is reached, it is already filled with the correct
suffix T SA[i]. When the whole SA is processed, all Type L suffixes are sorted in ascending order.

Proof. We prove the lemma by induction over i. Assume, the scan has reached position i
and all positions SA[0], . . . ,SA[i] are already filled with the correct suffixes. This is imme-
diately true for i = 0 as that position is reserved for the empty suffix.

If SA[i + 1] should be filled with a suffix of Type S, that was already done by Step 3.
So suppose SA[i + 1] is a position within a Type L bucket, but not yet filled with the
correct suffix. Let T j be the suffix that should be placed there. As T j is of Type L, T j−1

(which is lexicographically smaller) must have been placed in SA[0], . . . ,SA[i] and hence,
has already been encountered in the scan. Thus, SA[i + 1] will be filled once it is reached
by the scan.

Theorem 1. The improved two-stage algorithm correctly sorts all suffixes into a SA.

Proof. Follows from the proofs for Steps 1, 3, and 4 (Lemma 4, 5, and 6, respectively) and
the correctness of the sorting algorithms, used in Step 2.

4.2 Complexity

Memory

Apart from temporary variables, the algorithm uses the big arrays SA, T, and the buckets.
Furthermore, the callstack is used for sorting in Step 2. The text T needs n memory cells
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4.3 Implementation

(read: byte). For every element in the SA, log n bits are needed, resulting in a total memory
usage of Θ(n log n). If log n is smaller than the word size of the CPU, the memory usage
is linear (e. g., 4n for a 32 bit processor). The number of buckets is only dependent on the
alphabet and thus, constant with respect to n. The sorting routines of Step 2 make heavy
use of recursion and equally the callstack. In introsort the recursion depth is limited to
a Θ(log n) threshold. So, all-in-all, the required memory is Θ(n log n) theoretically, and
5n+ o(n) byte on standard machines.

Runtime

Let a text T of length n be given. Then the classification of all suffixes using the algorithm
from Step 1 takes Θ(n) steps. Further, the calculation of the correct starting positions for
all buckets is Θ(σ2) and hence, O(1) with respect to n.

In the worst case, every second suffix is of Type S*. Thus, n/2 strings need to be sorted
explicitly by standard algorithms. Hence, the runtime is O(n2 log n) for Step 2. Step 3
and Step 4 use very similar algorithms, which both iterate the SA just once. Thus, their
runtime is Θ(n).

The total runtime is dominated by Step 2, resulting in O(n2 log n) for the complete algo-
rithm. This is the same as for the naive algorithm, but with a smaller constant.

Concurrency

As seen in the previous section, Step 2 is the part of this algorithm with the biggest in-
fluence on its runtime. Luckily, the process can be sped up by distributing the sorting
of different buckets across all available CPUs. For an alphabet of size σ this results in
a runtime of O(n2/σ2 log n) if the number of processors p is greater than the number of
Type S* buckets (σ2 − σ)/2 (see Lemma 1) and the buckets are equally filled. In the worst
case, when all Type S* suffixes start with the same two characters, no improvement can be
achieved. However, the probability that two random Type S* suffixes start with the same
two characters is just 2

σ2−σ (assuming uniform distribution of characters).
To provide more concurrency, when the number of processors exceeds the number of

filled buckets, the latter may be split into subbuckets, by a quicksort over the first character.
Multiple runs may prove useful for large p. Using this approach, the total runtime is
reduced to O(n2/p log n) for p� n.

This method of parallelization can be implemented on a PRAM with little communi-
cation overhead. The concurrent read exclusive write (CREW) nature of this algorithm
produces close to no need for expensive cache invalidation across processors. Thus, it is
an excellent candidate for implementation on standard multicore machines.

4.3 Implementation

As a proof of concept, I implemented the parallelized improved two-stage algorithm in the
psufsort package. Its C++11 sources are available as free software on GitHub.3

3https://github.com/kloetzl/psufsort
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4 Parallel Suffix Array Construction

In addition to the library, psufsort comes with a wrapper program, which computes the
SA of a given file. Furthermore, the result is validated with a routine from libdivsufsort, to
check its integrity.

psufsort was created to replace libdivsufsort in the low memory mode of andi (see Sec-
tion 5.5). Starting with version 0.9, the former can be activated using a compile-time
switch. Results on the performance of psufsort can be found in Section 6.5.
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5 The Anchor Distance

As seen in Chapter 2, evolutionary distances are a widely used basis to create phylogenies
[Felsenstein, 2004]. Various alignment-free methods for computing distance have been
developed over the years and some of these have been described in Section 2.2. During
the development of the anchor distance we focused on high accuracy at great speed, even
under strict resource limitations. In the following sections, our approach is explained in
detail.

5.1 Definition

In Chapter 2, an evolutionary distance was defined as a function d : M ×M → [0,∞), where
M is a set of genomic sequences. The anchor distance is computed from two sequences,
one called the subject S and a query Q with Q,S ∈ {A,C,G, T}∗1. Due to evolutionary
events like gene duplication, the comparison with our yet-to-be-defined anchor distance
dasym may not be symmetric (i. e., dasym(Q,S) 6= dasym(S,Q)). To overcome this limitation,
the final distance is the average of both comparisons.

Definition 15 (Anchor Distance). Let S1 and S2 be two genetic sequences. Then the anchor
distance is the average of the two asymmetric comparisons with dasym.

da(S1, S2) =
dasym(S1, S2) + dasym(S2, S1)

2

To compute the asymmetric anchor distance of S andQ, generate the ESA of the subject,
concatenated with its reverse complement. Then Q is streamed against S as follows. Set q to
0 and continue until it runs past |Q|. Compute the longest match ofQ[q..] with S. Continue
finding matches and each time incrementing q by the length of the match until an anchor
is found. Save its characteristics and keep finding matches until a second anchor is found.
Unless the anchors form an anchor pair, replace the saved state of the first anchor with
the second and try finding another second anchor. The anchors form a pair if they are
equidistant, that is, their distance on Q is the same as for their counterparts on S (see
Figure 5.1).

An anchor pair frames a region of nucleotide sequence, which is assumed to be homolo-
gous. Since the two sequence parts are of equal length, a Hamming distance can be easily
computed. More precisely, the number of homologous nucleotides and SNPs are counted.
These numbers are cumulated for every additional anchor pair found. The final anchor
distance is the Jukes-Cantor corrected Hamming distance (see Section 2.2).

1Even though the genomic alphabet contains only the four characters A,C,G and T , the actual alphabet
used by andi has the following additional characters {!, ; ,#, \0}. The # is used to separate a genome
sequence from its reverse complement. Both of which might be made up of multiple contigs separated by
! and ;, respectively.
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5 The Anchor Distance

Q S

Q S

Figure 5.1: Anchor Pairs. In the upper panel the anchors on Q and S are equally spaced
and hence considered a valid anchor pair. Thus, the SNPs in the framed seg-
ment, shown in red, are counted. For the second figure the anchors are not
equidistant and therefore ignored.

Definition 16 (Corrected Asymmetric Anchor Distance).

dasym(S,Q) = JC

(
#SNP

#HomologousNucl

)
Listing 5.1 shows the pseudocode algorithm to compute dasym using the previously

established procedures get_interval and get_match. Various exceptions may arise
during this calculation, which need to be handled, individually.

• The query and the sequence might be identical or the former might be contained in
the latter. This leads to a single match extending over the full query; dasym(S,Q) = 0.

• With very closely related sequences only a single anchor pair might extend over the
query completely; dasym(S,Q) = JC (dH(S,Q)).

• If the query contains a subsequence multiple times that is only found once in the
subject (e. g., gene duplication), the same part of the subject might be accounted
for a homologous sequence more than once. Eventually, the count for homologous
nucleotides might exceed the length of the subject. In this case, the distance is set to
the special error value NaN.

• With very diverse, or totally unrelated sequences, no anchor pair may be found. In
these cases, the distance is also set to NaN (see Section 5.4).

• If an anchor could serve as both, a left and right anchor, be sure to count its nu-
cleotides only once, to avoid biasing the result.

In addition to the anchor distance, andi computes another characteristic, the coverage,
that is, the relative amount of homologous nucleotides. This is useful for debugging, but
not accurate enough to serve as a distance in its own right.
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5.1 Definition

1 fn dist_anchor
2 requires S
3 input Q
4

5 let E← ESA(S)
6 let L ← threshold(S,Q)
7 let Snps← 0
8 let Homol← 0
9

10 let last_pos_q ← 0
11 let last_match ←⊥
12 let last_was_right_anchor ← false
13

14 let q ← 0
15 while q < |Q| do // Stream the complete query
16

17 // Find the next match
18 m← get_match(E, Q[q. . .])
19 if m.isUnique and m.length ≥ L then
20

21 // m is an anchor
22 if q − last_pos_q = m.pos − last_match .pos then
23 // We have found a pair
24 Snps← Snps + count_diff(Q[last_pos_q. . .q], S[last_match.pos. . .m.pos])
25 Homol← Homol + q − last_pos_q
26 last_match ← m
27 last_was_right_anchor ← true
28 else
29 // Correctly count the nucleotides from right anchors
30 if last_was_right_anchor = true then
31 Homol← Homol + last_match.length
32 end
33

34 last_was_right_anchor ← false
35 end
36

37 // Cache values for later
38 last_pos_q ← q
39 last_match ← m
40 end
41

42 // Skip the mutation
43 q ← q + m.length + 1
44 end
45

46 output Snps/Homol

Listing 5.1: This algorithm computes the uncorrected asymmetric anchor distance of
Q with respect to the subject S.

31



5 The Anchor Distance

5 10 15 20

0.1

0.2

0.3

0.4

default

Threshold

D
is

ta
nc

e

da
real

Figure 5.2: For each data point, ten sequence pairs with length 1 Mbp were simulated with
a distance of 0.4. On the y-axis is the distance estimated by andi for the specific
threshold. The default p-value of 0.05 equals a threshold of 15.

5.2 Threshold

Recall from Section 3.6 that an anchor is a unique match of minimum length L. Since
we are interested in anchors framing homologous regions, L should be picked so that
random matches are unlikely. For this, another parameter p is needed, which represents
the significance of an anchor pair.

p = 1− P [random pair] (5.1)

P [random anchor] =
√

(1− p) (5.2)

The probability that an anchor was found by chance alone, in Equation 5.2, depends on
the length of the match. It is less likely for a long match to equal an arbitrary section in
the subject than for a short match. The exact distribution of match lengths was described
by [Haubold et al., 2009]. For andi, a default p of 0.05 is picked. This results in a threshold
L between 10 and 16, depending on the characteristics of the compared sequences. This is
much lower than the average anchor length of 60, depending on the chosen data set (here
ECO29, see Section 6.4). Figure 5.2 displays the relationship between the threshold and
the resulting distance.

5.3 Complexity

The requirement for fast computation of the anchor distance is low algorithmic complexity
and low memory usage. Recall from Chapter 3 that computing a match to a reference ESA,
takes time O(mσ) where m is the length of the match and σ is the size of the alphabet.
For our use case, Σ is the genomic alphabet, and hence, constant. Every nucleotide of
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5.4 Worst Case Estimations

left anchor left anchor
S : A A G T A – G C T T

Q : A A G T A A G C T T

Figure 5.3: This figure shows a worst case for the anchor strategy, where anchors are found,
but are not equidistant and thus, do not form a proper pair. The gap »–« does
not exist in the data but is shown here for improved clarity.

left anchor right anchor
Q : A A G T C T A – T T A A G

S : A A G T – T A C T T A A G

Figure 5.4: The anchor pair frames a sequence of four nucleotides. As can be seen in the
alignment, it contains two gaps. However, the Hamming distance does not see
the gaps and instead counts three substitutions.

the query is matched against the subject exactly once, leading to a runtime of O(n).2 In
the worst case, every nucleotide is touched again for the computation of SNPs. This still
requires time O(n) and O(1) auxiliary working space.

The most time-consuming step is the creation of the ESA for the subject. As shown in
Chapter 3, computing an SA, LCP, FVC and RMQ can be done in linear time, of which the
SACA takes longest, in practice. The memory requirement is Θ(n) for the ESA.

If more than just two sequences need to be compared, multiple queries can be streamed
against the same ESA. If k sequences are compared, streaming all queries against one sub-
ject takes O(n) time for the ESA construction (in theory) and O(nk) time for comparison.
With each sequence being a subject, computing the complete distance matrix is O(nk2)
with Θ(n) working memory for the anchor distance, O(nk) for the sequence data, and
O(k2) for the matrix.

5.4 Worst Case Estimations

The count_diff function in Listing 5.1 computes a Hamming distance. This means it cannot
detect indels. To protect against this, anchor pairs are required to be equidistant. This
strategy leads to the following two problems.

In the example shown in Figure 5.3, the query contains one more character than the
subject. When dasym(S,Q) is called, the first found anchor is AAGTA. Then the assumed
substitution A is skipped and the second anchor is GCTT. Both anchors are unique and
pass the threshold, which shall be 2, for the sake of this example. Unfortunately though,
the anchors are not equidistant on both sequences and thus, no Hamming distance for the
framed nucleotide(s) can be computed.

The alignment from Figure 5.4 has twice the previously described problem. The mid-
dle part, framed by the two anchors, is optimally aligned using two gaps. Unfortunately,
the Hamming distance counts three substitutions instead. This way, indels, which can-
cel themselves out, could lead to great inaccuracies. The effects of this are evaluated in
Section 6.2.

2W.l.o.g. |S| = |Q| = n is assumed.
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Figure 5.5: The two subfigures show the two different possible modes of parallelization.

5.5 Concurrency

Assume a comparison of five genome sequences. Then the calculation of dasym(1, 2) is
independent of dasym(3, 2). So theoretically, they can be run in parallel; in fact, all compar-
isons for different subjects may be run in parallel. Comparisons against the same subject,
however, have to await the precomputation of ESA and end in its destruction.

At the current state of technology, multi-core processors are widely available. The num-
ber of processors p per machine ranges from two for smartphones, eight for standard
home computers up to 64 for servers. Even though, p has been growing rapidly in the
past years, it is usually still smaller than k.

If p ≤ k then the computation of the distance matrix is embarrassingly parallel. Two
modes become apparent: computing multiple rows in parallel with each entry sequential
or sequentially computing the entries of the rows in parallel (Figure 5.5). The first mode
computes multiple ESAs in parallel and then streams all queries against them. Thus, it
can be thought of parallelization along different subjects. This reduces the runtime to
O(nk2/p), for p < k, at an increased memory usage of O(nk + np+ k2).

The second mode is algorithmically more challenging, as it requires the ESA to be built
in parallel. But its advantage is that it holds only the ESA for a single sequence in mem-
ory, instead of p, and thus, it uses less memory—O(nk+n+ k2)—which is identical to the
sequential case. The runtime is likewise reduced to O(nk2/p) in theory, where paralleliza-
tion of the SACA has the biggest impact in practice.

5.6 Implementation

The anchor distance da can be implemented using the generic match finding tool vmatch

[Kurtz, 2014]. However tests have shown that our own implementation, andi, is up to
seven times faster, even for small data sets. In this section we explain, how andi achieves
its speed.
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5.6 Implementation

Software Engineering

The reference implementation for the anchor distance, andi, is written in C/C++. Its
sources are released on GitHub3 as free software under the GNU GENERAL PUBLIC LI-
CENSE VERSION 3 [Free Software Foundation, 2007]. Prebundled packages using autoconf

are also available, with the latest release being v0.8.1 at the time of writing.
To provide good code readability, every function is documented with doxygen style

comments. The correctness of the code is constantly monitored with unit tests by the con-
tinuous integration framework Travis CI. The unit tests achieve a coverage of more than 80%
for all relevant lines.4 Most of the uncovered lines are handling exceptions (e. g., failed al-
locations). To prove correctness even under exceptional circumstances, the code was stati-
cally analyzed by the scan-build utility from the LLVM framework [Lattner and Adve, 2004].

I/O Formats

andi is designed—following the Unix philosophy—to work with plain text data formats.
As input, the Fasta format was chosen for its simplicity and wide application in biology.

>S1
AAGTAAGG
>S2
AACTACGG

Each line starting with a >, marks the header line for a new sequence, which contains
its name. All subsequent lines are its DNA. If a file contains more than one sequence, it is
called a multi-Fasta file.

The output of andi is a distance matrix, for which the Phylip representation was chosen,
used by a lot of bioinformatics software [Felsenstein, 2005]. On the first line, the size of the
matrix is given. Then follows a line for each sequence, starting with its name, followed by
the distances.

2
S1 0 0.2
S2 0.2 0

Concurrency

In Section 5.5 the two possible modes of parallelization were explained; andi implements
both. By default, it computes rows in parallel using as many threads as requested by the
-t command line switch. Using the --low-memory flag, andi can be switched into the
other mode, where it only holds the ESA for one sequence in memory, hence the name.
Both modes are implemented with the OpenMP framework.

3The official Git repository for andi can be found under https://github.com/EvolBioInf/andi.
4Blank lines, comments, and statements spanning multiple lines are considered irrelevant. For details visit
https://coveralls.io/r/EvolBioInf/andi.
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Figure 5.6: Caching Characteristics. Only a single run was made for each data point, hence
the slight fluctuation in memory usage (dashed curve).

Caching

Let S be a subject sequence from a large data set. Then for each new match w. r. t. this sub-
ject, the get_match search starts with a global RMQ (see Line 5 from Listing 3.3). Even
though a RMQ is a O(1) operation, it still takes up to 45 CPU cycles.5 So for all matches
starting with an A, multiple RMQs and memory lookups are executed, with always the
same result.

To avoid recomputation of intervals for identical match prefixes, a cache is introduced.
This cache is a simple table which maps a prefix Σm of length m to an lcp-interval from
which the get_match procedure may continue its search.6 The table itself can be filled
efficiently using a recursive version of get_match.

For andi a prefix length of m = 10 has been proven to achieve the best speedup across a
wide variety of data sets, from 20% for small sets, up to 6.8-fold for a set of 3085 S. pneu-
moniae genomes (see Section 6.4).

Figure 5.6 shows the runtimes and memory consumption of andi for different caching
depth on the same data set (see Section 6.4). It can be seen that for m = 10 andi is fastest,
with little additional memory. Thus, that value has been picked as default.

5Measured with valgrind [Nethercote and Seward, 2007].
6This is similar to the bcktab table by [Abouelhoda et al., 2004].
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6 Results

Bioinformatics software is commonly evaluated by two characteristics: accuracy and per-
formance [Filion, 2015]. The basic accuracy of andi has already been discussed in Sec-
tion 2.3. In this chapter we will study the accuracy in presence of other effects, such as
indels and recombination, as well as on real data. Later, we explore the performance of
the distance estimators. To enable reproducibility, the computers used for comparison are
defined in the next section.

6.1 Machines

A standard desktop computer running Ubuntu 14.04 LTS was used for most of the runtime
measurements. It is henceforth referenced as M1. Its 64 bit CPU is an Intel Core i7 870 with
2.93 GHz, capable of running eight simultaneous threads of executions. Furthermore, M1
has 7.8 GiB of random access memory (RAM) and 976 GB of disk space.

For bigger data sets M2 is used. It features an AMD Opteron 8356 with 32 cores, each
clocked at 2.3 GHz. It has 256 GB of RAM with plenty of free disk space and is running
a CentOS. Computers of these sizes have become standard equipment in most labs in the
past years. Good bioinformatics software should make full use of their computational
capabilities.

6.2 Insertions and Deletions

We have already discussed in Section 5.4, that andi may be sensitive to indels. To further
explore for this issue, we simulated pairs of sequences with a fixed distance and varying
indel rate. Figure 6.1 displays the results of this test.

For each data point in Figure 6.1, two sequences of length 100 000 bp were simulated
with a substitution rate π = 0.1 and varying indel rate φ. Now there are two equally
correct measures of the evolutionary distance; the substitution rate π and the total error rate
π + φ.

The substitution rate has been used for a long time to estimate evolutionary distances
[Zuckerkandl and Pauling, 1962]. However, it remains unknown how to extend these re-
sults to indels, which may be under higher selection pressure. Also, indels are commonly
clustered, because a single evolutionary event likely causes an indel spanning multiple
nucleotides.

Figure 6.1 shows the ideal results for both approaches. The lower, dashed line is the
constant substitution rate, whereas the upper line is the error rate, counting each substitu-
tion and each indel as a single evolutionary event. As long as the indel rate φ is one order
of magnitude smaller than the substitution rate of π = 0.1, all methods estimate π quite
well.
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Figure 6.1: For each data point, one hundred sequence pairs with a distance of 0.1 and
a certain indel rate were simulated. The mean and variance are plotted. Both
theoretical distances substitutions and errors are shown as lines (continuous
and dashed, respectively).

Beyond that point, all methods become increasingly upwards biased, with andi growing
fastest. Its estimations rise beyond the error rate, start varying heavily and fail because
of missing anchors past an indel rate of φ ≥ 0.256. spaced and kr show similar dynamics,
but with smaller estimated rates than andi. cophylog is surprisingly resistant to indels up
to a rate of 0.128. Only for φ = 0.256 and thus, a total error rate of π + φ = 0.356, do its
estimations become upwards biased.

6.3 Recombination

When discussing the accuracy in Section 2.3 we assumed that substitutions are generated
by a single Poisson process. In other words, the substitution rate π does not vary along or
among the sequences. However, this is often not the case in real data because of recombi-
nation (i. e., crossover).

Recombination leads to variation in the substitution rate along a sequence. Figure 6.2
shows the local substitution rate within windows of 100 nucleotides along a recombined
sequence of 1 kbp. A good distance estimator should be resistant to recombination.

As a test, two sequences with length 1 Mbp were simulated with a substitution rate of
0.1 using the tool ms [Hudson, 2002]. Additionally a population recombination rate ρ ranging
from 0.001 to 0.256 was introduced. Figure 6.3 shows the distances estimated by various
methods for different levels of recombination. The distances computed by cophylog, kr,
and spaced become downwards biased for increasing rates of recombination. andi is least
affected by recombination. It rarely deviates more than 8% from the real distance and even
gets better for higher rates of recombination. I suspect the reason for this is, it gets easier
for highly clustered substitutions to find anchors in the flanking sequences.
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Figure 6.2: A chromosome of length 1000 was simulated with a global substitution rate of
0.1. An equal rate of recombination was introduced. This leads to fluctuations
in the local substitution rate. The blue bars represent the local diversity within
windows of 100 nucleotides.
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certain recombination rate were simulated. The mean and standard deviation
are plotted. Additionally, the straight line represents the simulated distance.
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Table 6.1: Tree Metrics; All reported distances are with respect to mugsy.

andi kr cophylog spaced

rSPR 1 6 3 6
branch score 0.001739 0.013654 0.009008 0.01415

6.4 Real Data

The ultimate test for alignment-free distance estimation is its application to real data. Un-
like simulated sequences, real data is riddled with surprises like indels, recombination,
and sequencing artifacts. In this section we explore the usability of the various distance
methods when applied to three genomic data sets.

Escherichia Coli and Shigella

The ECO29 data set consists of 29 Escherichia Coli/Shigella genomes, which have previously
been used for benchmarking distance methods [Yi and Jin, 2013, Haubold et al., 2014]. On
average, the genomes have a length of 4.9 Mbp. As a first surprise, they contain not only
the standard nucleotides A, C, G, and T, but also R, D, N and even other characters in small
numbers. These stand for groups of nucleotides: R is a purine (A or G), N is any nucleotide
and D means any nucleotide but C. For some implementations these need to be filtered
away. The complete FASTA file for the 29 genomes comprises of 138 MB.

Figure 6.4 shows the resulting phylogenies of four alignment-free distance measures as
well as an alignment-based tree as reference. All trees were computed from the distance
matrices using phylip neighbor, retree and drawn with figtree [Rambaut, 2015].

The visually worst result is computed by kr. A lot of its branch lengths differ noticeably
from the reference tree by mugsy. The three phylogenies by andi, cophylog, and mugsy are
quite similar and nearly indistinguishable. spaced fails to cluster four E. Coli K12 strains
together tightly.

These differences across the trees are now quantified using different metrics. First, rspr

is used to compute the topological difference between each alignment-free method and the
reference tree [Whidden et al., 2013]. andi has the smallest difference (1), followed by co-

phylog (3). As expected, kr and spaced have the worst scores (see Table 6.1). The branch score
distance also takes the length of branches into account [Kuhner and Felsenstein, 1994].
Thus, a smaller branch score distance means, the length of two trees are more similar.
Again, the tree by andi most closely resembles the reference, followed by cophylog, kr, and
spaced, in this order.

The computation of the reference tree with mugsy took 2 h, 49 min using 3 GB of memory
on machine M1. The only method needing equally much memory is kr (see Figure 6.5).
But kr is one and a half orders of magnitude faster with an average runtime of 5 min,
23 s. Thus, it is even faster than the multithreaded spaced, using eight cores. cophylog is
slightly faster than kr, but uses only 157 MB of RAM, making it the most memory-efficient
tool. The fastest tool is andi, with just 100 s for the sequential and 27.7 s for the parallel
case (eight threads).
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Figure 6.4: Phylogenies for the ECO29 data set.
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Figure 6.5: Resource consumption for the ECO29 test case. For all methods, except mugsy,
the means and variance of ten runs are shown.

Roseobacter

The genus of Roseobacter contains highly divergent bacteria, which makes them harder to
compare than E. coli. A set of 32 Roseobacter genomes was recently used to evaluate the re-
sults of alignment-free distance estimators for diverse genomes [Morgenstern et al., 2015].
A tree based on alignments of genes was used as a reference [Newton et al., 2010].

It was shown that with appropriate parameters (e. g., k = 20), spaced could compute a
tree with an RF-distance of 25 [Robinson and Foulds, 1981], making it the most accurate
method evaluated. kr scored 46 and cophylog 28 with k = 28. However, with default
parameters, cophylog only achieves 39, which is worse than the 33, we measured for andi.

The average evolutionary distance reported by andi for the Roseobacter genomes is one
order of magnitude higher than for ECO29 (0.22 to 0.019). At the same time, the coverage
(i. e., the amount of mapped homologous nucleotides) dropped from 0.765 to 0.046. This
means, the result by andi is based on only 5% of the genome. It is interesting that 5% of a
genome suffice to gain an answer as good—or bad—as with competing methods.

Streptococcus pneumoniae

The largest data set used in this thesis, PNEU3085, contains 3085 genomes of Streptococcus
pneumoniae [Chewapreecha et al., 2014]. Each of these genomes is given as several contigs,
amounting to 2.2 Mbp per genome and thus, 6.8 GB for the complete data set. As all of
these genomes are compared pairwise, this results in more than 4 million comparisons
(9 million, if asymmetric).

It is impossible to compute distances for this data set using kr and spaced; both quickly
exceed the available memory (256 GB) on machine M2. Thus, only the results for andi and
cophylog can be given here. Unfortunately, no reference tree exists or can be computed via
an alignment; As this data set is roughly 100 times bigger than ECO29, it needs 1002 times
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more pairwise genome comparisons. Thus, the runtime for mugsy (2 h 49 min) would
explode to approximately 3.2 years, which is impractical.

The figures on page 44 show the phylogenies based on the distances computed by andi

and cophylog. The most noticeable difference is the varying scale. The average distance
computed by andi is 0.011 and 0.0057 for cophylog. The RF-distance between the two trees
is 4544. This may seem big, but is smaller than the average distance for two random trees
of that size (6166) [Haubold et al., 2014].

It took andi 6 h, 21 min and 10 GB of RAM to compute the distance matrix on M2 with
32 threads. cophylog is only single-threaded and ran for 36.5 days at just 2.3 GB. Even if
cophylog supported multi-threading, andi still is approximately four times faster.

6.5 psufsort

Recall from Section 5.5 that andi has two modes of concurrency. The first computes multi-
ple ESAs in parallel and is just a simple parallelization of the sequential case. The second
mode distributes the computation of a single ESA across all available threads. Luckily,
libdivsufsort, which we found to be the fastest sequential SACA, also features a multi-
threaded mode using OpenMP.

Figure 6.7 shows the CPU utilization for libdivsufsort with different number of threads.
However, in the multithreaded case, the utilization does not rise above 128%. This moti-
vated the search for a better parallel SACA. Out of the other algorithms listed in Table 4.1,
only skew has a publicly available parallel implementation [Shun et al., 2012].

The gauntlet corpus [Maniscalco, 2015] was created for evaluating the performance of
SACAs. It includes various files with sizes ranging from 100 kB to 15 MB. These files con-
tain short patterns repeated very often, thus mimicking a worst case scenario for SACAs.
As psufsort, unlike divsufsort, does not feature a tandem repeat detection, it cannot process
the test files in any reasonable amount of time.

Another set of test files aimed at the evaluation of SACAs is the lightweight corpus by
[Manzini and Ferragina, 2004]. Its files amount to a total size of 1 GB. Figure 6.8 shows
the resource consumption of four SACAs. Of these, divsufsort and radixSA are sequential
algorithms. The implementation used for skew always uses as many threads as available
processors (eight on machine M1). For psufsort both the sequential and the parallel cases
are shown.

Even with eight threads, psufsort is significantly slower than the other algorithms. In-
terestingly, the use of eight threads do not make psufsort eight times faster, because it
achieves only an average CPU utilization of 508%. divsufsort and psufsort are the only
algorithms that can be considered lightweight as they use o(n) auxiliary workspace.

To test the practical use of psufsort, a version of andi was created, using the former as a
replacement for divsufsort in the low-memory mode. Compared to the normal runtime of
27.7 s, the low-memory mode takes significantly longer (59.9 s). If psufsort is used, that
runtime decreases to 56.4 s, at nearly identical memory consumption. The intention of
psufsort was to better utilize the CPUs, which is indeed the case, as the utilization rises
from 201% to 255%.
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Table 6.2: Performance Evaluation of Different ESA Implementations for andi

V1 V2 V3

Time Memory rel. Time rel. Mem. rel. Time rel. Mem.

simulated 1.01 s 306 MB −4% +3% −27% −29%
ECO29 28.4 s 2.1 GB +2% +3% −18% −35%
PNEU3085 7 h 34 m 10 GB −16% +1% −36% −15%

6.6 FVC Array and Child Arrays

In Chapter 3 the ESA along with multiple data structures and algorithms were introduced.
However, the ESA is modular and can be build from different combinations of data struc-
tures. To achieve maximum performance for andi, multiple approaches were evaluated
and the results are given in this section.

The two most important operations on the ESA are get_interval and get_match
(see Listings 3.2 and 3.3, respectively). To reach the theoretical minimal bounds for these,
the ESA has to be composed of the SA, the LCP array and either RMQs or the child array
(CLD). The additional FVC array can be used to improve the performance in practice.
Thus, for andi the performance of the following three variants were tested.

V1) SA + LCP + RMQs

V2) SA + LCP + RMQs + FVC

V3) SA + LCP + CLD + FVC

For small datasets, the runtime of andi is dominated by the construction of the ESA.
Conversely, for big data sets the efficient computation of matches is important. Thus,
the performance of the three variants was tested on three data sets: five simulated 1 Mbp
sequences, ECO29 and PNEU3085 (see Section 6.4).

Table 6.2 shows the results for the three variants on the data sets. For V2 and V3 the
difference to V1 is listed. The measurements for the simulated test case and ECO29 were
run on machine M1. The figures represent the mean of ten runs. For PNEU3085 only a
single run on M2 could be measured.

The resource measurements show that V3 is the fastest method and uses the least amount
of memory (the latter might induce the former). It computes the distance matrix for
PNEU3085 in only 4 h 49 min, using just 9.2 GB. As the complete data set of 6.8 GB is
held in RAM, this means that only 2.4 GB of workspace are needed.

It can be also concluded from Table 6.2 that the novel FVC array speeds up the matching
significantly (up to −16% from V1 to V2).1 It thus can be considered useful in practice as
its additional memory requirement is marginal.

FVC Construction

The FVC array can be trivially created by implementing its definition (see Section A.2). It
may also be computed via a variant of [Kasai et al., 2001] and even merged with the LCP

1The runtime improvement from SA + LCP + CLD (not shown in Table 6.2) to V3 is −14%.
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construction (listings omitted). To compare the performance of these algorithms, a small
wrapper program was created, which reads files and constructs the ESA for them.2

As a simple test, each method had to construct the ESA for ECO29 ten times. Without
an FVC (i. e., variant V1) the construction took 17.1 s on machine M1. The trivial algorithm
was just slightly slower with 18.0 s, immediately followed by phi with 18.7 s. Far off was
the Kasai-based algorithm with 22.9 s. All FVC construction algorithms need 2% more
memory than V1.

2The wrapper and the algorithms are freely available at https://github.com/kloetzl/FVC.
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7 Discussion

With the rise of high-throughput-sequencers, the number of sequenced genomes has in-
creased rapidly over the past years. Traditional tools for genome comparison which are
based on alignments are often too inefficient to handle the data available. In response,
alignment-free methods have been developed over the past years. In this thesis our ap-
proach, andi, was studied in detail. In this chapter we evaluate its usefulness and make
suggestions for its improvement.

7.1 Evolutionary Distances

Commonly, an alignment is used to compute evolutionary distances for genomes. andi

approximates local ungapped alignments to estimate these distances. We have already
seen in Section 2.3, that andi is accurate up to a simulated distance of 0.5 substitutions per
site. For higher rates, no output is produced by andi. From a user’s perspective, no output
is better than unreliable output, as computed by kr and cophylog.

When applied to real data, andi produces satisfying results (see Section 6.4). It computes
the most accurate estimations for closely related bacteria and is about as accurate as other
approaches for more divergent data sets. Thus, we are confident that the tree produced by
andi for the 3085 S. pneumoniae genomes is also highly accurate, even though, we cannot
compare it to a reference tree.

We also tested some specific effects found in real data that make accurate estimations
difficult, namely recombination and indels. andi is robust to recombination and provides
good estimations even for high rates of recombination (see Section 6.3). In this respect, it
outperforms all other alignment-free estimators.

The topologies of gapped alignments suggest that indels might lead to inaccurate es-
timates (Section 5.4). This was confirmed with simulations (Section 6.2). andi is accurate
as long as the indel rate is one order of magnitude smaller than the simulated distance.
Other tools like cophylog perform much better when applied to data with indels. Thus, it
is of future interest to improve the handling of indels.

In Section 5.4 two worst-case situations were described: In the first, a single indel made
anchors non-equidistant, and in the second two indels lead to overestimations of the sub-
stitution rate. The first case of non-equidistant anchor pairs can be integrated into the
estimation by andi if a k-gap approach is used instead of the standard Hamming distance:
Consider a non-equidistant anchor pair that is slightly off by k nucleotides, one could try
to align the framed section using at most k gaps. This may be feasible is the framed section
is short and k is small. We found in the ECO29 data set that if two homologous anchors are
non-equidistant,1 their distance is off by k = 1.2 on average. Thus, for an alignment strat-
egy with at most two gaps, the accuracy and coverage could be increased at no significant
performance overhead.

1Here homologous means that two anchors are reasonably distant if not equidistant.
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Figure 7.1: The performance of andi over time. Shown is the runtime and memory usage
(dashed line) on the PNEU3085 data set.

As an alignment is significantly more complex than a Hamming distance, the previous
approach has to be avoided for equidistant anchor pairs, which are much more common
in the analysis. However, as already seen, indels may lead to tremendous overestimations
of distances if they are located on opposite sequences. In the most basic accuracy mea-
surements of Section 2.3 it could be observed that andi can only compute distances up to
a substitution rate of 0.5. Thus, if andi calculates a local substitution rate above 0.5 for the
framed section of two anchors, it is either an exceptionally divergent region or an error.
So far andi treats them as highly divergent. However it might be better to simply exclude
these regions, or to compute a local alignment which may lead to more accuracy. Again,
the results with respect to accuracy and performance need to be evaluated.

7.2 Performance

Sometimes, the efficiency of a tool limits its effectiveness; this is the case for alignments.
Their slow performance limits the data to either short sequences or a few long sequences.
Computing a multiple sequence alignment or even all pairwise alignments for 3085 S. pneu-
moniae genomes, is simply unfeasible. Here a more efficient tool can have increased effec-
tiveness.

Figure 7.1 shows the performance of andi on the PNEU3085 data set over different ver-
sions. The big drop in runtime (drawn through line) from version 0.5 to 0.7 is the result
of caching (see Section 5.6).2 A 16% improvement was achieved in version 0.8 by the use
of the FVC array (Section 6.6). The upcoming version 0.9 will use child arrays and thus,
gain another 24% at even further memory reduction to just 9 GB.3 This performance is
unmatched by any other publicized method for distance estimation.

Even though the performance of andi is already quite good, it can still be improved. Us-
ing an ESA, the longest match problem (see Definition 12) can be solved in timeO(m · |Σ|).
With a suffix tray (a joined data structure of a suffix tree and a suffix array) the same prob-
lem can be solved in O(m+log |Σ|) time [Cole et al., 2014]. However, as the alphabet used

2The version 0.6 was a pure test release and hence is not listed here.
3All measurements of andi in this thesis were done using v0.8.1 unless stated otherwise.
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in andi is small, this theoretical speed up may not be noticeable in practice. Instead, the
use of smaller data structures may lead to faster code due to caching effects. The former
can be achieved either via careful programming (e. g., merging the FVC into the most sig-
nificant bits of the LCP) or through compressed data structures. There have been many
advances in the field of compressed indexes (for a »quick tour« see [Grossi, 2011]). The
state of the art is that a SA (usually O(n) words) can be stored in n+log σ+o(n+log σ) bits
using a compressed suffix array (CSA). It has to be evaluated whether the improvement
in memory usage comes at a negligible runtime cost.

A lower limit for the memory usage of andi is the size of the data set. Thus, even with
the low-memory switch, andi still uses 6.8 GB for the PNEU3085 case. A trivial method
to improve on this, is to compress the data set in RAM. As the genetic alphabet can be
represented using just two bits, a four-fold reduction in size is possible. With sophisti-
cated compression algorithms such as bzip2 or xz a higher compression ratio at the cost of
runtime could also be achieved.

7.3 psufsort

In the low-memory mode of andi it is a necessity for the SACA to run in parallel across
multiple processors. As libdivsufsort has poor CPU utilization (see Section 5.5), psufsort

was created. In some use cases psufsort was indeed faster than libdivsufsort, but most of
the time, it is much slower and needs to be improved. A repeat detection will protect the
algorithm from showing worst-case behavior and thus, make it much faster. Further opti-
mizations to the implementation can improve the performance: So far, the parallelization
is implemented using OpenMP pragmas. This makes coding easy, but can lead to synchro-
nization overhead if the buckets are not filled uniformly. Thus, a custom scheduling mech-
anism using the concurrency features of C++11 may lead to a significant performance
boost.
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A Pseudocode

A.1 Improved Two-Stage Algorithm

1 fn improved−two−stage
2 requires T, Σ
3

4

5 // Initialize
6 let n ← |T|
7 let σ ← |Σ|
8 let SA← array[n] of number
9 let Bucket_L← array[σ] of number

10 let Bucket_S−← array[σ,σ] of number
11 let Bucket_S∗← array[σ,σ] of number
12

13

14 Bucket_S∗[$].size ← 1
15 i ← n−1
16 goto line 29
17

18 // Classify all suffixes
19 while i ≥ 0 do
20 if T[i ] ≥ T[i+1] do
21 Bucket_L[T[i ]]. size ++ // Type L
22 i ← i−1
23 goto line 19
24 end
25

26 Bucket_S∗[T[i], T[i +1]]. size ++ // Type S∗

27 i ← i−1
28

29 while i ≥ 0 and T[i] ≤ T[i+1] do
30 Bucket_S−[T[i], T[i +1]]. size ++ // Type S−

31 i ← i−1
32 end
33 end
34

35 // Correctly handle the empty suffix
36 SA[0]← n
37
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38 // Calculate the starting point for each bucket
39 let pos ← 0
40 for i=0 to σ do
41 // Type L suffixes are smaller than their
42 // corresponding Type S suffixes (See Lemma 2)
43 Bucket_L[i ]. start ← pos
44 pos ← pos + Bucket_L[i ]. size
45

46 for j=0 to σ do
47 Bucket_S∗[i,j ]. start ← pos
48 pos ← pos + Bucket_S∗[i,j ]. size
49

50 Bucket_S−[i,j]. start ← pos
51 pos ← pos + Bucket_S−[i,j]. size
52 end
53 end
54

55

56 // Fill the S∗ buckets
57 let Temp_S∗← Bucket_S∗ // Create a copy of the Type S∗ buckets
58 i ← n−1
59 while i ≥ 0 do
60 if T[i ] ≥ T[i+1] do
61 i ← i−1
62 goto line 59 // skip Type L
63 end
64

65 SA[ Temp_S∗[T[i], T[i+1]]. start ] ← i // insert suffix
66 Temp_S∗[T[i], T[i+1]]. start ← Temp_S∗[T[i], T[i+1]].start + 1
67 i ← i−1
68

69 while i ≥ 0 and T[i] ≤ T[i+1] do // skip Type S−

70 i ← i−1
71 end
72 end
73

74

75 // Sort the Type S∗ suffixes
76 for i=0 to σ do
77 for j=0 to σ do
78 let Bucket_begin ← Bucket_S∗[i,j]. start
79 let Bucket_end← Bucket_begin + Bucket_S∗[i,j ]. size − 1
80

81 // Call an external multikey sorting routine on the bucket.
82 // The 2 resembles the depth upto with the strings are
83 // already sorted, i .e. two characters. This call can be
84 // done asynchronously.
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A.2 FVC Construction

85 mksort( Bucket_begin , Bucket_end, 2)
86 end
87 end
88

89

90 // Sort all Type S− suffixes
91 for i=n to 0 do
92 j ← SA[i]
93

94 if j 6= ⊥ and T[j−1] ≤ T[j] do
95 let B← Bucket_S−[ T[j−1], T[j]]
96 SA[B.start + B. size − 1] ← j−1
97 B. size ← B.size − 1
98 end
99 end

100

101

102 // Sort all Type L suffixes
103 for i=0 to n+1 do
104 j ← SA[i]
105

106 if j 6= ⊥ and SA[Bucket_L[T[j]].start] 6= 0 and T[j−1] ≥ T[j] do
107 SA [ Bucket_L[T[j ]]. start ] ← j−1
108 Bucket_L[T[j ]]. start ← Bucket_L[T[j]]. start + 1
109 end
110 end
111

112

113 output SA

A.2 FVC Construction

1 fn init_FVC
2 requires S, SA, LCP
3

4 FVC[0]← ’\0’
5 for i=1 to |S| do
6 FVC[i]← S[SA[i] + LCP[i]]
7 end

A.3 get_interval with Child Arrays

1 fn get_interval
2 requires S, SA, LCP, CLD
3 input ( l−[i .. j ], m), a
4

5 do
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A Pseudocode

6 if S[ SA[i] + l ] = a then
7 j ← m−1
8 if LCP[i] <= LCP[m] then
9 m← CLD[j+1].L

10 else
11 m← CLD[i].R
12 end
13 goto line 25
14 end
15

16 if m = j then
17 break
18 end
19

20 m← CLD[m].R
21 while LCP[m] = l // loop over all subintervals
22

23 // final sanity check
24 if S[SA[i] + l ] = a then
25 l ← LCP[m]
26 output ( l−[i .. j ], m)
27 else
28 output ⊥
29 end
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Notation

SA suffix array
SACA suffix array construction algorithm
LCP longest common prefix
ESA enhanced suffix array
CSA compressed suffix array
DNA deoxyribonucleic acid
SNP single nucleotide polymorphism
RMQ range minimum query
FVC first variant character
CPU central processing unit
GPU graphics processing unit
RAM random access memory
PRAM parallel random access memory
CREW concurrent read exclusive write
CLD child array
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