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Abstract

Many protein-coding gene (PCG) promoters in the human genome initiate transcrip-

tion in two directions, thereby expressing an mRNA and an upstream non-coding RNA

(ncRNA). Diverse species of these promoter-associated ncRNAs are abundantly detected

in genome-wide transcriptome studies but the functions of these non-coding transcripts

remain mostly elusive. In this thesis, a set of 1,107 long ncRNA/PCG pairs that are ex-

pressed from bidirectional promoters is defined. These bidirectional promoters exhibit a

high degree of sequence conservation and mediate linked expression of paired genes. This

is determined by expression quantification and reporter assays of selected candidates.

Expression of these long ncRNA/PCG pairs is detected to frequently occur from promot-

ers of cancer-related proteins. One of the bidirectional promoters mediates simultaneous

expression of the tumor suppressor gene RB1 and ncRNA-RB1 as detected by assaying

the effects of retinoblastoma-associated point mutations in a bidirectional reporter assay.

The linked expression of both genes is further shown by mutation of core promoter ele-

ments residing in both promoter directions. Changes of single or few base-pairs, is found

to affect transcription initiation in both promoter directions equally.

To determine the functionality of paired genes and their involvement in common biolog-

ical pathways, ncRNA-RB1 and RB1 mRNA were individually depleted in a cell culture

system. This revealed that both genes are not regulating each other’s expression and

that ncRNA-RB1 conveys regulatory effects that are different but also to a certain de-

gree overlapping to the RB1 controlled transcriptional program. NcRNA-RB1 positively

regulates the expression of calreticulin (CALR), an endoplasmic reticulum-sessile chaper-

one that can translocate to the surface of tumor cells after chemotherapy, thereby serving

as an ’eat-me-signal’ to phagocytes. Knock-down of the nuclear-retained ncRNA-RB1

in tumor cells reduces the expression of the CALR gene on chromatin, impairs translo-

cation of the CALR protein to the cell surface upon treatment with anthracylines, and

consequently inhibits uptake of the cells by macrophages. In conclusion, co-transcription

of ncRNA-RB1 from the bidirectional RB1 promoter provides a positive link between the

regulation of two the tumor suppressors RB1 and CALR. Loss of expression of either gene

product of the ncRNA-RB1/RB1 pair entails the abolition of additional tumor-inhibitory

mechanisms.
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Zusammenfassung

Viele Promotoren Protein-kodierender Gene im menschlichen Genom initiieren die Tran-

skription in zwei Richtungen und exprimieren dabei eine Boten-RNA (mRNA) sowie

eine nicht-kodierende RNA (ncRNA), welche upstream des Promoters liegt. Verschiede-

ne Varianten solcher Promoter-assoziierten, ncRNAs wurden kürzlich in Genom-weiten

Transkriptionsstudien detektiert. Dennoch sind ihre Funktionen bisher weitgehend unge-

klärt.

In dieser Doktorarbeit, wird ein Set bestehend aus 1107 Paaren langer ncRNAs (>200

bp) und Protein-kodierender Gene definiert, die von bidirektionellen Promotoren expri-

miert werden. Entsprechende Promotoren weisen ein hohes Maß an Sequenzkonservierung

auf und initiieren gleichzeitig die Expression von Genpaaren. Durch Quantifizierung der

Expression und Verwendung von Reporter Assays für ausgewählte Kandidatengenpaare

wurde dieses Verhalten nachgewiesen.

Viele dieser bidirektionellen Promotoren exprimieren Gene, die im Zusammenhang zur

Entstehung von Tumoren stehen. Einer dieser Promotoren vermittelt die gleichzeitige

Expression des Tumorsuppressors RB1 und der ncRNA-RB1. Dieses wird mittels ei-

nes Reporter-Assays gezeigt, welcher die Auswirkungen von Retinoblastoma-assoziierten

Punktmutationen auf die Bidirektionionalität des Promotors nachvollzieht. Weiterhin

wird die gekoppelte Expression der Genpaare durch Mutation von Core-Promoterelemen-

ten gezeigt, welche sich in beide Richtungen des bidirektionellen ncRNA-RB1/RB1 Pro-

moters befinden. Dabei beeinflusste die artifizielle Veränderung einzelner oder einiger

weniger Basenpaare die Transkriptionsinitiation in beide Promoterrichtungen.

Um die Funktionalität beider Gene eines Genpaares sowie ihre Beteiligung in gemeinsa-

men biologischen Stoffwechselwegen aufzuklären, wurden die ncRNA-RB1 und die RB1

mRNA einzeln inaktiviert. Dieser Versuch zeigte, dass beide Gene nicht gegenseitig ihre

Expression beeinflussen und die ncRNA-RB1 regulatorische Effekte besitzt, die unter-

schiedlich von, andererseits aber auch überlappend mit der transkriptionellen Regulation

durch RB1 sind. Unabhängig von RB1 beeinflusst die ncRNA-RB1 die Expression von

Calreticulin (CALR), eines Chaperons des endoplasmatischen Retikulums, positiv.

Nach Behandlung mit spezifischen Chemotherapeutika kann CALR zur Zelloberfläche

von Tumorzellen translozieren und dort als Fress-Signal für phagozytierende Zellen die-

nen. Der Knock-down der nukleären ncRNA-RB1 in Tumorzellen reduziert die Transkrip-
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tion des CALR-Gens und verhindert nachfolgend die Translokation des CALR-Proteins

zur Zelloberfläche als Auswirkung der Behandlung mit Anthracyclinen. Die Konsequenz

daraus ist eine verhinderte Aufnahme der ncRNA-RB1 knock-down Zellen durch Makro-

phagen.

Als Ergebnis stellt die gleichzeitige Transkription von ncRNA-RB1 und RB1 von einem

gemeinsamen bidirektionalen Promoter eine Verknüpfung zwischen der Regulation der

zwei Tumorsuppressoren RB1 und CALR her. Der Verlust der Expression jedes Gens des

Paares ncRNA-RB1/RB1 führt zur Beeinträchtigung Tumor unterdrückender Mechanis-

men in der Zelle.
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Chapter 1

Introduction

1.1 Preface

Exact spatial and temporal expression of genes is fundamental for all biological processes

of the cell, such as proliferation, differentiation, aging or apoptosis.

The first gene regulatory model was introduced by F. Jacob and J. Monod in 1961 and

proposed that transcription initiation is controlled by the interaction of regulators with

specific sequence elements in the DNA. These regulators were suggested to be repre-

sented by proteins or RNA, assuming that a regulator of gene expression might also

be transcribed in order to fulfill its regulatory function [JACOB and MONOD, 1961].

This model proved to be very true, as transcriptional regulation by proteins, as well as

by RNAs has been confirmed. More recently, the function of RNA as a regulator of

gene expression has been elucidated and this discovery is gaining importance with the

description and functional characterization of an increasing number of non-coding RNA

(ncRNA) species [Derrien et al., 2012],[Ørom et al., 2010]. For decades transcriptional

activation or repression of genes has been considered to be exclusively mediated by pro-

teins, so-called transcription factors, and the additional regulatory functions of ncRNAs

in the transcription process exemplifies the complexity of transcriptional regulation and

its importance.

This introduction will give an overview on the principles and outcomes of this sophisti-

cated process.

1.2 Encoding of genetic information in the human genome

The human genome consists of 3.2 billion base pairs (bp) organized into 23 chromosomes

that are estimated to encode for a number of 60,483 genes including protein-coding genes,

non-coding RNA genes and pseudogenes [The GENCODE Consortium, 2014].

In order to utilize the genetic information thereby building and organizing the various

cell types present in the human body, the genes need to be expressed. The central dogma

of molecular biology was established more than 50 years ago and describes the flow of
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genetic information to be mostly unidirectional from DNA into RNA and into protein

as the final functional product [CRICK, 1958],[Crick, 1970]. The biological processes

responsible for the transfer of information between these macromolecules are termed

’transcription’, describing the copy of DNA into RNA, and ’translation’, descriptive for

the conversion of RNA information into protein sequence. Although the dogma was ac-

curate, it considered RNA to solely be the template for protein synthesis, a perception

that was challenged by the discovery of many ncRNA species. These transcripts are

encoded by their own genes and represent a final product of genetic information as they

are not translated [Liu and Maxwell, 1990].

DNA as the coding form of genetic information in the genome is organized into chromatin

allowing its compaction and regulation. The fundamental unit of chromatin is the nucle-

osome with 147 base pairs (bp) of DNA wrapped around an octamer of histone proteins

in 1 3/4 superhelical turns [Finch et al., 1977]. The center of the histone octamer is built

of two dimers of histones H3 and H4, surrounded by two dimers of histones H2A and

H2B [Klug et al., 1980]. Histone H1 binds to the linker DNA in between the nucleosomes

and is required to organize higher order chromatin structures thereby achieving higher

compaction of the DNA [Bednar et al., 1998]. Besides organizing chromatin structure,

the assembly of DNA with histones also regulates gene expression, as the presence of

nucleosomes affects the accessibility and recognition of regulatory DNA sequences and

the process of transcription itself. Additionally, posttranslational modifications at the

unstructured core histone tails directly affect chromatin structure and the interaction of

modifying factors with chromatin. These modifications include acetylation, methylation,

phosphorylation, ubiquitylation and others and can be found at specific amino acids of

the core histone tails [Bhaumik et al., 2007]. For example, trimethylation of histone 3

lysine 9 (H3K9me3) is a marker for the transcriptionally inactive and tightly compacted

heterochromatin due to its recognition by the heterochromatin protein 1 [Bannister et al.,

2001]. Methylations of histone 3 lysine 4, such as mono- (H3K4me1) and trimethylation

(H3K4me3), are present in transcriptional active or accessible euchromatin and are in-

dicative for regulatory sequences [Bhaumik et al., 2007]. Thus, transcription is controlled

by DNA sequence but also depends highly on the mobilization of nucleosomes and mod-

ification of histones.

Altogether, the complex process of gene expression is not only regulated at all steps of the

transcription process, including transcription initiation, elongation and termination but

also during RNA maturation steps, at the level of translation and via post-translational

modification of proteins. However, most regulation occurs at the stage of transcription

initiation [Maston et al., 2006].
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1.3 The transcription process

The machinery for the transcription of mRNA and many ncRNAs, consists of RNA

polymerase II (Pol II) and of general transcription factors (GTFs) that mediate Pol II

anchoring to promoters, DNA melting and transcription start site (TSS) recognition.

Transcription is initiated by the formation of a preinitiation complex (PIC) that con-

tains Pol II, TFIIA (transcription factor, RNA polymerase II, A), TFIIB, TFIID, TFIIE,

TFIIF, TFIIH and Mediator. At the core promoter, TFIID first interacts with its al-

ready bound subunit the TATA box-binding protein (TBP). This is followed by binding

of TFIIA, thereby stabilizing TFIID–core promoter interactions. Then TFIIB associates

with TBP and recruits the 12 subunit Pol II enzyme that is already in complex with

TFIIF. Following TSS selection by Pol II, docking of TFIIE and TFIIH as recruited by

the Mediator coactivator complex, completes PIC assembly [Esnault et al., 2008]. DNA

melting is subsequently catalyzed by TFIIH (as review in [Juven-Gershon and Kadonaga,

2010],[Cheung and Cramer, 2012],[Grünberg and Hahn, 2013],[Kandiah et al., 2014]).

The initially abortively transcribing Pol II escapes the promoter when the nascent RNA

has reached a length of 8-9 bp. Promoter escape is facilitated by phosphorylation of

Pol II at Ser5 (serine5) within its C-terminal domain which is mediated by TFIIH [Ra-

manathan et al., 2001]. It facilitates dissociation of Pol II from the complex formed

with Mediator [Søgaard and Svejstrup, 2007]. The transition of Pol II from initiation

to elongation further results in dissociation of TFIIB from the pre-initiation complex.

By functioning as an elongation factor, TFIIF can stay in association with Pol II, other

GTFs such as TFIID, TFIIA, TFIIH and TFIIE as well as the Mediator complex remain

associated with the core promoter, helping in subsequent re-initiation rounds by acting

as a scaffold for re-initiation complex formation [Yudkovsky et al., 2000](as review in

[Kwak and Lis, 2013],[Cheung and Cramer, 2012]). During early elongation, Pol II can

also move backwards and this backtracking might be followed by transcriptional arrest.

TFIIS reactivates arrested Pol II by stimulating the cleavage of nascent RNA [Bengal

et al., 1991],[Cheung and Cramer, 2011].

In metazoans, early elongation of Pol II is paused at ∼30% of actively transcribed genes,

a process different from backtracking. Pol II pausing especially affects genes regulated

by signaling pathways, e.g. developmental genes. It occurs between the promoter and

the first (+1) nucleosome following processive transcription of 20-60 nucleotides (nt) of

RNA [Guenther et al., 2007],[Muse et al., 2007],[Zeitlinger et al., 2007](as reviewed in

[Adelman and Lis, 2012]). It involves interaction of the pausing factors NELF (Negative

elongation factor) and DSIF (DRB-sensitivity-inducing factor) with Pol II [Yamaguchi

et al., 1999]. Additional factors such as GDOWN1 and TFIIF have been associated with

the stability of Pol II pausing [Cheng et al., 2012]. Promoter-proximal paused Pol II can

continue productive elongation, however, transcription may also be terminated.

For pause release and maturation of Pol II into the elongating form, the kinase complex
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P-TEFb (positive transcription elongation factor b) is recruited and mediates the phos-

phorylation of NELF and DSIF and also phosphorylates the C-terminal domain of Pol

II at Ser2. As a consequence, NELF dissociates from the complex and DSIF continues

to play the role of an elongation factor. Pol II phosphorylation at Ser2, allows for the

recruitment of accessory elongation factors and stimulates mRNA processing [Czudno-

chowski et al., 2012](as reviewed in [Peterlin and Price, 2006]).

Resuming of elongation by Pol II is achieved by assembly of the Super Elongation Com-

plex (SEC) that facilitates productive RNA synthesis. The SEC is assembled in inter-

changeable combinations of the AFF (AF4/FMR2) family members AFF1 and AFF4,

the ELL (eleven-nineteen Lys-rich leukemia) family members ELL1, ELL2 and ELL3,

of ENL (eleven-nineteen leukemia) and of AF9 (ALL1-fused gene from chromosome 9),

but invariably contains P-TEFb. Furthermore, factors that mediate RNA-processing and

modify chromatin also associate with Pol II during its progression through the gene body,

such as TFIIS or the Paf1 (polymerase associated factor) complex (as reviewed in [Guo

and Price, 2013]).

Processing of the nascent RNA occurs co-transcriptionally, with 5’ capping being one

of the first steps and realized during early elongation. Also, introns are spliced and

polyadenylation (poly(A)) factors are recruited during productive elongation of Pol II

(as reviewed in [Kwak and Lis, 2013],[Guo and Price, 2013]).

3’ end formation and polyadenylation of the nascent RNA occurs when Pol II has passed

a poly(A) signal (PAS) that has been selected to end the RNA message. The PAS is

a 6 nt sequence motif with the consensus sequence AAUAAA which is preceded by up-

stream sequence elements (USEs) and followed by U- or GU-rich downstream sequence

elements (DSEs). Recognition of the transcribed poly(A) signal and cleavage of the RNA

is accomplished by the action of CPSF (cleavage and polyadenylation specificity factor)

and CSTF (cleavage stimulating factor) complexes. The cleaved RNA is elongated by

250-300 untemplated adenosines through the action of poly(A) polymerase (PAP). The

length of the poly(A) tail determines RNA stability and its presence allows nuclear ex-

port and translation of mRNAs (as reviewed in [Elkon et al., 2013],[Zheng and Tian,

2014],[Shatkin and Manley, 2000]).

Pol II is continuously transcribing after passing the poly(A)signal and termination of

transcription by Pol II is achieved by degradation of the uncapped residual RNA while

still being elongated. When exonuclease Xrn2 reaches the transcribing Pol II during its

degradation process, termination of transcription is realized. This process is aided by

slowing down Pol II at DNA encoded pause sites or by transcription of co-transcriptional

cleavage sequences (as reviewed in [Proudfoot, 2011]).
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1.4 Transcriptional regulatory motifs

Regulation of transcription is accomplished through cis-regulatory DNA sequences and

binding of trans-acting factors to them. These regulatory sequences are referred to as

promoters, enhancers, silencers or insulators and binding of activating or repressive tran-

scription factors to them can positively or negatively affect the rate of transcription

initiation (as reviewed in [Riethoven, 2010],[Maston et al., 2006]).

For example, transcriptional activation can be achieved by binding of sequence-specific

activating transcription factors, e.g. ligand-dependent nuclear receptors, to such regula-

tory sequences. This binding can entail interaction of such sequence-specific factors with

coactivator complexes, which do not possess DNA binding properties, such as the Me-

diator complex, the histone acetyltransferase p300 (E1A binding protein p300) or CBP

(CREB-binding protein). The function of co-activator complexes often involves nucle-

osome remodeling or placement of activating histone modifications, thereby promoting

PIC assembly, transcription elongation or re-initiation (as reviewed in [Rosenfeld et al.,

2006]).

Transcriptional repression includes sequence-specific binding of repressors, such as unli-

ganded or antagonist-bound nuclear receptors. This can be followed by their interaction

with corepressor complexes that can antagonize the activity of coactivator complexes

by e.g. positioning of histone marks that are repressive to transcription initiation (as

reviewed in [Rosenfeld et al., 2006]).

1.4.1 Enhancers

Enhancers have classically been defined as DNA regions that positively influence the

expression of target genes in an orientation-independent manner [Banerji et al., 1981].

Enhancers can be located up to several 100 kilobase pairs (kb) upstream and downstream

of a gene’s TSS, in unstranslated regions (UTRs), exons, introns or in intergenic regions

[Lettice et al., 2003](as reviewed in [Bulger and Groudine, 2011]). Enhancer elements

are characterized by the presence of high levels of the activating histone modification

H3K4me1 and additionally by H3K27ac when the enhancer itself is active [E.N.C.O.D.E.

Project Consortium et al., 2007],[Heintzman et al., 2009],[Creyghton et al., 2010]. At

the same time, the activating histone mark H3K4me3 is mostly absent from enhancer

sequences [E.N.C.O.D.E. Project Consortium et al., 2007]. Through the action of en-

hancers on their target promoters, highly tissue- or developmental stage-specific gene

expression is assured [Amano et al., 2009]. On average, an enhancer has been observed

to interact with 2.4 promoters and vice versa a promoter to associate with 4.9 enhancers

[Andersson et al., 2014a].

The gene activating function of enhancers is accomplished by clustering of transcription

factor binding sites thereby serving as platforms for and cooperative binding of tran-
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Figure 1.1: Transcriptional regulatory motifs. A. Regulatory sequences. DNA is compactly

organized into chromatin by its wrapping around nucleosomes. It can be tightly organized or accessible

to proteins as in active cis-regulatory DNA sequences. These regulatory sequences are referred to as

promoters (including proximal and core promoters), enhancers, silencers or insulators and binding of

activating or repressive transcription factors can positively or negatively affect the rate of transcription

initiation of the TSS. B. Core promoter elements. The Pol II promoter is 50-100 nt in size and harbors

several conserved sequence elements to initiate transcription at the TSS. Among them are the TATA

box, Inr, BREu and BREd and DCE. Figure modified from [Lenhard et al., 2012].

scription factors. As a consequence, nucleosomes are excluded of from active enhancer

regions [Stamatoyannopoulos et al., 1995],[Elgin, 1988]. Chromatin looping as mediated

by the interaction of the transcriptional coactivator complexes such as Mediator and

cohesion with enhancer-bound transcription factors and bring enhancer sequences and

gene promoters in physical proximity [Kagey et al., 2010]. This positively influences PIC

assembly at promoters [de Laat et al., 2008],[Heintzman et al., 2009]. More recently,

these chromatin loopings have been suggested to be aided by long ncRNAs and their

interaction with the Mediator complex [Lai et al., 2013].
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1.4.2 Promoters

At the promoter, all regulation directed to a gene is converted into the rate of transcrip-

tion initiation.

Promoters can be subdivided into proximal and core promoters, with proximal promoters

being similar to enhancers in serving as transcription factor binding sites and with core

promoters mediating the assembly of the PIC. Promoters vary greatly in the presence

of specific regulatory elements and sequence motifs, generating a regulative complex-

ity at the site of transcription initiation (as reviewed in [Riethoven, 2010],[Smale and

Kadonaga, 2003]).

1.4.2.1 Proximal promoter

The upstream regulatory element of the promoter, typically extending from 50 bp up to

1 kb from the TSS, is referred to as the proximal promoter. It serves as binding site for

specific transcription factors and integrates activating as well as repressive signals into

the rate of transcription initiation at the core promoter. The proximal promoter region

has been proposed to help tethering distal enhancers thereby conveying their activating

effect to the core promoter (as reviewed in [Lenhard et al., 2012],[Maston et al., 2006]).

1.4.2.2 Core promoter

The RNA polymerase II core promoter is defined as the minimal DNA sequence suffi-

cient to initiate transcription. This stretch of 50-100 nt harbors the TSS and functions

as a platform to assemble the PIC. Several conserved sequence elements, so-called core

promoter elements (CPE) have been identified in vertebrate core promoters due to their

evolutionary conservation. Among these elements are the TATA box, Initiator (Inr), up-

stream and downstream TFIIB recognition element (BREu and BREd) and downstream

core element (DCE). The motif ten element (MTE) has been described as an additional

element, but its occurrence is less frequent. Additionally, the CCAAT box is conserved in

core promoters but is not considered as a canonical CPE. The exact role of these CPEs in

directing transcription initiations is mostly undefined due to their irregular distribution

across promoters (as reviewed in [Smale and Kadonaga, 2003],[Kadonaga, 2012]).

TATA box and Inr elements are most frequently present in protein-coding gene (PCG)

promoters, occurring often together but also separately. The initiator spans the TSS and

its consensus sequence in the human genome has been determined as YYANWYY, with

A being the first nucleotide to be transcribed (+1 nucleotide) [Javahery et al., 1994].

During PIC formation, the Inr is contacted by TFIID [Kaufmann and Smale, 1994]. For

the many promoters lacking a Inr consensus motif, TSS selection is not random with the

-1 and +1 nucleotides often being represented by a pyrimidine and a purine, respectively

[Corden et al., 1980].

The TATA box is located between 28 and 34 nt upstream of the +1 nucleotide, with
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a spacing of 30-31 nt being strongly preferred [Ponjavic et al., 2006]. It is bound by

the TBP, subunit of TFIID during PIC formation [Patikoglou et al., 1999]. The TATA

box consensus sequence has been found to be TATAT/AAAA/G [Ponjavic et al., 2006].

Although it is the best studied CPE, it only occurs in about 10% of mammalian core

promoters [Carninci et al., 2006]. Many promoters without TATA box contain an Inr to

direct accurate transcription initiation [Suzuki et al., 2001].

The two BRE motifs are located upstream and downstream of the TATA box, if present,

and are bound by TFIIB during transcription initiation [Nikolov et al., 1995]. Their

locations with respect to the TSS are at position ∼-35 and -20 (with respect to the mo-

tive midpoints), but promoters usually contain only one BRE element. Their consensus

sequence is G/CG/CG/ACGCC and G/ATT/AT/GT/GT/GT/G for BREu and BREd,

respectively [Lagrange et al., 1998]. The BRE motifs not only activate transcription, but

are also be able to repress it [Evans et al., 2001].

Three different DCEs (DCE1-3) can be present in core promoters and are contacted by

the TFIID complex during PIC assembly [Lewis et al., 2000]. These elements are located

at positions ∼+9, +18 and +32 relative to the TSS and their consensus sequence has

been determined to be CTTC, CTGT and AGC for DCE1-3, respectively [Lewis et al.,

2000].

Diverse combinations as well as the presence or absence of certain CPEs in vertebrate

core promoters allow for the integration of different transcriptional regulatory signals by

recruiting different components of the transcription machinery. This possibility has been

reported for the transcription of major histocompatibility complex (MHC) class I genes:

different CPEs within the same promoter are used during constitutive and activated tran-

scription, leading to the assembly of a canonical PIC (including TFIID) or non-canonical

PIC (including the CIITA (class II, major histocompatibility complex, transactivator)

and excluding TFIID), respectively [Howcroft et al., 2003].

As the presented elements are not universally found in core promoters and as about one

third of promoters feature none of these CPEs, it has been suggested that more CPEs

could be discovered [Kadonaga, 2012],[Roy and Singer, 2015].

In addition to CPEs, non-canonical promoter elements for Pol II promoters are increas-

ingly recognized, such as CpG islands, ATG deserts and transcription initiation platforms

(as reviewed in [Roy and Singer, 2015]).

CpG islands are regions in the DNA of 0.5-2 kb in length that exhibit a high density of

cytosine nucleotides that reside directly next to guanosine nucleotides, thereby forming

CpG dinucleotides. As CpG dinucleotides are substrates for DNA methylation, they

are underrepresented in the genome due to the mutagenic properties of methylcytosine.

Therefore, when occurring in a CpG island, these dinucleotides are unmethylated in all

tissues and across all developmental stages. Most CpG islands are sites of transcription

initiation owing to their destabilizing impact on nucleosomes and low nucleosome occu-

pancy. About half of PCG promoters are associated with CpG islands, spanning the
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proximal and core promoter. Thus, the presence of a CpG island was shown to be the

best predictor for the existence of a gene (as reviewed in [Deaton and Bird, 2011]).

ATG deserts are non-canonical promoter elements mostly found in the context of TATA-

less core promoters. ATG deserts span a DNA region of ± 1 kb around the TSS , are

characterized by their depletion of ATG trinucleotides and occur independently of CpG

islands [Lee et al., 2005].

Finally, transcription initiation platforms have been described as regulatory genomic se-

quences that are associated with promoters. These platforms span 0.4-10 kb in length,

correlate with a high CpG content and recruit Pol II and GTFs, thereby overlapping

with TSSs. Their presence is not specific to promoters and is also observed at enhancers

[Koch et al., 2011].

1.4.2.3 Core promoter classes

Based on the presence of CPEs, histone modifications and transcriptional initiation pat-

terns as were determined by genome-wide studies, a tripartition of metazoan core pro-

moters has been suggested (as reviewed in [Lenhard et al., 2012]).

Type I promoters are characterized by their low CpG content and frequent occurrence

of TATA-boxes and Inr-like sequences. Usage of a discrete TSS or of several TSSs but

within a cluster of a few nucleotides, is a feature of this promoter class, also referred to as

focused promoters. Selection of a defined TSS by the PIC is mediated by TBP binding

to an available TATA-box. Tissue-specific genes are expressed from type I promoters,

which are further characterized by an H3K4me3 pattern solely downstream of the TSS.

This promoter class is majorly regulated by sequence modules residing close to the TSS

[Ernst and Kellis, 2010],[Carninci et al., 2006].

Type II core promoters harbor short CpG islands around their TSS and initiate tran-

scription of ubiquitously expressed genes and housekeeping genes. Several Inr elements

can be found within core promoters of this class, so that TSS selection is dispersed and

transcription initiation occurs within a region of up to 150 nt. The H3K4me3 histone

modification is usually only present at the 5’ end of the gene and overlaps the CpG island

at this site. Nucleosome positioning around the TSSs is precise and regulation of this

promoter type is achieved by the action of only few enhancers [Akalin et al., 2009],[Carn-

inci et al., 2006].

Type III promoters mediate expression of developmental genes and harbor several large

CpG islands that extend into the gene body. Besides the presence of H3K4me3, these

promoters are simultaneously marked by H3K27me3, due to the binding of polycomb

group proteins (PcG proteins). Both histone modifications are widely distributed across

the promoter and gene body, indicating repression and activation so that this promoter

type is also referred to as bivalent [Bernstein et al., 2006]. TSS selection from type III

promoters is not specific but more focused than for type II promoters with the nucleo-
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some positioning being also discrete. Regulation of this promoter class is mediated by

numerous enhancers [Carninci et al., 2006].

In summary, two thirds of vertebrate promoters lack a distinct TSSs and instead initi-

ate transcription within a window of 50-150 nt as has been determined by CAGE (cap

analysis of gene expression)-based methods. In general, transcription initiation tends to

be more focused in highly regulated genes. Intermediates between the focused and dis-

persed promoters exist, e.g. in promoters with several TSSs but one preferred initiation

site (as reviewed in [Sandelin et al., 2007]). Additionally, transition between different

TSS selection modes has been observed during early vertebrate development: In oocytes,

TATA-like sequences are used for TSS selection in the absence of nucleosome position-

ing. Subsequently, TSS selection switches to a fixed position from the well-positioned

first downstream nucleosome, suggesting that Inr-like sequences determine TSS selection

at a later developmental stage [Haberle et al., 2014].

1.4.3 Silencers

Silencers confer negative regulation to the transcription initiation process and function

in an orientation independent manner analogous to enhancers. These elements can be

located within a proximal promoter region, be part of an enhancer region or represent

an independent regulatory sequence. Mechanistically, silencers provide binding sites for

repressive protein complexes, so called repressors, which can then interact with core-

pressors (as reviewed in [Maston et al., 2006]). Binding of repressors to certain DNA

sequences interferes with binding of activators or GTFs, thereby mediating the repres-

sive effect of silencers when they are located in the proximal promoter region [Harris

et al., 2005],[Perissi et al., 2004]. Also, recruited co-repressors can possess histone modi-

fying activity and thereby generate a repressive chromatin structure, e.g. when silencers

are located more distal from the TSS [Srinivasan and Atchison, 2004].

1.4.4 Insulators

Insulators divide the genome into regulatory units by restricting the activity of enhancers

and silencers to a specific set of proximal genes. They are position-dependent but orien-

tation independent regulatory elements and have an average size of few kb (as reviewed in

[Maston et al., 2006]). Unwanted interactions of cis-regulatory elements with promoters

are prevented by enhancer-blocking activity when the insulator is located in between an

enhancer and a promoter [Recillas-Targa et al., 2002]. In vertebrates, this functions is

mediated by binding of CTCF (CCCTC-binding factor) [Bell et al., 1999]. Also, insula-

tors function as barriers to the spread of heterochromatin and reside at the border of eu-

and heterochromatin [Recillas-Targa et al., 2002].
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1.5 Transcription of the human genome

Of the 3.2 billion base pairs representing the human genome, only about 1.5% are protein-

coding [Lander et al., 2001]. At the same time, 75% of the genomic sequence has been

found to be transcribed into RNA across different cell lines, with 25% being attributable

to genomic output from protein-coding genes when including intronic sequences. In one

cell line on average about 40% of the genome is covered by primary transcripts. Mapping

these transcripts to the genome visualizes how the intergenic space is reduced and how

neighboring transcription units increasingly overlap [Djebali et al., 2012]. The term

’pervasive transcription’ has been used to refer to the variety of RNA species, apart from

protein encoding RNAs and ncRNAs with well-established functions, that are often low

abundant and now being detected using high-throughput deep-sequencing techniques.

Many of these ncRNA species are detected at regulatory sequences such as promoters

and enhancers. Thereby, a common theme is the bidirectional initiation of transcription

at both DNA strands from these regulatory sequences, yielding a variety of ncRNA

species (as reviewed in [Jensen et al., 2013]).

1.5.1 Bidirectional expression of PCGs

Initially, a bidirectional promoter was described as a stretch of DNA driving the ex-

pression of two PCGs that are encoded on opposite DNA strands and arranged in a

head-to-head divergent orientation. The intervening promoter sequence was defined to

be less than 1,000 bp in size and suggested to initiate transcription in both directions

[Trinklein et al., 2004]. Early work established that more than 10% of human genes are

encoded in a bidirectional conformation, an arrangement often conserved among mouse

orthologs [Adachi and Lieber, 2002],[Trinklein et al., 2004]. This bias for divergently

encoded PCGs is unique to mammalian genomes, when compared to organisms with

similar genome size [Wakano et al., 2012]. For many of these gene pairs in the human

genome, the intervening promoter sequence is short, more precisely less than 300 base

pairs in size, and characterized by a high frequency of CpG islands [Adachi and Lieber,

2002],[Trinklein et al., 2004]. Sequence analysis of bidirectional promoters revealed that

TATA box elements are underrepresented in comparison to unidirectional promoters,

that drive the expression of one annotated gene, most likely due to an enrichment in

CpG islands [Yang and Elnitski, 2008]. On the other hand, the CCAAT box sequence,

a promoter element occurring 75-80 bp upstream of the Inr, is more prevalent in bidi-

rectional promoter sequences [Yang and Elnitski, 2008]. With regard to transcription

factor binding sites, GABPA, MYC, E2F1, E2F4, NRF-1, YY1 consensus sequences are

enriched in bidirectional promoters, while the majority of motifs that are found in verte-

brates are underrepresented [Lin et al., 2007]. Indeed, CCATT boxes, GAPBA, NRF-1

and YY1 binding sites are among the most conserved promoter motifs, bridging back to
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the conservation of the bidirectional PCG arrangement [Xie et al., 2005].

Bidirectionally encoded PCGs are enriched in specific biological functions such as DNA

repair, cell cycle regulation and regulation of metabolism [Adachi and Lieber, 2002]. In

this context, expression of many of these paired genes has been found to be correlated,

with genes being either simultaneously expressed or showing anti-correlated expression

[Trinklein et al., 2004]. These non-directional expression patterns indicate that various

regulatory mechanisms act on bidirectional promoters. Furthermore, genes expressed

from bidirectional promoters are strongly associated with breast and ovarian cancer,

due to their enrichment in DNA repair genes and consequent association with genome

stability [Yang et al., 2007]. The high frequency of CpG islands in bidirectional promot-

ers favors the inactivation of these genes trough DNA methylation, a major mechanism

through which tumor suppressor genes are inactivated in cancer [Yang et al., 2007].

1.5.2 Inherent promoter bidirectionality

The recognition that many PCG promoters lack classical promoter elements and defined

TSSs, but initiate transcription across a region of hundred base pairs, was recently ex-

panded by the observation that bidirectional transcription initiation occurs at 50-80%

of human promoters and generate transcripts that commence in the antisense direction

relative to the mRNA TSS, even though no gene is annotated in this orientation [Dut-

tke et al., 2015],[Core et al., 2008],[Core et al., 2014]. Many genome-wide studies in

a wide range of organisms as distant as yeast and human established that eukaryotic

PCG promoters also mediate expression of diverse-oriented upstream ncRNAs besides

their expression of a PCG, a phenomenon termed divergent transcription [Core et al.,

2008],[Preker et al., 2008],[Seila et al., 2008],[Neil et al., 2009]. These RNAs are generated

through assembly of two independent PICs, one at each TSS of divergently transcribing

promoters [Venters and Pugh, 2013].

In human, upstream antisense RNAs (uaRNAs) are grouped by their length into tran-

scription start site-associated RNAs (<100 nt), which are attributable to abortive pausing

and backtracking of Pol II in both promoter directions, as well as promoter upstream

transcripts (PROMTs) (>100 nt) [Taft et al., 2009],[Seila et al., 2008],[Preker et al.,

2008]. PROMTs are a class of mostly unstable RNAs as suggested by their low levels of

expression and due to their stabilization upon depletion of the cellular exosome complex,

the major eukaryotic 3’-5’ exoribonuclease [Core et al., 2008],[Preker et al., 2008],[Seila

et al., 2008]. Their emergence has long been suggested to be due to nucleosome depletion

at active PCG promoters leading to aberrant transcription initiation of RNA polymerase

II. This theory is supported by the observations that bidirectionality of promoters can

be suppressed by nucleosome remodeling, histone deacetylation or gene loop formation

[Whitehouse et al., 2007],[Marquardt et al., 2014],[Tan-Wong et al., 2012].

PROMTs share characteristics with mRNAs such as 3’polyadenylation and 5’capping
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[Flynn et al., 2011],[Preker et al., 2011],[Ntini et al., 2013]. The smaller size of these non-

coding transcripts compared to mRNAs is explainable by a higher frequency of poly(A)

signals and depletion of splice site-like sequences in the upstream direction of PCG pro-

moters. 5’ splice sites of pre-mRNAs are bound by U1 snRNP, a component of the

spliceosome, during the co-transcriptional splicing reaction thereby preventing the recog-

nition of alternative poly(A) sites. Due to the low frequency of splice sites, upstream

antisense transcripts expressed from active promoters are terminated quickly by cleav-

age of the nascent RNA and subsequent polyadenylation, using the same machinery as

for the polyadenylation of mRNAs. Opposed to this, the higher frequency of U1 snRNP

binding sites in the genic direction of a promoter suppresses PAS-mediated RNA cleavage

and early polyadenylation, allowing for the expression of full-length mRNAs [Ntini et al.,

2013],[Almada et al., 2013]. Although polyadenylation increases RNA stability and half-

life, short polyadenylated transcripts are more prone to exosome-mediated degradation

than longer transcripts, explaining the unstable nature of PROMTs [Andersson et al.,

2014b].

Recently, the emergence of promoter antisense transcripts was attributed to the presence

of reverse oriented core promoter elements that are similar to their counterparts in the

PCG direction. At a preferred distance of 100-200 nucleotides in between divergent TSSs

of bidirectional promoters, Inr-like and TATA-box-like elements have been identified at

the edges of well-positioned nucleosomes and overlaying the TSSs of PROMTs [Duttke

et al., 2015],[Core et al., 2014]. Unidirectional promoters that do not express upstream

antisense RNAs, are depleted of reverse core promoter elements and do not show defined

nucleosome positioning in the upstream promoter direction. This suggests that diver-

gent antisense transcription initiation is not due to promiscuous transcription initiation

of Pol II but due to the presence of core promoter-like elements that favor PIC assembly

[Duttke et al., 2015].

It has been proposed that in evolutionary terms, divergent transcription initiation could

fuel the emergence of new functional genes, by exposing the transcribed DNA strand

to mutagenic alterations. Higher frequencies of C→T transitions and A→G transitions

are observable in the non-template strand, thereby transcribed DNA regions can gain

GT-rich sequences such as splice sites. The acquisition of splice sites would consequen-

tially favor the origination of longer, more stable transcripts that could then acquire

functionality [Wu and Sharp, 2013].

1.5.3 Transcription at enhancers

Assembly of the transcription machinery and Pol II recruitment to active enhancers in

combination with transcription of associated enhancer regions has been determined by

several genome-wide studies [Kim et al., 2010],[De Santa et al., 2010],[Koch et al., 2011].

Production of these transcripts, termed enhancer RNAs (eRNAs), correlates well with
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characteristic enhancer modifications at chromatin such as H3K4me1, H3K27ac and p300

binding [Core et al., 2014]. eRNAs were found to be either short, non-polyadenylated

and bidirectionally expressed but also long, polyadenylated and unidirectional [Kim et al.,

2010],[Venters and Pugh, 2013],[Ørom et al., 2010]. For bidirectionally expressed eRNAs,

the divergent TSS are separated by 110 bp on average and core promoter elements, such

as TATA boxes and Inr elements, are present at similar frequencies at enhancer TSSs as

in PCG promoters, thus explaining transcription initiation [Core et al., 2014],[Andersson

et al., 2014a]. The expression level of eRNAs correlates with levels of mRNA synthesis at

neighboring genes implying eRNA involvement in transcriptional activation [Kim et al.,

2010]. Additional studies established that eRNA production precedes the culmination of

target gene transcription and that target gene activation can be lost when eRNAs are

specifically depleted from cells [Li et al., 2013],[Schaukowitch et al., 2014]. This function-

ality of eRNAs could be due to the involvement of these transcripts in enhancer-promoter

looping, and/or facilitating release of paused Pol II into productive elongation by their

interaction with the NELF complex [Li et al., 2013],[Schaukowitch et al., 2014]. Also,

analogous to transcription from PCG promoters, only one of the bidirectionally expressed

transcripts could be functional, with the other being a side product of bidirectional tran-

scription initiation [Lam et al., 2013]. In conclusion, expression of eRNAs can be used

as determinant for the activity status of enhancers, with active enhancers expressing

eRNAs and non-active or poised enhancers being characterized by the H3K4me1 and/or

H3K27ac histone modification patterns [Core et al., 2014].

1.5.4 Similarity of transcription initiation at promoters and enhancers

Promoters and enhancers share many characteristics in mammalian genomes although

they have been classically defined as distinct transcriptional regulatory elements. Sim-

ilarities include the binding of transcription factors to both elements, the existence of

core promoter elements at similar frequencies and initiation of divergent transcription

through assembly of distinct PICs at the paired CPEs [Core et al., 2014],[Venters and

Pugh, 2013],[Andersson et al., 2014a]. Transcription at divergent TSS TSSs in pro-

moters and enhancers, initiates within a comparable distance of 100 - 200 bp and at

positioned nucleosomes flanking both TSSs [Duttke et al., 2015],[Core et al., 2014]. A

classic distinction between promoter and enhancers has been drawn through the pres-

ence of different histone modifications with promoters being characterized by a higher

H3K4me3/H3K4me1 ratio [Heintzman et al., 2009]. Recently, this feature has been ex-

plained by the unequal transcription levels at both elements with H3K4me3 levels scaling

up to promoter levels at highly transcribed enhancers [Core et al., 2014]. These findings

argue that the classical distinctions between enhancers and promoters are not sufficient

to categorize these elements and that promoters and enhancers are much more similar

than ever assumed.
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1.6 ncRNA species encoded in the human genome

Although pervasive transcription of the genome has only recently been recognized due to

the development of sensitive high throughput sequencing technologies, the existence of

functional ncRNAs is established for several decades (as reviewed in [Morris and Mattick,

2014]). In general, the catalog of functional ncRNAs is growing continuously [Cech and

Steitz, 2014].

1.6.1 RNAs functioning in protein synthesis

Ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs) are among the longest known

functional ncRNA species [Cech and Steitz, 2014]. rRNAs represent the RNA component

of the eukaryotic ribosome that consists of a large and small subunit including three (5S,

5.8S, 28S) and one RNA species (18S), respectively [Alberts et al., 2002],[Johnson and

Alberts, 2002]. The rRNA species in cooperation with accessory proteins mediate protein

synthesis from an mRNA template, with amino acids being carried to the ribosome by

tRNAs [Alberts et al., 2002],[Johnson and Alberts, 2002]. In the human genome, 544

rRNA genes and 497 tRNA genes are encoded, and additionally 2 rRNA genes and 22

tRNA genes are encoded in the human mitochondrial DNA [The GENCODE Consortium,

2014],[Derrien et al., 2012].

1.6.2 RNAs functioning in RNA processing

During eukaryotic mRNA maturation, introns are removed from primary transcripts by

the spliceosome [Alberts et al., 2002],[Johnson and Alberts, 2002]. The five small nuclear

RNAs (snRNAs) U1, U2, U4, U5 and U6 snRNA associate with more than 200 different

proteins to form the spliceosome [Valadkhan, 2005]. Introns represent about 20% of

the non-coding transcription in the genome, however they can be processed into other

RNA species, e.g. small nucleolar RNAs (snoRNAs) [Cech and Steitz, 2014]. SnoRNAs

direct chemical modifications including methylation and pseudouridylation of pre-rRNAs,

thereby being involved in the maturation of this RNA species [Cech and Steitz, 2014].

Cajal body-associated (sca)RNAs are functionally similar to snoRNAs but located in

the Cajal bodies. These mediate the modification of the spliceosomal RNAs [Cech and

Steitz, 2014]. It is estimated that the human genome encodes 1,896 snRNA genes and

961 snoRNA genes [The GENCODE Consortium, 2014].

1.6.3 RNAs functioning in regulation of RNA expression

Besides the regulation by proteins, RNA expression and stability is also controlled by

small RNA species. One class of these small RNAs are microRNAs (miRNAs) of ∼22 nt

in length that frequently base pair in the 3’UTR of mRNAs resulting in mRNA deadeny-

lation and translational repression due to their interaction with Argonaute proteins (as
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reviewed in [Ameres and Zamore, 2013]). Another class of small RNAs encoded in the

human genome and functional in regulation of RNA stability are piwi-interacting RNAs

(piRNAs) of ∼27 nt in length. This species interacts with PIWI proteins, a subclade of

Argonaute proteins, and degrades expressed transposable elements in the germline (as

reviewed in [Luteijn and Ketting, 2013]). In the human genome, 4,093 miRNA genes are

annotated [The GENCODE Consortium, 2014].

1.6.4 RNAs with diverse functions - long ncRNAs

Transcripts >200 nt in size that lack coding potential, as determined by the absence of

large open reading frames and codon conservation, have been classified as long ncRNAs

[Derrien et al., 2012],[Morris and Mattick, 2014]. These ncRNAs are functionally diverse

and can control various biological processes such as X-chromosome inactivation, imprint-

ing or transcriptional gene activation [Penny et al., 1996],[Leighton et al., 1995],[Ørom

et al., 2010]. Recent studies suggest that about three times more long ncRNAs are en-

coded in the human genome than protein-coding genes, with estimates ranging to as

much as 60,000 long ncRNA genes [Iyer et al., 2015]. As different long ncRNA data sets

show moderate overlap with each other, ranging between 30-40%, it is likely that the

long ncRNA transcriptome is still incompletely captured and that the numbers of long

ncRNA genes might further increase [Derrien et al., 2012].

1.7 Functionality of long ncRNAs

Long ncRNAs are a heterogeneous group of transcripts, solely distinguished from other

ncRNA species by their larger size of >200 nt. Due to this loose defining criterion for

long ncRNAs as a class, the absence of a common functional mechanism of action is

explainable.

1.7.1 Classification of long ncRNAs

The GENCODE gene annotation subclassifies long ncRNAs into five categories depending

on their location and orientation with respect to the nearest PCG [Derrien et al., 2012]:

1. Intergenic long ncRNAs: do not intersect any PCG locus

2. Exonic antisense long ncRNAs: intersect an exon of a PCG locus on the opposite

DNA strand

3. Intronic long ncRNAs: reside within an intron of a PCG on the same or opposite

strand, but without any overlap with PCG exons

4. Overlapping long ncRNAs: contain a PCG within one of their introns on the same

or opposite strand

5. Processed transcripts: do not harbor an open reading frame and do not fit in any

of the other subcategories
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However, no intrinsic functional differences between these ncRNA categories have yet

been demonstrated [Morris and Mattick, 2014].

Antisense

Intergenic long ncRNA

Genic long ncRNA

long ncRNA

protein-coding

long ncRNA

protein-coding

long ncRNA

protein-coding

long ncRNA

protein-coding

Figure 1.2: Subclassification of long ncRNAs. Long ncRNAs are classified based on their location

and orientation to the closest PCG. Intergenic long ncRNAs do not intersect any PCG locus. Genic

long ncRNAs intersect a PCG locus either on the same or the opposite DNA strand. Antisense long

ncRNAs intersect an exon of a PCG locus on the opposite DNA strand. Intronic long ncRNAs reside

within an intron of a PCG and overlapping long ncRNAs contain a PCG within one of their introns.

Figure modified from [Derrien et al., 2012].

1.7.2 Characteristics of long ncRNAs

Many long ncRNA genes have a similar genomic structure as PCGs. The promoters of

both long ncRNAs and PCGs show histone modifications indicative of transcriptional

activity such as H3K4me2, H3K4me3, H3K9ac or H3K27ac [Derrien et al., 2012]. Long

ncRNA transcripts also share characteristics with mRNAs, such as splicing, capping and

polyadenylation. However, long ncRNAs overall differ from mRNAs in their lower expres-

sion level, lower number of exons and higher tissue-specificity [Cabili et al., 2011],[Derrien

et al., 2012]. More precisely, long ncRNAs show on average a ∼10-fold lower median max-

imal expression level than mRNAs [Cabili et al., 2011],[Derrien et al., 2012]. This has

been suggested to be either caused by less efficient transcription of long ncRNA genes

or more efficient degradation of the transcripts, e.g owing to their lack of open read-

ing frames, rendering them prone to decay mechanisms such as the nonsense-mediated

decay (NMD) [Ulitsky and Bartel, 2013]. A strong bias for two-exon transcripts has

been described for long ncRNAs, however, these early studies neglected single-exon long

ncRNAs in order to distinguish lowly expressed long ncRNAs from transcriptional noise

[Derrien et al., 2012]. However, it is becoming increasingly clear that many long ncRNAs

are unspliced single-exon transcripts and that long ncRNAs as a group are character-

ized by the presence of few exons [Iyer et al., 2015]. Although having few exons, long

ncRNAs show high tendencies for alternative splicing [Cabili et al., 2011],[Derrien et al.,

2012],[Iyer et al., 2015].

Brain and testis show especially high expression levels of long ncRNAs, with about one
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third of long ncRNAs being specifically expressed in testis [Cabili et al., 2011],[Derrien

et al., 2012]. Specific expression of long ncRNAs has also been observed in differenti-

ated systems, such as T cells, muscles or breast tissue as well as in disease states such

as cancer [Morris and Mattick, 2014],[Iyer et al., 2015]. Long ncRNAs can be located

predominantly in the nucleus or in the cytoplasm, depending on the transcript, how-

ever, compared to mRNAs, long ncRNAs show higher enrichment in the nucleus [Ulitsky

and Bartel, 2013]. Within the nucleus, these transcripts are particularly found in the

chromatin-associated fraction [Derrien et al., 2012].

Exonic sequences of long ncRNA genes are on average significantly less conserved during

evolution than those of PCGs, however some conservation is observable when compared to

neutrally evolving sequences such as ancestral repeats [Morris and Mattick, 2014],[Ørom

et al., 2010]. In general, promoters of long ncRNA genes exhibit higher conservation

rates than their exonic sequences [Derrien et al., 2012],[Ørom et al., 2010]. However, a

wide range of evolutionary conservation is observable for different long ncRNA species,

so that ultraconserved genes exist as well as primate-specific ones [Morris and Mattick,

2014],[Necsulea et al., 2014]. In numbers, about 400 long ncRNA genes are conserved to

the common ancestor of tetrapods and therefore originated more than 300 million years

ago, but estimates suggest a far higher number of 11,000 primate-specific long ncRNAs

[Necsulea et al., 2014]. This indicates that many long ncRNAs may have originated due

to lineage-specific adaptive radiation [Morris and Mattick, 2014]. However, a lack of

primary sequence conservation not necessarily indicates a lack of function, as RNA sec-

ondary structures, the main functional constraint of long ncRNAs, can also be retained

by complementary base exchanges [Johnsson et al., 2014].

Many long ncRNAs likely evolved from transposable element (TE) insertions, as ∼80% of

long ncRNA genes contain TE sequences, such as degenerated versions as ERVs (endoge-

nous retroviruses), LINEs (long interpersed nuclear elements), SINEs (short interpersed

nuclear elements), and LTRs (long terminal repeats), and as TEs comprise about 40% of

ncRNA sequences [Derrien et al., 2012],[Kelley and Rinn, 2012]. This high TE content is

in contrast to protein coding gene sequences, in which TEs overlap only 6% of sequences

[Kelley and Rinn, 2012].

Concerning the low expression and low evolutionary conservation levels of long ncRNAs,

questions towards their functionality has been raised. However, the precision of long

ncRNA expression, across tissues and the existence of alternative splice forms, as well

as the many reported functions of individual long ncRNAs, argue for a functionality of

many of these transcripts [Morris and Mattick, 2014],[Tsai et al., 2010],[Lai et al., 2013].

In this line of evidence, genome wide association studies showed that more than 80% of

cancer-associated single nucleotide polymorphisms are found in noncoding regions that

are transcribed into long ncRNAs [Cheetham et al., 2013].
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1.7.3 Functions of long ncRNAs

The reported increasing numbers of long ncRNAs, due to advances in high-throughput

sequencing techniques, is in opposition to the relatively few examples of functionally

characterized long ncRNAs.

Early reports on ncRNA functionality date back about 20 years and describe the regula-

tory mechanisms of well-expressed ncRNAs such as Xist (X-inactive specific transcript)

or H19 in X-chromosome inactivation and imprinting [Penny et al., 1996],[Leighton et al.,

1995]. Since then the spectrum of ncRNA functional involvement has extended to vari-

ous biological processes such as development, pluripotency or the p53 response pathway

[Rinn et al., 2007],[Guttman et al., 2009],[Huarte et al., 2010]. A reoccurring theme is

the regulation of gene expression by long ncRNAs resulting in activation or repression of

target genes involved in specific processes (as reviewed in [Rinn and Chang, 2012]). As

long ncRNAs display low expression levels and high degrees of tissue specificity, catalytic

roles in their regulation of gene expression can be suggested.

Molecular mechanisms for long ncRNA action involves their interaction with proteins,

DNA and RNA (as reviewed in [Rinn and Chang, 2012]):

In that way, long ncRNAs can act as decoys for proteins such as transcription factors, by

interacting with their respective DNA-binding domain thereby modulating transcription

factor docking to DNA. An example for this is the long ncRNA PANDA that interacts

with the transcription factor NF-YA to reduce expression of pro-apoptotic genes under

conditions of DNA damage [Hung et al., 2011].

Also, the guidance of proteins to certain genomic locations has been determined as a

long ncRNA mechanism of action. This DNA targeting can occur through RNA-DNA

base pairing or long ncRNA interaction with a DNA binding protein. Xist RNA interacts

with the polycomb repressive complex 2 (PRC2) and recruits it to the X chromosome to

establish the inactivating chromatin mark H3K27me3 throughout the dimension of this

chromosome [Plath et al., 2003].

Long ncRNA functioning as scaffolds for protein complex formation has also been re-

ported thereby bringing different proteins into physical proximity. This is exemplified

by the long ncRNA HOTAIR and its binding of PRC2 and the LSD1/CoREST/REST

complex, which results in H3K27 methylation and H3K4 demethylation and in silencing

of the targeted HOXD gene [Tsai et al., 2010].

Long ncRNAs have additionally been identified to play a role in the establishment of

chromatin structure, more specifically in enhancer-promoter interactions for example by

binding to the Mediator complex [Lai et al., 2013]. Thus these transcripts can facilitate

transcription initiation.

Besides interaction with proteins and DNA, base pairing of long ncRNAs with comple-

mentary RNAs allows for gene regulation [Cech and Steitz, 2014]. The long ncRNA

’antisense Uchl1’ that is encoded antisense to the Uchl1 (ubiquitin carboxy-terminal hy-
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Figure 1.3: Molecular mechanisms of long ncRNA action. Long ncRNAs can act as decoys for

proteins, as scaffolds for protein complex formation, as guides for proteins to be recruited to certain

genomic locations and in the establishment of chromatin interactions such as in enhancer-promoter

interactions. Figure modified from [Rinn and Chang, 2012].

drolase L1) gene, base pairs at the 5’ end with Uchl1 mRNA. Association of Uchl1 mRNA

with polysomes in the cytoplasm, resulting in increased protein synthesis and is achieved

via 5’ pairing with antisense Uchl1 RNA due to its possession of a SINE element [Carrieri

et al., 2012].

Yet another mechanism of action for long ncRNAs is to work as competing endogenous

RNAs for miRNAs. The circular RNA molecule CDR1as (cerebellar degeneration-related

protein 1 transcript) harbors 63 conserved binding sites for miRNA miR-7 and binds miR-

7 in neuronal tissues, thereby regulating midbrain development [Memczak et al., 2013].

This example, as well as the preceding one, extends the post-transcriptional regulative

repertoire of long ncRNAs towards PCGs.

Another long ncRNA functionality is transcriptional interference, whereby not the RNA

product is active but the act of its transcription serves a regulatory function [Cech and

Steitz, 2014]. For example, transcriptional silencing of the Igf2r promoter by the Airn

transcript only requires transcriptional overlap of the ncRNA gene with this promoter to

induce its parental-specific silencing and imprinting [Latos et al., 2012].

The various functions of long ncRNAs can either be accomplished in cis (at their site of

transcription) or trans (when diffusing to other loci), depending on the precise molec-

ular mechanism and the expression level of the transcript [Cech and Steitz, 2014]. A

working mechanism in trans has been assigned to several long ncRNAs interacting with

chromatin regulatory proteins and includes also the translational enhancer activity of an-

tisense Uchl1 RNA [Guttman et al., 2011],[Carrieri et al., 2012]. Long ncRNA expressed

at only few copies per cell were found to function predominantly in cis, for example ac-

tivating long ncRNAs that are involved in chromatin-looping and that interact with the
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Mediator complex [Lai et al., 2013]. Thereby, the highly tissue-specific expression pat-

tern of long ncRNAs is consistent with their functional role in tissue-specific regulation

of chromatin structure, transcription factor binding or enhancer activity.

The cellular dependence on long ncRNAs for these diverse processes can be explained

by the fact that RNA can bridge larger distances in comparison to protein chains. An

α-helix of 50 amino acids extends for only 7.5 nm whereas a 50 base pair RNA arm

extends for 13 nm, thereby an RNA is better suited to organize several protein binding

motives. Also expression of RNAs results in decreased cellular metabolic costs compared

to the production of proteins [Cech and Steitz, 2014].

1.7.4 Association of long ncRNAs with PCG promoters

Initially, research has been focused on the functional characterization of long ncRNAs

originating from genomic regions that do not overlap with PCGs, as such transcripts fa-

cilitate experimental manipulation and computational analysis [Wang et al., 2011],[Ørom

et al., 2010],[Guttman et al., 2009]. However, early estimates suggested that 35% of an-

notated long ncRNAs intersect loci of PCGs [Derrien et al., 2012]. Also, an increasing

number of non-coding transcripts is detected upstream of PCG promoters (as described

in Section 1.5.2). One study catalogued long ncRNAs expressed in human embryonic

stem cells (hESCs) and suggested that >60% of long ncRNAs are divergently tran-

scribed from PCGs (within a window of ±2 kb around the PCG TSSs). Half of these

transcripts only consist of one exon and are nonspliced [Sigova et al., 2013]. Different

numbers of PCG-associated long ncRNAs determined in these studies, can be explained

by the consideration or disregard of single-exon ncRNAs as well as by varying filtering

criteria [Sigova et al., 2013],[Derrien et al., 2012].

However, these results raise questions towards the correlation of long ncRNA and re-

spective PCG expression as well as towards the functionality of these PCG-associated

transcripts [Seila et al., 2008],[Preker et al., 2008].

Correlations of expressions between neighboring long ncRNAs and PCGs were yielding

contradictory results, as on the one hand suggesting higher positive correlation of ex-

pression between long ncRNAs and neighboring PCGs [Derrien et al., 2012],[Ørom et al.,

2010], on the other hand none such relationship was found [Cabili et al., 2011].

Another study focused on the expression of long ncRNAs around the promoters of 56

cell-cycle genes under diverse perturbation conditions, such as DNA damage or oncogenic

stimuli [Hung et al., 2011]. This analysis revealed that sets of ncRNAs expressed in a

genomic neighborhood are responsive to the respective stimuli and that their expression

is correlated. However, the expression of long ncRNAs and their closest PCG was not

found to be correlated [Hung et al., 2011].

Also, the expression of long ncRNAs, bidirectionally transcribed to PCGs in the mouse

cerebral cortex, was found to be correlated with tissue-specific mRNAs. It was therefore
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concluded that the function of these transcripts would be to activate their paired PCG

[Uesaka et al., 2014].

The above mentioned study on the hESC transcriptome observed that PCG-associated

long ncRNAs show coordinated changes in expression with their PCG partners when

cells are differentiated into endoderm, suggesting that these ncRNA/PCG pairs are co-

ordinately regulated. This suggests similar functional roles for bidirectionally expressed

ncRNA/PCG pairs [Sigova et al., 2013].

Few studies investigated the functionality of long ncRNAs transcribed upstream of PCG

promoters and indicate that the molecular mechanism of action of these transcripts is

not uniform and not specific to the upstream PCG [Wang et al., 2008],[Grote et al.,

2013],[Hung et al., 2011]:

Several long ncRNAs species are detected 300-1,500 bp upstream of the cyclin D1 gene

and these are induced upon DNA damage signals. The transcripts recruit the RNA bind-

ing protein TLS (translocated in liposarcoma) to the cyclin D1 promoter and allow TLS

interaction with CBP and with p300. Gene specific repression of cyclin D1 transcription

is then achieved through the inhibition of p300 function by TLS [Wang et al., 2008].

In the mouse genome, the long ncRNA Fendrr (Fetal-lethal noncoding developmental

regulatory RNA) is encoded 1,250 bp upstream of the TSS of the transcription factor-

coding gene Foxf1. Fendrr and Foxf1 mRNA are co-expressed in mesodermal tissue.

Fendrr binds the PRC2 complex and tethers it to its target promoters, the promotors of

transcription factors Foxf1 and Pitx2, resulting in H3K27 trimethylation and transcrip-

tional silencing of both genes [Grote et al., 2013],[Grote and Herrmann, 2013].

Additionally, the long ncRNA PANDA (P21 associated ncRNA DNA damage activated)

is located 5 kb upstream of the TSS of CDKN1A (Cyclin-dependent kinase inhibitor

1A) and encoded in a divergent fashion to the CDKN1A locus. Induction of PANDA

upon DNA damage is coordinated with the induction of CDKN1A mRNA and depends

on the binding of p53 about 2.5 kb upstream and in the midpoint between both genes.

PANDA does not regulate expression of CDKN1A but it binds to the transcription fac-

tor NF-YA, thereby interfering with NF-YA binding to DNA and with its activation of

apoptotic genes. The action of the CDKN1A gene product p21 mediates cell cycle arrest

upon DNA damage. As simultaneous expression of PANDA blocks apoptosis induction,

a linkage between both genes is potentially advantageous for cancer progression [Hung

et al., 2011].

In conclusion, the divergent encoding of two genes can allow co-regulation and co-

expression of these genes, for example by a shared upstream transcriptional network.

The binding of transcription factors within a shared promotor region then mediates

transcription initiation of the paired genes. When both gene products are coordinately

expressed, they can contribute to the same cellular response independently, as is the case

of PANDA and p21 [Hung et al., 2011].
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1.8 Human tumor suppressors

Through the diverse mechanisms of action of long ncRNAs, these transcripts can play

regulatory roles in cancer initiation and progression, as cancer is a disease of aberrant

gene expression. In this way, long ncRNAs can guide chromatin-modifying complexes,

resulting in epigenetic changes and gene expression changes. Functionally characterized

long ncRNAs have been found to be mis-expressed in cancers (as reviewed in [Cheetham

et al., 2013]). Additionally, mutations in non-coding or regulatory sequences of the

genome such as enhancers can play a causative role in the development of cancer [Lee

and Young, 2013],[Lubbe et al., 2012].

Loss or inactivation of tumor suppressor genes promotes the initiation or progression of

cancer and can result from genic mutations or DNA methylation, with the latter being

especially effective on CpG islands containing bidirectional promoters [Sun and Yang,

2010],[Wakano et al., 2012]. Due to the resulting loss of function or loss of expression of

affected tumor suppressor genes, cells lose the ability to control their proliferation [Sun

and Yang, 2010]. Adding to the complex regulatory control of tumor suppressor genes,

many of these genes have been found to harbor a nearby antisense RNA [Yu et al., 2008].

Also, genes strongly associated with cancer are frequently expressed from bidirectional

promoters [Yang et al., 2007].

Tumor suppressors represent a diverse group of molecules that inhibit the development

of cancer by four major mechanisms: inhibition of cell division, induction of apoptosis,

DNA damage repair and inhibition of metastasis. The action of many tumor suppressors

can be attributed to only one of these mechanisms, but others may promote more than

one mechanism (as reviewed in [Sun and Yang, 2010]). Tumor suppressive functions has

not solely been assigned to proteins, and also long ncRNAs can represent tumor suppres-

sors [Zhou et al., 2012].

Several mechanisms for tumor suppression have been described with a steadily growing

number of mechanisms and genes involved in tumor suppression. Thereby, suppression

of cell division is the working mechanism of most tumor suppressors and exemplified by

the action of the retinoblastoma protein (pRB), APC (adenomatosis polyposis coli), p15,

p16, p21 or p53 [Sun and Yang, 2010]. pRB inhibits cell cycle progression by interaction

with different transcription factors such as E2Fs, which themselves regulate proliferation

genes [Sun and Yang, 2010],[Helin et al., 1993]. Another mechanism to inhibit cell di-

vision is that of APC, a protein that stabilizes microtubules [Green et al., 2005]. p15,

p16, p21 and others negatively regulate the activity of CDKs, which for their part inhibit

RB1 activity (as reviewed in [Sherr, 1996]).

Induction of apoptosis is mediated by tumor suppressors such as p53, APC or PTEN

(phosphatase and tensin homolog) [Sun and Yang, 2010]. p53 for example is able to in-

duce apoptosis via the extrinsic and intrinsic pathway, which activates a caspase cascade

and promotes formation of the apoptosome, respectively [Haupt et al., 2003].
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Tumor suppressors involved in DNA damage repair include MSH2 (mutS homolog 2),

MLH1 (mutL homolog 1), ATM (ataxia-telangiectasia mutated gene product), BRCA1

(breast cancer gene 1) and p53 [Sun and Yang, 2010]. For example, MSH2 and MLH1

repair DNA mismatches and p53 can induce nucleotide excision repair [Seifert and Re-

ichrath, 2006],[Adimoolam and Ford, 2003].

Finally, inhibition of metastasis is a tumor suppressive mechanism that is promoted by

the action of proteins such as metastin, BRMS1 (breast cancer metastasis suppressor 1)

or TIMP (tissue inhibitor of metalloproteinase) [Sun and Yang, 2010].

For this thesis, the tumor suppressive activities of RB1 and calreticulin are of particular

interest.

1.8.1 Functionality of the retinoblastoma protein

RB1 was the first tumor suppressor gene to be described and it was discovered due to its

determination of susceptibility to hereditary retinoblastoma, a childhood tumor of the

eye [Lee et al., 1987],[Friend et al., 1986]. pRB, the RB1 gene product, belongs to the

pocket domain family also including p107 and p130 proteins, that are structurally and

functionally related to pRB [Burkhart and Sage, 2008].

Since its discovery, the RB1 gene has been found mutated or otherwise inactivated in a

wide range of human cancers beside retinoblastoma [Viatour and Sage, 2011]. Initially,

the tumor suppressive mechanism of RB1 has been attributed to its ability to restrict

cell cycle progression, however, pRB also functions in cellular senescence, differentiation,

apoptosis and maintenance of genomic stability [Burkhart and Sage, 2008].

The capacity of pRB to arrest cells in G1 phase of the cell cycle, thereby regulating cell

cycle progression at the G1/S transition, is mediated by the unphosphorylated and active

protein. Unphosphorylated pRB binds to E2F transcription factors located at the pro-

moters of E2F regulated proliferation genes and inhibits their activity, thereby silencing

expression of these genes. pRB binds preferentially to E2F1, E2F2, and E2F3 whereas

p107 and p130 are most often found in complex with E2F4 and E2F5 (as reviewed in

[Chinnam and Goodrich, 2011]).

Upon mitogenic signaling, pRB is phosphorylated by Cyclin/Cdk complexes, resulting

in its loss of interaction with E2F factors and cell cycle genes so that cyclins are increas-

ingly expressed and cells divide [Dynlacht et al., 1994]. Thereby, pRB can be phospho-

rylated by different kinases, such as cyclin-D-CDK4, cyclin-D-CDK6, cyclin-A-CDK2,

cyclin-E-CDK2, CHK2 (checkpoint homologue 2) and RAF1. Cyclin/Cdk complexes are

themselves regulated by cell cycle inhibitors of the INK4 and CIP/KIP families, such as

p16INK4a and p12CIP1 (as reviewed in [Burkhart and Sage, 2008],[Viatour and Sage,

2011]).

Furthermore, interaction of pRB with APC/C (anaphase-promoting complex/cyclosome)

that results in increased stability of the p27 cell cycle inhibitor is part of pRB’s mecha-
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nisms to achieve G1 cell cycle arrest [Binné et al., 2007].

The additional functions of pRB are achieved by its working as a transcriptional co-factor

of various transcription factors to assemble specific protein complexes on DNA as well

as being an adaptor protein to chromatin remodeling enzymes. Overall, pRB regulates

the expression of specific target genes and alters chromatin structure (as reviewed in

[Macaluso et al., 2006]). For example, pRB recruits histone deacetylases to chromatin, a

process that results in the alteration to a repressive chromatin structure [Takaki et al.,

2004].

Inactivation of pRB is mostly occurring in later stages of tumor development as loss of

pRB is not advantageous during tumor initiation. This is due to its prosurvival func-

tion that are somewhat contradictory to its tumor suppressive activity [Burkhart and

Sage, 2008]. When pRB function is lost, E2F1-specific target genes that are involved in

apoptosis become activated, resulting in the upregulation of p53 and activation of p53-

dependent apoptosis. This causes an increase in cellular death upon RB1 inactivation

[Tsai et al., 1998],[Macleod et al., 1996]. As a result, pRB1 is mostly inactivated following

mutation in other components of the cell death machinery (as reviewed in [Viatour and

Sage, 2011]).

1.8.2 Functionality of calreticulin

Calreticulin is a multi-functional protein that mostly resides in the endoplasmic reticu-

lum (ER) lumen, however, recently its various roles outside the ER have gained attention

[Michalak et al., 2009]. Its functions range from Ca2+-binding, -storage and -signaling,

protein chaperoning and regulation of steroid-sensitive gene expression and also include

various others (as reviewed in [Michalak et al., 2009],[Wang et al., 2012]).

In the ER, the cellular organelle crucial for maintaining calcium homeostasis, synthesis of

lipids and proteins, protein folding and post-translational modifications, calreticulin plays

the role of a Ca2+-binding chaperone. Ca2+-binding is achieved via a high-capacity, low-

affinity as well as a high-affinity, low-capacity binding domain of the protein and assisted

by the function of calnexin, a homologue of calreticulin. Cellular proteins synthesized

into the ER, interact with several molecular chaperones including calreticulin that ensure

the transport of properly folded proteins outside of the organelle and to different cellular

locations (as reviewed in [Michalak et al., 2009],[Wang et al., 2012]).

Outside the ER, calreticulin is present in the cytoplasm, nucleus, extracellular matrix

and at the cell membrane, participating in a variety of biological processes such as wound-

healing, cell adhesion, phagocytosis and recognition of malignant cells (as reviewed in

[Gold et al., 2010]).

Calreticulin is expressed at varying levels during differentiation or malignant transforma-

tion of cells, demonstrating the importance of transcriptional and post-transcriptional

regulation of this housekeeping gene [Waser et al., 1997]. Calreticulin has been found
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overexpressed in several tumors such as breast cancer, bladder cancer or leukemia and

this altered expression correlated with higher invasiveness and poorer prognosis [Lwin

et al., 2010],[Kageyama et al., 2004],[Helbling et al., 2005]. Simultaneously, exogenous in-

crease in calreticulin levels reduce tumor growth by calreticulin’s function as an inhibitor

of angiogenesis [Pike et al., 1998],[Pike et al., 1999]. Somatic mutations in the calreticulin

(CALR) gene have been found in >70% of patients with myeloproliferative neoplasms

with nonmutated JAK2 kinase, suggesting a link between a mutant calreticulin protein

and cancer [Nangalia et al., 2013],[Klampfl et al., 2013].

Cell surface exposed calreticulin has immunomodulatory activity by serving as an ’eat-

me’ signal to phagocytic cells, more specifically to macrophages and dendritic cells [Chao

et al., 2010]. This activity is exploited by certain chemotherapeutic agents that induce

the translocation of calreticulin to the cell surface and thereby involve of the immune sys-

tem during cancer cell death [Obeid et al., 2007]. This so-called immunogenic cell death

(ICD) is induced by anthracyclines or oxaliplatin and is one of the goals to be achieved

during chemotherapy [Panaretakis et al., 2009]. Translocation of calreticulin to the cell

surface occurs before other signs of apoptosis are observable, thus in a pre-apoptotic fash-

ion [Obeid et al., 2007]. The process of ICD involves removal of cells by macrophages and

can modulate cancer cell survival. Therefore it has been suggested that this programmed

cell removal must be overcome by successful cancer clones in addition to their avoidance

of programmed cell death (apoptosis) [Chao et al., 2012]. Indeed, increased levels of

cell surface calreticulin by several cancer types, probably due to endoplasmic stress, is

counterbalanced by increased exposure of CD47 on these cells, a ’don’t-eat me signal’

[Chao et al., 2010].
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1.9 Aims of the thesis

Various long ncRNA species are recently detected in high-throughput transcriptome stud-

ies, revealing that the human genome is pervasively transcribed. A reoccurring theme is

the prevalent transcription of these RNA at regulatory elements such as promoters and

enhancers and their intersection with loci of PCGs. Although increasing numbers of such

long ncRNAs are reported, their functionality remains mostly elusive.

This thesis aims to characterize the transcriptional regulation of long ncRNA genes ex-

pressed from bidirectional promoters shared with PCGs. Thereby, one objective is to

determine the potential of co-regulation and co-expression of both gene types. Further-

more, gene regulatory effects of bidirectionally expressed long ncRNA/PCG pairs are

intended to be investigated. This includes the determination of individual target genes

for each of the gene partners, as well as their involvement in the regulatory circuits of the

paired gene. This intends to answer the question if gene pairing entails co-functionality.

A regulatory interplay is imagined to either represent a direct regulatory effect of the

paired gene or a complete or partial functional overlap of both gene partners in the reg-

ulation of a biological pathway. Finally, the question should be answered if a regulatory

interplay has biological significance.
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Chapter 2

Materials and Methods

2.1 Materials

2.1.1 Instrumentation

All devices used in this work are listed in Table 2.1.

Table 2.1: List of devices

Device Name Manufacturer, Country

Analytical balance BP 61 Sartorius, Germany

Centrifuge 5430, 5810 R, MiniSpin Eppendorf, Germany

Centrifuge FRESCO 17 Heraeus, Germany

Chemolumineszenz imager FUSION-SL Advance 4.2 MP PeqLab, Germany

Electrophoresis system (DNA gels) Mini-Sub Cell GT Cell Bio-Rad Laboratories, USA

Electrophoresis system (protein gels) XCell SureLock Mini-Cell Life Technologies, USA

Flow cytometer Cyan ADP Beckman Coulter, USA

Flow cytometry analyzer FACScan Becton Dickinson, USA

Fluid aspiration system BioChem-VacuuCenter BVC 21 Vacuubrand, Germany

Fluorescence spectrofluorometer LUMIstar OPTIMA BMG Labtech, Germany

Freezer Comfort, Premium NoFrost Liebherr, Switzerland

Heating Block Thermomixer5436 Eppendorf, Germany

Ice machine AF30 Scotsman Ice Systems, USA

Incubator for bacteria Heraeus-Brutschrank B 504 Heraeus, Germany

Incubator for cell culture Heracell CO2 Heraeus, Germany

Magnetic stirrer TK22 Kartell Labware, Australia

Microplate luminometer LUMIstar Omega BMG Labtech, Germany

Microscope Axiovert 40 CFL Zeiss, Germany

Microscope IXM XLS Molecular Devices, USA

Microwave SEVERIN 900&Grill Severin, Germany

Multi-pipette Multipette Xstream Eppendorf, Germany

pH meter HI 221 Hanna Instruments, Canada

Photometer Ultrospec 10 Cell Density Meter Amersham Biosciences, UK

Pipettes PIPETMAN P2, P20, P200, P1000 Gilson, USA

Pipettor VacuuHandControl Vacuubrand, Germany

Power supply Power Pac 300 Bio-Rad Laboratories, USA

qRT-PCR cycler ABI (PRISM 7900 HT) Life Technologies, USA

Refrigerator ProfiLine Liebherr, Switzerland

Rocking platform ST5 Ingenieurbüro CAT, Germany

Shaker for bacteria culture Innova 440 New Brunswick Scientific, Germany

Continued on next page
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Table 2.1: Continued from previous page

Device Name Manufacturer, Country

Sonicator W375 Heat Systems, USA

Spectrophotometer NanoDrop 2000 PeqLab, Germany

Sterile bench HERAsafe HSF 12 Heraeus, Germany

Thermocycler Peqstar 2x gradient PeqLab, Germany

UV transilluminator Gel iX20 Imager Intas, Deutschland

Vortexer Vortex Genie 2 Scientific Industries, USA

Water bath WNE Memmert, Germany

Water purification system Purelab Chorus Elga Labwater, Germany

Wet Blotting System Mini Trans-Blot Cell Bio-Rad Laboratories, USA

2.1.2 Consumables

Table 2.2 lists the items routinely used in this thesis.

Table 2.2: List of consumables

Product Manufacturer, Country

4-12% NuPAGE Bis-Tris Precast Gels Life Technologies, USA

96-well Black/Clear Imaging Plates BD Biosciences, USA

96-well white plates (LumiNunc) Thermo Fisher Scientific, USA

Bottle top filter (Steritop-GV, 0.22 µm) Merck Millipore, Germany

Cell culture plates (10 cm, 6-, 24-, 96-well) TPP, Switzerland

Cell scraper Sarstedt, Germany

Combitips advanced (0.1 ml, 0.5 ml) Eppendorf, Germany

Eppendorf safe-lock micro test tubes (1.5 ml, 2 ml) Eppendorf, Germany

Falcon Tubes (15 ml and 50 ml) Greiner-Bio-One, Germany

Gloves VWR International, Germany

MicroAmp Clear Adhesive Film Life Technologies, USA

Microscope slides Thermo Fisher Scientific, USA

Needles BD Biosciences, USA

Optical well plates for qPCR Life Technologies, USA

Pasteur-Pipetten VWR International, Germany

Petri dishes Greiner-Bio-One, Germany

Pipette tips DeckWorks, Corning, USA

Precision Plus Protein Dual Color Marker Bio-Rad Laboratories, USA

PVDF membrane Bio-Rad Laboratories, USA

Serological pipetts Sarstedt, Germany

Surgical blades B. Braun Melsungen AG, Germany

Syringes BD Biosciences, USA

Weighting dishes Roth, Germany

Whatman Gel-Blotting Paper, 1.4 mm Thermo Fisher Scientific, USA
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2.1.3 Chemicals

All chemicals used in this study are listed in Table 2.3.

Table 2.3: List of chemicals

Chemical Manufacturer, Country

1,4-Dithiothreitol (DTT) Biomol, Germany

2-Propanol Merck, Germany

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) pH 7.5, 1 M AppliChem, Germany

4,6-diamidino-2-phenylindole (DAPI) Sigma-Aldrich, USA

Acetic acid Sigma-Aldrich, USA

Agar, Bacto BD Biosciences, USA

Ampicillin, sodium salt AppliChem, Germany

Bis(2-hydroxyethyl)amino-tris(hydroxy-methyl)methan Sigma-Aldrich, USA

CellTracker Orange CMRA Dye Life Technologies, USA

CD11b MicroBeads, human and mouse Bergisch Gladbach, Germany

Complete, EDTA free, protease inhibitor cocktail tablets Roche, Switzerland

Crystal violet Alfa Aesar, USA

Deoxyadenosine triphosphate (dATP) Life Technologies, USA

Deoxycytidine triphosphate (dCTP) Life Technologies, USA

Deoxyguanosine triphosphate (dGTP) Life Technologies, USA

Deoxythymidine triphosphate (dTTP) Life Technologies, USA

Diethyldicarbonat (DEPC) Sigma-Aldrich, USA

Ethylenediaminetetraacetic acid (EDTA), 500 mM AppliChem, Germany

Fast SYBR Green Master Mix Life Technologies, USA

Fetal bovine serum (FBS) EuroClone, Italy

Fluorescent mounting medium Dako, Germany

Formaldehyde (37%) AppliChem, Germany

GeneRuler 100bp Plus DNA Ladder Thermo Fisher Scientific, USA

GeneRuler 1kb DNA Ladder Thermo Fisher Scientific, USA

Glycerol Merck Millipore, Germany

Glycerol, BioUltra Sigma-Aldrich, USA

Glycine Merck, Germany

GlycoBlue Coprecipitant Life Technologies, USA

Goat serum Life Technologies, USA

HiPerFect Transfection Reagent Qiagen, Germany

IGEPAL CA-630 Sigma-Aldrich, USA

LE Agarose Biozym, Germany

Lipofectamine 2000 Life Technologies, USA

Magnesium chloride (MgCl2) Sigma-Aldrich, USA

Methanol Merck, Germany

Milk powder Biomol, Germany

NuPAGE MOPS SDS Running Buffer Life Technologies, USA

Orange G Sigma-Aldrich, USA

Paraformaldehyde Sigma-Aldrich, USA

Penicillin-Streptomycin Life Technologies, USA

Phosphate-buffered saline (PBS), 10x Life Technologies, USA

Precision Plus Protein Dual Color Marker Bio-Rad Laboratories, USA

RNASEZAP Sigma-Aldrich, USA

RotiLoad Roth, Germany

Sodium chloride (NaCl) AppliChem, Germany

Sodium deoxycholate Sigma-Aldrich, USA

Sodium dodecyl sulfate (SDS) Promega, USA

Sodium hydroxide (NaOH) Sigma-Aldrich, USA

Stripping buffer (for western blots) Thermo Fisher Scientific, USA

Continued on next page
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Table 2.3: Continued from previous page

Chemical Manufacturer, Country

Sucrose Sigma-Aldrich, USA

SUPERase In RNase Inhibitor Life Technologies, USA

SuperSignal West DURA Extended Duration Thermo Fisher Scientific, USA

SYBR Safe DNA Gel Stain Life Technologies, USA

Tris/Borate/EDTA (TBE) buffer (10x) AppliChem, Germany

Tris-HCl, 1M soln., pH 7.4, RNase free Alfa Aesar, USA

Triton X-100 Sigma-Aldrich, USA

Trizma base Sigma-Aldrich, USA

TRIzol Reagent Life Technologies, USA

Tryptone, Bacto BD Biosciences, USA

Tween-20 VWR International, Germany

Yeast extract, Bacto BD Biosciences, USA

2.1.4 Buffers, solutions and media

All buffers and media were prepared with Milli-Q water or DEPC-treated Milli-Q water

(in case of their use for RNA isolation) and sterile filtered (0.22 µm) or autoclaved.

The buffers, solutions and media used in this work are listed in Table 2.3, 2.4 and 2.5.

Table 2.4: List of solutions

Solution Composition

Ampicillin (1000x) 100 mg ampicillin in 1 ml water

Blocking solution 5% (w/v) milk powder, 1x PBS, 0.1% (v/v) Tween-20

DNA loading buffer (6x) 30% (v/v) glycerol, 0.25% (w/v) orange G

Glycerol buffer 20 mM Tris (pH 7.5, RNase-free), 75 mM NaCl, 0.5 mM EDTA, 50% (v/v) glycerol

LB agar 10 g tryptone, 5 g yeast extract, 10 g NaCl, 15 g agar in 1 l water (pH 7.0, adjusted

with NaOH)

LB medium 10 g tryptone, 5 g yeast extract, 10 g NaCl in 1 l water (pH 7.0, adjusted with NaOH)

Lysis buffer 10 mM Tris-HCl (pH 7.5, RNase-free), 150 mM NaCl, 0.15% (v/v) IGEPAL CA-630

Nuclear lysis buffer 10 mM HEPES (pH 7.6), 7.5 mM MgCl2, 0.2 mM EDTA, 0.3 M NaCl

Ripa buffer 25 mM Tris (pH 7.6), 150 mM NaCl, 1% (v/v) IGEPAL CA-630, 1% sodium deoxy-

cholate, 0.1% SDS

Sucrose buffer 10 mM Tris-HCl (pH 7.5, RNase-free), 150 mM NaCl, 24% (w/v) sucrose

PBST 1x PBS, 0.1% (v/v) Tween-20

Transfer buffer 3.03 g Trizma base, 14.4 g glycine, 140 ml methanol in 1 l water

Table 2.5: List of media

Media Manufacturer, Country

DMEM, High Glucose, Pyruvate Life Technologies, USA

RPMI 1640 Medium Life Technologies, USA

Opti-MEM Reduced Serum Medium Life Technologies, USA

PBS, 1x Life Technologies, USA

Trypsin-EDTA (0.25%), phenol red Life Technologies, USA



2.1 Materials 33

2.1.5 Molecular biology kits

All molecular biology kits used in this thesis are listed in Table 2.6.

Table 2.6: List of molecular biology kits

Kit Manufacturer, Country

Bicinchoninic Acid Kit for Protein Determination Sigma-Aldrich, USA

Dual-Glo Luciferase Assay System Promega, USA

ExactStart Eukaryotic mRNA 5’- & 3’-RACE Kit Epicentre, USA

Fast SYBR Green Master Mix Life Technologies, USA

High-Capacity RNA-to-cDNA Kit Life Technologies, USA

Mix & Go E. coli Transformation Kit & Buffer Set Zymo Research, USA

TOPO TA Cloning Kit for Subcloning Life Technologies, USA

QIAamp DNA Mini Kit Qiagen, Germany

QIAGEN Plasmid Mini Kit Qiagen, Germany

QIAprep Spin Miniprep Kit Qiagen, Germany

QIAquick Gel Extraction Kit Qiagen, Germany

QIAquick PCR Purification Kit Qiagen, Germany

SuperSignal West Dura Chemiluminescent Substrate Thermo Fisher Scientific, USA

2.1.6 Enzymes and proteins

All enzymes used in this work are listed in Table 2.7.

Table 2.7: List of enzymes and proteins

Enzyme Manufacturer, Country

Antarctic Phosphatase New England Biolabs, USA

BamHI New England Biolabs, USA

BbsI New England Biolabs, USA

BglII New England Biolabs, USA

DNase I New England Biolabs, USA

MluI New England Biolabs, USA

Phusion High-Fidelity DNA Polymerase Thermo Fisher Scientific, USA

T4 DNA Ligase New England Biolabs, USA

Taq DNA Polymerase Life Technologies, USA

2.1.7 Plasmids

Table 2.8 summarizes all plasmids and constructs used in this work.

Table 2.8: List of plasmids

Plasmid Description Manufacturer, Country

pCR2.1-TOPO for sequencing of PCR amplified or

subcloning transcript or genomic re-

gions

Life Technologies, USA

pGL3-Basic Vector for cloning of Renilla reniformis lu-

ciferase

Promega, USA

pRL-TK Vector or amplification of Renilla reniformis

luciferase

Promega, USA

Continued on next page
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Table 2.8: Continued from previous page

Plasmid Description Manufacturer, Country

pGL3-Renilla Luc vector for cloning of bidirectional promoter

sequences

This study

pcDNA3 for overexpression of ncRNA-RB1 Invitrogen, USA

pX330-U6-Chimeric_BB-CBh-

hSpCas9

for cloning of guide RNAs specific to

ncRNA-RB1 genomic locus

Addgene, USA

2.1.8 Antibodies

Table 2.9 summarizes all antibodies used in this work.

Table 2.9: List of antibodies

Antibody Manufacturer, Country

α-tubulin (DM1A), mouse mAb Cell Signaling, USA

β-actin (8H10D10), mouse mAb Cell Signaling, USA

Alexa Fluor 488 Goat Anti-Mouse Life Technologies, USA

CALR (FMC 75), mouse mAb Abcam, UK

HRP-linked, anti-mouse IgG Cell Signaling, USA

Rb1 (4H1), mouse mAb Cell Signaling, USA

CD11b-FITC, anti-human and mouse Miltenyi Biotec, Germany

2.1.9 Oligonucleotides

All primers, dsiRNAs, guide RNAs and ASOs used in this thesis are listed in Tables

2.10, 2.11, 2.12, 2.13, 2.14, 2.15 and 2.16. All were obtained from Integrated DNA

Technologies, Belgium.

Cloning primers

Table 2.10: List of cloning primers

Name Sequence Application

BRCA1_FW 5’-GGAGATCTAAGCCGCAACTGGAAGAGTA-3’ cloning of BRCA1 promoter via BglII

and HindIII

BRCA1_RV 5’-GGAAGCTTACCCAGAGCAGAGGGTGAAG-3’ cloning of BRCA1 promoter via BglII

and HindIII

CALR_FW 5’-AGCATCTTATCGTCCCTACCA-3’ cloning of CALR promoter into pCR2.1

CALR_RV 5’-CACGGATAGCAGCATGGC-3’ cloning of CALR promoter into pCR2.1

CCNG1_FW 5’-GGAGATCTCAGCCGATTGACCTGACC-3’ cloning of CCNG1 promoter via BglII

and HindIII

CCNG1_RV 5’-GGAAGCTTGAGACAACTCGGCCCTGAT-3’ cloning of CCNG1 promoter via BglII

and HindIII

FKTN_FW 5’-GGAGATCTGGTGAGGATGCGACAAGAGT-3’ cloning of FKTN promoter via BglII

FKTN_RV 5’-GGAAGCTTGAGCCTCCCGTACCTTACCT-3’ cloning of FKTN promoter via BglII

Magoh_FW 5’-GGAGATCTTGCAGTCTTGTTGCCACTTC-3’ cloning of Magoh promoter via BglII

and HindIII

Magoh_RV 5’-GGAAGCTTGCCTGAACTTCCAAGAGCAA-3’ cloning of Magoh promoter via BglII

and HindIII

Continued on next page



2.1 Materials 35

Table 2.10: Continued from previous page

Name Sequence Application

ncRNA-RB1_FW 5’-GGAAGCTTTCACGTCCGCGAGGCTCC-3’ cloning and overexpression of ncRNA-

RB1 via XbaI and HindIII

ncRNA-RB1_RV 5’-GGTCTAGACATCAGACAAAGGTTGGGATT-3’ cloning and overexpression of ncRNA-

RB1 via XbaI and HindIII

RB1_FW 5’-GGAAGCTTGCAACTGAGCGCCGCGTC-3’ cloning of RB1 promoter via HindIII

and BglII

RB1_RV 5’-GGAGATCTAGCGCCCCAGTTCCCCAC-3’ cloning of RB1 promoter via HindIII

and BglII

RL_FW 5’-GGACGCGTCACTATAGGCTAGCCACCATGA-3’ cloning of Renilla Luc gene from pRL-

TK Vector via MluI and BamHI

RL_RV 5’-GGGGTACCTGGATCCTTATCGATTTTACCA-3’ cloning of Renilla Luc gene from pRL-

TK Vector via MluI and BamHI

Mutation primers for RB1 promoter

Table 2.11: List of mutation primers for RB1 promoter

Name Sequence Application

RB1prom_2Mut_FW 5’-GGGAGCCTCGCGGACGAGCCGCCGCGGGCGGA

AGT-3’

introduction of 2 bp mutation into the

ncRNA INR sequence

RB1prom_2Mut_RV 5’-ACTTCCGCCCGCGGCGGCTCGTCCGCGAGGCT

CCC-3’

introduction of 2 bp mutation into the

ncRNA INR sequence

RB1prom_3Del_FW 5’-CCCGGGAGCCTCGCGGACGCGCCGCGGGCGGA

AGT-3’

introduction of 3 bp deletion into the

ncRNA INR sequence

RB1prom_3Del_RV 5’-ACTTCCGCCCGCGGCGCGTCCGCGAGGCTCCC

GGG-3’

introduction of 3 bp deletion into the

ncRNA INR sequence

RB1prom_9Del_FW 5’-GGAGCCTCGCGCCGCGGGCGGAAGTGA-3’ deletion of the ncRNA INR sequence

RB1prom_9Del_RV 5’-GTCACTTCCGCCCGCGGCGCGAGGCTCC-3’ deletion of the ncRNA INR sequence

RB1prom_10Del_FW 5’-CCGCGGTTGGCAGTTGCCGGGCGGGGGA-3’ deletion of the RB1 BREu sequence

RB1prom_10Del_RV 5’-TCCCCCGCCCGGCAACTGCCAACCGCGG-3’ deletion of the RB1 BREu sequence

RB1prom_TATA_FW 5’-AAGTGACGTTTTATAGCGGTTGGA-3’ introduction of a TATA box into the

ncRNA INR sequence

RB1prom_TATA_RV 5’-TCCAACCGCTATAAAACGTCACTT-3’ introduction of a TATA box into the

ncRNA INR sequence

RB1prom_RL_FW 5’-ACCACTGCGGACCAGTTATC-3’ anneals in the Renilla Luc gene

RB1prom_FL_RV 5’-GCCTTATGCAGTTGCTCTCC-3’ anneals in the Firefly Luc gene

qRT-PCR primers

Table 2.12: List of qRT-PCR primers

Name Sequence

β-actin_FW 5’-CGACAGGATGCAGAAGGAG-3’

β-actin_RV 5’-GTACTTGCGCTCAGGAGGAG-3’

7SL_FW 5’-GTCAAAACTCCCGTGCTGAT-3’

7SL_RV 5’-GCTGGAGTGCAGTGGCTATT-3’

BRCA1-mRNA_FW 5’-CAATGGAGATAATGGCAGCA-3’

BRCA1-mRNA_RV 5’-TCCAAATTCCACGTGACTACC-3’

CALR_FW 5’-GACATGCACGGAGACTCAGA-3’

Continued on next page
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Table 2.12: Continued from previous page

Name Sequence

CALR_RV 5’-AGCACGTTCTTGCCCTTGTA-3’

CBX_FW 5’-AGCGCAAAGCTGATTCTGAT-3’

CBX_RV 5’-AGCCTCGTGGCTTTTCTGA-3’

CCNG1-mRNA_FW 5’-TCACCTTCCAACAATTCCTGA-3’

CCNG1-mRNA_RV 5’-AAGGTTGTGGAGAAAGGCTTC-3’

COPRS_FW 5’-GGACTCGGAGTTGAAAGCAG-3’

COPRS_RV 5’-AAATGCTCTCCTGGATGTCG-3’

CXCL5_FW 5’-GATCCAGAAGCCCCTTTTCT-3’

CXCL5_RV 5’-GAAACTTTTCCATGCGTGCT-3’

EPCAM_FW 5’-CGTCAATGCCAGTGTACTTCA-3’

EPCAM_RV 5’-TCCCAAGTTTTGAGCCATTC-3’

EZR_FW 5’-GGCTAAGGAGGAGCTGGAGA-3’

EZR_RV 5’-TGGCAGTGTATTCTGCAAGC-3’

IL6_FW 5’-CCTTCCAAAGATGGCTGAAA-3’

IL6_RV 5’-CCTCAAACTCCAAAAGACCA-3’

ncRNA-BRCA1_FW 5’-CACCGCACCTGGTCGATTAA-3’

ncRNA-BRCA1_RV 5’-GGGAGCCTTGATGTGTGCTT-3’

ncRNA-CCNG1_FW 5’-AGTGGTTCTGCCCCATCTTT-3’

ncRNA-CCNG1_RV 5’-GTGCTTTGAGAGGCCAAAGT-3’

ncRNA-PRKCQ_FW 5’-GGTGGGACTGCTTTCAACTT-3’

ncRNA-PRKCQ_RV 5’-GCTGTTATCCGTTTGCCATT-3’

ncRNA-RB1_FW1 5’-GGACGTGCTTCTACCCAGAAC-3’

ncRNA-RB1_FW2 5’-ACAAACTTGGAGCGCTGATA-3’

ncRNA-RB1_RV 5’-TCCTTCTCAGTTGACGAGTTCA-3’

preGAPDH_FW 5’-CAATGACCCCTTCATTGACC-3’

preGAPDH_FW 5’-GGCTCACCATGTAGCACTCA-3’

PRKCQ-mRNA_FW 5’-TGAGAGGTGCAGGAAGAACA-3’

PRKCQ-mRNA_RV 5’-GCCTTCCGTCTCAAATTCAT-3’

Promt-40-9_FW 5’-GGCATCTGGACTAGAATGAA-3’

Promt-40-9_RV 5’-TTGACACCGCCTAATCTTAT-3’

Promt-40-33_FW 5’-CTGGCCTAGCTAAAGTCTCA-3’

Promt-40-33_RV 5’-TCTGCTCCTAGCTCTCAGTC-3’

Promt-40-54_FW 5’-AAGGCCCCTACTTAACTCTC-3’

Promt-40-54_RV 5’-GAGTTTTGGATGGAAAATGA-3’

RB1-mRNA_FW 5’-GAGCAAGGTCTAAGGCAGGA-3’

RB1-mRNA_FW 5’-CTGGCAGTTTGTTGCTTCAG-3’

RRP40_FW 5’-TCATTGGACAGGATGGTCTG-3’

RRP40_RV 5’-CCCACTTCCTGTATGATTTCAC-3’

Sequencing primers

Table 2.13: List of sequencing primers

Name Sequence

M13_FW 5’-TGTAAAACGACGGCCAGT-3’

M13_RV 5’-CAGGAAACAGCTATGACC-3’
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Guide RNAs

Table 2.14: List of guide RNAs

Name Sequence

ncRNA-RB1_guide1 5’-CCCTATCAGACCCCGGGATA-3’

ncRNA-RB1_guide2 5’-TGGCTTGCCTCACGTTACAA-3’

Antisense oligonucleotides

Table 2.15: List of antisense oligonucleotides

Name Sequence

ASO_ctrl 5’-G*C*G*C*C*T*G*G*C*A*A*T*T*A*A*A*A*A-3’

ASO1_ncRNA-RB1 5’-G*G*A*C*C*C*A*C*G*C*C*A*G*G*T*T*T*C-3’

ASO2_ncRNA-RB1 5’-C*C*T*C*A*T*G*A*C*T*T*A*G*C*G*T*C*C-3’

ASO3_ncRNA-RB1 5’-G*T*T*C*T*G*G*G*T*A*G*A*A*G*C*A*C*G-3’

*: phosphorothioate-modification

Dicer substrate RNAs

Table 2.16: List of Dicer substrate RNAs

Name Sequence

dsi1_EXOSC3_s 5’-CGUUGAGCCUGAAUGCUAGAGCGTG-3’

dsi1_ EXOSC3_as 5’-CACGCUCUAGCAUUCAGGCUCAACGGU-3’

dsi2_ EXOSC3 _s 5’-AGAAACAGACCAAAUGUGCAGGCTA-3’

dsi2_ EXOSC3_as 5’-UAGCCUGCACAUUUGGUCUGUUUCUUU-3’

dsi1_ncRNA-RB1_s 5’-GACGCUAAGUCAUGAGGAAUUAAAC-3’

dsi1_ncRNA-RB1_as 5’-GUUUAAUUCCUCAUGACUUAGCGUCCC-3’

dsi2_ncRNA-RB1_s 5’-CUGAACUCGUCAACUGAGAAGGAAA-3’

dsi2_ncRNA-RB1_as 5’-UUUCCUUCUCAGUUGACGAGUUCAGAU-3’

dsi1_RB1_s 5’-CUCCCAUGUUGCUCAAAGAACCATA-3’

dsi1_RB1_as 5’-UAUGGUUCUUUGAGCAACAUGGGAGGT-3’

dsi2_RB1_s 5’-UCCUGCUCUGGGUCCUCCUCAGGAG-3’

dsi2_RB1_as 5’-CUCCUGAGGAGGACCCAGAGCAGGACA-3’

2.1.10 Cell lines

All cell lines and the bacterial strain used in this work are listed in Tables 2.17 and 2.18.

Table 2.17: List of cell lines

Cell Line Description

A549 Human lung carcinoma cell line; initiated in 1972 through explant culture of lung carcinomatous

tissue of a 58-year-old male [Lieber et al., 1976]

Continued on next page
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Table 2.17: Continued from previous page

Cell Line Description

HEK293 Human embryonic kidney cell line; initiated in 1973 by transformation of cells with sheared

adenovirus 5 DNA [Graham et al., 1977]. Cloning and sequencing of the adenovirus 5 insert

determined that a colinear segment from nucleotides 1 to 4,344 bp is integrated into chromosome

19 (19q13.2) [Louis et al., 1997]

HeLa Human cervical carcinoma cell line; initiated in 1951 by explant from a 31-year-old female

[SCHERER et al., 1953]

HepG2 Human hepatoblastoma-derived cell line; derived from a 15-year-old adolescent male and initiated

in 1979 [López-Terrada et al., 2009],[Aden et al., 1979]

IMR90 Human fibroblast cell line, derived from the lungs of a 16-week female fetus in 1975 [Nichols

et al., 1977]

K562 Human chronic myelogenous leukemia cell line, established in 1970 from the pleural effusion of

a 53-year-old female [Lozzio and Lozzio, 1979]

MCF7 Human breast adenocarcinoma cell line, established from the pleural effusion of a 69-year-old

female in 1976 [Lippman et al., 1976]

THP-1 Human acute monocytic leukemia cell line, derived from a 1-year-old male and established in

1980 [Tsuchiya et al., 1980]

U2OS Human osteosarcoma cell line derived in 1964 from a moderately differentiated sarcoma of the

tibia of a 15-year-old female [Pontén and Saksela, 1967]

2.1.11 Bacterial strain

Table 2.18: List of bacterial strain

Bacterial Strain Description Manufacturer, Country

E. coli Zymo DH5-alpha F-φ80lacZ∆M15 ∆(lacZYA-argF)U169 deoR nupG

recA1 endA1 hsdR17(rK- mK+) phoA glnV44

(supE44) thi-1 gyrA96 relA1, λ

Zymo Research, USA

2.1.12 Software

The software used in this thesis is listed in Table 2.19.

Table 2.19: List of software

Software Reference

CellQuest Pro Becton Dickinson, USA

SDS Software 2.2 Applied Biosystems, USA

Primer3 Untergasser et al., 2012 [Untergasser et al., 2012]

UCSC Kent et al., 2002 [Kent et al., 2002],[Kent, 2002]

DAVID Huang et al., 2009 [Huang et al., 2009a],[Huang et al.,

2009b]

MetaXpress 5.1 Molecular Devices, USA

FlowJo Tree Star, USA
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2.2 Methods

2.2.1 Molecular biology methods

2.2.1.1 Isolation of genomic DNA

Genomic DNA from human cell lines was isolated using the QIAamp DNA Mini Kit

according to the manufacturer’s instructions.

2.2.1.2 Polymerase chain reaction

Polymerase chain reaction (PCR) was used to amplify genomic regions. PCR reaction

mixes were prepared according to the Phusion High-Fidelity DNA Polymerase protocol

and as described below (Table 2.20):

Table 2.20: Composition of PCRs

Compound Amount

Phusion HF buffer (5x) 4 µl

dNTP mixture (10 mM of dATP, dCTP, dGTP, dTTP) 0.4 µl

DMSO 0.6 µl

Primer* mixture (FW and RV, each 10 µM) 1 µl

DNA 50-200 ng

Phusion DNA polymerase (2U/µl) 0.2 µl

ddH2O ad 20 µl

*: Primers used are listed in Tables 2.10, 2.11, 2.12, 2.13, 2.14, 2.15 and 2.16

The amplification was performed using the following PCR program (Table 2.21):

Table 2.21: Conditions for PCRs

Step Temperature [◦C] Time Cycles

Initial denaturation 98 30 s 1

Denaturation 98 5-10 s

Annealing Tm + 3◦C 10-30 s 35

Extension 72 30 s/kb

Final extension 72 10 min 1

2.2.1.3 Site-directed mutagenesis PCR

To introduce desired mutations or internal deletions of several base pairs into PCR frag-

ments of the RB1 promoter sequence, two consecutive PCR reactions were carried out.

Four primers were used of which two are located at the ends of the full length DNA

region to be amplified, more specifically in the Firefly and Renilla luciferase genes. Two

additional primers were designed to anneal at the site of mutation, harboring the muta-

tions to be introduced and were overlapping to each other. These primers were annealing

in the RB1 promoter sequence.

First, two PCR amplicons were generated by standard PCR (Section 2.2.1.2) using one
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outer primer and one of the mutation primers, respectively. Secondly, a PCR was con-

ducted so that the PCR mix included both previously amplified PCR fragments (1µl of

each PCR reaction) that served as primers to each other due to their sequence overlap.

In the 6th cycle of this PCR reaction, the two outer primers were added (Table 2.21) to

amplify the mutated full-length PCR fragments.

2.2.1.4 Agarose gel electrophoresis

Nucleic acids were separated by agarose gel electrophoresis, allowing to determine speci-

ficity and amount of amplified PCR products or digested plasmids (sections 2.2.1.2,

2.2.1.9). Each DNA sample was mixed with 6x DNA loading buffer and the mixture

was loaded onto agarose gels (0.8-1.0% agarose in 1x TBE buffer supplemented with

SybrSafe). As size markers, commercial DNA ladders were loaded. Gels were run at a

constant voltage of 110 V in 1x TBE buffer for 20-40 min. DNA bands were visualized

by UV illumination at 254 nm.

2.2.1.5 DNA gel extraction

DNA bands of interest were cut from agarose gels during UV illumination using a surgical

blade. DNA was extracted from the gel using the QIAquick Gel Extraction Kit following

the manufacturer’s instructions.

2.2.1.6 Determination of nucleic acid concentration and purity

The concentration of DNA and RNA in aqueous solution was determined by light ab-

sorption at a wavelength of 260 nm using a Nanodrop spectrophotometer. An optical

density (OD) of 1 corresponds to 50 µg/ml for dsDNA and to 40 µg/ml for RNA. The

purity of the sample is determined by the ratio of absorbances measured at 260 and 280

nm (A260/A280) and reaches a value of ∼1.8 for pure DNA 2.0 for pure RNA.

2.2.1.7 A-tailing of PCR products

PCR products that were amplified using the Phusion DNA polymerase (Section 2.2.1.2)

needed to be A-tailed in order to clone these into the TOPO TA vector. To this end,

the Taq polymerase was used which catalyzes the non-template directed addition of an

adenine residue to the 3’-end of both DNA strands. The A-tailing reaction was performed

by incubating the following mix (Table 2.22) at 72◦C for 20 min and subsequent use of

the QIAquick PCR Purification Kit according to the manufacturer’s recommendations,

thereby removing residual nucleotides.
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Table 2.22: Composition of A-tailing reactions

Compound Amount

PCR buffer (10x) 2 µl

MgCl2 (50 mM) 0.6 µl

dATP (1 mM) 2 µl

Taq DNA polymerase (5 U/µl) 0.5 µl

ddH2O ad 20 µl

2.2.1.8 TOPO TA cloning

For subcloning or sequencing, PCR products (Section 2.2.1.2) were cloned into the

pCR2.1-TOPO vector using the TOPO TA Cloning Kit for Subcloning and following

the recommendations of the manufacturer. Within a few minutes, this kit allows to lig-

ate A-tailed PCR products into the linearized pCR2.1-TOPO vector that harbors single

3’-T overhangs and a covalently bound topoisomerase I.

2.2.1.9 Restriction digest

PCR products and vectors were digested with restriction enzymes to generate compatible

ends for subsequent ligation reactions. Depending on the cloning strategy, respective

restriction endonucleases from New England Biolabs were used and buffers as well as

incubation temperatures were chosen according to the instructions. A typical digestion

reaction contained either 1-3 µg of plasmid DNA, the eluate of a gel extraction reaction

(Section 2.2.1.5) or the eluate of a PCR purfication reaction (QIAquick PCR Purification

Kit, Table 2.6) in case of PCR products in a final volume of 20 µl. After digestion, the

DNA was purified from restriction enzymes as well as small DNA fragments using the

QIAquick PCR Purification Kit according to the manufacturer’s instructions. In case of

larger DNA by-products, the digested DNA was size separated on an agarose gel (Section

2.2.1.4) followed by gel extraction (Section 2.2.1.5).

2.2.1.10 Dephosphorylation of vectors

To prevent the re-ligation of cohesive ends of a vector, a dephosphorylation reactions

were performed. Following restriction digest and purification (Section 2.2.1.9), the di-

gested vector was incubated with Antarctic phosphatase according to the instructions

of the manufacturer. Briefly, a 20 µl reaction containing vector, buffer and enzyme was

incubated at 37◦C for 20 min, followed by a 10 min incubation at 65◦C to heat-inactivate

the enzyme.

2.2.1.11 Ligation of DNA

Digested inserts and vectors were ligated due to the presence of cohesive ends. Ligation

reactions typically contained a 3-fold molar excess of insert DNA in proportion to the vec-
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tor. A 10 µl ligation reaction containing T4 ligase (400 U), buffer, vector and insert was

set up according to the manufacturer’s instructions and incubated at room-temperature

for 1 h or at 16◦C overnight. The mixture was then directly used for transformation of

E. coli cells (Section 2.2.1.13) or stored at -20◦C.

2.2.1.12 Generation of chemically competent E. coli cells

To generate chemically competent E. coli cells, the Mix & Go E. coli Transformation Kit

was employed. Briefly, E. coli Zymo DH5-a cells were plated on an agar plate without

antibiotics and incubated at 37◦C for 18 hours. The following day, one colony was picked

and incubated in 4 ml LB medium at 37◦C and 300 rpm overnight. A day culture was

started by transferring 0.8 ml of overnight culture into 50 ml of ZymoBroth medium and

incubation at 26◦C and 300 rpm until the suspension reached an OD600 of 0.6. The

culture was cooled down on ice for 10 min and cells were pelleted by centrifugation at

3,000 rpm for 10 min at 4◦C. The supernatant was removed and cells were resuspended

in 5 ml ice-cold 1x Wash Buffer. Cells were then re-pelleted by centrifugation at 3,000

rpm for 10 min at 4◦C. The supernatant was removed and cells were resuspended in 5

ml ice-cold 1x Competent Buffer. Finally, 50 µl of suspension were aliquoted on ice into

0.5 ml reaction tubes, each, and stored at -80◦C until competent cells were transformed

(Section 2.2.1.13).

2.2.1.13 Transformation of E. coli cells

Chemically competent E. coli cells, generated with the Mix & Go E. coli Transformation

Kit (Section 2.2.1.12), were thawed on ice, then 5 µl of ligation reaction (Section 2.2.1.11)

or 200 ng of plasmid were carefully added to the cells followed by further incubation of

the mixture on ice for 10 min. Cells were spread on pre-warmed agar plates containing

ampicillin (100 µg/ml) and inoculated at 37◦C for 18 hours.

2.2.1.14 Colony PCR

In order to test whether the cloning was successful, colonies of transformed E. coli cells

were used in colony PCRs. To this end, a colony was resuspended in 10 µl of ddH2O and

1 µl of this mixture was used in a PCR reaction (Section 2.2.1.2) containing the primer

pairs used to amplify the desired insert or primers that annealed in the vector backbone.

2.2.1.15 Bacterial culture

Following successful cloning, plasmids were amplified by culturing positive bacterial

clones in 4 ml LB medium containing ampicillin (100 µg/ml) at 37◦C for and 300 rpm

for 18 hours.
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2.2.1.16 Plasmid isolation and analytical digest

To extract and purify plasmid DNA from bacterial cultures on a small scale, the QIAGEN

Plasmid Mini Kit was used according to the protocol of the manufacturer, if plasmids

were subsequently transfected into human cells (Section 2.2.2.2). The QIAprep Spin

Miniprep Kit was used, if plasmids were subsequently used for sequencing or in further

cloning reactions.

To test whether plasmids contained desired inserts, restriction digestions followed by

agarose gel electrophoresis were performed (Section 2.2.1.5).

2.2.1.17 Sanger sequencing

Sequences of cloned inserts which showed the correct size in agarose gel electrophoresis

were verified by Sanger sequencing. 5 µl of plasmid DNA (at 80-100 ng/µl) or 5 µl of

PCR product (at 20-80 ng/µl) were mixed with 5 µl of primers (at 5 µM), which either

annealed in the plasmid backbone or on the amplified PCR fragment, and send to GATC

Biotech AG (Germany) for sequencing.

2.2.1.18 Diethylpyrocarbonate-treatment of dH2O

To inactivate RNases, dH2O was treated with DEPC before use in RNA isolation proce-

dures. 1 ml of DEPC was added to 1 l of dH2O and the solution was shaken vigorously

to bring the DEPC into solution. Following incubation at 37◦C overnight, the solution

was autoclaved to remove traces of DEPC.

2.2.1.19 RNA isolation of human cells

Trizol reagent was used to isolate RNA from human cells in culture. Before isolation,

growth medium was removed from the cells and cells were rinsed with 1x PBS. 1 ml Trizol

reagent was directly transferred into the cell culture dish or on the cell pellet thereby

lysing cells. RNA was then isolated according to the manufacturer’s recommendation. To

help precipitation and for visibility of small RNA amounts, 1 µl of GlycoBlue was added

to the sample when precipitating RNA by adding isopropanol during the procedure.

Following isolation, RNA was dissolved in 30-50 µl of DEPC-treated water. The obtained

RNA was stored at -80◦C.

2.2.1.20 DNase I treatment of RNA

Preceding reverse transcription (Section 2.2.1.21) or use in qRT-PCR reactions (Section

2.2.1.22), isolated RNA was treated with DNase I to remove traces of co-purified DNA.

The DNase I reaction was performed by incubating the following mixture (Table 2.23)

at 37◦C for 15 min.
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Table 2.23: Composition of DNase I reactions

Compound Amount

DNase I Reaction Buffer (10x) 2 µl

DNase I 1 µl

RNA 500-4000 ng

DEPC-treated ddH2O ad 20 µl

Subsequently, the DNase I enzyme was inactivated by adding 2.2 µl EDTA (50 mM) to

the mixture, thorough pipetting and incubation for 10 min at 75◦C.

2.2.1.21 Complementary DNA synthesis

For reverse transcription of RNA, the High-Capacity RNA-to-cDNA Kit was used. The

kit includes the MultiScribe MuLV reverse transcriptase, dNTPs, a mixture of random

octamers and oligo-dT-16 oligonucleotides to generate the first strand of the comple-

mentary DNA (cDNA). Per reaction, up to 2 µg of freshly isolated RNA or 9 µl of

DNase I-treated RNA was used and reverse transcribed according to the manufacturer’s

protocol. The cDNA was diluted with 4 volumes of dH2O before used in subsequent

applications.

2.2.1.22 Quantitative real-time PCR

The Fast SYBR Green Master Mix was used for quantitative real-time PCR (qRT-PCR)

applications. To achieve and monitor DNA synthesis from cDNA, this master mix in-

cludes the AmpliTaq Fast DNA Polymerase, SYBR Green I, dNTPs, Uracil-DNA Gly-

cosylase and the ROX dye as passive internal reference. PCR products are monitored

by measuring the increase in fluorescence caused by the binding of SYBR Green dye to

double-stranded DNA. Primers used in qRT-PCRs were designed so that the resulting

PCR product was 80-120 bp in size and originated from amplification of two exonic se-

quences, whenever possible. Using Primer3 software, primers with a melting temperarure

(Tm) close to 60◦C were chosen. qRT-PCRs were set up in 384-well plates with a final

reaction volume of 10 µl per well (Table 2.24).

Table 2.24: Composition of qRT-PCRs

Compound Amount

Fast SYBR Green Master Mix 5 µl

Primer* mixture (FW and RV, each 10 µM) 0.5 µl

cDNA 2-3 µl

ddH2O ad 10 µl

*: Primers used are listed in Tables 2.10, 2.11, 2.12, 2.13, 2.14, 2.15 and 2.16
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The amplification was performed using the following 2-step PCR program on a PRISM

7900 HT (ABI) cycler using the standard setting and including a melting curve profile

(Table 2.25):

Table 2.25: Conditions for qRT-PCRs

Step Temperature [◦C] Time Cycles

Initial denaturation 95 20 s 1

Denaturation 95 1 s

Annealing & Extension 60 20 s 40

Melting 95 15 s

Melting 60 15 s 1

All reactions were performed in triplicates. To control for primer specificity and contam-

ination of the reaction mixture, minus-reverse transcriptase controls were included. The

SDS2.2 software was used to determine the threshold cycle (Ct) independently for each

primer pair. The fold-difference in expression for each gene of interest was determined

using the comparative Ct Method (2-(∆)(∆)Ct method).

2.2.1.23 Next generation sequencing

RNA sequencing libraries were prepared from total RNA with the TruSeq RNA Sample

Preparation Kit v2 at the MPIMG sequencing facility. Sequencing was performed on a

HiSeq 2000 instrument using paired-end sequencing (2x50bp).

2.2.2 Cell culture methods

2.2.2.1 Culture of human cell lines

The human cell lines A549, HEK293, HeLa, HepG2, MCF7 and U2OS were cultured at

37◦C with 5% CO2 in Dulbecco’s Modified Eagle Medium (DMEM) containing 10% heat

inactivated fetal bovine serum (FBS), 2 mM L-glutamine, 50 µg/ml penicillin and 50

µg/ml streptomycin. Adherent cultures at ∼80% confluence were routinely split 1:5 in

10 cm culture dishes as follows: Cells were washed in pre-warmed PBS, 1 ml Trypsin-

EDTA (0.25%) was added to the dishes that were placed at 37◦C for 5 minutes. After

cells were detached from the dishes, 5 ml pre-warmed culture medium was added and

the cells transferred to a 50 ml falcon tube. Cells were spun down at 200 xg and plated

in new dishes with fresh culture medium. The K562 cell line was cultured under the

same conditions but in RPMI 1640 Medium. K562 cells were split every second day

to a dilution of 300,000 cells/ml by transferring an appropriate volume of cells to new

culture medium. This was preceded by spinning the cells down once a week, removal of

exhausted culture medium and resuspension in fresh medium.
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2.2.2.2 Transfection of human cells

Lipofectamine 2000 was used to transfect A459 cells, whereas HiPerFect Transfection

Reagent was used for transfections of U2OS cells. One day before transfection, cells were

plated to reach 60-80% confluence the following day. Depending on the RNA amount

needed for further analysis, cells were transfected in 6-well plates (e.g. for qRT-PCR

analysis (Section 2.2.1.22) and next generation sequencing (Section 2.2.1.23)) or in 10

cm dishes (e.g. for cellular fractionation (Section 2.2.2.5)). Before transfection, complete

culture medium was exchanged to antibiotics-free growth medium. Lipofectamine 2000

was gently diluted in Opti-MEM reduced serum medium and incubated for 5 min before

transferred to a reaction tube containing nucleic acids diluted in Opti-MEM. The mixture

was incubated for 20 min to allow the nucleic acid - lipid complex to form and then

pipetted onto the cells. Table 2.26 reactions gives an overview on the volumes used for

respective transfections.

Table 2.26: Composition of human cell transfections

Compound Amount for transfection of a 6 well Amount for transfection of a 10 cm dish

Growth medium 800 µl 4 ml

Opti-MEM 2x 100 µl 2x 500 µl

dsiRNA, ASO/plasmid 0.1-50 nM final conc./10-1000 ng 10 nM final conc. of dsiRNA

Lipofectamine 2000 2 µl 10 µl

DsiRNA transfections carried out with HiPerFect were done in 6-well plates. Per well,

200 µl of Opti-MEM was mixed with the dsiRNA (final conc. of 10 nM) and with 6 µl

of HiPerFect. The mixture was incubated at RT for 10 min and carefully pipetted on

U2OS cells, which were previously seeded in 800 µl complete growth medium.

24 hours post transfections, 1 ml or 5 ml of complete culture medium was added per well

of a six well plate or per 10 cm dish, respectively. Initially, the cell lines were transfected

with fluorescent dsiRNAs to control for transfection efficiencies.

2.2.2.3 Luciferase assay

For luciferase assays, 10,000 HEK293 or A549 cells were plated in 200 µl complete growth

medium per well of a 96-well white plate one day before transfection. Prior to trans-

fection, complete growth medium was removed and replaced with 50 µl antibiotics-free

growth medium per well.

200 ng of pGL3-bidirectional promoter plasmid were transfected per well. To this end,

0.5 µl Lipofectamine 2000 was gently mixed with 25 µl Opti-MEM and incubated for

5 min before transferred to a reaction tube containing luciferase plasmids diluted with

Opti-MEM to a final volume of 25 µl. The 50 µl reaction was gently mixed and incubated

for 20 min before pipetted onto the cells. Transfections of all plasmids were performed

in triplicates. The medium was removed 24 hours post transfection and replaced by 25
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µl of 1x PBS. 25 µl of Dual-Glo reagent was then added to each well, and the plate was

incubated for 10 min on a shaking platform before determination of Firefly luciferase

activity using a microplate luminometer. 25 µl of Stop & Glo reagent was further added,

incubated for 10 min, followed by determination of Renilla reniformis luciferase activity.

As a control, the pGL3-bidirectional plasmid not containing any promoter was trans-

fected. All determined promoter-specific Firefly and Renilla reniformis luciferase activ-

ities were normalized to the respective luciferase activities of the promoter-less plasmid

to control for variations between biological replicates.

2.2.2.4 Preparation of cellular extracts

For preparation of cellular extracts, cells were rinsed with PBS, plates were placed on

ice and 100-200 µl of RIPA buffer supplemented with proteinase inhibitors was added

per well of a 6-well plate. Cells were scraped off the culture surface and lysates were

transferred into reaction tubes for sonication (10 bursts, medium intensity). Tubes were

then spun for 5 min at 14,000 g and 4◦C and the supernatant was transferred into fresh

reaction tubes. Samples were kept on ice during this procedure and extracts were snap

frozen in liquid nitrogen and kept at -20◦C until used for SDS PAGE (Section 2.2.3.2)

immediately after preparation.

2.2.2.5 Fractionation of cells

Cells grown on 10 cm dishes were trypsinized, resuspended in complete growth medium,

spun for 5 min at 200 g followed by a washing step with PBS and a repeated spin. Cell

pellets were lysed in 400 µl lysis buffer. The samples were incubated on ice for 5 min and

carefully pipetted up and down 3-4 times before layered on top of 1 ml sucrose buffer

and spinning for 10 min at 3,000 g and 4◦C. The supernatant was taken into a fresh

reaction tube as the ’cytoplasmic fraction’. The residual pellet was gently rinsed with

PBS-EDTA (1 mM) before taken up in 500 µl glycerol buffer. An equal volume of nuclear

lysis buffer was added, the sample was vortexed for 2 s followed by a 2 min incubation

on ice and spinning for 2 min at 14,000 g and 4◦C. The supernatant was transferred

into a fresh reaction tube as ’nucleoplasmic fraction’. The residual pellet represented

the ’chromatin fraction’ and was rinsed with PBS-EDTA (1 mM) before taken up in 1

ml Trizol reagent using a syringe and needle. For RNA isolation (Section 2.2.1.19), 200

µl of cytoplasmic and nucleoplasmic fractions were taken up in 1 ml Trizol reagent. All

buffers used for fractionation were ice-cold and freshly supplemented with 1 mM DTT,

proteinase inhibitors and RNase inhibitor.

2.2.2.6 Generation of stable cell lines using CRISPR

The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic re-

peats)/Cas adaptive immune system has recently been engineered to be used for genome
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editing strategies in eukaryotes by inducing cleavage at genomic loci of interest [Cong

et al., 2013]. The pX330 plasmid, expressing a human codon-optimized Cas9 and chimeric

guide RNA, was used to clone DNA oligos that served as guide RNAs into the BbsI site.

GuideRNA sequences were obtained using the CRISPR Design Tool [Massachusetts Insti-

tute of Technology, 2014], and were chosen when their score was >90 and their off-target

score <1. U2OS and A549 cells were transfected with 1 µg of pX330 plasmid per 6-well

plate (Section 2.2.2.2) and genomic DNA was isolated (Section 2.2.1.1) from a fraction

of cells 48 h post transfection to determine successful genomic deletion across the cell

population by PCR (Section 2.2.1.2). Subsequently, single cells were seeded by serial

dilution into 96-well plates to grow colonies. Successful homozygous genomic deletions

across these single-clone colonies was verified by PCR (Section 2.2.1.2).

2.2.3 Protein biochemical methods

2.2.3.1 Determination of protein concentration

Protein concentrations of cellular extracts were determined using the Bicinchoninic Acid

Kit for Protein Determination according to the manufacturer’s instructions. This assay

is based on the reduction of Cu2+ to Cu1+ by the amino acids cysteine, cystine, trypto-

phan, tyrosine and the peptide bond under alkaline conditions. Bicinchoninic acid then

forms a stable purple-blue complex with Cu1+ that is monitored as a measure of the

sample’s protein amount.

For each experiment, a standard rank was prepared in parallel using bovine serum albu-

min. Each sample was pipetted in duplicates and at two different dilutions. Absorbances

were measured at 562 nm using a microplate reader. Absorbances of the standard rank

were used to plot a linear regression curve and calculate protein concentrations of sam-

ples.

2.2.3.2 SDS polyacrylamide gel electrophoresis

Protein samples were analyzed by SDS Polyacrylamide gel electrophoresis (SDS-PAGE),

which allows to resolve proteins according to their molecular weight. Before loading onto

4-12% Bis-Tris gels, cellular extracts were mixed with Roti Load buffer and incubated

at 95◦C for 5 min to denature proteins. Protein samples were loaded alongside a protein

ladder as size marker and gels were then run in 1x MOPS buffer at 180 V for 50 min.

2.2.3.3 Western blot

Following SDS-PAGE, protein gels (Section 2.2.3.2) were transferred onto polyvinylidene

difluoride (PVDF) membranes for 90 min at 120 V and 4◦C in transfer buffer. Membranes

were blocked in blocking solution for 1 h with slight agitation. Subsequently, membranes

were incubated for 1 h at RT or overnight at 4◦C with primary antibodies diluted in
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blocking solution at the following dilutions: anti-actin - 1:5000, anti-Calr - 1:3000, anti-

RB1 - 1:2000 and anti-tubulin - 1:5000.

The membrane was washed three times in PBST for 5 min on a rocking platform at

high speed. Horseradish peroxidase-conjugated secondary antibodies specific to primary

antibodies were diluted 1:10,000 in blocking solution and incubated on membranes for 1

h at RT. The membrane was again washed three times in PBST for 5 min on a rocking

platform at high speed. Blots were developed using enhanced chemiluminescence (ECL)

HRP substrate and signals were visualized using a chemolumineszenz imager.

2.2.3.4 Immunocytochemistry

10,000 U2OS cells were seeded in poly-L-lysine-coated 96-well black/clear imaging plates

and subjected to dsiRNA-mediated knock-down of ncRNA-RB1 (Section 2.2.2.2). After

forty-eight hours, the cells were fixed with 3.7% paraformaldehyde containing Hoechst

33342 for 15 min. Cells were washed twice with PBST for 5 min and permeabilized with

0.1% Triton X-100 for 10 min. Cells were washed twice with PBST for 5 min and blocked

in PBS including 2% FBS for 1 h followed by staining with anti-CALR antibody (1:300)

for 30 min in blocking buffer. Cells were washed three times with PBST for 5 min before

incubation with a fluorochrome-conjugated secondary antibody diluted in blocking buffer

(1:400) for 1 h in the dark. Cells were washed three times in PBST for 5 min before

mounting of the coverslips onto microscope slides using fluorescent mounting medium.

For longer storage, slides were kept at 4◦C and protected from light.

2.2.3.5 Cell surface immunocytochemistry and flow cytometry

U2OS cells were treated with dsiRNAs against ncRNA-RB1 or scrambled control dsiR-

NAs for 36 h and subjected to 2 µM MTX for 12 h. Cells were collected, washed twice

with PBS and thereafter incubated with anti-CALR antibody diluted in cold blocking

buffer (2% FBS in PBS) for 30 min on ice. Following two washing steps with cold PBS,

cells were incubated with Alexa Fluor 488-conjugated secondary antibody in blocking

buffer for 30 min on ice. Thereafter, cells were washed in cold PBS, PI was added to

the final concentration of 1 µg/ml and samples were analyzed by means of a FACScan

cytofluorometer. Isotype-matched IgG antibodies were used as a negative staining con-

trol, and the analysis was limited to living (PI-) cells. Data were statistically evaluated

by means of the Cell Quest Software package.

2.2.3.6 Macrophage uptake assay

U2OS cells were treated with dsiRNAs against ncRNA-RB1 or scrambled control dsiR-

NAs for 36 h, subjected to 2 µM MTX for 12 h to induce cell surface exposure CALR

and finally stained with orange cell tracker. Peripheral blood mononuclear cells (PBMCs)

were isolated from freshly harvested blood samples of healthy volunteers by means of Fi-
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coll density gradient centrifugation. Macrophages were purified using a CD11b-positive

selection and labeled with CD11b-FITC antibody following the manufacturer’s protocol.

Fluorescein isothiocyanate (FITC)-labeled macrophages were incubated for 2 h at 37◦C

with orange cell tracker-stained U20S cells. Cells were recovered and stained with the

viability marker 4,6-diamidino-2-phenylindole and immediately acquired on a Cyan ADP

flow cytometer. The uptake of apoptotic U2OS cells stained with cell tracker orange by

CD11b-FITC-positive macrophages was analyzed using the FlowJo software.

2.2.4 Computational methods

2.2.4.1 Filtering of ncRNA/PCG pairs

The GENCODE V19 annotation (Dec 2013) of long non-coding RNA genes was used to

compute the interdistance between each long ncRNA and its closest PCG encoded on

the opposite DNA strand. Initially, the distance between both TSSs was required to be

between -2 kb and +2 kb. To further define bidirectional long ncRNA/PCG promoters,

the interdistance between the TSSs for each pair of long ncRNA/PCG was reduced to a

window size of ≥0 to ≤500 bp, thereby excluding anti-sense overlapping transcript pairs.

Furthermore, long ncRNAs that do not overlap a PCG (in any region of the gene) were

extracted to yield a final set of 1,107 bidirectionally expressed long ncRNAs.

2.2.4.2 Conservation analysis of promoters

For promoter conservation analysis, the promoter regions of bidirectionally encoded long

ncRNA/PCG pairs were defined as those 700 bp regions surrounding the annotated

lncRNA TSS (+500 bp upstream and -200 bp downstream). Promoters regions of long

ncRNA genes in general and protein-coding genes were defined in the same way. For

comparison, intergenic regions of 700 bp were extracted from random locations in the

genome and masked for repetitive regions. As the number of long ncRNA bidirectional

promoters was 1,107, in order to be fair in the comparison, 10 promoter sets of com-

parable size were considered for each of the other promoter classes and the results were

averaged over 10 datasets. Position-wise conservation scores were computed from the

PhastCons vertebrate conservation track from UCSC. An average conservation score was

then computed for each of the 700 bp regions, and the distribution of these scores plotted

for each class.

2.2.4.3 Analysis of next generation sequencing data

Next generation sequencing data were subjected to the quality control (QC) using de-

fined metrics on an automated quality-control pipeline that combines published tools as

FastQC [Andrews, 2014] with in-house standardized methods. All reads that passed qual-

ity metrics were mapped to the latest human genome build (UCSC hg19). Sequencing
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duplicated reads were removed using PicardTools [Broad Institute, 2014]. For alignment,

the most recent version of Bowtie2 [Langmead and Salzberg, 2012] and TopHat2 [Kim

et al., 2013] were used. Read counting was performed using Cufflinks2 [Roberts et al.,

2011].

2.2.4.4 Determination of immunofluorescence intensity

Following immunocytochemistry of CALR stained U2OS cells (Section 2.2.3.5), nine

view fields per well were acquired by means of a Molecular Devices IXM XL automated

microscope and images were analyzed for cytoplasmic fluorescence intensity by using the

MetaXpress 5.1 software.

2.2.5 Statistical data analysis

Experiments were carried out in minimally three independent replicates. Statistical anal-

yses were performed using two-tailed Student’s t-test.
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Chapter 3

Results

Statement of contributions

Parts of this project have been published as:

Musahl A.S., Huang X., Rusakiewicz S., Ntini E., Marsico A., Kroemer G., Kepp O.,

Ørom U.A. (2015). A long non-coding RNA links calreticulin-mediated immunogenic

cell removal to RB1 transcription. Oncogene. [Musahl et al., 2015]

The work presented here is the result of collaborative projects. Experiments were per-

formed by myself unless otherwise noted:

Computational analysis to determine the association of ncRNAs with protein coding

genes was performed by Evgenia Ntini. Conservation analysis of promoter sequences of

PCGs, ncRNAs and ncRNA/PCG pairs was done by Annalisa Marsico. Deep sequencing

of ncRNA-RB1 and RB1 depleted RNA samples was performed in the MPIMG sequenc-

ing facility. Deep sequencing data were mapped and filtered by Ruping Sun and Marcus

W. Albrecht.

Staining of cell surface exposed calreticulin and quantification was performed by Xing

Huang. Macrophage uptake assays were done by Xing Huang and Sylvie Rusakiewicz

from Guido Kroemer’s lab.

The manuscript for the paper was mainly written by Ulf Andersson Ørom and myself.
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3.1 Long ncRNA/PCG pairs encoded in the human genome

3.1.1 Association of long ncRNA genes with PCGs

In order to determine the association of long ncRNA genes with PCGs in the human

genome, the GENCODE V19 annotation was used and the distance between the TSS of

each long ncRNA and the TSS of the closest PCG encoded on the opposite DNA strand

was computed (Figure 3.1 A) [Derrien et al., 2012]. When a distance of ±2 kb separating

the TSSs of ncRNA genes and neighboring PCGs was allowed, 3,891 long ncRNA of a

total of 22,831 annotated long ncRNA genes were detected as PCG-associated. This

distance has previously been used to describe the association of long ncRNAs with PCG

promoters [Sigova et al., 2013]. In relative terms, 17% of long ncRNA genes were found

to be associated with PCG promoters.

The generated data set included 3,891 polyadenylated long ncRNAs with distinct En-

semble transcript IDs that were associated with 2,077 PCGs, meaning that every pair

consisted of a distinct long ncRNA transcript but several pairs had the associated PCG

in common. Among the ncRNA/PCG pairs, 1,633 (42%) of long ncRNAs are expressed

in an overlapping fashion to their PCG partner, when considering TSS interdistances of

-2,000 bp to -1 bp. Correspondingly, 2,258 (58%) of the gene pairs are expressed in a

non-overlapping fashion, thus their TSSs were 0 bp to +2,000 bp separated from each

other.

To get insight into the distribution of distances between the TSSs of divergently encoded

long ncRNA/PCG pairs, the frequency of distances was plotted by a density distribution.

This revealed a density peak at an interdistance of +100 bp to +200 bp, suggesting that

transcription initiation is majorly occurring within very small distances and that these

ncRNA genes/PCG pairs are non-overlapping (Figure 3.1 B).

As an architectural feature of the human genome, the divergent organization of PCGs

has been described and genes were suggested to be expressed from a bidirectional pro-

moter when both transcription start sites were separated by less than 1 kb of intervening

sequence [Adachi and Lieber, 2002]. When assigning the expression of ncRNA/PCG

pairs from bidirectional promoters (TSSs separated by 0 bp to +1 kb), it was found that

almost half (1,898 ncRNA/PCG pairs, 48.8%) of the ncRNA/PCG pairs of the data set

share a bidirectional promoter with their PCG partner.

3.1.2 Functional categories of PCGs expressed from bidirectional long

ncRNA/PCG promoters

To assign functional attributes to the set of PCGs expressed from a bidirectional ncRNA/

PCG promoter (1,898 ncRNA/PCG pairs), the functional annotation tool of DAVID was

used [Huang et al., 2009a],[Huang et al., 2009b]. Gene ontology analyses revealed that

the associated proteins are enriched for biological processes such as transcription and its
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Figure 3.1: Association of long ncRNAs with PCGs in the human genome. A. Criteria for

promoters and long ncRNAs to filter for 3,891 PCG-associated long ncRNAs in the GENCODE V19

annotation of the human genome. B. Density plot showing the distribution of distances between TSSs

of divergently encoded PCG-associated long ncRNAs (±2 kb window).

regulation, RNA transport and RNA localization (Figure 3.2 A). Additionally, pathway

association showed that 26 of the proteins are cancer-related, representing the most

enriched pathway in numeric terms (Figure 3.2 B). For example, the tumor suppressor

RB1 (retinoblastoma-1) [Manning and Dyson, 2011], BRCA-1 (breast-cancer associated-

1) [Mavaddat et al., 2013], NFκB (nuclear factor NF-kappa-B p100 subunit) [Hoesel

and Schmid, 2013], GSK3β (glycogen synthase kinase-3 beta) [Luo, 2009], and PI3K

(phosphatidylinositol 4,5-bisphosphate 3-kinase) [Fruman and Rommel, 2014] are among

the cancer-related genes bidirectionally paired with a long ncRNA.

GO annotation P-Value

Transcription 2.5 x 10-5

Regulation of transcription 4.6 x 10-5

mRNA transport 6.8 x 10-5

RNA transport 6.9 x 10-5
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Figure 3.2: Functional categories of PCGs associated with long ncRNAs. A. Five most

enriched gene ontology (GO) categories of PCGs associated with long ncRNAs. B. Five most enriched

biological pathways of PCGs associated with long ncRNAs. Count: Number of candidate PCGs included

in the corresponding GO category. %: Percentage of candidate PCGs of the total number of PCGs

included in the corresponding GO category. P-Value: Calculated using Fisher’ Exact Test. Q-Value:

Calculated using Benjamini-Hochberg correction.
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3.1.3 Final set of bidirectionally expressed long ncRNA/PCG pairs

To simplify all subsequent bioinformatics and laboratory analysis, long ncRNAs within

the bidirectional data set of 1,898 ncRNA/PCG pairs that overlap other annotated genes,

were removed. Also, the set was narrowed down by selecting for TSS pairs separated by

0 bp to +500 bp (Figure 3.4 A,B), with regard to the major enrichment of small bidi-

rectional promoter sizes. This final data set consisted of 1,107 bidirectionally expressed

ncRNA/PCG pairs still including 16 the cancer-related genes (Figure 3.3) (Appendix

Table A1).

Genename Protein

BRCA1 Breast-cancer associated

CEBPA CCAAT/enhancer- binding protein alpha

FN1 Fibronectin

FZD10 Frizzled-10

FZD4 Frizzled-4

GSK3B Glycogen synthase kinase-3 beta

IKBKB Inhibitor of nuclear factor kappa-B kinase subunit beta

ITGA3 Integrin alpha-3 

NFKB1 Nuclear factor NFkappa-B p100 subunit

PDGFA Platelet-derived growth factor subunit A

PIK3CA Phosphatidylinositol 4,5-bisphosphate 3-kinase

PIK3R5 Phosphoinositide 3-kinase regulatory subunit 5

PTGS2 Prostaglandin G/H synthase 2

RB1 Retinoblastoma 1

STK4 Serine/threonine-protein kinase 4

SLC2A1 Solute carrier family 2, facilitated glucose transporter member 1

Figure 3.3: Cancer-related genes in the final set of 1,107 bidirectionally expressed

ncRNA/PCG.

3.1.4 Conservation of bidirectional ncRNA/PCG promoters

As the promoters of long ncRNA genes have been found to be more conserved than

neutrally evolving sequences but less than PCG promoters [Derrien et al., 2012], conser-

vation rates of the final set of 1,107 bidirectional ncRNA/PCG promoters were compared

to the conservation of unidirectional long ncRNA promoters and PCG promoters [Derrien

et al., 2012]. To this end, conservation scores for promoters of the three classes as well as

for random non-genic genomic locations were computed from the PhastCons vertebrate

conservation track of the UCSC genome browser [Siepel et al., 2005]. The distribution

of these scores was visualized by a density plot (Figure 3.4 C). This analysis confirmed

that long ncRNA promoters are only slightly more conserved than random regions in the

genome, whereas many PCG promoters showed considerably higher rates of conservation

than do long ncRNA promoters. When comparing the conservations of PCG promoters

and bidirectional ncRNA/PCG promoters, significantly higher conservation rates were

determined for the latter (p = 6.5 ∗ 10−5), pointing to an evolutionary selection of this

head-to head orientation of ncRNAs and PCGs.
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Figure 3.4: Expression of long ncRNAs and PCGs from bidirectional promoters.

A. Schematic genomic arrangement of bidirectional long ncRNA/PCG pairs. B. Density plot showing

the distribution of distances between TSSs of divergently encoded long ncRNA/PCG pairs (1 kb window),

for those long ncRNAs not overlapping a PCG throughout their genomic region. C. Density plot showing

the distribution of conservation scores for promoters of bidirectional ncRNA/PCG pairs (as included in

the final data set), PCGs, long ncRNAs and random regions. Bidirectional ncRNA/PCG promoters

exhibit significantly higher conservation rates than the average PCG promoters (p = 6.5 ∗ 10
−5).

3.2 Expression of long ncRNA/PCG pairs from bidirectional

promoters

3.2.1 Polymerase II occupancy at bidirectional promoters

Pol II ChIPseq data as provided by the ENCODE project (UCSC browser tracks: HEK

ChIP Seq: wgEncodeSydhTfbsHek293Pol2StdSig, HEPG2 ChIP Seq: wgEncodeSyd-

hTfbsHepg2Pol2IggrabSig and K562 ChIP Seq: gEncodeSydhTfbsK562Pol2StdSig) was

visualized in the UCSC genome browser for the three cell lines HEK293, HepG2 and

K562 to determine Pol II occupancy at bidirectional long ncRNA/PCG promoters. Fig-

ure 3.5 shows the representative Pol II ChIPseq signals at the promoters of ncRNA-

BRCA1/BRCA1, ncRNA-CCNG1/CCNG1, ncRNA-PRKCQ/PRKCQ and ncRNA-RB1

/RB1. At each of the promoters examined, a clear Pol II signal was observed across

all cell lines, indicative of the assembly of transcription initiation complexes at these

promoters and thus expression of the associated genes. Also, for two gene pairs, ncRNA-

BRCA1/BRCA1 and ncRNA-CCNG1/CCNG1, a clear double peak of Pol II signal is

observable whereas at the promoters of the other two pairs (ncRNA-RB1/RB1, ncRNA-

PRKCQ/PRKCQ) a strong major peak as well as a weaker second Pol II peak were

visible. This suggests that all four representative bidirectional promoters enable expres-

sion of both paired genes in the three cell lines.
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Figure 3.5: Polymerase II ChIP-seq Signal at bidirectional promoters. UCSC genome

browser visualization of Pol II ChIP-seq data provided by the ENCODE project. Pol II occupancy

at the four bidirectional promoters of A. ncRNA-BRCA1/BRCA1, B. ncRNA-CCNG1/CCNG1, C.

ncRNA-PRKCQ/PRKCQ and D. ncRNA-RB1/RB1 in the three cell lines HEK293, HepG2 and K562,

are observable as double peaks. Peak height was scaled to 300 in all cell lines. wgEncodeSydhTf-

bsHek293Pol2StdSig, wgEncodeSydhTfbsHepg2Pol2IggrabSig and gEncodeSydhTfbsK562Pol2StdSig

tracks were used for the three cell lines.

3.2.2 Capacity of long ncRNA/PCG promoters to initiate transcrip-

tion bidirectionally

To assess the potential of long ncRNA/PCG promoters to initiate transcription in both

directions, five candidate promoters were tested for their bidirectional activity in a pro-

moter reporter assay. Classically, unidirectional promoter activity is determined by

cloning a promoter of interest upstream of a luciferase gene. In order to simultaneously

monitor promoter activity in both directions, a second luciferase gene, Renilla luciferase,

was inserted into the Firefly-containing pGL3 basic vector so that the orientation of both

luciferases was head-to-head (Figure 3.6 A). In between the two luciferases, the promot-

ers of BRCA1, CCNG1, FKTN, MAGOH and RB1 genes were inserted, by amplification

and cloning of intergenic regions separating the TSSs of each respective ncRNA/PCG

pair. Only few nucleotides of genic sequence downstream of each TSS were included. All

promoters were inserted in the same orientation into the bidirectional reporter vector,

thereby Firefly luciferase activity represented the promoter strength in the PCG direc-

tion and Renilla reniformis luciferase activity represented the promoter strength relevant

to expression of the long ncRNA. This assay allowed to simultaneously determine the

capacity of the candidate bidirectional promoters to initiate transcription in two direc-

tions. All candidate bidirectional promoters as well as the two supposedly unidirectional

promoters of GAPDH and TK genes, showed high Firefly Luciferase activity indicative
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of their potential to mediate transcription into the PCG direction (Figure 3.6 B). In

contrast, solely the five bidirectional ncRNA/PCG promoters induced expression of the

Renilla reniformis luciferase, which is representative for their potential to initiate tran-

scription of a long ncRNA gene when residing in their genomic context.

To determine the significance of this observation, the ratio between Renilla reniformis

and Firefly luciferase activities was calculated for each of the assayed promoter:

Table 3.1: Calculation of Promoter Activity Ratios

Promoter Ratio

BRCA1 = 0.85

CCNG1 = 0.30

FKTN = 0.22

MAGOH = 0.38

RB1 = 0.43

GAPDH = 0.01

TK = 0.07

A value close to 1 was indicative of a high bidirectional potential of the promoter, whereas

a low value implied that transcription initiation was mostly unidirectional. The resulting

values for candidate bidirectional promoters were found to be significantly higher than

for control promoters (p ≤ 0.001), suggesting that these promoters mediate bidirectional

transcription initiation. However, as this reporter assay takes the promoters out of

their genomic context, signals for transcription elongation and termination within the

associated genes are not considered.

3.2.3 In vivo expression levels of ncRNA/PCG pairs

Subsequently in vivo expression levels of ncRNA/mRNA pairs transcribed from bidirec-

tional promoters were measured. To this end, RNA from nine human cell lines, routinely

cultured in the lab, was isolated and relative expression levels of four transcript pairs,

expressed from BRCA1, CCNG1, PRKCQ and RB1 promoters, were determined by qRT-

PCR. All transcripts could be detected in the cell lines assayed (Ct ≤30), however relative

transcript abundances varied across cell lines for each of the transcripts indicative of the

cell lines’ diverse origins (Figure 3.6 F).

Although reporter assay studies suggested that promoter activities in both directions

were in the same range, in vivo transcript levels of ncRNAs and paired mRNAs were dif-

fering by one (ncRNA-BRCA1/BRCA1 mRNA pair) or two (ncRNA-CCNG1/CCNG1

mRNA, ncRNA-RB1/RB1 mRNA pairs) orders of magnitude within each of the cell lines

assayed. Only for the ncRNA-PRKCQ/PRKCQ mRNA pair, transcript abundances were
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Figure 3.6: Bidirectional promoter activity and expression levels of ncRNA/PCG pairs.

A. Schematic of the reporter vector to determine bidirectional promoter activity. Promoters were inserted

so that Firefly luciferase activity represents the promoter strength in the PCG direction and Renilla

luciferase activity represents the promoter strength in the ncRNA direction. B. Bidirectional promoter

activities of CCNG1, FKTN, MAGOH and RB1 candidate bidirectional promoters and GAPDH and

TK as control promoters are represented by the relative luciferase units for both Firefly and Renilla

luciferases. C-F: Relative expression levels of paired transcripts. Transcripts expressed from C. BRCA1,

D. CCNG1, E. PRKCQ and F. RB1 promoters as determined by qRT–PCR. The y axis represents

ncRNA expression level and the x-axis the mRNA expression level in nine cell lines (A549, HEK293,

HeLa, HepG2, IMR90, K562, MCF7, Thp1 and U2OS). Expression values are presented relative to the

value of actin as reference gene. Mean values ± s.d. are shown, n≥3 replicates. ∗ ∗ ∗p ≤ 0.05.

similar within each cell line.

Determination of the correlation coefficient R of the expression levels for each ncRNA/mRNA
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pair across the nine cell lines revealed various degrees of correlation. A high correlation of

endogenous ncRNA and mRNA expression was observed for the ncRNA-CCNG1/CCNG1

mRNA (RCCNG1 = 0.86) and ncRNA-PRKCQ/PRKCQ mRNA (RPRKCQ = 0.88) tran-

script pairs, whereas the correlation for ncRNA-RB1/RB1 mRNA (RRB1 = 0.41) was less

pronounced and for ncRNA-BRCA1/BRCA1 mRNA (RBRCA1 = 0.05) not observable.

The absence of correlation for transcript pairs expressed from bidirectional promoters

indicates that regulatory mechanisms are involved additional to the regulation of tran-

scription initiation.

3.2.4 Regulation of long ncRNA expression by the exosome complex

The exosome complex as the major eukaryotic 3’-5’ exoribonuclease, has been described

to control PCG promoter directionality by degrading promoter upstream antisense tran-

scripts (PROMTs) [Preker et al., 2008]. To determine the extent of exosome involvement

in the regulation of expression levels of the long ncRNAs bidirectionally expressed from

PCG promoters, its core component Rrp40 was depleted from A549 cells. To this end,

two dicer-substrate RNAs (dsiRNAs) against the human exosome homologue EXOSC3

were used.

DsiRNAs differ from siRNAs in their length, being 27mer and 21mer duplex RNAs, re-

spectively. While siRNAs are designed to mimic Dicer cleavage products, dsiRNAs are

bound and processed by Dicer which supports their incorporation into RNA-induced si-

lencing complexes. This results in increased potency of dsiRNAs at lower transfection

concentrations.

Knock-down of EXOSC3 mRNA was highly effective at a final dsiRNA concentration of

50 nM, yielding knock-down efficiencies of >70% for the more effective dsiRNA (Figure

3.7 A). As a control, a dsiRNA was used that was not targeting any RNA of the human

transcriptome. The effect of exosome depletion on different transcripts was varying but

resulted in an up to 3-fold stabilization of long ncRNAs (e.g. for ncRNA-RB1) (Figure

3.7 B). For long ncRNA transcripts that have been found to be lowly expressed in A459

cells (e.g. ncRNA-BRCA1, ncRNA-RB1), the effect of EXOSC3 knock-down was more

pronounced than for higher expressed ncRNA species (e.g. ncRNA-PRKCQ). For com-

parison, stabilization of three different PROMT species was measured (PROMT 40-9,

PROMT 40-33, PROMT 40-54). Two of the three PROMTs were found to be stabilized

about 2.5-fold. Their increased abundance is in accordance with previous reports, how-

ever stabilization of up to 70-fold have been reported for these ncRNA species [Preker

et al., 2008].

Reduction in exosome activity results in comparable effects on bidirectionally expressed

ncRNAs and PROMTS, suggesting that the exosome complex regulates expression levels

of different transcript species expressed upstream of PCG promoters. The major dif-

ference between the assessed species is their degree of splicing, with PROMTS staying
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unspliced and the assayed long ncRNA consisting of several exons (Figure 3.5).
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Figure 3.7: Knock-down of the EXOSC3 component of the human exosome complex and

stabilization of long ncRNA species. A. Knock-down of the EXOSC3 component of the human ex-

osome complex in A549 cells using one dsiRNA at a final concentration of 50 nM. As a control, A549 cells

were transfected with a non-targeting control dsiRNA. B. Stabilization of long ncRNA species expressed

from bidirectional ncRNA/PCG promoters and of PROMTs upon EXOSC3 knock-down. Expression

values are presented relative to the value of actin as reference gene. Mean values ± s.d. are shown, n≥3

replicates.

3.3 The bidirectional ncRNA-RB1/RB1 promoter

3.3.1 Effect of mutations on ncRNA-RB1/RB1 promoter activity

Among the candidate ncRNA/PCG promoters, the RB1 promoter has been intensively

studied on the sequence level as well as for the function of its expressed gene product

[Gill et al., 1994],[Gill et al., 1994]. By using the RB1 promoter sequence which resides

in the bidirectional luciferase reporter vector, the effect of sequence alterations on the

expression strength in the RB1 mRNA direction as well as in the ncRNA-RB1 direction

were investigated. The cloned RB1 promoter sequence of 198 bp contained the annotated

114 bp-long promoter region separating the TSSs of ncRNA-RB1 and RB1 (according to

GENCODE V19 annotation), and at the same time it included 61 bp of the ncRNA-RB1

sequence and 23 bp of the RB1 5’UTR.

3.3.1.1 Mutations within transcription factor binding sites

Within the RB1 promoter sequence, binding sites of at least five transcription factors that

are responsible for regulated expression of the RB1 gene have been identified: ATF, p53,

E2F1, E4TF1 and Sp1 [Sakai et al., 1991],[Shiio et al., 1992],[Shan et al., 1994],[Savoysky

et al., 1994]. ATF, SP1 and E4TF1 are activators of the RB1 gene, and p53 and E2F1 (in

complex with pRB1 itself) act as repressors [Sakai et al., 1991],[Shiio et al., 1992],[Gill
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et al., 1994],[Sowa et al., 1997],[Hamel et al., 1992]. An in vitro study on RB1 pro-

moter activity established that deleting a 17-bp region overlapping the binding sites of

SP1, ATF and E2F1 completely abrogates promoter activity in the RB1 direction [Sakai

et al., 1991]. Furthermore, two point-mutations within the binding sites of the activating

transcription factors ATF and SP1 have been identified by their negative effects on RB1

expression and for being causal in the development of retinoblastoma (Figure 3.8 A) [Gill

et al., 1994].

To determine the negative effect of these three mutations on the bidirectional RB1 pro-

moter activity, the RB1 promoter within the bidirectional reporter vector was mutated.

The 17 bp deletion resulted in a drastically reduced promoter activity into the RB1 di-

rection as well as into the ncRNA-RB1 direction as represented by the decrease in Firefly

and Renilla reniformis activities when compared to the wild-type promoter activity (Fig-

ure 3.8 B). Also, the single nucleotide G→A transition in the SP1 binding site and the

G →T transition in the ATF binding site resulted in significant reductions of the bidi-

rectional promoter activity, equally affecting both transcriptional directions (Figure 3.8

B). This reduction of divergent promoter activity, suggests that transcription initiation

in the two directions of the promoter is co-regulated.
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Figure 3.8: The ncRNA-RB1/RB1 promoter and its bidirectional activity. A. Schematic

of the ncRNA-RB1 promoter. ncRNA-RB1 and RB1 TSSs are separated by a 114 bp promoter region

that encodes the binding sites of ATF, E2F, p53 and SP1 transcription factors. Two retinoblastoma-

associated point mutations in the ATF (G→T, red) and SP1 binding sites (G→A, red) are shown. B.

Bidirectional RB1 promoter activities of the wild-type promoter (WT), the promoter with deleted SP1,

ATF and E2F binding sites (∆SP1, ∆ATF and ∆E2F), the RB1 promoter with mutated SP1-binding

site (SP1 Mut) and the RB1 promoter with mutated ATF-binding site (ATF Mut) are represented by

relative luciferase units for both Firefly and Renilla luciferases. The mean values ± s.d. are shown, n≥3

replicates. ∗ ∗ p ≤ 0.01, ∗ ∗ ∗p ≤ 0.005.
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3.3.1.2 Mutations within core promoter elements

Furthermore, the possibility to selectively interfere with transcription initiation in only

one direction of the bidirectional ncRNA-RB1/RB1 promoter, thereby uncoupling both

promoter directions, was tested. The 114 bp RB1 promoter sequence has been charac-

terized as GC-rich and to lack a TATA-box, two features often observed in metazoan

bidirectional promoters. However, there is also no CCAAT box present, a sequence ele-

ment enriched in bidirectional promoters [Trinklein et al., 2004].

To test for the possibility that bidirectional transcription initiation is regulated by indi-

vidual CPEs encoded on either DNA strand, the RB1 promoter sequence was examined

for the presence of BREu, BREd and Inr elements in both directions. When determin-

ing the location of the two core promoters, up to three mismatches (MM) towards the

consensus sequence of each CPE were considered as well as the appropriate spacing of

the CPEs towards each other. In the RB1 direction of the promoter degenerated BREu

(2MM), BREd (3MM) as well as INR (1MM) elements were located in appropriate spac-

ing (Figure 3.9 A). In the ncRNA-RB1 direction of the promoter, the same elements were

found: BREu (3MM), BREd (3MM) as well as Inr (1MM). A TATA box could not be

located in any direction. The observed elements also fit with the CAGE signal observed

at the RB1 promoter, as provided by the ENCODE consortium (Figure 3.9 B) (UCSC

browser tracks: CAGE A549: wgEncodeRikenCageA549Cell and CAGE HEPG2: wgEn-

codeRikenCageHepg2Cell). In order to interfere with transcription initiation from the

promoter solely in one direction, each of the two potential core promoters was mutated

individually.

In the direction of ncRNA-RB1, two point mutations were simultaneously introduced

into the Inr element, thereby generating a total of three mismatches towards the Inr

consensus sequence (Inr 2mut) (Figure 3.9 C). Also, also a 3 base pair deletion was gen-

erated in the Inr element (Inr 3del) as well as a complete deletion of the Inr element

was conducted (Inr 9del). Renilla luciferase activity was activity was reduced by ∼50%

by all three mutations. However, this reduction was also observed for Firefly luciferase

activity, demonstrating that both promoter directions are equally affected.

The RB1 direction of the promoter was deleted of its BREu element as well as of three ad-

ditional base pairs (BREu 10del), thereby also interfering with the spacing of the CPEs.

However, Firefly and Renilla luciferase activities were not affected (Figure 3.9 C).

Additionally, a TATA box element was specifically introduced in the promoter direction

of ncRNA-RB1, reasoning that it might increase promoter activity solely in the ncRNA-

RB1 direction, as the TATA box has been described for its regulation of promoter di-

rectionality [Core et al., 2012]. Introduction of this mutation (TATA cons) resulted in

a significant increase of promoter activity in both reporter gene directions, however the

increase of Renilla activity was more pronounced (Figure 3.9 C).
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Figure 3.9: Core promoter elements within the ncRNA-RB1/RB1 promoter. A. Depiction

of the 114 bp promoter sequence separating the TSSs of the ncRNA-RB1 and RB1 genes (black arrows)

including ATF, E2F, p53 and SP1 transcription factors binding sites. Inr, BREu and BREd core promoter

elements are illustrated in black, light green and dark green, respectively. Their directionality in the

promoter is shown by arrows in the respective colors and number of mismatches (MM) towards their

consensus sequence are indicated. B. CAGE signal at the ncRNA-RB1 and RB1 promoter in A549 (grey)

and HepG2 cells (orange) as provided by the ENCODE consortium (wgEncodeRikenCageA549Cell,

wgEncodeRikenCageHepg2Cell). Darker colors correspond to higher signal intensity observed at the

respective sites. C. Bidirectional RB1 promoter activities of the wild-type promoter (WT) and the

promoter with deleted SP1, ATF and E2F binding sites (∆SP1, ∆ATF and ∆E2F) are shown as well as

the bidirectional promoter activity upon introduction of CPE mutations into the ncRNA-RB1 direction

of the promoter: introduction of 2 point mutations into the Inr sequence (INR 2mut), of a 3-nt deletion

into the Inr sequence (INR 3del) and of a complete deletion of the Inr sequence (INR 9del). Bidirectional

promoter activity upon deletion of the BREu in the RB1 direction (BREu 10del) and upon introduction

of a TATA box in the ncRNA-RB1 direction (TATA cons) is also depicted. All activities are represented

as relative luciferase units for both Firefly and Renilla luciferases. The mean values ± s.d. are shown,

n≥3 replicates.
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3.4 Transcript characteristics of ncRNA-RB1

3.4.1 Transcript structure

According to the GENCODE V19 annotation, ncRNA-RB1 is encoded in a 7.1 kb ge-

nomic region and annotated to consist of two isoforms (Figure 3.10 A).

A maximum transcript length of 1.14 kb can be inferred from this annotation when

adding the length of all three predicted exons. To verify the transcript structure, a re-

gion spanning exon 1 to exon 3 was amplified by PCR using primers that anneal within

these two exons and cDNA from A549 and HEK293 cells. Sequencing of the resulting

PCR products led to the identification of four isoforms with splice variants for exon 1,

exclusion of exon 2 and inclusion of an additional fourth exon (located between exon

2 and 3) in addition to the two annotated splice forms (Figure 3.10 A). A maximum

transcript length of 1.29 kb was then calculated. The presence of multiple splice forms

for ncRNA-RB1 hints that this long ncRNA could have of diverse functions.
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Figure 3.10: Transcript structure and cellular localization of ncRNA-RB1. A. Schematic of

the ncRNA-RB1 genomic locus in the human genome. Two splice forms of ncRNA-RB1 are annotated in

the GENCODE V19 annotation (depicted in dark orange). Four additional splice forms were detected in

PCRs using cDNA of A549 and HEK293 cells (depicted in light orange). B. Localization of transcripts

in cellular fractions from A549 cells. The relative expression of ncRNA-RB1 within the cellular fractions

was determined by qRT–PCR. Relative expressions of 7SL and pre-GAPDH transcripts were determined

as control for the purity of cellular fractions. The mean values ± s.d. are shown, n=3 replicates.

3.4.2 Cellular localization

To get insight into the cellular distribution of ncRNA-RB1, A549 and HeLa cells were

chemically separated into cytoplasmic, nuclear and chromatin fractions. Following RNA

isolation and reverse transcription, the relative abundance of ncRNA-RB1 in each frac-

tion was determined by qRT-PCR. For this analysis, equal amounts of RNA per fraction
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were used in reverse transcription reactions. To control for the purity of cellular fractions,

relative levels of 7SL and pre-GAPDH RNA were measured as marker for cytoplasmic and

chromatin fractions, respectively. 7SL (signal recognition particle RNA) is predominantly

localized in the cytoplasm, due to its location at the endoplasmic reticulum membrane,

whereas pre-GAPDH, being the unspliced form of GAPDH mRNA, is exclusively found

in the chromatin-associated RNA fraction. NcRNA-RB1 was identified to be predomi-

nantly localized in the chromatin-associated fractions in both cell lines (Figure 3.10 B),

suggesting a function in chromatin organization or transcriptional gene regulation for the

ncRNA. Independent of the splice form of ncRNA-RB1, the predominant localization at

chromatin of the ncRNA-RB1 was confirmed (data not shown).

3.5 Gene regulatory effects of ncRNA-RB1

To get insight into the gene regulatory functions of ncRNA-RB1 and its involvement

in the regulation of RB1 expression or function, cellular levels of the transcript were

modified experimentally. This approach was followed by interrogation of the effect on

individual target genes or on all cellular genes by taking advantage of high-throughput

methods.

3.5.1 Cellular depletion of ncRNA-RB1 and RB1 using dsiRNAs

To deplete ncRNA-RB1 from A549 cells, two dsiRNAs targeting the short first and second

exons of the ncRNA, were used reasoning that most ncRNA-RB1 isoforms share these

exons and will be targeted (Figure 3.10 A).

Both dsiRNAs were separately transfected into A549 cells at increasing concentrations.

Knock-down efficiency of ncRNA-RB1 was determined by harvesting cells 24 hours after

transfection for RNA isolation and qRT-PCR. An increasing knock-down efficiency was

observed at higher dsiRNA concentrations up to 10 nM, yielding about 75% depletion

for dsiRNA 1 and >90% depletion for dsiRNA 2 in the initial screening (Figure 3.11

A, data not shown). Similarly, cells were increasingly depleted from RB1 mRNA when

titrating dsiRNA concentrations up to 10 nM (Figure 3.11 D, data not shown). The

utilized dsiRNAs against RB1 mRNA targeted the exons 2 and 4, thereby depleting

most annotated splice forms of the transcript. Knock-down efficiencies scaled up to 50%

for dsiRNA1 and >80% for dsiRNA2 when compared to control transfected cells. As

a consequence, only dsiRNA2 agains RB1 mRNA was used in subsequent experiments.

Western blot analysis for pRB1 following knock-down of RB1 mRNA confirmed a drastic

reduction also on RB1 protein levels (Figure 3.11 E).
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Figure 3.11: Cellular depletion of ncRNA-RB1 and RB1 mRNA. A. Knock-down of ncRNA-

RB1 in A549 cells using two different dsiRNAs against ncRNA-RB1 (10 nM). As control, A549 cells were

transfected with a non-targeting dsiRNA. B. Determination of RB1 expression levels following knock-

down of ncRNA-RB1 using two dsiRNAs. C. Determination of ncRNA-RB1 expression levels following

dsiRNA-mediated knock-down of RB1 mRNA. D. Knock-down of RB1 mRNA in A549 cells using one

dsiRNA. As control, A549 cells were transfected with a non-targeting dsiRNA. Expression levels are

presented relative to the value of actin as reference gene as determined by qRT–PCR. The mean values

± s.d. are shown, n≥3 replicates.E. Western blot analysis to determine RB1 protein levels following

dsiRNA-mediated knock-down of RB1 mRNA and of ncRNA-RB1 in A549 cells. β-actin protein levels

are depicted as loading control.

3.5.2 Effect of ncRNA-RB1 knock-down on RB1 expression levels

Several studies have suggested that long ncRNAs, transcribed upstream of PCGs function

in positively or negatively regulating the expression of their PCG partner [Wang et al.,

2008],[Grote et al., 2013]. To address the impact of ncRNA-RB1 depletion on RB1 mRNA

levels, A549 cells were separately transfected with both dsiRNAs against ncRNA-RB1.

Subsequent qRT-PCR and western blot analysis revealed that reduction in ncRNA-RB1

transcript levels did not affect RB1 mRNA or protein levels (Figure 3.11 A,B,E). Likewise,

knock-down of RB1 mRNA had no effect on ncRNA-RB1 expression levels (Figure 3.11

C,D). These results indicate that both paired genes, ncRNA-RB1 and RB1, are not

regulating each other’s expression but might rather contribute to independent regulatory

functions. Even a complete knock-out of ncRNA-RB1, by deletion of the locus from the

genome, did not affect expression of RB1 mRNA (as described in Section 3.5.7.3) (Figure

3.17 A,B).

3.5.3 Effect of ncRNA-RB1 and RB1 knock-down on the cellular tran-

scriptome

To gain insight into the regulatory functions carried out by ncRNA-RB1 and to further

infer the involvement of this ncRNA within regulatory circuits of RB1, both transcripts
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were individually depleted from A549 cells using the most effective dsiRNA for each

of the transcripts (dsiRNA2 against ncRNA-RB1 and dsiRNA2 against RB1 mRNA).

Cellular RNA was isolated 24 hours post knock-down, enriched for polyadenylated RNA

and subjected to paired-end RNA-sequencing using a Illumina HiSeq 2000 instrument.

Following quality control of sequencing data, reads were mapped to the genome and

RPKM (reads per kilobase per million reads) values were determined for all transcripts

annotated in the human genome. Genes exhibiting RPKM values <0.1 were considered

to be not expressed and excluded from subsequent analysis.

When assign potential target genes of ncRNA-RB1 and RB1, genes were considered to be

differentially expressed upon knock-down, when the differences in RPKM values between

control and knock-down samples was 2-fold. 226 protein-coding genes were determined

to be either up- or down-regulated upon knock-down of RB1 and gene ontology analysis

using DAVID detected enrichment in for these genes in biological processes such as cell

signaling, programmed cell death or cell growth, in agreement with known functions

of pRB1 (Appendix Tables B1,B2 and B3) [Huang et al., 2009a],[Huang et al., 2009b].

Knock-down of ncRNA-RB1 resulted in the differential (increased or reduced) expression

of 200 genes that did not show enrichment for any particular gene ontology term. Of the

226 and 200 potential target genes of RB1 and ncRNA-RB1, respectively, 68 (∼ 30%)

were overlapping, suggesting a function of both genes in common biological pathways

(Figure 3.12 A).
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Figure 3.12: ncRNA-RB1 and RB1 regulate distinct and common target genes. A. Venn

diagram depicting the number of regulated genes upon knock-down of ncRNA-RB1 (red) and RB1 (blue)

determined as described in Section 3.5.3. Upper diagram shows the total number of regulated genes for

each knock-down. The genes commonly regulated by ncRNA-RB1 and RB1 are depicted in grey. Lower

diagrams show number of up- and down-regulated genes. B-E. Determination of relative expression

levels of the ncRNA-RB1 and RB1 target genes B CALR, C COPRS, D CBX6 and E EZR following

knock-down of ncRNA-RB1 and knock-down of RB1 mRNA. Expression levels are presented relative to

the value of actin as reference gene as determined by qRT–PCR. The mean values ± s.d. are shown,

n≥3 replicates. ∗p ≤ 0.05, ∗ ∗ p ≤ 0.01, ∗ ∗ ∗p ≤ 0.005.
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3.5.4 Confirmation of ncRNA target genes by qRT-PCR

Among the ncRNA-RB1 target genes were the ER protein CALR (calreticulin) [Micha-

lak et al., 2009], the chromatin modifying protein CBX6 (chromobox protein homolog 6)

[Vandamme et al., 2011], the histone binding protein COPRS (coordinator of PRMT5)

[Lacroix et al., 2008], the cytokines CXCL5 (chemokine (C-X-C motif) ligand 5) [Chan-

drasekar et al., 2003] and IL6 (interleukin 6) [Akira and Kishimoto, 1992], the epithelial

cell adhesion molecule EPCAM (epithelial cell adhesion molecule) [Armstrong and Eck,

2003] and epithelial protein EZR (ezrin) [Krieg and Hunter, 1992].

Using qRT-PCR following knock-down of ncRNA-RB1, the genes CALR, CBX6, CO-

PRS and EZR could be confirmed as ncRNA-RB1 targets (Figure 3.12 B,C,D,E). Two

of these genes, CBX6 and EZR are regulated by both ncRNA-RB1 and RB1, as deter-

mined when depleting RB1 mRNA, whereas CALR and COPRS are only regulated by

the ncRNA-RB1.

Figure 3.13: Simultaneous depletion of ncRNA-RB1 and RB1 mRNA. A. Determination of

ncRNA-RB1 expression levels following knock-down of ncRNA-RB1 and/or RB1 mRNA in A549 cells

using one dsiRNA (10 nM) against each transcript. As a control a non-targeting dsiRNA was used.

B. Determination of RB1 mRNA expression levels following knock-down of ncRNA-RB1 and/or RB1

mRNA. C-D. Expression levels of the ncRNA-RB1 target genes D CALR and D COPRS following

knock-down of ncRNA-RB1 and/or RB1 mRNA. E-F. Expression levels of the ncRNA-RB1 and RB1

shared target genes E CBX6 and F EZR following knock-down of ncRNA-RB1 and/or RB1 mRNA.

Expression levels are presented relative to the value of actin as reference gene as determined by qRT–PCR.

The mean values ± s.d. are shown, n≥3 replicates.
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3.5.5 Double knock-down of ncRNA-RB1 and RB1

To get insight into the regulatory interplay of ncRNA-RB1 and RB1, both transcripts

were simultaneously depleted from A549 cells and the effect on common and unique tar-

get genes was determined. Simultaneous depletion of ncRNA-RB1 and RB1 supported

the notion that both genes are not regulating each other’s expression as no additional re-

duction of ncRNA-RB1 levels was observable upon RB1 depletion and vice versa (Figure

3.13 A,B). Also, the target genes specific to ncRNA-RB1, as exemplified by CALR and

COPRS did not show a more pronounced decrease in expression upon double knock-down

of ncRNA-RB1 and RB1 (Figure 3.13 C,D). Most interestingly, simultaneous depletion

of ncRNA and RB1 also had no additive effect on the shared target genes CBX6 and

EZR (Figure 3.13 E,F). As the effect of ncRNA-RB1 and RB1 knock-down on common

target genes was not additive, both genes are unlikely to target different pathways that

independently affect expression levels of these genes.

3.5.6 Overexpression of ncRNA-RB1

Overexpression of ncRNA-RB1 could confirm the regulatory effects of the transcript on

its target genes. To this end, the spliced ncRNA-RB1 transcript including exon 1, 2 and

3 was amplified from cDNA and cloned into the pCDNA3 expression vector. A549 cells

were transfected with increasing amounts of the plasmid and the increase in ncRNA-RB1

levels was confirmed by qRT-PCR. This confirmed up to 130-fold induction in ncRNA-

RB1 transcript levels (Figure 3.14 A). The effect of ncRNA-RB1 overexpression was

assayed on the target genes CALR, CBX6 and EZR (Figure 3.14 B,C,D). However, no

effect was observed on most of these genes with CALR showing slight but not significant

increased expression levels. As a control, expression levels of GAPDH were determined,

that were also unaffected by the overexpression of ncRNA-RB1 (Figure 3.14 E).

3.5.7 Calreticulin as a ncRNA-RB1 target gene

Among the numerous target genes of ncRNA-RB1, CALR has been described as a tumor

suppressor gene thereby bridging back to the function of the ncRNA’s genomically paired

gene RB1 also being a tumor suppressor. Additionally, CALR showed the largest change

in expression upon depletion of ncRNA-RB1 when considering RPKM values, meaning

that its transcript levels are most highly affected in absolute terms. Also, its regulation

was found to be specific to ncRNA-RB1.

To further investigate the involvement of ncRNA-RB1 within the regulatory circuits of

RB1, CALR was chosen to be further confirmed as a target gene of ncRNA-RB1.
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Figure 3.14: Overexpression of ncRNA-RB1. A. Determination of ncRNA-RB1 expression levels

following transfection of A549 cells with varying amounts (0-100ng) of the pCDN3 expression plasmid

containing the spliced ncRNA-RB1 transcript sequence including exon 1, 2 and 3. B-D. Expression levels

of the ncRNA-RB1 target genes B CALR, C CBX6 and D EZR following overexpression of ncRNA-RB1.

E. Determination of expression levels of GAPDH, as a non-related control gene, following overexpression

of ncRNA-RB1.

3.5.7.1 Regulation of calreticulin protein levels

In order to determine the effect of ncRNA-RB1 depletion on CALR protein levels, western

blot analysis was conducted 48 hours post knock-down of ncRNA-RB1 in A549 cells. This

revealed a reduction in CALR protein levels of ∼80% as estimated by titrating the amount

of cellular protein of control transfected cells (Figure 3.15). Overall, the regulatory effect

of ncRNA-RB1 on CALR is even more pronounced on the protein level than on mRNA

level.

3.5.7.2 Knock-down of ncRNA-RB1 by antisense oligonucleotides

The use of siRNAs to knock-down transcripts can result in the determination of several

false-positive target genes due to off-target effects of this method. To determine false-

positives, several siRNAs (with differing seed sequences) against the transcript of interest

can be used. Additionally, a different cellular degradation pathway can be employed in

order to deplete the transcript such as the use of antisense oligonucleotides (ASOs).

While dsiRNAs are incorporated into Argonaute proteins with the help of Dicer which

subsequently results in degradation of the target mRNA or its translational inhibition,

ASOs pair directly with their complementary RNA and induce RNaseH mediated decay
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Figure 3.15: Regulation of CALR protein levels by ncRNA-RB1. Western blot analysis to

determine CALR protein levels following dsiRNA-mediated knock-down of ncRNA-RB1 (10 nM) in

A549 cells. Input protein levels were titrated (12.5-50%) to estimate the effect of ncRNA-RB1 depletion

on CALR protein levels. α-tubulin protein levels are depicted as loading control.

of their target RNA.

To further confirm CALR as a target gene of ncRNA-RB1, A549 cells were individually

transfected with three different ASOs, designed to target ncRNA-RB1 in its most com-

mon exons 1 and 2. As a control, an ASO targeting a non-transcribed genomic region

was used.

The potential of ASOs to reduce cellular ncRNA-RB1 levels was most effective at a final

concentration of 30 nM (Figure 3.16 A). The levels of ncRNA-RB1 were decreased by

up to 70% (for ASO3), which was similar to the effect achieved by dsiRNA mediated

knock-down (Figure 3.11 A). Reduction of CALR mRNA levels were confirmed in the

ASO knock-down samples (Figure 3.16 B), supporting a regulatory interplay between

ncRNA-RB1 and CALR gene.
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Figure 3.16: Depletion of ncRNA-RB1 using antisense oligonucleotides. A. Determination of

ncRNA-RB1 expression levels following transfection of A549 cells with three different ASOs (30 nM). As

a control, a non-targeting ASO was used. B. CALR expression levels following depletion of ncRNA-RB1

using ASOs. Expression levels are presented relative to the value of actin as reference gene as determined

by qRT–PCR. The mean values±s.d. are shown, n≥3 replicates.

3.5.7.3 Knock-out of ncRNA-RB1 by genome editing using CRISPR

Only recently, the type II prokaryotic CRISPR (clustered regularly interspaced short

palindromic repeats)/Cas adaptive immune system has been adapted to be used a ver-

satile tool for genome editing in eukaryotic organisms [Cong et al., 2013].

To assess the effect of a permanent inactivation of ncRNA-RB1 on cellular CALR levels,
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a stable ncRNA-RB1 knock-out cell line was generated using the CRIPSR technology.

To this end, the Streptococcus pyogenes Cas9 protein together with a chimeric guide

RNA (substituting tracrRNA and crRNA), which mediates targeting of the enzyme to

a defined genomic locus, was overexpressed in A549 and U2OS cells by transfection of

the pX330 plasmid. After verifying that a ∼8 kb genomic region was deleted at a certain

ratio within the transfected cell population, cells were individual cells were grown to

form colonies. Each cell population derived from these colonies was screened by PCR

for its homologous deletion of the ncRNA-RB1 locus. This was followed by qRT-PCR

analysis on the ncRNA-RB1 expression levels. One clonal knock-out cell line was thereby

confirmed for the U2OS cell line (Figure 3.17 A).

Determination of CALR mRNA levels in the knock-out cell line showed no reduction

when compared to control cells (Figure 3.17 B). Therefore, this knock-out strategy did

not lend evidence that ncRNA-RB1 is a long term transcriptional activator of the CALR

gene.
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Figure 3.17: Knock-out of the ncRNA-RB1 gene. A. Determination of expression levels of

ncRNA-RB1 following knock-out (ko) of the ncRNA-RB1 gene in U2OS cells by genome editing using

CRISPR. As a control, WT U2OS cells were used. B. Determination of RB1 mRNA levels in ncRNA-

RB1 knock-out and control cells. C. Determination of CALR mRNA levels in ncRNA-RB1 knock-out

and control cells. Expression levels are presented relative to the value of actin as reference gene as

determined by qRT–PCR. The mean values ± s.d. are shown, n≥3 replicates.

3.5.7.4 Knock-down of ncRNA-RB1 in U2OS cells

To control for cell line-specific effects of CALR regulation by ncRNA-RB1, the ncRNA

was depleted in the U2OS cell line using dsiRNAs (Figure 3.18 A). qRT-PCR analysis

confirmed that ncRNA-RB1 acts as an activator of CALR also in this osteosarcoma cell

line, as reducing the levels of the ncRNA decreased CALR mRNA levels by ∼75% (Figure

3.18 B). This decrease was even more pronounced than in A549 cells, probably also due

to their higher steady-state levels of ncRNA-RB1 (Figure 3.6 C). This suggests that the

U2OS cell line constitutes a good model to study the biological significance of CALR

regulation by ncRNA-RB1.

Reductions in intracellular CALR protein levels in U2OS cells following depletion of

ncRNA-RB1 (using dsiRNA1 and dsiRNA2) were confirmed by immunofluorescent stain-

ings 48 hours post transfection. The visualization of intracellular CALR protein con-

firmed a preponderant localization in the endoplasmic reticulum (Figure 3.18 C). Changes
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in cytoplasmic fluorescence, caused by decreased CALR protein levels, were quantified us-

ing automated image analysis. A reduction in CALR protein levels of >60% was thereby

determined (Figure 3.18 D).

A

0

0.2

0.4

0.6

0.8

1.2

R
e

la
ti
v
e

 e
x
p

re
s
s
io

n

1.0

ncRNA-RB1 dsi ctrl

dsi1 ncRNA-RB1 

dsi2 ncRNA-RB1 

1.4

0

0.2

0.4

0.6

0.8

1.2

R
e

la
ti
v
e

 e
x
p

re
s
s
io

n

1.0

CALR

C si1 ncRNA-RB1si ctrl si2 ncRNA-RB1

0

0.2

0.4

0.6

0.8

1.0

N
o

rm
 C

A
L

R
 e

x
p

re
s
s
io

n dsi ctrl

dsi1 ncRNA-RB1 

dsi2 ncRNA-RB1 

B

D

Figure 3.18: Depletion of ncRNA-RB1 in U2OS cells. A. Knock-down of ncRNA-RB1 in U2OS

cells using two dsiRNAs against ncRNA-RB1 (10 nM). As a control, U2OS cells were transfected with

a non-targeting dsiRNA. B. Determination of CALR expression levels following knock-down of ncRNA-

RB1. Expression levels are presented relative to the value of actin as reference gene as determined by

qRT-PCR. C. Representative images of CALR protein expression (green) in U2OS cells treated with

dsiRNAs against ncRNA-RB1 or scrambled control siRNAs as obtained by immunohistochemistry. The

scale bar equals 10 µm. D. Determination of CALR protein expression following depletion of ncRNA-

RB1 in U2OS cells. Nine view fields per condition were analyzed by automated image segmentation and

the fluorescence intensity of CALR immunostaining was normalized to dsiRNA controls.

3.6 Mechanistic insights into the regulation of calreticulin

by ncRNA-RB1

3.6.1 Expression changes of calreticulin across cellular fractions

The change in relative CALR mRNA levels across cellular fractions upon ncRNA-RB1

depletion can elucidate whether regulation of CALR by ncRNA-RB1 occurs at the tran-

scriptional level or post-transcriptionally. A major change of CALR transcript levels in

chromatin fractions is indicative of a transcriptional regulation by ncRNA-RB1 as this

cellular fraction captures the ongoing transcription. A major relative change in cytoplas-

mic fractions suggests that CALR is regulated post-transcriptionally.

NcRNA-RB1 depleted A549 cells as well as control cells were separated into cytoplasm,
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nucleoplasm and chromatin factions, followed by RNA isolation of each fraction. Besides

ncRNA-RB1, RB1 mRNA and CALR mRNA levels, 7SL and pre-GAPDH transcript

levels were determined by qRT-PCR to control for purity of the fractions. Also, GAPDH

mRNA was measured across all fractions and conditions, to control for non-specific effects

due to depletion of ncRNA-RB1. Also, relative GAPDH levels were used to normalize

different experiments.

Interestingly, relative CALR mRNA levels were highest in the nucleoplasm and only

second most abundant in the cytoplasmic fraction when considering the number of tran-

scripts per microgram of RNA in control cells.

Depletion of ncRNA-RB1 (using dsiRNA1 and dsiRNA2) was most efficient in the cy-

toplasm and nucleoplasm, which is in accordance with previous studies identifying less

effective siRNA mediated knock-down outside of the cytoplasm (Figure 3.19 A). Reduc-

tions in cellular ncRNA-RB1 levels, tended to reduce CALR mRNA levels in cytoplasmic

and nucleoplasmic fractions (Figure 3.19 B). However, CALR mRNA levels were only

significantly decreased in the chromatin-associated RNA fraction.

Expression levels of GPADH mRNA did were not affected across the cellular fractions

upon ncRNA-RB1 depletion (Figure 3.19 C).

These result could be confirmed when depleting ncRNA-RB1 using ASOs and investi-

gating the effect on CALR across cellular fractions (data not shown).

In summary, ncRNA-RB1 is likely to play a role in transcriptional regulation of CALR

expression, as nascent transcript levels are only significantly reduced upon depletion of

the ncRNA.

3.6.2 Regulation of the calreticulin promoter by ncRNA-RB1

To determine whether ncRNA-RB1 regulates transcription of the CALR gene at its pro-

moter, the CALR promoter was cloned into a luciferase reporter plasmid upstream of

the promoter-less firefly luciferase gene. The construct was transfected into A549 cells

and simultaneously, cells were depleted from ncRNA-RB (using dsiRNA1 and dsiRNA2).

Luciferase expression levels of the CALR promoter plasmid as well as of a control plas-

mid harboring the GAPDH promoter, were measured 24 hours post transfection. No

differences in luciferase activities were observed for any of the two promoter plasmids

(Figure 3.20).

This result is inconclusive, as it is possible that the regulation of CALR by ncRNA-RB1

cannot be recapitulated using a reporter assay.
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Figure 3.19: Expression changes of calreticulin across cellular fractions. A. Knock-down

efficiency of ncRNA-RB1 in cytoplasmic, nucleoplasmic and chromatin fractions of A549 cells using

two dsiRNAs against ncRNA-RB1 (10 nM). B. CALR expression levels in cytoplasmic, nucleoplasmic

and chromatin fractions following knock-down of ncRNA-RB1. C. GAPDH expression levels in cellular

fractions following knock-down of ncRNA-RB1. The relative expression of ncRNA-RB1, CALR and

GAPDH within the cellular fractions was determined by qRT–PCR and normalized to actin as a reference

gene. The mean values ± s.d. are shown, n=3 replicates ∗ ∗ ∗p ≤ 0.005.
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Figure 3.20: CALR promoter activity in ncRNA-RB1 depleted cells. A. CALR promoter

activity as determined by the relative Firefly luciferase activity levels in A549 cells upon knock-down of

ncRNA-RB1 using two dsiRNAs (10 nM). B. Determination of GAPDH promoter activity as a control

upon knock-down of ncRNA-RB1. The mean values ± s.d. are shown, n≥3 replicates.

3.7 Consequences of calreticulin regulation by ncRNA-RB1

3.7.1 Impairment of cell-surface exposure of calreticulin

Depletion of CALR has previously been shown to not only reduce cytoplasmic CALR

protein levels but also affect the cell’s potential to expose CALR on its surface upon treat-

ment with certain chemotherapeutic agents [Obeid et al., 2007]. Among other agents,
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mitoxantrone (MTX) causes cell surface translocation of CALR thereby inducing im-

munogenic cell death [Obeid et al., 2007].

To address whether the decrease in CALR protein levels reduces translocation of CALR to

the cell surface, extracellular CALR (ecto-CALR) levels were analyzed upon knock-down

of the ncRNA. To this end, U2OS cells were transfected with each of the two dsiRNAs

against ncRNA-RB1 or a scrambled control siRNA and treated with 2 µM MTX 48 hours

post knock-down. Subsequently, immunocytochemistry was performed on living cells us-

ing non-permeabilizing conditions to avoid staining of intracellular CALR. Ecto-CALR

levels were then evaluated by flow-cytometry. Ecto-CALR levels were found to be re-

duced upon MTX treatment under ncRNA-RB1 knock-down conditions when compared

to control cells (Figure 3.21 A). Dead cells were excluded by counterstaining with pro-

pidium iodide and mean fluorescence intensity as well as the percent of CALR-positive

cells were determined (Figure 3.21 B).

The result indicates that translocation of CALR is impaired and is in accordance with

the idea that globally reduced CALR levels could affect many aspects of CALR function.

However, steady state ecto-CALR levels in uninduced cells are not different between

knock-down and control cells, suggesting that the turnover rate of extracellular CALR is

low (Figure 3.21 A).
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Figure 3.21: Cell-surface exposure of calreticulin and immunogenic cell removal of ncRNA-

RB1 depleted cells. A-B. U2OS cells treated with dsiRNAs against ncRNA-RB1 or scrambled control

siRNAs were subjected to 2 µM MTX for 12 h and surface-exposed CALR was evaluated by immunohis-

tochemistry and subsequent flow cytometry. Dead cells were excluded by counterstaining with propidium

iodide and mean fluorescence intensity as well as the percent of CALR-positive cells were determined.

Statistical analysis was conducted between the MTX-treated samples. C-D. FITC-labeled macrophages

were coincubated for 2 h with celltracker orange stained U2OS cells treated with dsiRNAs and subjected

to 2 µM MTX for 12 h as indicated. The celltracker fluorescence intensity of CD11b-FITC-labeled pe-

ripheral blood mononuclear cells was measured as an indicator for tumor cell uptake. Mean values ±

s.d. are shown, n=3 replicates ∗p ≤ 0.05.
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3.7.2 Effect on immunogenic cell removal

As cell surface exposure of CALR during apoptosis allows for the occurrence of immuno-

genic cell death, it is suggestive that cellular alterations in ecto-CALR levels directly

interfere with phagocytosis by macrophages. To test this hypothesis, an in vitro phago-

cytosis assay was designed: U2OS cells depleted of ncRNA-RB1 were treated with 2 µM

MTX for 12 h and stained using orange cell tracker. Simultaneously, macrophages were

isolated from human blood samples and labelled with FITC-conjugated antibodies. Sub-

sequently, macrophages were incubated with pre-treated U2OS cells. Cell fluorescences

were acquired on a flow cytometer, allowing to distinguish between macrophages that

have engulfed U2OS cells, those that did not and free U2OS cells. As a result, ncRNA-

RB1 depletion reduced the uptake of MTX-treated U2OS cells by human macrophages

in this in vitro phagocytosis assay arguing for a regulation of immunogenic cell removal

by ncRNA-RB1 (Figure 3.21 C,D).
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Chapter 4

Discussion

Transcription of the human genome is pervasive and by far not restricted to the gener-

ation of mRNAs. Although an increasing number of ncRNAs, transcribed upstream of

PCG promoters, is detected in genome-wide studies, their functionality has largely not

been elucidated.

The present thesis aims to determine and characterize the association of long ncRNA

genes with divergently encoded PCGs in the human genome. The extent of co-regulation

and co-expression of such long ncRNA/PCG pairs is investigated and for a representative

ncRNA/PCG pair, the ncRNA-RB1 and RB1 genes, a functional link is established.

4.1 Transcriptional characteristics of long ncRNA/PCG pairs

Depending on the study, the model system used and applied filters, different sets of

promoter associated long ncRNAs are determined [Derrien et al., 2012],[Sigova et al.,

2013]. The present study employed the comprehensive and constantly updated GEN-

CODE annotation of human long ncRNAs and PCGs to investigate the association of

both gene types in the human genome. A large fraction of long ncRNAs was found

to be divergently encoded in the genomic neighborhood of PCGs, more precisely 3,891

out of 22,831 annotated long ncRNA genes (Figure 3.1 A). Preceding this PhD thesis,

different studies have investigated the genomic association of long ncRNAs with PCGs

in the human genome. Estimates for the intersection of these gene types range from

35% up to 60% [Derrien et al., 2012],[Sigova et al., 2013]. This study determined that

17% of long ncRNA genes are associated with divergently encoded PCGs in the human

genome. Although the numbers differ, they emphasize the commonness of this genomic

arrangement and suggest a regulatory importance.

Among the 3,891 ncRNA/PCG pairs, 42% were encoded in an overlapping fashion and

49% were found to be expressed from a shared bidirectional promoter, indicating a high

potential for transcriptional interference and co-regulation of the paired genes, respec-

tively.
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The high number of long ncRNA/PCG pairs, expressed from a bidirectional promoter

demonstrated that transcription of long ncRNAs and PCGs from shared promoter se-

quences is favored by the cell. Furthermore, the bidirectional promoters of ncRNA/PCG

pairs were revealed to be on average only few hundred base pairs in size (Figure 3.1 B),

and thereby markedly smaller than 1 kb, being the defining criterion of promoter bidirec-

tionality [Trinklein et al., 2004]. This bias for small promoter sizes fuelled the question

if pairing of TSSs is advantageous to the cell, for example to allow co-regulation of these

long ncRNA/PCG pairs.

4.1.1 Co-regulation of long ncRNA/PCG pairs

Narrowing down the initial data set by filtering for bidirectional ncRNA/PCG promoters

of ≤500 bp in size, should facilitate to answer this question as the study was conse-

quently focused on ncRNA/PCG pairs expressed from over-represented small promoters

(Figure 3.4B). Conservation analysis for this final set of promoters revealed that bidi-

rectional promoters from the defined set were highly conserved and that they exceeded

the conservation levels of the average protein-coding gene promoter (Figure 3.4 C). This

observation implied that regulatory elements such as transcription factor binding sites,

are preserved within these ncRNA/PCG promoters, possibly controlling expression in

both promoter directions and thereby of the paired genes. The high conservation rate

therefore also suggests that pairing of both genes is conserved across species. As the

existence of orthologous ncRNA genes is hard to assess due to low levels of primary se-

quence conservation, it was not a focus of the present study. However, studies focusing on

conservation of bidirectional PCG organization, indicate that such genomic arrangement

is often conserved between human and mouse [Adachi and Lieber, 2002],[Trinklein et al.,

2004]. High conservation rates of ncRNA/PCG promoters could therefore indicate that

in other species these promoters are able to drive divergent transcription initiation.

In support of a co-regulation that results in co-expression of paired genes, two Pol II peaks

were observed at analyzed candidate ncRNA/PCG promoters when visualizing Encode

ChIP data (Figure 3.5). This implies that for the investigated bidirectional promoters,

both genes are expressed in a coordinated and regulated manner. Pol II enrichment is

usually observed 20-60 nucleotides inside the genes where the enzyme is paused to resume

elongative transcription upon controlled pause release [Muse et al., 2007].

By use of a bidirectional reporter assay, it is demonstrated that candidate bidirectional

ncRNA/PCG promoters are capable of initiating transcription in divergent directions,

allowing for co-expression of the paired genes (Figure 3.6 B). The assay also illustrated

that the promoter strength in bidirectional promoters is high and comparable in both

directions. This clearly distinguished candidate bidirectional promoters from suppos-

edly unidirectional control promoters, with the latter favoring transcription initiation in

one direction. Although this assay is well suited to determine bidirectional promoter
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activity, it does not provide an accurate quantitative assessment of the two promotor

directions, since it relies on expression of two reporter genes with different expression ef-

ficiencies. However, the study was only focused on determining the potential of promoters

for divergent gene expression, thereby confirming bidirectional nature of candidate long

ncRNA/PCG promoters. In conclusion, these results were suggesting that elements in

the promoter sequence convey bidirectional promoter activity.

Such sequence elements can be transcription factor binding sites or CPEs and mutational

studies demonstrated that both types of elements indeed affect transcription initiation

in both directions. By using the ncRNA-RB1/RB1 promoter as a model, it is shown

that disruption of individual transcription factor binding sites had the potential to re-

duce promoter activity drastically and equally in both directions (Figure 3.8 B). The

dramatic effect of single base pair mutations on bidirectional promoter activity suggests

that transcription factor binding is mediating PIC assembly at both TSSs of the pro-

moter. Binding of specific transcription factors to promoter regions is known to precede

PIC assembly and recruitment of GTFs, as transcription factors are involved in generat-

ing an open chromatin structure, e.g. by interacting with coactivator complexes.

Assuming that PIC assembly is regulated successively, it was considered whether tran-

scription initiation at the paired TSSs can be uncoupled by mutating CPEs present in

each of the promoter directions. For the ncRNA-RB1/RB1 promoter, CPEs were found

at both promoter ends and to be arranged in a non-overlapping fashion, although the pro-

moter sequence is only 114 bp in size (Figure 3.9 A). Mutations in these potential CPEs

reduced bidirectional promoter activity by ∼50% (Figure 3.9 C). Interestingly, transcrip-

tion initiation in the two promoter directions was again equally effected, indicating that

bidirectional promoter activity relies on the integrity of all CPEs. Only introduction

of a TATA-box into the GC-rich ncRNA-RB1/RB1 promoter sequence shifted promoter

activity towards the ncRNA direction. As previously described, TATA boxes appear to

regulate promoter directionality [Core et al., 2012].

As the observed effect of CPE mutations on bidirectional promoter activity is less pro-

nounced compared to the mutational effect of transcription factor binding sites, it can be

assumed that CPEs either act redundantly or that the predicted elements do not match

those used during PIC assembly.

In conclusion, the presented results imply that the candidate bidirectional promoters are

able to drive transcription initiation into the PCG and ncRNA-RB1 direction, that these

activities are coupled and dependent on the underlying promoter sequence. This empha-

sizes a transcriptional co-regulation of the investigated genomically paired long ncRNA

genes and PCGs.
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4.1.2 Co-expression of long ncRNA/PCG pairs

In contrast to these established promoter characteristics, in vivo expression levels of long

ncRNAs and paired mRNAs deviated greatly (Figure 3.6 C). Also, expression levels of

two out of four candidate transcript pairs were not correlated when measured across

different cell lines. This suggests that further regulatory mechanisms are active in vivo,

potentially affecting transcriptional elongation and/or post-transcriptional stability of

the paired RNAs. In addition, the chromatin context regarding nucleosome occupancy

and histone modification certainly differs between a vector and an actual genomic re-

gion.

Considering a post-transcriptional regulation, differences in expression levels could be

attributable to the exosome complex as has been described for the unstable promoter

upstream transcripts (PROMTs) [Preker et al., 2008]. To determine exosome involve-

ment in the regulation of long ncRNA transcript abundance, this major eukaryotic 3’-5’

exoribonuclease was depleted from cells. The observed stabilization of long ncRNAs sug-

gests that the exosome complex is involved in degrading transcripts of this class (Figure

3.7 B). Especially low abundant bidirectionally expressed long ncRNAs were found to be

stabilized upon exosome depletion.

It has been suggested that early polyadenylation of PROMTs, due to the increased fre-

quency auf poly(A) signals and depletion of splice sites in the upstream direction of the

promoter, recruits the exosome complex. In contrast, long ncRNAs of the examined

bidirectional ncRNA/mRNA pairs in this thesis are to a great extent spliced. Interest-

ingly, determination of BRCA1, RB1 and PRKCQ mRNA levels following depletion of

the cellular exosome showed an increase in abundance of 1.5- to 2-fold. In addition to

the observed increase in promoter upstream transcript levels, stabilization of mRNAs by

about ∼1.5-fold upon exosome depletion has also been described previously [Preker et al.,

2008]. This result emphasizes that the exosome regulates stability of many cellular RNA

species independent of their expression levels.

In conclusion, genomic encoding of long ncRNA and PCGs as birectional gene pairs ap-

pears to be favored by the cell allowing co-expression of such genes. But at the same

time, posttranscriptional regulatory mechanisms fine-tune and uncouple the transcrip-

tional output of such bidirectionally expressed gene pairs.

4.2 Functionality of ncRNA-RB1

4.2.1 Regulatory link between ncRNA-RB1 and RB1

As it was found that expression of long ncRNA/PCG pairs frequently occurs from pro-

moters of cancer-related genes (Figure 3.3), one such gene pair was chosen for further

analysis.

Characterization of the ncRNA-RB1 transcript, as a representative bidirectionally ex-
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pressed ncRNA, revealed that ncRNA-RB1 is lowly expressed and has at least four splice

forms in addition to the two annotated ones (Figure 3.10 A). This complexity suggests

that expression of the ncRNA is actively regulated and not a by-product of transcription

initiation at the RB1 promoter. Additionally, the gene could carry out several regulatory

functions as its secondary structure changes as a result of exons inclusion. The predom-

inant nuclear localization and low expression of the transcript further suggests that it

could be involved in gene regulatory processes in the nucleus (Figure 3.10 B).

Regarding the functionality of long ncRNAs and respective PCGs, it is demonstrated by

the example of ncRNA-RB1 and RB1 that both gene products are not involved in the

direct regulation of the partner gene (Figure 3.11). The same is true for the ncRNA-

PRKCQ/PRKCQ gene pair, in which both genes do not have transcriptional regulatory

effects towards each other (data not shown). These results indicate that promoter-

associated long ncRNAs likely fulfill separate functions apart from directly regulating

their closest PCG, although such a regulatory interplay has previously been suggested

[Uesaka et al., 2014].

In this regard, ncRNA-RB1 and RB1 were found to have to a great extent distinct target

genes, but also have a significant overlap in target genes, suggesting a regulatory inter-

play between the genes (Figure 3.12 A). Regarding the overlap in the genes regulated

between ncRNA-RB1 and RB1, it implies the involvement of ncRNA-RB1 and RB1 in a

common biological pathway or the common control of an upstream regulator.

With regard to the second possibility, the large number of potential target genes as de-

termined by RNA sequencing suggests that several of these genes are secondary targets.

The regulation of a gene such as a transcription factor will entail the differential expres-

sion of several other genes. Such secondary targets could be determined in large scale by

whole transcriptome analysis at different time points following knock-down of respective

genes.

To further investigate a regulatory interplay between ncRNA-RB1 and RB1, both genes

were simultaneously depleted from cells. However, common target genes of ncRNA-RB1

and RB1 did not display an additive regulatory effect for the double knock-down when

compared to individual depletion of ncRNA-RB1 and RB1 (Figure 3.13). This would be

expected for a scenario in which both genes target distinct biological pathways, thereby

independently affecting the expression of a shared set of genes.

4.2.2 Gene regulation by ncRNA-RB1

This study provides evidence for a regulation of the CALR gene by ncRNA-RB1, and

shows that this regulation affects transcriptional as well as protein levels of CALR (Fig-

ures 3.12 B,3.15) and is mediated at the transcriptional level (Figure 3.19 B). Among

the ncRNA-RB1 specific target genes, CALR was most highly affected in absolute terms

upon depletion of the ncRNA. The significance of this observation becomes clear when
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considering the high cellular abundance of this endoplasmic reticulum-sessile protein and

its function as a major Ca2+-binding protein. Importantly, CALR has been described as

a tumor suppressor gene as has RB1 [Pike et al., 1998],[Pike et al., 1999].

By ncRNA-RB1 acting as a transcriptional activator of the cancer-relevant CALR gene, a

regulatory interplay of this ncRNA with the tumor suppressor RB1 is further underlined

(Figure 3.12 B). In this scenario, a shared biological function of ncRNA-RB1 and RB1

also extends to their regulation of individual target genes. The idea that co-transcription

could entail co-functionality of paired gene products is supported by the observation that

divergent PCG/PCG pairs in the human genome (around 10% of all PCGs) are enriched

in specific functional categories, such as DNA repair and the regulation of cell cycle and

metabolism [Wakano et al., 2012].

Determination of CALR as a ncRNA-RB1 target gene showed that CALR protein lev-

els were even more strongly affected than its transcript levels following depletion of the

ncRNA (Figure 3.15). Also, this regulatory interplay could be confirmed by different

ncRNA-RB1 depletion techniques (use of dsiRNAs and ASOs) (Figures 3.12 B,3.16 B),

as well as across different cell lines (A549 and U2OS) (Figures 3.12 B,3.18 B). However,

the generated knock-out cell line for ncRNA-RB1 revealed that the regulatory effect on

CALR could not be long term one, suggesting that additional activating mechanisms in

the cell can compensate for the loss of the ncRNA (Figure 3.16 C).

With regard to the gene regulatory mechanism mediated by ncRNA-RB1, the low expres-

sion levels of the transcript as well as its specific enrichment in the chromatin-associated

cellular fraction, implied a transcriptional regulation of its target genes (Figure 3.10 B).

Cellular fractionation of ncRNA-RB1 depleted cells allowed to confirm the transcrip-

tional regulation of the CALR gene by ncRNA-RB1, demonstrating a specific reduction

in actively transcribed CALR mRNA levels (Figure 3.19 B). This implies that activating

transcription factors or co-factors are not efficiently recruited to the CALR gene in the

absence of ncRNA-RB1.

Interestingly, ncRNA-RB1 is transcribed from chromosome 13, whereas CALR is encoded

on chromosome 19. Such a regulation in trans has been suggested to require higher ex-

pression levels of ncRNAs, when assuming their diffusion to the locus of action [Cech and

Steitz, 2014]. Direct interaction of both chromosomal loci could reconcile this conflict.

However, examination of existing Pol II ChIA-PET (Chromatin Interaction Analysis by

Paired-End Tag Sequencing) data of K562 and MCF-7 cells as provided by the ENCODE

consortium did not show any long range interactions emanating from the ncRNA-RB1

locus.

Importantly, transcriptional regulation of the CALR gene was found to extend to the

cell surface translocation of calreticulin, thereby drastically reducing the induction of

ecto-CALR protein levels (Figure 3.21 A).
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4.2.3 Biological implications of the functional link between ncRNA-

RB1 and RB1

The CALR protein has been shown to serve as an ’eat-me’ signal for phagocytic cells

when exposed to the plasma membrane [Chao et al., 2010],[Obeid et al., 2007]. The

difference in ecto-CALR levels upon ncRNA-RB1 knock-down and induction of CALR

translocation was reflected in the reduced uptake of cancer cells by human macrophages

(Figure 3.21 C,D). This assigns an important role to ncRNA-RB1 in the regulation of

immunogenic cell death.

It has been proposed recently that tumorigenic cells not only need to disable cell-intrinsic

death programs (such as apoptosis) but they must also avoid programmed cell removal by

phagocytes [Chao et al., 2012]. One of the aims of chemotherapy is therefore to elicit an

anticancer immune response by inducing the uptake of dying cancer cells by phagocytes.

The possibility that neoplastic cells can simultaneously abrogate expression of RB1 and

ncRNA-RB1, caused by RB1 promoter mutation or methylation, has implications for

cancer progression. Importantly, hypermethylation of the RB1 promoter is frequently

(∼15%) observed in human tumors and has been shown do drastically reduce expression

of RB1 [Livide et al., 2012],[Ohtani-Fujita et al., 1993].

In later stages of tumor development, when RB1 is lost to achieve uncontrolled pro-

liferation, it could be advantageous for the cell to simultaneously reduce extracellular

CALR levels in order to escape macrophage recognition. However, increased ecto-CALR

levels have been observed in several cancer types and are indicative of cellular stress

(endoplasmic stress) experienced as a result of malignant transformation of the cell. To

evade programmed cell removal, these cancer cells have been observed to upregulate ex-

tracellular CD47, an anti-phagocytic protein [Tsai and Discher, 2008]. RB1 promoter

methylation during cancer progression could result the short-term down regulation of

CALR levels due to co-inactivation of ncRNA-RB1. This would lend a time window to

the cells to increase extracellular CD47 levels. If this is achieved previously to increases

of ecto-CALR, cells are likely to avoid recognition by macrophages.

4.3 Comparison of non-coding transcription at regulatory

elements

The next section of the discussion intends to compare bidirectional transcription initi-

ation observed for ncRNA/PCG pairs to the divergent transcription initiation at reg-

ulatory elements which has been found to occur widespread across the genome. Also,

the molecular basis for such correlated bidirectional transcription initiation as well as its

functionality will be discussed.
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4.3.1 Transcription initiation at promoters and enhancers

Transcription of divergent ncRNAs is not restricted to promoters, but has been detected

at other regulatory elements such as enhancers and transcription termination sites [Kim

et al., 2010],[De Santa et al., 2010],[Kapranov et al., 2007]. Although initially suggested,

this non-coding transcription appears not to be the result of inappropriate Pol II tran-

scription initiation due to low nucleosome occupancy at these loci. Instead, the presence

of CPEs within both DNA strands that mediate the assembly of distinct PICs and pro-

mote divergent transcription initiation, argues for a regulated non-coding transcriptional

output from these promoters and enhancers [Duttke et al., 2015],[Venters and Pugh,

2013],[Andersson et al., 2014a]. A similarity of divergent transcription initiation at reg-

ulatory elements, resulting in expression of two ncRNAs, one ncRNA and an mRNA or

even two mRNAs, as in classical bidirectional promoters, is a short intervening sequence

in between the paired TSSs. As described in the present thesis, transcription of long

ncRNA/mRNA pairs annotated in the human genome is majorly initiated from a pro-

moter size of 100-200 bp (Figure 3.1 B). In another study, the median distance between

divergent TSSs of long ncRNAs and PCGs was found to be ∼300 bp [Sigova et al., 2013].

Reports on bidirectional promoters expressing two PCGs pointed out that most of the

paired TSSs were less than 300 bp apart [Adachi and Lieber, 2002]. Along these lines, the

intervening sequence between the TSS of PCGs and any upstream initiated transcrip-

tion was found to be between 110 and 200 bp, depending on the study [Duttke et al.,

2015],[Core et al., 2014]. The same is true for bidirectional transcription at enhancer

elements, that has been reported to initiate at the small distance of 110 bp [Core et al.,

2014],[Andersson et al., 2014a].

Besides the presence of core promoter-like elements found upstream of those PCG pro-

moters featuring divergent transcription initiation, assembly of two independent PICs

has also been observed [Duttke et al., 2015],[Venters and Pugh, 2013]. This indicates

that general transcription factors are actively positioned at both promoter sites. As

most promoters that drive bidirectional transcription initiation are extremely short, the

question arises how two distinct PICs can assemble within this restricted distance. At

every TSS, the PIC contacts up to 50 bp of upstream and downstream sequence leaving

little space in between both complexes as well as for the binding of additional activating

transcription factors [Coulombe and Burton, 1999]. Different hypotheses can reconcile

this observation: Expression of paired transcripts might not occur simultaneously at the

same promoter. Instead, at any given time only a subset of cells within the population

may initiate transcription in one or the other direction. On the other hand, it is possible

that both PICs are assembled sequentially, with one complex forming and initiating Pol

II upstream, followed by assembly of a downstream PIC and Pol II initiation. In support

of this scenario, few general transcription factors stay associated with the TSS following

recruitment and transcription initiation by Pol II [Yudkovsky et al., 2000]. This idea is
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also supported by the fact that Pol II often pauses downstream of the TSS providing an

additional regulatory switch past transcription initiation [Venters and Pugh, 2013].

4.3.2 Molecular basis for correlated bidirectional transcription initia-

tion

Studies showed that bidirectional promoter activity can depend on the integrity of both

TSSs and the activity of regulatory elements within the promoter region, such as tran-

scription factor binding sites [Trinklein et al., 2004].

It is conceivable that binding of transcription factors within a small bidirectional pro-

moter region can affect the assembly of paired PICs, explaining activation or repression

of transcription in both directions. A study by Core et al. investigated the binding of

transcription factors within DNA sequences featuring divergent transcription initiation

[Core et al., 2014]. In divergent TSS regions of promoters and enhancers, different posi-

tional modes for transcription factor binding were observed: Central binders were found

to have activating roles on PIC assembly at both TSSs and repressive factors tended to

bind TSS-proximal, thereby preventing PIC assembly at the respective TSS and allowing

anti-correlated expression of divergently expressed transcripts. The small promoter size

has also been suggested to allow binding of only few factors at the same time, with sev-

eral neighboring binding sites competing for transcription factor binding. This model is

suitable to explain selection of multiple TSSs within one core promoter region, as binding

of different transcription factors might influence initiation site selection by Pol II [Core

et al., 2014].

4.3.3 Functionality of transcription at regulatory elements

Although numerous studies provide evidence for regulated transcription initiation up-

stream of PCG promoters and during enhancer activation, questions remain regarding

the functionality of this transcriptional output. One possibility is that the act of tran-

scription blocks negative influences on the promoter, such as the spread of repressive

chromatin, allowing for steady PCG expression [Seila et al., 2009].

On the other hand, the act of transcription increases the chance for mutagenic alterations

in the coding strand, thereby allowing for the acquisition of splice sites and consequently

expression of longer transcripts. These transcripts can then eventually acquire func-

tionality [Wu and Sharp, 2013]. Along these lines, bidirectional promoters have been

described to be important for the emergence of species-specific transcripts, as novel tran-

scripts have been found enriched upstream of PCGs [Gotea et al., 2013]. Additionally,

promoter bidirectionality facilitates integration of transposable elements due to the open

chromatin environment during the transcriptional processes. Thereby novel bidirectional

gene pairs can originate, as domestication of transposable elements is important for the

generation of new genes. Domesticated elements upstream of PCG promoters will conse-
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quently share regulative capacity with the neighboring PCG [Kalitsis and Saffery, 2009].

These studies support the idea that the act of transcription promotes the acquisition of

new genes. Thus, different transcript species could represent evolutionary stages of this

process from an unspliced, early polyadenylated transcript to a spliced long non-coding

RNA and eventually even to a functional PCG. In this regard, expression of bidirectional

long ncRNAs could be low as they are in the process of acquiring functionality and as

the cell has to control the output of deleterious transcripts.

This theory could also explain why bidirectionally expressed long ncRNAs are extensively

spliced, as observed for long ncRNA-RB1 (Figure 3.10A). Not all splice forms might be

functional, but when expressing various splice forms, a functional one could emerge in

the cell.

4.4 Outlook

This study determines that divergent transcription initiation, commonly observed at reg-

ulatory elements in the cell, also occurs at bidirectional long ncRNA/PCG promoters.

Also, a functional interplay between the bidirectionally expressed ncRNA-RB1 and RB1

genes is established by demonstrating that both genes exhibit tumor suppressive activ-

ity. Also, the long ncRNA-RB1 is found to have individual regulatory functions, such

as towards the CALR gene, but also likely some regulatory potential shared with RB1.

Nevertheless there are unresolved questions on the regulatory interaction of ncRNA-RB1

and RB1, resulting in an overlapping set of target genes, as well as on the regulatory

mechanism of the CALR gene by ncRNA-RB1.

To determine an interaction between ncRNA-RB1 and pRB, that could result the teth-

ering of RB1 to genomic loci targeted by the ncRNA and thereby a gene regulatory

overlap, an RNA immunoprecipitation could be performed. By precipitating pRB using

an antibody and isolation of associated RNAs this method could allow to map such an

RNA-protein interaction in vivo. So far, an RNA-binding domain of the RB1 protein has

not been identified. However, the protein also does not contain any commonly recognized

DNA-binding or protein-interacting domain [Burkhart and Sage, 2008].

Additionally, methods such as Chirp (chromatin isolation by RNA purification), CHART

(capture hybridization analysis of RNA targets) and RAP (RNA antisense purification)

allow to pull down long ncRNA-associated proteins as well as associated chromatin by

using biotinylated oligonucleotides [Chu et al., 2011],[Simon et al., 2011],[Engreitz et al.,

2013]. These methods are very insightful, but generally require relatively high expression

levels of the ncRNA to distinguish RNA specific signals from background.

In conclusion, employment of one of these methods could potentially reveal an interaction

of ncRNA-RB1 with the CALR promoter or genomic locus, as well as the interplay of

the ncRNA with transcriptional regulators and/or with pRB.
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Appendix A

Table A1: List of 1,107 bidirectionally expressed ncRNA/PCG pairs

Chr Start End Transcript ID Str Start End Gene ID Str Dist

1 1822910 1822911 ENST00000412228.1 + 1822494 1822495 ENSG00000078369.13 - 415

1 3816936 3816937 ENST00000413332.1 + 3816856 3816857 ENSG00000198912.6 - 79

1 3816968 3816969 ENST00000442673.1 + 3816856 3816857 ENSG00000198912.6 - 111

1 3816980 3816981 ENST00000439488.1 + 3816856 3816857 ENSG00000198912.6 - 123

1 6296300 6296301 ENST00000441724.1 + 6296031 6296032 ENSG00000116237.11 - 268

1 8086798 8086799 ENST00000445300.1 + 8086367 8086368 ENSG00000116285.8 - 430

1 21059373 21059374 ENST00000436642.1 + 21059329 21059330 ENSG00000189410.7 - 43

1 28969740 28969741 ENST00000420776.1 + 28969596 28969597 ENSG00000120656.7 - 143

1 40254648 40254649 ENST00000566366.1 + 40254532 40254533 ENSG00000116985.6 - 115

1 41708045 41708046 ENST00000425554.1 + 41707825 41707826 ENSG00000010803.12 - 219

1 41708247 41708248 ENST00000445073.1 + 41707825 41707826 ENSG00000010803.12 - 421

1 43424720 43424721 ENST00000431759.1 + 43424529 43424530 ENSG00000117394.15 - 190

1 43424775 43424776 ENST00000416689.1 + 43424529 43424530 ENSG00000117394.15 - 245

1 53686335 53686336 ENST00000569869.1 + 53686288 53686289 ENSG00000162384.9 - 46

1 53704282 53704283 ENST00000458151.1 + 53704281 53704282 ENSG00000162385.6 - 0

1 53793905 53793906 ENST00000445039.2 + 53793741 53793742 ENSG00000157193.10 - 163

1 55353236 55353237 ENST00000443284.1 + 55352890 55352891 ENSG00000116133.7 - 345

1 63154153 63154154 ENST00000453229.1 + 63153968 63153969 ENSG00000116641.11 - 184

1 71547036 71547037 ENST00000596952.1 + 71546979 71546980 ENSG00000132485.8 - 56

1 71547044 71547045 ENST00000413421.1 + 71546979 71546980 ENSG00000132485.8 - 64

1 94312730 94312731 ENST00000565336.1 + 94312705 94312706 ENSG00000137936.12 - 24

1 95393122 95393123 ENST00000452846.1 + 95392833 95392834 ENSG00000117519.11 - 288

1 110950999 110951000 ENST00000608253.1 + 110950563 110950564 ENSG00000134248.9 - 435

1 113258294 113258295 ENST00000566195.1 + 113258098 113258099 ENSG00000155367.11 - 195

1 119683331 119683332 ENST00000457043.1 + 119683293 119683294 ENSG00000116874.7 - 37

1 119683353 119683354 ENST00000418015.1 + 119683293 119683294 ENSG00000116874.7 - 59

1 145827205 145827206 ENST00000437377.1 + 145827102 145827103 ENSG00000117262.14 - 102

1 146644350 146644351 ENST00000440377.2 + 146644128 146644129 ENSG00000131791.6 - 221

1 147634989 147634990 ENST00000432038.1 + 147634885 147634886 ENSG00000203836.7 - 103

1 147635092 147635093 ENST00000411978.1 + 147634885 147634886 ENSG00000203836.7 - 206

1 147635156 147635157 ENST00000598757.1 + 147634885 147634886 ENSG00000203836.7 - 270

1 147635200 147635201 ENST00000608244.1 + 147634885 147634886 ENSG00000203836.7 - 314

1 151300425 151300426 ENST00000609583.1 + 151300190 151300191 ENSG00000143393.12 - 234

1 153950219 153950220 ENST00000608236.1 + 153950163 153950164 ENSG00000143543.10 - 55

1 154909846 154909847 ENST00000604546.1 + 154909466 154909467 ENSG00000163344.5 - 379

1 161337812 161337813 ENST00000437833.2 + 161337663 161337664 ENSG00000188931.3 - 148

1 173991647 173991648 ENST00000424181.1 + 173991434 173991435 ENSG00000135870.7 - 212

1 176176784 176176785 ENST00000456125.1 + 176176628 176176629 ENSG00000143207.15 - 155

1 185286911 185286912 ENST00000609881.1 + 185286460 185286461 ENSG00000116679.11 - 450

1 186649754 186649755 ENST00000608917.1 + 186649558 186649559 ENSG00000073756.7 - 195

1 200993077 200993078 ENST00000446333.1 + 200992827 200992828 ENSG00000116852.10 - 249

1 200993089 200993090 ENST00000458003.1 + 200992827 200992828 ENSG00000116852.10 - 261

1 211849104 211849105 ENST00000415202.1 + 211848959 211848960 ENSG00000117650.8 - 144

1 212004303 212004304 ENST00000430623.1 + 212004113 212004114 ENSG00000123684.8 - 189

1 222763304 222763305 ENST00000413074.1 + 222763274 222763275 ENSG00000143498.13 - 29

1 229644248 229644249 ENST00000417605.1 + 229644102 229644103 ENSG00000069248.9 - 145

1 245028040 245028041 ENST00000610145.1 + 245027843 245027844 ENSG00000153187.12 - 196

1 249153363 249153364 ENST00000417047.1 + 249153342 249153343 ENSG00000171163.11 - 20

10 6622381 6622382 ENST00000445427.1 + 6622262 6622263 ENSG00000065675.10 - 118

10 6622387 6622388 ENST00000455810.1 + 6622262 6622263 ENSG00000065675.10 - 124

10 21463283 21463284 ENST00000417845.1 + 21463115 21463116 ENSG00000078114.14 - 167

10 35104695 35104696 ENST00000446211.1 + 35104252 35104253 ENSG00000148498.11 - 442

10 38265753 38265754 ENST00000412789.1 + 38265560 38265561 ENSG00000175395.11 - 192

10 75385754 75385755 ENST00000595595.1 + 75385710 75385711 ENSG00000166348.13 - 43

10 88281702 88281703 ENST00000428940.2 + 88281571 88281572 ENSG00000062650.13 - 130

10 101380812 101380813 ENST00000566847.1 + 101380365 101380366 ENSG00000155287.6 - 446

Continued on next page
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Table A1: Continued from previous page
Chr Start End Transcript ID Str Start End Gene ID Str Dist

10 104211359 104211360 ENST00000597488.1 + 104211299 104211300 ENSG00000120055.5 - 59

10 119806335 119806336 ENST00000435944.1 + 119806113 119806114 ENSG00000107560.6 - 221

10 119806505 119806506 ENST00000426021.1 + 119806113 119806114 ENSG00000107560.6 - 391

10 119806515 119806516 ENST00000454781.1 + 119806113 119806114 ENSG00000107560.6 - 401

10 119806535 119806536 ENST00000454857.1 + 119806113 119806114 ENSG00000107560.6 - 421

10 127371798 127371799 ENST00000596068.1 + 127371712 127371713 ENSG00000175018.8 - 85

10 127371808 127371809 ENST00000607914.1 + 127371712 127371713 ENSG00000175018.8 - 95

10 127371812 127371813 ENST00000415305.2 + 127371712 127371713 ENSG00000175018.8 - 99

10 127371862 127371863 ENST00000449693.1 + 127371712 127371713 ENSG00000175018.8 - 149

11 1330999 1331000 ENST00000530897.1 + 1330883 1330884 ENSG00000078902.11 - 115

11 5959981 5959982 ENST00000528915.1 + 5959848 5959849 ENSG00000132256.14 - 132

11 8190714 8190715 ENST00000499752.2 + 8190601 8190602 ENSG00000166405.10 - 112

11 8986595 8986596 ENST00000532599.1 + 8986557 8986558 ENSG00000175348.6 - 37

11 32457322 32457323 ENST00000459866.1 + 32457175 32457176 ENSG00000184937.8 - 146

11 32457347 32457348 ENST00000525436.1 + 32457175 32457176 ENSG00000184937.8 - 171

11 33796245 33796246 ENST00000533046.1 + 33796088 33796089 ENSG00000110429.9 - 156

11 33796251 33796252 ENST00000530352.1 + 33796088 33796089 ENSG00000110429.9 - 162

11 59436785 59436786 ENST00000534120.1 + 59436452 59436453 ENSG00000166889.13 - 332

11 60674261 60674262 ENST00000544421.1 + 60674059 60674060 ENSG00000110107.4 - 201

11 64014526 64014527 ENST00000538355.1 + 64014412 64014413 ENSG00000173457.6 - 113

11 64546426 64546427 ENST00000594089.1 + 64546257 64546258 ENSG00000168066.16 - 168

11 77850817 77850818 ENST00000532831.1 + 77850705 77850706 ENSG00000159063.8 - 111

11 77850849 77850850 ENST00000500113.1 + 77850705 77850706 ENSG00000159063.8 - 143

11 77850861 77850862 ENST00000527321.1 + 77850705 77850706 ENSG00000159063.8 - 155

11 82783108 82783109 ENST00000527627.1 + 82782964 82782965 ENSG00000137502.5 - 143

11 82783124 82783125 ENST00000526795.1 + 82782964 82782965 ENSG00000137502.5 - 159

11 82783146 82783147 ENST00000533528.1 + 82782964 82782965 ENSG00000137502.5 - 181

11 82783160 82783161 ENST00000533708.1 + 82782964 82782965 ENSG00000137502.5 - 195

11 82783164 82783165 ENST00000534499.1 + 82782964 82782965 ENSG00000137502.5 - 199

11 82783385 82783386 ENST00000528156.1 + 82782964 82782965 ENSG00000137502.5 - 420

11 82783397 82783398 ENST00000530270.2 + 82782964 82782965 ENSG00000137502.5 - 432

11 86666661 86666662 ENST00000499504.3 + 86666432 86666433 ENSG00000174804.3 - 228

11 94965735 94965736 ENST00000543573.1 + 94965704 94965705 ENSG00000149212.6 - 30

11 116644105 116644106 ENST00000439104.1 + 116643703 116643704 ENSG00000137656.7 - 401

11 119252488 119252489 ENST00000577297.1 + 119252435 119252436 ENSG00000036672.11 - 52

11 119600293 119600294 ENST00000533253.1 + 119599793 119599794 ENSG00000110400.6 - 499

11 124632327 124632328 ENST00000532579.1 + 124632185 124632186 ENSG00000149564.7 - 141

11 124670806 124670807 ENST00000529392.1 + 124670568 124670569 ENSG00000120458.5 - 237

11 129872833 129872834 ENST00000530583.1 + 129872729 129872730 ENSG00000170325.10 - 103

11 130184888 130184889 ENST00000602376.1 + 130184580 130184581 ENSG00000196323.7 - 307

11 130184923 130184924 ENST00000532116.3 + 130184580 130184581 ENSG00000196323.7 - 342

11 130184934 130184935 ENST00000602310.1 + 130184580 130184581 ENSG00000196323.7 - 353

12 13153385 13153386 ENST00000543321.1 + 13153206 13153207 ENSG00000013583.4 - 178

12 30908008 30908009 ENST00000500076.2 + 30907884 30907885 ENSG00000110888.13 - 123

12 31744246 31744247 ENST00000537346.1 + 31744030 31744031 ENSG00000170456.10 - 215

12 49182930 49182931 ENST00000547774.1 + 49182819 49182820 ENSG00000174233.7 - 110

12 49525493 49525494 ENST00000551496.1 + 49525179 49525180 ENSG00000123416.11 - 313

12 54813569 54813570 ENST00000552053.1 + 54813243 54813244 ENSG00000161638.6 - 325

12 57824899 57824900 ENST00000547552.1 + 57824787 57824788 ENSG00000179912.15 - 111

12 59314420 59314421 ENST00000547590.1 + 59314302 59314303 ENSG00000139263.7 - 117

12 65153301 65153302 ENST00000434563.3 + 65153226 65153227 ENSG00000135677.6 - 74

12 92539957 92539958 ENST00000499685.2 + 92539672 92539673 ENSG00000133639.3 - 284

12 100536836 100536837 ENST00000550886.1 + 100536625 100536626 ENSG00000111647.8 - 210

12 110318481 110318482 ENST00000446473.2 + 110318292 110318293 ENSG00000139433.5 - 188

12 111807086 111807087 ENST00000552663.1 + 111806924 111806925 ENSG00000198324.10 - 161

12 114846559 114846560 ENST00000528549.1 + 114846246 114846247 ENSG00000089225.15 - 312

12 117537286 117537287 ENST00000547006.1 + 117537283 117537284 ENSG00000088992.13 - 2

12 123849500 123849501 ENST00000543072.1 + 123849389 123849390 ENSG00000139697.7 - 110

13 27746396 27746397 ENST00000452222.1 + 27746032 27746033 ENSG00000152484.9 - 363

13 45915554 45915555 ENST00000412946.2 + 45915504 45915505 ENSG00000133112.12 - 49

13 45915555 45915556 ENST00000520622.1 + 45915504 45915505 ENSG00000133112.12 - 50

13 45915564 45915565 ENST00000520590.1 + 45915504 45915505 ENSG00000133112.12 - 59

13 45915626 45915627 ENST00000523506.1 + 45915504 45915505 ENSG00000133112.12 - 121

13 45915646 45915647 ENST00000521336.1 + 45915504 45915505 ENSG00000133112.12 - 141

13 45915648 45915649 ENST00000524062.1 + 45915504 45915505 ENSG00000133112.12 - 143

13 45915673 45915674 ENST00000520310.1 + 45915504 45915505 ENSG00000133112.12 - 168

13 45915727 45915728 ENST00000520924.1 + 45915504 45915505 ENSG00000133112.12 - 222

13 52378433 52378434 ENST00000456688.1 + 52378292 52378293 ENSG00000102796.6 - 140

13 74993310 74993311 ENST00000423629.1 + 74993251 74993252 ENSG00000177596.1 - 58

13 114567141 114567142 ENST00000608651.1 + 114567045 114567046 ENSG00000183087.10 - 95

14 21852451 21852452 ENST00000565098.1 + 21852424 21852425 ENSG00000092201.5 - 26

14 44976610 44976611 ENST00000557465.1 + 44976481 44976482 ENSG00000189139.5 - 128

14 44976612 44976613 ENST00000555433.1 + 44976481 44976482 ENSG00000189139.5 - 130

14 53620072 53620073 ENST00000554235.1 + 53619999 53620000 ENSG00000100523.10 - 72

Continued on next page
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Table A1: Continued from previous page
Chr Start End Transcript ID Str Start End Gene ID Str Dist

14 64010287 64010288 ENST00000561909.1 + 64010091 64010092 ENSG00000154001.9 - 195

14 69446399 69446400 ENST00000553961.1 + 69446156 69446157 ENSG00000072110.9 - 242

14 91884610 91884611 ENST00000557524.1 + 91884187 91884188 ENSG00000015133.14 - 422

14 101295638 101295639 ENST00000523671.2 + 101295536 101295537 ENSG00000267918.1 - 101

14 101295948 101295949 ENST00000452514.2 + 101295536 101295537 ENSG00000267918.1 - 411

14 104314058 104314059 ENST00000556586.1 + 104313926 104313927 ENSG00000088808.12 - 131

15 26110442 26110443 ENST00000557558.1 + 26110316 26110317 ENSG00000206190.7 - 125

15 35838396 35838397 ENST00000501169.2 + 35838393 35838394 ENSG00000134146.7 - 2

15 35838584 35838585 ENST00000559210.1 + 35838393 35838394 ENSG00000134146.7 - 190

15 40213243 40213244 ENST00000499797.2 + 40213092 40213093 ENSG00000166073.4 - 150

15 40213271 40213272 ENST00000558675.1 + 40213092 40213093 ENSG00000166073.4 - 178

15 40331512 40331513 ENST00000504245.1 + 40331388 40331389 ENSG00000140319.6 - 123

15 40331550 40331551 ENST00000560341.1 + 40331388 40331389 ENSG00000140319.6 - 161

15 48938148 48938149 ENST00000558061.1 + 48938045 48938046 ENSG00000166147.9 - 102

15 50647664 50647665 ENST00000499624.2 + 50647604 50647605 ENSG00000104064.12 - 59

15 50647742 50647743 ENST00000561289.1 + 50647604 50647605 ENSG00000104064.12 - 137

15 50647750 50647751 ENST00000499326.1 + 50647604 50647605 ENSG00000104064.12 - 145

15 62352702 62352703 ENST00000560813.2 + 62352671 62352672 ENSG00000129003.11 - 30

15 62352713 62352714 ENST00000558368.2 + 62352671 62352672 ENSG00000129003.11 - 41

15 74753606 74753607 ENST00000499217.2 + 74753522 74753523 ENSG00000138629.11 - 83

15 74753648 74753649 ENST00000567286.1 + 74753522 74753523 ENSG00000138629.11 - 125

15 74753677 74753678 ENST00000564621.1 + 74753522 74753523 ENSG00000138629.11 - 154

15 74753685 74753686 ENST00000568853.1 + 74753522 74753523 ENSG00000138629.11 - 162

15 89878284 89878285 ENST00000569473.1 + 89878091 89878092 ENSG00000140521.7 - 192

15 89878502 89878503 ENST00000562356.1 + 89878091 89878092 ENSG00000140521.7 - 410

15 90645881 90645882 ENST00000561101.1 + 90645735 90645736 ENSG00000182054.5 - 145

15 91565849 91565850 ENST00000556904.1 + 91565832 91565833 ENSG00000184056.10 - 16

15 91565851 91565852 ENST00000557804.1 + 91565832 91565833 ENSG00000184056.10 - 18

15 91565852 91565853 ENST00000501381.3 + 91565832 91565833 ENSG00000184056.10 - 19

16 2014960 2014961 ENST00000531523.1 + 2014860 2014861 ENSG00000140988.11 - 99

16 2015035 2015036 ENST00000564014.1 + 2014860 2014861 ENSG00000140988.11 - 174

16 2015185 2015186 ENST00000459373.1 + 2014860 2014861 ENSG00000140988.11 - 324

16 2318624 2318625 ENST00000567888.1 + 2318412 2318413 ENSG00000205937.7 - 211

16 2318664 2318665 ENST00000562838.1 + 2318412 2318413 ENSG00000205937.7 - 251

16 8963108 8963109 ENST00000570290.1 + 8962865 8962866 ENSG00000153048.6 - 242

16 18938185 18938186 ENST00000565782.1 + 18937775 18937776 ENSG00000157106.12 - 409

16 21314568 21314569 ENST00000444326.1 + 21314403 21314404 ENSG00000103316.6 - 164

16 29875155 29875156 ENST00000398859.3 + 29875056 29875057 ENSG00000103502.9 - 98

16 30366762 30366763 ENST00000563252.1 + 30366681 30366682 ENSG00000169217.4 - 80

16 47007900 47007901 ENST00000562536.1 + 47007698 47007699 ENSG00000069345.7 - 201

16 48654230 48654231 ENST00000565055.1 + 48654058 48654059 ENSG00000102921.3 - 171

16 52112534 52112535 ENST00000568711.1 + 52112385 52112386 ENSG00000261190.1 - 148

16 67515217 67515218 ENST00000602592.1 + 67515139 67515140 ENSG00000159720.7 - 77

16 67518145 67518146 ENST00000602476.1 + 67517715 67517716 ENSG00000159723.4 - 429

16 81110924 81110925 ENST00000501068.2 + 81110871 81110872 ENSG00000166455.9 - 52

16 82203901 82203902 ENST00000563841.1 + 82203830 82203831 ENSG00000135698.5 - 70

16 84150656 84150657 ENST00000565382.1 + 84150510 84150511 ENSG00000140943.12 - 145

16 88729743 88729744 ENST00000565633.1 + 88729568 88729569 ENSG00000167508.6 - 174

16 88729777 88729778 ENST00000569786.1 + 88729568 88729569 ENSG00000167508.6 - 208

16 88729788 88729789 ENST00000563475.1 + 88729568 88729569 ENSG00000167508.6 - 219

17 5372412 5372413 ENST00000571506.1 + 5372379 5372380 ENSG00000005100.8 - 32

17 8080130 8080131 ENST00000581248.1 + 8079716 8079717 ENSG00000179029.10 - 413

17 8869213 8869214 ENST00000585297.1 + 8869028 8869029 ENSG00000141506.9 - 184

17 16557218 16557219 ENST00000577569.1 + 16557169 16557170 ENSG00000197566.5 - 48

17 19622372 19622373 ENST00000577087.2 + 19622291 19622292 ENSG00000180638.13 - 80

17 38083995 38083996 ENST00000578802.1 + 38083853 38083854 ENSG00000172057.5 - 141

17 38084097 38084098 ENST00000578478.1 + 38083853 38083854 ENSG00000172057.5 - 243

17 38084120 38084121 ENST00000582263.1 + 38083853 38083854 ENSG00000172057.5 - 266

17 40086888 40086889 ENST00000593239.1 + 40086794 40086795 ENSG00000131473.12 - 93

17 40086898 40086899 ENST00000377540.1 + 40086794 40086795 ENSG00000131473.12 - 103

17 40086909 40086910 ENST00000591658.1 + 40086794 40086795 ENSG00000131473.12 - 114

17 42299283 42299284 ENST00000563394.1 + 42298993 42298994 ENSG00000108312.10 - 289

17 43025280 43025281 ENST00000591013.1 + 43025081 43025082 ENSG00000186185.9 - 198

17 43339558 43339559 ENST00000585351.1 + 43339478 43339479 ENSG00000184361.8 - 79

17 58156670 58156671 ENST00000589740.1 + 58156291 58156292 ENSG00000068097.10 - 378

17 58603654 58603655 ENST00000559739.1 + 58603579 58603580 ENSG00000062725.5 - 74

17 58603660 58603661 ENST00000558027.1 + 58603579 58603580 ENSG00000062725.5 - 80

17 60885861 60885862 ENST00000584542.1 + 60885704 60885705 ENSG00000173838.7 - 156

17 76356534 76356535 ENST00000592569.1 + 76356157 76356158 ENSG00000184557.3 - 376

17 79885705 79885706 ENST00000582106.1 + 79885589 79885590 ENSG00000197063.6 - 115

17 79995781 79995782 ENST00000584705.1 + 79995607 79995608 ENSG00000169738.3 - 173

17 79995907 79995908 ENST00000582558.1 + 79995607 79995608 ENSG00000169738.3 - 299

18 268148 268149 ENST00000581677.1 + 268049 268050 ENSG00000079134.7 - 98

18 9615262 9615263 ENST00000582435.1 + 9615237 9615238 ENSG00000154845.11 - 24
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18 70535623 70535624 ENST00000580564.1 + 70535380 70535381 ENSG00000166342.14 - 242

19 663482 663483 ENST00000591866.1 + 663276 663277 ENSG00000070423.13 - 205

19 1238178 1238179 ENST00000592843.1 + 1238025 1238026 ENSG00000099625.8 - 152

19 2328629 2328630 ENST00000452401.2 + 2328618 2328619 ENSG00000130332.10 - 10

19 2328658 2328659 ENST00000586332.1 + 2328618 2328619 ENSG00000130332.10 - 39

19 2328672 2328673 ENST00000590982.1 + 2328618 2328619 ENSG00000130332.10 - 53

19 2328676 2328677 ENST00000586377.2 + 2328618 2328619 ENSG00000130332.10 - 57

19 2328683 2328684 ENST00000593198.1 + 2328618 2328619 ENSG00000130332.10 - 64

19 2328692 2328693 ENST00000590295.2 + 2328618 2328619 ENSG00000130332.10 - 73

19 2328695 2328696 ENST00000592738.2 + 2328618 2328619 ENSG00000130332.10 - 76

19 4903092 4903093 ENST00000592666.1 + 4902878 4902879 ENSG00000205784.2 - 213

19 9609354 9609355 ENST00000589751.1 + 9609282 9609283 ENSG00000198028.3 - 71

19 9904297 9904298 ENST00000590046.1 + 9903855 9903856 ENSG00000196605.3 - 441

19 22715428 22715429 ENST00000598832.1 + 22715286 22715287 ENSG00000197360.5 - 141

19 22715473 22715474 ENST00000601708.1 + 22715286 22715287 ENSG00000197360.5 - 186

19 22715579 22715580 ENST00000594200.1 + 22715286 22715287 ENSG00000197360.5 - 292

19 33793763 33793764 ENST00000592982.2 + 33793469 33793470 ENSG00000245848.2 - 293

19 38307999 38308000 ENST00000589653.1 + 38307939 38307940 ENSG00000189144.9 - 59

19 38308051 38308052 ENST00000590433.1 + 38307939 38307940 ENSG00000189144.9 - 111

19 38308125 38308126 ENST00000592103.1 + 38307939 38307940 ENSG00000189144.9 - 185

19 47164735 47164736 ENST00000500689.1 + 47164394 47164395 ENSG00000197380.6 - 340

19 56905180 56905181 ENST00000593109.1 + 56904913 56904914 ENSG00000018869.12 - 266

19 56989500 56989501 ENST00000585445.1 + 56989433 56989434 ENSG00000198046.7 - 66

19 56989524 56989525 ENST00000586091.1 + 56989433 56989434 ENSG00000198046.7 - 90

19 56989526 56989527 ENST00000594783.1 + 56989433 56989434 ENSG00000198046.7 - 92

19 56989552 56989553 ENST00000588158.1 + 56989433 56989434 ENSG00000198046.7 - 118

19 56989559 56989560 ENST00000591797.1 + 56989433 56989434 ENSG00000198046.7 - 125

19 56989609 56989610 ENST00000601875.1 + 56989433 56989434 ENSG00000198046.7 - 175

19 57183636 57183637 ENST00000599726.1 + 57183150 57183151 ENSG00000127903.12 - 485

19 57352270 57352271 ENST00000599641.1 + 57352096 57352097 ENSG00000269699.1 - 173

19 57989017 57989018 ENST00000595422.1 + 57988937 57988938 ENSG00000197128.7 - 79

19 57989067 57989068 ENST00000594562.1 + 57988937 57988938 ENSG00000197128.7 - 129

19 58951815 58951816 ENST00000595059.1 + 58951588 58951589 ENSG00000131849.10 - 226

2 9696028 9696029 ENST00000607241.1 + 9695920 9695921 ENSG00000151694.8 - 107

2 10588820 10588821 ENST00000553181.1 + 10588629 10588630 ENSG00000115758.8 - 190

2 10830470 10830471 ENST00000607781.1 + 10830100 10830101 ENSG00000115761.11 - 369

2 20101786 20101787 ENST00000607190.1 + 20101746 20101747 ENSG00000183891.5 - 39

2 20251895 20251896 ENST00000452342.2 + 20251788 20251789 ENSG00000068697.6 - 106

2 25194995 25194996 ENST00000434897.1 + 25194962 25194963 ENSG00000115137.7 - 32

2 25195013 25195014 ENST00000428614.1 + 25194962 25194963 ENSG00000115137.7 - 50

2 25195034 25195035 ENST00000422449.1 + 25194962 25194963 ENSG00000115137.7 - 71

2 25195052 25195053 ENST00000421842.1 + 25194962 25194963 ENSG00000115137.7 - 89

2 27580007 27580008 ENST00000453289.1 + 27579867 27579868 ENSG00000115207.9 - 139

2 39664510 39664511 ENST00000443038.1 + 39664452 39664453 ENSG00000011566.10 - 57

2 39664543 39664544 ENST00000422128.1 + 39664452 39664453 ENSG00000011566.10 - 90

2 39664557 39664558 ENST00000449569.1 + 39664452 39664453 ENSG00000011566.10 - 104

2 39664572 39664573 ENST00000445520.1 + 39664452 39664453 ENSG00000011566.10 - 119

2 48133221 48133222 ENST00000439870.1 + 48132931 48132932 ENSG00000138081.15 - 289

2 51259739 51259740 ENST00000440698.1 + 51259673 51259674 ENSG00000179915.16 - 65

2 74375136 74375137 ENST00000529783.1 + 74375120 74375121 ENSG00000163170.7 - 15

2 74375166 74375167 ENST00000423477.2 + 74375120 74375121 ENSG00000163170.7 - 45

2 74375172 74375173 ENST00000533563.1 + 74375120 74375121 ENSG00000163170.7 - 51

2 86116403 86116404 ENST00000455121.3 + 86116136 86116137 ENSG00000115525.12 - 266

2 98280680 98280681 ENST00000450072.1 + 98280569 98280570 ENSG00000115073.6 - 110

2 98280702 98280703 ENST00000603172.1 + 98280569 98280570 ENSG00000115073.6 - 132

2 98280710 98280711 ENST00000605866.1 + 98280569 98280570 ENSG00000115073.6 - 140

2 98280724 98280725 ENST00000609604.1 + 98280569 98280570 ENSG00000115073.6 - 154

2 98280735 98280736 ENST00000609703.1 + 98280569 98280570 ENSG00000115073.6 - 165

2 122407226 122407227 ENST00000414554.2 + 122407162 122407163 ENSG00000074054.13 - 63

2 122407374 122407375 ENST00000413904.2 + 122407162 122407163 ENSG00000074054.13 - 211

2 122407559 122407560 ENST00000439321.1 + 122407162 122407163 ENSG00000074054.13 - 396

2 122407658 122407659 ENST00000447668.2 + 122407162 122407163 ENSG00000074054.13 - 495

2 166651361 166651362 ENST00000425688.1 + 166651191 166651192 ENSG00000115339.9 - 169

2 172967734 172967735 ENST00000448117.1 + 172967627 172967628 ENSG00000115844.6 - 106

2 175352117 175352118 ENST00000444196.1 + 175351821 175351822 ENSG00000163328.9 - 295

2 175352131 175352132 ENST00000417038.1 + 175351821 175351822 ENSG00000163328.9 - 309

2 175352240 175352241 ENST00000606406.1 + 175351821 175351822 ENSG00000163328.9 - 418

2 191399581 191399582 ENST00000457407.1 + 191399447 191399448 ENSG00000189362.7 - 133

2 198176117 198176118 ENST00000442984.1 + 198175896 198175897 ENSG00000065413.12 - 220

2 216300976 216300977 ENST00000412951.1 + 216300894 216300895 ENSG00000115414.14 - 81

2 227664862 227664863 ENST00000607970.1 + 227664474 227664475 ENSG00000169047.5 - 387

20 2644998 2644999 ENST00000418739.1 + 2644864 2644865 ENSG00000101365.16 - 133

20 8000549 8000550 ENST00000457707.1 + 8000475 8000476 ENSG00000125827.4 - 73

20 18040137 18040138 ENST00000429853.1 + 18039831 18039832 ENSG00000125850.6 - 305

Continued on next page



125

Table A1: Continued from previous page
Chr Start End Transcript ID Str Start End Gene ID Str Dist

20 19738792 19738793 ENST00000412571.1 + 19738678 19738679 ENSG00000268628.1 - 113

20 25604869 25604870 ENST00000420803.1 + 25604810 25604811 ENSG00000170191.4 - 58

20 32262323 32262324 ENST00000606866.1 + 32262268 32262269 ENSG00000125967.12 - 54

20 41818862 41818863 ENST00000430025.1 + 41818609 41818610 ENSG00000196090.8 - 252

20 42839600 42839601 ENST00000439943.1 + 42839430 42839431 ENSG00000132823.6 - 169

20 42839632 42839633 ENST00000437730.1 + 42839430 42839431 ENSG00000132823.6 - 201

20 42839722 42839723 ENST00000442383.1 + 42839430 42839431 ENSG00000132823.6 - 291

20 42839892 42839893 ENST00000435163.1 + 42839430 42839431 ENSG00000132823.6 - 461

20 47895179 47895180 ENST00000428008.1 + 47894962 47894963 ENSG00000124201.10 - 216

20 55841853 55841854 ENST00000412321.1 + 55841684 55841685 ENSG00000101144.8 - 168

20 55841858 55841859 ENST00000426580.1 + 55841684 55841685 ENSG00000101144.8 - 173

20 57090435 57090436 ENST00000427140.1 + 57090186 57090187 ENSG00000198768.6 - 248

20 57090555 57090556 ENST00000420279.1 + 57090186 57090187 ENSG00000198768.6 - 368

20 57090599 57090600 ENST00000447767.1 + 57090186 57090187 ENSG00000198768.6 - 412

20 57090624 57090625 ENST00000427794.1 + 57090186 57090187 ENSG00000198768.6 - 437

20 62258580 62258581 ENST00000449500.1 + 62258393 62258394 ENSG00000101216.6 - 186

20 62258603 62258604 ENST00000411579.1 + 62258393 62258394 ENSG00000101216.6 - 209

21 34100426 34100427 ENST00000458479.1 + 34100358 34100359 ENSG00000159082.13 - 67

21 46707967 46707968 ENST00000454115.2 + 46707812 46707813 ENSG00000186866.12 - 154

21 46707977 46707978 ENST00000400362.2 + 46707812 46707813 ENSG00000186866.12 - 164

22 26908503 26908504 ENST00000566814.1 + 26908470 26908471 ENSG00000100109.12 - 32

22 26908521 26908522 ENST00000565764.1 + 26908470 26908471 ENSG00000100109.12 - 50

22 29196671 29196672 ENST00000458080.1 + 29196584 29196585 ENSG00000100219.12 - 86

22 29196692 29196693 ENST00000418292.1 + 29196584 29196585 ENSG00000100219.12 - 107

22 29196697 29196698 ENST00000585003.1 + 29196584 29196585 ENSG00000100219.12 - 112

22 37099963 37099964 ENST00000430281.1 + 37099602 37099603 ENSG00000166862.6 - 360

22 42486971 42486972 ENST00000536447.2 + 42486958 42486959 ENSG00000184983.5 - 12

22 42487208 42487209 ENST00000595777.1 + 42486958 42486959 ENSG00000184983.5 - 249

22 42487356 42487357 ENST00000600968.1 + 42486958 42486959 ENSG00000184983.5 - 397

22 42487406 42487407 ENST00000434834.1 + 42486958 42486959 ENSG00000184983.5 - 447

22 43011250 43011251 ENST00000602478.1 + 43010967 43010968 ENSG00000100227.13 - 282

22 44208336 44208337 ENST00000563715.1 + 44208216 44208217 ENSG00000186976.10 - 119

22 44208373 44208374 ENST00000564696.1 + 44208216 44208217 ENSG00000186976.10 - 156

3 48885370 48885371 ENST00000412171.2 + 48885278 48885279 ENSG00000114302.11 - 91

3 48885390 48885391 ENST00000416209.2 + 48885278 48885279 ENSG00000114302.11 - 111

3 52273316 52273317 ENST00000464958.1 + 52273275 52273276 ENSG00000247596.4 - 40

3 57678932 57678933 ENST00000465933.1 + 57678815 57678816 ENSG00000174839.8 - 116

3 67705121 67705122 ENST00000464420.1 + 67705037 67705038 ENSG00000172340.10 - 83

3 67705182 67705183 ENST00000482677.1 + 67705037 67705038 ENSG00000172340.10 - 144

3 111852270 111852271 ENST00000563632.1 + 111852151 111852152 ENSG00000174500.8 - 118

3 119813742 119813743 ENST00000484076.1 + 119813263 119813264 ENSG00000082701.10 - 478

3 120068357 120068358 ENST00000494869.1 + 120068185 120068186 ENSG00000163428.3 - 171

3 129612714 129612715 ENST00000605830.1 + 129612418 129612419 ENSG00000172765.12 - 295

3 129612725 129612726 ENST00000605698.1 + 129612418 129612419 ENSG00000172765.12 - 306

3 136471472 136471473 ENST00000564748.1 + 136471219 136471220 ENSG00000118007.8 - 252

3 139108657 139108658 ENST00000504670.1 + 139108573 139108574 ENSG00000184432.5 - 83

3 139108660 139108661 ENST00000507362.1 + 139108573 139108574 ENSG00000184432.5 - 86

3 139108672 139108673 ENST00000512622.1 + 139108573 139108574 ENSG00000184432.5 - 98

3 139108680 139108681 ENST00000510068.1 + 139108573 139108574 ENSG00000184432.5 - 106

3 139108718 139108719 ENST00000514729.1 + 139108573 139108574 ENSG00000184432.5 - 144

3 149096006 149096007 ENST00000484046.1 + 149095651 149095652 ENSG00000169908.6 - 354

3 150421830 150421831 ENST00000475393.1 + 150421757 150421758 ENSG00000163645.10 - 72

3 180707569 180707570 ENST00000461063.2 + 180707561 180707562 ENSG00000205981.2 - 7

3 195638920 195638921 ENST00000448113.1 + 195638815 195638816 ENSG00000061938.12 - 104

3 195638965 195638966 ENST00000424819.1 + 195638815 195638816 ENSG00000061938.12 - 149

3 196669494 196669495 ENST00000602845.1 + 196669467 196669468 ENSG00000114503.6 - 26

4 1107427 1107428 ENST00000504969.1 + 1107349 1107350 ENSG00000178222.8 - 77

4 1243898 1243899 ENST00000514984.1 + 1243740 1243741 ENSG00000159692.11 - 157

4 1244047 1244048 ENST00000581398.1 + 1243740 1243741 ENSG00000159692.11 - 306

4 1714548 1714549 ENST00000605571.1 + 1714281 1714282 ENSG00000163950.8 - 266

4 2420701 2420702 ENST00000382849.2 + 2420389 2420390 ENSG00000159733.9 - 311

4 4544145 4544146 ENST00000514763.1 + 4544072 4544073 ENSG00000168818.5 - 72

4 6202460 6202461 ENST00000508601.1 + 6202317 6202318 ENSG00000152969.12 - 142

4 10686627 10686628 ENST00000505494.1 + 10686488 10686489 ENSG00000109684.10 - 138

4 21950638 21950639 ENST00000510705.3 + 21950421 21950422 ENSG00000185774.10 - 216

4 39640760 39640761 ENST00000533736.1 + 39640709 39640710 ENSG00000163683.7 - 50

4 39640801 39640802 ENST00000532680.1 + 39640709 39640710 ENSG00000163683.7 - 91

4 42659513 42659514 ENST00000562054.1 + 42659121 42659122 ENSG00000124406.12 - 391

4 53525573 53525574 ENST00000503051.1 + 53525501 53525502 ENSG00000109189.8 - 71

4 57253791 57253792 ENST00000602927.1 + 57253665 57253666 ENSG00000157426.9 - 125

4 66536248 66536249 ENST00000514260.1 + 66536212 66536213 ENSG00000145242.9 - 35

4 66536327 66536328 ENST00000507117.1 + 66536212 66536213 ENSG00000145242.9 - 114

4 68566998 68566999 ENST00000498917.2 + 68566896 68566897 ENSG00000033178.8 - 101

4 68567051 68567052 ENST00000506606.1 + 68566896 68566897 ENSG00000033178.8 - 154
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4 68567113 68567114 ENST00000514109.1 + 68566896 68566897 ENSG00000033178.8 - 216

4 74124926 74124927 ENST00000502790.1 + 74124514 74124515 ENSG00000132466.13 - 411

4 85887946 85887947 ENST00000318186.3 + 85887543 85887544 ENSG00000163625.11 - 402

4 89206094 89206095 ENST00000500009.2 + 89205920 89205921 ENSG00000163644.10 - 173

4 90032651 90032652 ENST00000603357.1 + 90032548 90032549 ENSG00000138640.10 - 102

4 99580055 99580056 ENST00000569927.1 + 99579779 99579780 ENSG00000168785.3 - 275

4 100010102 100010103 ENST00000499178.2 + 100009951 100009952 ENSG00000197894.6 - 150

4 100871647 100871648 ENST00000507494.1 + 100871544 100871545 ENSG00000164032.7 - 102

4 100871680 100871681 ENST00000501976.2 + 100871544 100871545 ENSG00000164032.7 - 135

4 110224191 110224192 ENST00000500526.1 + 110223812 110223813 ENSG00000188517.10 - 378

4 120988666 120988667 ENST00000508362.1 + 120988228 120988229 ENSG00000164109.9 - 437

4 122791738 122791739 ENST00000567769.1 + 122791651 122791652 ENSG00000138686.5 - 86

4 141677682 141677683 ENST00000609937.1 + 141677273 141677274 ENSG00000109436.7 - 408

4 153457416 153457417 ENST00000604157.1 + 153457252 153457253 ENSG00000109670.9 - 163

4 153457580 153457581 ENST00000584019.1 + 153457252 153457253 ENSG00000109670.9 - 327

4 157563732 157563733 ENST00000507972.1 + 157563605 157563606 ENSG00000251283.1 - 126

4 169931581 169931582 ENST00000506933.1 + 169931425 169931426 ENSG00000145439.7 - 155

4 174451522 174451523 ENST00000507062.1 + 174451379 174451380 ENSG00000164107.7 - 142

4 174451592 174451593 ENST00000512929.1 + 174451379 174451380 ENSG00000164107.7 - 212

4 174451609 174451610 ENST00000515350.1 + 174451379 174451380 ENSG00000164107.7 - 229

4 174451610 174451611 ENST00000503198.1 + 174451379 174451380 ENSG00000164107.7 - 230

4 174451611 174451612 ENST00000515376.1 + 174451379 174451380 ENSG00000164107.7 - 231

4 174451613 174451614 ENST00000509866.1 + 174451379 174451380 ENSG00000164107.7 - 233

4 174451614 174451615 ENST00000503474.1 + 174451379 174451380 ENSG00000164107.7 - 234

4 174451625 174451626 ENST00000515345.1 + 174451379 174451380 ENSG00000164107.7 - 245

4 174451626 174451627 ENST00000512209.2 + 174451379 174451380 ENSG00000164107.7 - 246

4 174451630 174451631 ENST00000504740.1 + 174451379 174451380 ENSG00000164107.7 - 250

4 174451635 174451636 ENST00000508887.1 + 174451379 174451380 ENSG00000164107.7 - 255

4 174451658 174451659 ENST00000505817.1 + 174451379 174451380 ENSG00000164107.7 - 278

4 174451666 174451667 ENST00000514431.1 + 174451379 174451380 ENSG00000164107.7 - 286

4 185395956 185395957 ENST00000605834.1 + 185395733 185395734 ENSG00000168310.6 - 222

5 524820 524821 ENST00000515085.1 + 524446 524447 ENSG00000066230.6 - 373

5 1887446 1887447 ENST00000514569.1 + 1887349 1887350 ENSG00000113430.5 - 96

5 9546312 9546313 ENST00000508179.1 + 9546186 9546187 ENSG00000112902.7 - 125

5 9546402 9546403 ENST00000509788.1 + 9546186 9546187 ENSG00000112902.7 - 215

5 16617334 16617335 ENST00000504935.1 + 16617166 16617167 ENSG00000154153.9 - 167

5 32174577 32174578 ENST00000606994.1 + 32174455 32174456 ENSG00000113384.9 - 121

5 35938924 35938925 ENST00000503269.1 + 35938880 35938881 ENSG00000152611.7 - 43

5 43515376 43515377 ENST00000504277.1 + 43515246 43515247 ENSG00000172244.4 - 129

5 55290995 55290996 ENST00000500093.2 + 55290820 55290821 ENSG00000134352.15 - 174

5 76383262 76383263 ENST00000514640.1 + 76383147 76383148 ENSG00000132846.5 - 114

5 76383288 76383289 ENST00000514114.1 + 76383147 76383148 ENSG00000132846.5 - 140

5 83680665 83680666 ENST00000507060.1 + 83680610 83680611 ENSG00000164176.8 - 54

5 132299462 132299463 ENST00000607688.1 + 132299325 132299326 ENSG00000072364.8 - 136

5 133340838 133340839 ENST00000606089.1 + 133340823 133340824 ENSG00000213585.6 - 14

5 148442880 148442881 ENST00000515519.1 + 148442725 148442726 ENSG00000169247.7 - 154

5 148443018 148443019 ENST00000509139.1 + 148442725 148442726 ENSG00000169247.7 - 292

5 148443049 148443050 ENST00000515304.1 + 148442725 148442726 ENSG00000169247.7 - 323

5 148443066 148443067 ENST00000507318.1 + 148442725 148442726 ENSG00000169247.7 - 340

5 148443172 148443173 ENST00000507373.1 + 148442725 148442726 ENSG00000169247.7 - 446

5 176981825 176981826 ENST00000606358.1 + 176981541 176981542 ENSG00000146067.11 - 283

5 180688213 180688214 ENST00000514146.1 + 180688118 180688119 ENSG00000183718.4 - 94

5 180688223 180688224 ENST00000507434.1 + 180688118 180688119 ENSG00000183718.4 - 104

5 180688225 180688226 ENST00000509252.1 + 180688118 180688119 ENSG00000183718.4 - 106

6 2245982 2245983 ENST00000530346.1 + 2245925 2245926 ENSG00000112699.6 - 56

6 2246002 2246003 ENST00000532124.1 + 2245925 2245926 ENSG00000112699.6 - 76

6 2246005 2246006 ENST00000531092.1 + 2245925 2245926 ENSG00000112699.6 - 79

6 2246011 2246012 ENST00000456943.2 + 2245925 2245926 ENSG00000112699.6 - 85

6 2246016 2246017 ENST00000529893.1 + 2245925 2245926 ENSG00000112699.6 - 90

6 2246059 2246060 ENST00000530833.1 + 2245925 2245926 ENSG00000112699.6 - 133

6 2246075 2246076 ENST00000525811.1 + 2245925 2245926 ENSG00000112699.6 - 149

6 2246076 2246077 ENST00000534441.1 + 2245925 2245926 ENSG00000112699.6 - 150

6 2246087 2246088 ENST00000533653.1 + 2245925 2245926 ENSG00000112699.6 - 161

6 2246089 2246090 ENST00000534468.1 + 2245925 2245926 ENSG00000112699.6 - 163

6 4136306 4136307 ENST00000427049.2 + 4135830 4135831 ENSG00000198721.8 - 475

6 11044746 11044747 ENST00000607275.1 + 11044546 11044547 ENSG00000197977.3 - 199

6 11044926 11044927 ENST00000456616.1 + 11044546 11044547 ENSG00000197977.3 - 379

6 16762143 16762144 ENST00000450930.1 + 16761721 16761722 ENSG00000124788.13 - 421

6 34664722 34664723 ENST00000606496.1 + 34664635 34664636 ENSG00000196821.5 - 86

6 46459789 46459790 ENST00000415787.1 + 46459708 46459709 ENSG00000172348.10 - 80

6 52442105 52442106 ENST00000606714.1 + 52441712 52441713 ENSG00000065308.4 - 392

6 74233564 74233565 ENST00000429386.1 + 74233519 74233520 ENSG00000156508.13 - 44

6 75994749 75994750 ENST00000607221.1 + 75994683 75994684 ENSG00000112697.11 - 65

6 97731179 97731180 ENST00000457513.1 + 97731092 97731093 ENSG00000146263.7 - 86
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6 101329347 101329348 ENST00000565695.2 + 101329247 101329248 ENSG00000112249.9 - 99

6 109703998 109703999 ENST00000563105.1 + 109703761 109703762 ENSG00000135535.10 - 236

6 135818939 135818940 ENST00000579339.1 + 135818913 135818914 ENSG00000135541.16 - 25

6 135818944 135818945 ENST00000580741.1 + 135818913 135818914 ENSG00000135541.16 - 30

6 135818992 135818993 ENST00000421378.2 + 135818913 135818914 ENSG00000135541.16 - 78

6 135819075 135819076 ENST00000579057.1 + 135818913 135818914 ENSG00000135541.16 - 161

6 135819094 135819095 ENST00000436554.1 + 135818913 135818914 ENSG00000135541.16 - 180

6 135819107 135819108 ENST00000438618.2 + 135818913 135818914 ENSG00000135541.16 - 193

6 157744996 157744997 ENST00000603032.1 + 157744632 157744633 ENSG00000215712.6 - 363

6 166796677 166796678 ENST00000568025.1 + 166796485 166796486 ENSG00000060762.14 - 191

7 560028 560029 ENST00000452622.1 + 559932 559933 ENSG00000197461.9 - 95

7 1499573 1499574 ENST00000445345.1 + 1499137 1499138 ENSG00000164877.14 - 435

7 5465401 5465402 ENST00000609130.1 + 5465044 5465045 ENSG00000182095.10 - 356

7 10980050 10980051 ENST00000604183.1 + 10979882 10979883 ENSG00000189043.5 - 167

7 20257200 20257201 ENST00000439058.1 + 20257026 20257027 ENSG00000183742.8 - 173

7 20257209 20257210 ENST00000430859.1 + 20257026 20257027 ENSG00000183742.8 - 182

7 27135743 27135744 ENST00000429611.3 + 27135614 27135615 ENSG00000105991.7 - 128

7 27135852 27135853 ENST00000425358.2 + 27135614 27135615 ENSG00000105991.7 - 237

7 27197963 27197964 ENST00000602610.1 + 27197554 27197555 ENSG00000122592.6 - 408

7 27225027 27225028 ENST00000522674.1 + 27224841 27224842 ENSG00000005073.5 - 185

7 27225153 27225154 ENST00000520395.1 + 27224841 27224842 ENSG00000005073.5 - 311

7 27240040 27240041 ENST00000521028.2 + 27239724 27239725 ENSG00000106031.6 - 315

7 27240056 27240057 ENST00000472494.1 + 27239724 27239725 ENSG00000106031.6 - 331

7 44888015 44888016 ENST00000443162.1 + 44887681 44887682 ENSG00000105968.14 - 333

7 55640864 55640865 ENST00000454777.1 + 55640680 55640681 ENSG00000154978.8 - 183

7 77045990 77045991 ENST00000608884.1 + 77045716 77045717 ENSG00000186088.11 - 273

7 79083276 79083277 ENST00000414797.1 + 79082889 79082890 ENSG00000187391.13 - 386

7 79083308 79083309 ENST00000422093.1 + 79082889 79082890 ENSG00000187391.13 - 418

7 79083326 79083327 ENST00000451809.1 + 79082889 79082890 ENSG00000187391.13 - 436

7 79083328 79083329 ENST00000448195.1 + 79082889 79082890 ENSG00000187391.13 - 438

7 79083331 79083332 ENST00000424477.1 + 79082889 79082890 ENSG00000187391.13 - 441

7 95225994 95225995 ENST00000432265.1 + 95225802 95225803 ENSG00000004799.7 - 191

7 123389122 123389123 ENST00000607957.1 + 123389120 123389121 ENSG00000106299.7 - 1

7 139877061 139877062 ENST00000566699.1 + 139876834 139876835 ENSG00000006459.6 - 226

7 150038860 150038861 ENST00000563946.1 + 150038762 150038763 ENSG00000106538.5 - 97

7 151574550 151574551 ENST00000467458.1 + 151574209 151574210 ENSG00000106617.9 - 340

7 154795158 154795159 ENST00000608317.1 + 154794793 154794794 ENSG00000157212.14 - 364

7 156803499 156803500 ENST00000480284.1 + 156803344 156803345 ENSG00000130675.10 - 154

8 12051976 12051977 ENST00000528514.1 + 12051641 12051642 ENSG00000186523.10 - 334

8 17658854 17658855 ENST00000522768.1 + 17658425 17658426 ENSG00000129422.9 - 428

8 17942536 17942537 ENST00000521775.1 + 17942493 17942494 ENSG00000104763.13 - 42

8 17942558 17942559 ENST00000517798.1 + 17942493 17942494 ENSG00000104763.13 - 64

8 23082734 23082735 ENST00000500853.1 + 23082638 23082639 ENSG00000104689.5 - 95

8 38239882 38239883 ENST00000607047.1 + 38239789 38239790 ENSG00000147548.12 - 92

8 52811885 52811886 ENST00000518942.1 + 52811734 52811735 ENSG00000168300.9 - 150

8 52812209 52812210 ENST00000423716.1 + 52811734 52811735 ENSG00000168300.9 - 474

8 56987151 56987152 ENST00000521403.1 + 56987068 56987069 ENSG00000008988.5 - 82

8 60031777 60031778 ENST00000518993.1 + 60031766 60031767 ENSG00000198846.5 - 10

8 66754987 66754988 ENST00000607622.1 + 66754556 66754557 ENSG00000205268.6 - 430

8 68256210 68256211 ENST00000607397.1 + 68255911 68255912 ENSG00000066777.4 - 298

8 80680377 80680378 ENST00000607172.1 + 80680097 80680098 ENSG00000164683.12 - 279

8 94753421 94753422 ENST00000523945.1 + 94753244 94753245 ENSG00000183808.7 - 176

8 95565950 95565951 ENST00000523011.1 + 95565756 95565757 ENSG00000164944.7 - 193

8 103251622 103251623 ENST00000520820.1 + 103251345 103251346 ENSG00000048392.7 - 276

8 122653676 122653677 ENST00000520043.1 + 122653629 122653630 ENSG00000170961.6 - 46

8 143485013 143485014 ENST00000569285.1 + 143484600 143484601 ENSG00000171045.10 - 412

8 144816310 144816311 ENST00000533004.1 + 144815970 144815971 ENSG00000180921.6 - 339

9 6645956 6645957 ENST00000413145.1 + 6645649 6645650 ENSG00000178445.8 - 306

9 10613202 10613203 ENST00000429581.2 + 10612722 10612723 ENSG00000153707.11 - 479

9 24545950 24545951 ENST00000602851.1 + 24545943 24545944 ENSG00000205442.8 - 6

9 24545996 24545997 ENST00000602614.1 + 24545943 24545944 ENSG00000205442.8 - 52

9 33402855 33402856 ENST00000450864.1 + 33402642 33402643 ENSG00000165269.8 - 212

9 38620731 38620732 ENST00000484285.2 + 38620656 38620657 ENSG00000180071.14 - 74

9 38621085 38621086 ENST00000377680.3 + 38620656 38620657 ENSG00000180071.14 - 428

9 44402460 44402461 ENST00000425309.1 + 44402426 44402427 ENSG00000212952.5 - 33

9 71155952 71155953 ENST00000413269.3 + 71155782 71155783 ENSG00000181778.4 - 169

9 72287665 72287666 ENST00000567129.1 + 72287221 72287222 ENSG00000107282.5 - 443

9 84304628 84304629 ENST00000437181.1 + 84304219 84304220 ENSG00000196781.9 - 408

9 86323233 86323234 ENST00000531661.1 + 86323117 86323118 ENSG00000135018.9 - 115

9 96717879 96717880 ENST00000454594.1 + 96717653 96717654 ENSG00000131668.9 - 225

9 96718116 96718117 ENST00000453045.1 + 96717653 96717654 ENSG00000131668.9 - 462

9 123605274 123605275 ENST00000586907.1 + 123605261 123605262 ENSG00000095261.9 - 12

9 123605378 123605379 ENST00000442982.1 + 123605261 123605262 ENSG00000095261.9 - 116

9 128003942 128003943 ENST00000468244.1 + 128003608 128003609 ENSG00000044574.7 - 333
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9 139440664 139440665 ENST00000429224.1 + 139440313 139440314 ENSG00000148400.9 - 350

X 46404928 46404929 ENST00000421685.2 + 46404891 46404892 ENSG00000251192.3 - 36

X 46404946 46404947 ENST00000609887.1 + 46404891 46404892 ENSG00000251192.3 - 54

X 57148095 57148096 ENST00000439622.1 + 57147979 57147980 ENSG00000186787.7 - 115

X 107979770 107979771 ENST00000436013.1 + 107979650 107979651 ENSG00000133124.10 - 119

X 151922445 151922446 ENST00000370292.3 + 151922363 151922364 ENSG00000184750.11 - 81

1 948572 948573 ENST00000458555.1 - 948803 948804 ENSG00000187608.5 + 230

1 1369952 1369953 ENST00000430109.1 - 1370241 1370242 ENSG00000179403.10 + 288

1 1369867 1369868 ENST00000454562.1 - 1370241 1370242 ENSG00000179403.10 + 373

1 1369899 1369900 ENST00000417917.1 - 1370241 1370242 ENSG00000179403.10 + 341

1 1981508 1981509 ENST00000449154.1 - 1981909 1981910 ENSG00000067606.11 + 400

1 3541306 3541307 ENST00000435049.1 - 3541566 3541567 ENSG00000158109.10 + 259

1 6844902 6844903 ENST00000442889.1 - 6845384 6845385 ENSG00000171735.14 + 481

1 15735928 15735929 ENST00000427824.1 - 15736391 15736392 ENSG00000142634.8 + 462

1 19923325 19923326 ENST00000416470.1 - 19923473 19923474 ENSG00000270136.1 + 147

1 27560842 27560843 ENST00000425205.1 - 27561007 27561008 ENSG00000142784.11 + 164

1 37940011 37940012 ENST00000424989.1 - 37940153 37940154 ENSG00000163874.8 + 141

1 40723638 40723639 ENST00000567508.1 - 40723779 40723780 ENSG00000084073.4 + 140

1 43824328 43824329 ENST00000424948.1 - 43824626 43824627 ENSG00000117399.9 + 297

1 44412222 44412223 ENST00000412378.1 - 44412611 44412612 ENSG00000117408.6 + 388

1 62208095 62208096 ENST00000605725.1 - 62208149 62208150 ENSG00000132849.14 + 53

1 76189695 76189696 ENST00000433521.2 - 76190036 76190037 ENSG00000117054.9 + 340

1 84543613 84543614 ENST00000605506.1 - 84543745 84543746 ENSG00000142875.15 + 131

1 87170144 87170145 ENST00000565575.1 - 87170259 87170260 ENSG00000097033.10 + 114

1 90098452 90098453 ENST00000415584.2 - 90098631 90098632 ENSG00000171488.10 + 178

1 90098305 90098306 ENST00000526694.1 - 90098631 90098632 ENSG00000171488.10 + 325

1 90098319 90098320 ENST00000528692.1 - 90098631 90098632 ENSG00000171488.10 + 311

1 93811367 93811368 ENST00000421202.1 - 93811445 93811446 ENSG00000117505.8 + 77

1 93811359 93811360 ENST00000411670.1 - 93811445 93811446 ENSG00000117505.8 + 85

1 93811404 93811405 ENST00000452347.1 - 93811445 93811446 ENSG00000117505.8 + 40

1 93811356 93811357 ENST00000438777.1 - 93811445 93811446 ENSG00000117505.8 + 88

1 93811339 93811340 ENST00000449305.1 - 93811445 93811446 ENSG00000117505.8 + 105

1 93811402 93811403 ENST00000457387.1 - 93811445 93811446 ENSG00000117505.8 + 42

1 93811383 93811384 ENST00000445076.1 - 93811445 93811446 ENSG00000117505.8 + 61

1 95285651 95285652 ENST00000442418.1 - 95285898 95285899 ENSG00000143036.12 + 246

1 95285836 95285837 ENST00000452922.1 - 95285898 95285899 ENSG00000143036.12 + 61

1 95285774 95285775 ENST00000421997.1 - 95285898 95285899 ENSG00000143036.12 + 123

1 95285765 95285766 ENST00000414374.1 - 95285898 95285899 ENSG00000143036.12 + 132

1 95285774 95285775 ENST00000418366.2 - 95285898 95285899 ENSG00000143036.12 + 123

1 100731675 100731676 ENST00000421185.1 - 100731763 100731764 ENSG00000137996.8 + 87

1 101702083 101702084 ENST00000432195.1 - 101702444 101702445 ENSG00000170989.8 + 360

1 104068104 104068105 ENST00000444810.1 - 104068313 104068314 ENSG00000185946.11 + 208

1 104068082 104068083 ENST00000447322.2 - 104068313 104068314 ENSG00000185946.11 + 230

1 113615726 113615727 ENST00000421157.1 - 113615831 113615832 ENSG00000198799.7 + 104

1 118148332 118148333 ENST00000440801.1 - 118148556 118148557 ENSG00000183508.4 + 223

1 118148391 118148392 ENST00000425010.1 - 118148556 118148557 ENSG00000183508.4 + 164

1 118148306 118148307 ENST00000456126.1 - 118148556 118148557 ENSG00000183508.4 + 249

1 149804108 149804109 ENST00000577853.1 - 149804221 149804222 ENSG00000183941.8 + 112

1 156610795 156610796 ENST00000606343.1 - 156611182 156611183 ENSG00000132692.14 + 386

1 161736016 161736017 ENST00000431097.2 - 161736084 161736085 ENSG00000118217.5 + 67

1 162531097 162531098 ENST00000563991.1 - 162531323 162531324 ENSG00000117143.9 + 225

1 167189748 167189749 ENST00000606967.1 - 167190066 167190067 ENSG00000143190.17 + 317

1 170501140 170501141 ENST00000421020.1 - 170501270 170501271 ENSG00000120370.8 + 129

1 173837126 173837127 ENST00000449289.1 - 173837220 173837221 ENSG00000185278.10 + 93

1 173837120 173837121 ENST00000452197.1 - 173837220 173837221 ENSG00000185278.10 + 99

1 173837124 173837125 ENST00000412059.1 - 173837220 173837221 ENSG00000185278.10 + 95

1 173837126 173837127 ENST00000431268.1 - 173837220 173837221 ENSG00000185278.10 + 93

1 173836952 173836953 ENST00000454068.1 - 173837220 173837221 ENSG00000185278.10 + 267

1 173837126 173837127 ENST00000449589.1 - 173837220 173837221 ENSG00000185278.10 + 93

1 173837126 173837127 ENST00000455838.1 - 173837220 173837221 ENSG00000185278.10 + 93

1 173837125 173837126 ENST00000416952.1 - 173837220 173837221 ENSG00000185278.10 + 94

1 173837128 173837129 ENST00000456293.1 - 173837220 173837221 ENSG00000185278.10 + 91

1 173837126 173837127 ENST00000443799.1 - 173837220 173837221 ENSG00000185278.10 + 93

1 173836866 173836867 ENST00000451607.1 - 173837220 173837221 ENSG00000185278.10 + 353

1 173837124 173837125 ENST00000421068.1 - 173837220 173837221 ENSG00000185278.10 + 95

1 173836826 173836827 ENST00000432536.1 - 173837220 173837221 ENSG00000185278.10 + 393

1 173837124 173837125 ENST00000458220.1 - 173837220 173837221 ENSG00000185278.10 + 95

1 173836887 173836888 ENST00000364084.1 - 173837220 173837221 ENSG00000185278.10 + 332

1 174128290 174128291 ENST00000426899.1 - 174128548 174128549 ENSG00000152061.17 + 257

1 174128270 174128271 ENST00000454467.1 - 174128548 174128549 ENSG00000152061.17 + 277

1 174128424 174128425 ENST00000430592.1 - 174128548 174128549 ENSG00000152061.17 + 123

1 178062734 178062735 ENST00000419458.1 - 178062864 178062865 ENSG00000075391.12 + 129

1 178062706 178062707 ENST00000452867.1 - 178062864 178062865 ENSG00000075391.12 + 157

1 179923574 179923575 ENST00000567904.1 - 179923873 179923874 ENSG00000135837.11 + 298
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1 183440880 183440881 ENST00000421703.1 - 183441351 183441352 ENSG00000116698.16 + 470

1 183440863 183440864 ENST00000432837.1 - 183441351 183441352 ENSG00000116698.16 + 487

1 184355837 184355838 ENST00000605589.1 - 184356192 184356193 ENSG00000116667.8 + 354

1 203274436 203274437 ENST00000457348.1 - 203274619 203274620 ENSG00000159388.5 + 182

1 203274386 203274387 ENST00000432511.1 - 203274619 203274620 ENSG00000159388.5 + 232

1 206223547 206223548 ENST00000425896.1 - 206223976 206223977 ENSG00000198049.5 + 428

1 209848591 209848592 ENST00000445272.1 - 209848765 209848766 ENSG00000123689.5 + 173

1 213031429 213031430 ENST00000356684.3 - 213031597 213031598 ENSG00000162769.8 + 167

1 229406749 229406750 ENST00000429227.1 - 229406822 229406823 ENSG00000168118.7 + 72

1 229406774 229406775 ENST00000436334.1 - 229406822 229406823 ENSG00000168118.7 + 47

1 231664301 231664302 ENST00000416221.1 - 231664399 231664400 ENSG00000270106.1 + 97

1 231664301 231664302 ENST00000416221.1 - 231664399 231664400 ENSG00000116918.9 + 97

1 231664000 231664001 ENST00000440665.1 - 231664399 231664400 ENSG00000270106.1 + 398

1 231664000 231664001 ENST00000440665.1 - 231664399 231664400 ENSG00000116918.9 + 398

1 231664041 231664042 ENST00000450783.1 - 231664399 231664400 ENSG00000270106.1 + 357

1 231664041 231664042 ENST00000450783.1 - 231664399 231664400 ENSG00000116918.9 + 357

1 231664301 231664302 ENST00000454631.1 - 231664399 231664400 ENSG00000270106.1 + 97

1 231664301 231664302 ENST00000454631.1 - 231664399 231664400 ENSG00000116918.9 + 97

1 231664246 231664247 ENST00000425412.1 - 231664399 231664400 ENSG00000270106.1 + 152

1 231664246 231664247 ENST00000425412.1 - 231664399 231664400 ENSG00000116918.9 + 152

10 3108192 3108193 ENST00000607898.1 - 3108525 3108526 ENSG00000067057.12 + 332

10 8095446 8095447 ENST00000355358.1 - 8095567 8095568 ENSG00000107485.11 + 120

10 8095218 8095219 ENST00000417359.1 - 8095567 8095568 ENSG00000107485.11 + 348

10 8095411 8095412 ENST00000458727.1 - 8095567 8095568 ENSG00000107485.11 + 155

10 14920684 14920685 ENST00000609399.1 - 14920819 14920820 ENSG00000152455.11 + 134

10 17685876 17685877 ENST00000563601.1 - 17686124 17686125 ENSG00000136738.10 + 247

10 28821282 28821283 ENST00000528337.1 - 28821422 28821423 ENSG00000095787.17 + 139

10 35415584 35415585 ENST00000450742.1 - 35415719 35415720 ENSG00000095794.15 + 134

10 35415587 35415588 ENST00000450106.1 - 35415719 35415720 ENSG00000095794.15 + 131

10 43633781 43633782 ENST00000609407.1 - 43633934 43633935 ENSG00000169826.6 + 152

10 50506824 50506825 ENST00000437677.1 - 50507187 50507188 ENSG00000177354.7 + 362

10 50507062 50507063 ENST00000442700.1 - 50507187 50507188 ENSG00000177354.7 + 124

10 54073887 54073888 ENST00000420193.1 - 54074056 54074057 ENSG00000107984.5 + 168

10 88516054 88516055 ENST00000608826.1 - 88516407 88516408 ENSG00000107779.7 + 352

10 93558047 93558048 ENST00000432938.1 - 93558069 93558070 ENSG00000107854.5 + 21

10 93557952 93557953 ENST00000432246.1 - 93558069 93558070 ENSG00000107854.5 + 116

10 99609554 99609555 ENST00000427379.2 - 99609996 99609997 ENSG00000155265.6 + 441

10 104403896 104403897 ENST00000607967.1 - 104404253 104404254 ENSG00000171206.9 + 356

10 106113332 106113333 ENST00000435434.1 - 106113522 106113523 ENSG00000120051.10 + 189

10 119301829 119301830 ENST00000450314.2 - 119301955 119301956 ENSG00000170370.10 + 125

10 119301844 119301845 ENST00000440007.1 - 119301955 119301956 ENSG00000170370.10 + 110

10 127408028 127408029 ENST00000527483.1 - 127408084 127408085 ENSG00000107938.13 + 55

10 127408016 127408017 ENST00000531977.1 - 127408084 127408085 ENSG00000107938.13 + 67

10 127407933 127407934 ENST00000430970.1 - 127408084 127408085 ENSG00000107938.13 + 150

11 62623217 62623218 ENST00000540725.1 - 62623518 62623519 ENSG00000168003.12 + 300

11 62623338 62623339 ENST00000537925.1 - 62623518 62623519 ENSG00000168003.12 + 179

11 62623352 62623353 ENST00000537068.1 - 62623518 62623519 ENSG00000168003.12 + 165

11 62623356 62623357 ENST00000538654.1 - 62623518 62623519 ENSG00000168003.12 + 161

11 62623385 62623386 ENST00000542112.1 - 62623518 62623519 ENSG00000168003.12 + 132

11 62623283 62623284 ENST00000541416.1 - 62623518 62623519 ENSG00000168003.12 + 234

11 62623229 62623230 ENST00000544983.1 - 62623518 62623519 ENSG00000168003.12 + 288

11 62623101 62623102 ENST00000365607.1 - 62623518 62623519 ENSG00000168003.12 + 416

11 65337743 65337744 ENST00000567594.1 - 65337901 65337902 ENSG00000173465.3 + 157

11 75525841 75525842 ENST00000531263.1 - 75526212 75526213 ENSG00000198382.4 + 370

11 76155617 76155618 ENST00000530759.1 - 76155967 76155968 ENSG00000158636.12 + 349

11 76155699 76155700 ENST00000572035.1 - 76155967 76155968 ENSG00000158636.12 + 267

11 82904641 82904642 ENST00000529031.1 - 82904781 82904782 ENSG00000137494.9 + 139

11 82904661 82904662 ENST00000529811.1 - 82904781 82904782 ENSG00000137494.9 + 119

11 82904610 82904611 ENST00000529607.1 - 82904781 82904782 ENSG00000137494.9 + 170

11 82904703 82904704 ENST00000500634.2 - 82904781 82904782 ENSG00000137494.9 + 77

11 82904704 82904705 ENST00000528083.1 - 82904781 82904782 ENSG00000137494.9 + 76

11 113185145 113185146 ENST00000526487.1 - 113185251 113185252 ENSG00000149292.12 + 105

11 113185158 113185159 ENST00000533504.1 - 113185251 113185252 ENSG00000149292.12 + 92

11 118868713 118868714 ENST00000526453.1 - 118868852 118868853 ENSG00000186166.4 + 138

11 125034504 125034505 ENST00000532316.1 - 125034583 125034584 ENSG00000165495.11 + 78

11 128556322 128556323 ENST00000572256.1 - 128556430 128556431 ENSG00000151702.12 + 107

12 6642663 6642664 ENST00000537921.1 - 6643093 6643094 ENSG00000111640.10 + 429

12 22777948 22777949 ENST00000542076.1 - 22778009 22778010 ENSG00000139163.11 + 60

12 26111510 26111511 ENST00000500276.2 - 26111962 26111963 ENSG00000123094.11 + 451

12 29301607 29301608 ENST00000553075.1 - 29302036 29302037 ENSG00000064763.6 + 428

12 54378621 54378622 ENST00000509870.1 - 54378849 54378850 ENSG00000180818.4 + 227

12 54378541 54378542 ENST00000513165.1 - 54378849 54378850 ENSG00000180818.4 + 307

12 70132347 70132348 ENST00000501387.1 - 70132461 70132462 ENSG00000127328.17 + 113

12 70132341 70132342 ENST00000501300.1 - 70132461 70132462 ENSG00000127328.17 + 119
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12 93771491 93771492 ENST00000552835.1 - 93771659 93771660 ENSG00000173598.9 + 167

12 93771483 93771484 ENST00000549806.1 - 93771659 93771660 ENSG00000173598.9 + 175

12 93771511 93771512 ENST00000548890.1 - 93771659 93771660 ENSG00000173598.9 + 147

12 96252470 96252471 ENST00000553163.1 - 96252706 96252707 ENSG00000139343.6 + 235

12 96252575 96252576 ENST00000551893.1 - 96252706 96252707 ENSG00000139343.6 + 130

12 105500956 105500957 ENST00000550088.1 - 105501102 105501103 ENSG00000136051.9 + 145

12 107349274 107349275 ENST00000570282.1 - 107349497 107349498 ENSG00000151135.5 + 222

12 112279705 112279706 ENST00000443596.1 - 112279782 112279783 ENSG00000089022.9 + 76

12 112279709 112279710 ENST00000442119.1 - 112279782 112279783 ENSG00000089022.9 + 72

12 112279513 112279514 ENST00000590479.1 - 112279782 112279783 ENSG00000089022.9 + 268

12 112279509 112279510 ENST00000609228.1 - 112279782 112279783 ENSG00000089022.9 + 272

12 112279513 112279514 ENST00000609983.1 - 112279782 112279783 ENSG00000089022.9 + 268

12 118814079 118814080 ENST00000605329.1 - 118814185 118814186 ENSG00000111707.7 + 105

12 121077955 121077956 ENST00000544339.1 - 121078355 121078356 ENSG00000157782.5 + 399

12 130646767 130646768 ENST00000505807.2 - 130647004 130647005 ENSG00000111432.4 + 236

12 130646688 130646689 ENST00000542000.1 - 130647004 130647005 ENSG00000111432.4 + 315

12 130646800 130646801 ENST00000537095.1 - 130647004 130647005 ENSG00000111432.4 + 203

12 133613496 133613497 ENST00000592296.1 - 133613878 133613879 ENSG00000198040.6 + 381

12 133613807 133613808 ENST00000443154.3 - 133613878 133613879 ENSG00000198040.6 + 70

13 25875575 25875576 ENST00000568856.2 - 25875662 25875663 ENSG00000139496.11 + 86

13 28712329 28712330 ENST00000563843.1 - 28712643 28712644 ENSG00000152520.9 + 313

13 31506720 31506721 ENST00000411835.2 - 31506840 31506841 ENSG00000175664.5 + 119

13 31506389 31506390 ENST00000589840.1 - 31506840 31506841 ENSG00000175664.5 + 450

13 31506619 31506620 ENST00000429200.2 - 31506840 31506841 ENSG00000175664.5 + 220

13 48877796 48877797 ENST00000433480.2 - 48877887 48877888 ENSG00000139687.9 + 90

13 48877794 48877795 ENST00000436963.1 - 48877887 48877888 ENSG00000139687.9 + 92

13 50656126 50656127 ENST00000235290.3 - 50656307 50656308 ENSG00000176124.7 + 180

13 50656113 50656114 ENST00000458725.1 - 50656307 50656308 ENSG00000176124.7 + 193

13 50656127 50656128 ENST00000433070.2 - 50656307 50656308 ENSG00000176124.7 + 179

13 50656107 50656108 ENST00000443587.1 - 50656307 50656308 ENSG00000176124.7 + 199

13 50656108 50656109 ENST00000421758.1 - 50656307 50656308 ENSG00000176124.7 + 198

13 50656113 50656114 ENST00000449579.1 - 50656307 50656308 ENSG00000176124.7 + 193

13 96329047 96329048 ENST00000606011.1 - 96329393 96329394 ENSG00000102580.10 + 345

13 96329178 96329179 ENST00000499499.2 - 96329393 96329394 ENSG00000102580.10 + 214

13 99852963 99852964 ENST00000426037.2 - 99853028 99853029 ENSG00000134882.11 + 64

13 100153305 100153306 ENST00000366259.2 - 100153671 100153672 ENSG00000125304.8 + 365

14 20811565 20811566 ENST00000516869.1 - 20811741 20811742 ENSG00000129484.9 + 175

14 24422577 24422578 ENST00000399886.2 - 24422795 24422796 ENSG00000157326.14 + 217

14 45366279 45366280 ENST00000554389.1 - 45366498 45366499 ENSG00000179476.3 + 218

14 45553179 45553180 ENST00000556389.1 - 45553302 45553303 ENSG00000185246.13 + 122

14 60712370 60712371 ENST00000532515.1 - 60712470 60712471 ENSG00000100614.13 + 99

14 60712053 60712054 ENST00000553269.1 - 60712470 60712471 ENSG00000100614.13 + 416

14 60712285 60712286 ENST00000553775.1 - 60712470 60712471 ENSG00000100614.13 + 184

14 69658136 69658137 ENST00000556182.1 - 69658228 69658229 ENSG00000081177.14 + 91

14 71108014 71108015 ENST00000500016.1 - 71108504 71108505 ENSG00000133985.2 + 489

14 75894392 75894393 ENST00000558267.1 - 75894419 75894420 ENSG00000140044.8 + 26

14 103589343 103589344 ENST00000560742.1 - 103589779 103589780 ENSG00000185215.4 + 435

14 103995408 103995409 ENST00000568177.1 - 103995521 103995522 ENSG00000166166.8 + 112

15 33602859 33602860 ENST00000559457.1 - 33603163 33603164 ENSG00000198838.7 + 303

15 44829120 44829121 ENST00000313807.4 - 44829255 44829256 ENSG00000104131.8 + 134

15 44829091 44829092 ENST00000559356.1 - 44829255 44829256 ENSG00000104131.8 + 163

15 44829097 44829098 ENST00000560049.1 - 44829255 44829256 ENSG00000104131.8 + 157

15 59063172 59063173 ENST00000500929.2 - 59063391 59063392 ENSG00000128923.6 + 218

15 67813399 67813400 ENST00000559702.1 - 67813406 67813407 ENSG00000189227.4 + 6

15 67834941 67834942 ENST00000604760.1 - 67835047 67835048 ENSG00000137764.15 + 105

15 69591096 69591097 ENST00000563004.1 - 69591286 69591287 ENSG00000137819.9 + 189

15 74165706 74165707 ENST00000569137.1 - 74165949 74165950 ENSG00000167139.4 + 242

15 78556328 78556329 ENST00000559954.1 - 78556428 78556429 ENSG00000140403.8 + 99

15 91260279 91260280 ENST00000558105.1 - 91260558 91260559 ENSG00000197299.6 + 278

15 93014775 93014776 ENST00000554440.1 - 93014884 93014885 ENSG00000183643.2 + 108

15 97326541 97326542 ENST00000558722.1 - 97326619 97326620 ENSG00000185594.4 + 77

16 729776 729777 ENST00000567091.1 - 730224 730225 ENSG00000103266.6 + 447

16 729736 729737 ENST00000571933.1 - 730224 730225 ENSG00000103266.6 + 487

16 2205358 2205359 ENST00000563192.1 - 2205699 2205700 ENSG00000131653.8 + 340

16 3162489 3162490 ENST00000576943.1 - 3162561 3162562 ENSG00000122386.6 + 71

16 3179299 3179300 ENST00000570901.1 - 3179778 3179779 ENSG00000085644.9 + 478

16 3179554 3179555 ENST00000573414.1 - 3179778 3179779 ENSG00000085644.9 + 223

16 25122799 25122800 ENST00000563962.1 - 25123050 25123051 ENSG00000205629.7 + 250

16 25122734 25122735 ENST00000563176.1 - 25123050 25123051 ENSG00000205629.7 + 315

16 25122875 25122876 ENST00000569920.1 - 25123050 25123051 ENSG00000205629.7 + 174

16 28303384 28303385 ENST00000501520.1 - 28303840 28303841 ENSG00000188322.4 + 455

16 56225005 56225006 ENST00000501259.1 - 56225302 56225303 ENSG00000087258.9 + 296

16 56763879 56763880 ENST00000561663.1 - 56764017 56764018 ENSG00000102900.8 + 137

16 57126214 57126215 ENST00000565829.1 - 57126449 57126450 ENSG00000140848.12 + 234
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16 67596211 67596212 ENST00000562846.1 - 67596310 67596311 ENSG00000102974.10 + 98

16 74330648 74330649 ENST00000569389.1 - 74330673 74330674 ENSG00000103035.6 + 24

16 74330659 74330660 ENST00000562888.1 - 74330673 74330674 ENSG00000103035.6 + 13

16 83841438 83841439 ENST00000561599.1 - 83841448 83841449 ENSG00000230989.2 + 9

16 89284060 89284061 ENST00000570267.1 - 89284118 89284119 ENSG00000170100.9 + 57

17 259821 259822 ENST00000599026.1 - 260118 260119 ENSG00000187624.7 + 296

17 1619503 1619504 ENST00000334146.3 - 1619817 1619818 ENSG00000167716.14 + 313

17 1619544 1619545 ENST00000574306.1 - 1619817 1619818 ENSG00000167716.14 + 272

17 1619505 1619506 ENST00000576749.1 - 1619817 1619818 ENSG00000167716.14 + 311

17 1619490 1619491 ENST00000570416.1 - 1619817 1619818 ENSG00000167716.14 + 326

17 1619634 1619635 ENST00000571595.1 - 1619817 1619818 ENSG00000167716.14 + 182

17 1619504 1619505 ENST00000571091.1 - 1619817 1619818 ENSG00000167716.14 + 312

17 1619503 1619504 ENST00000576489.1 - 1619817 1619818 ENSG00000167716.14 + 313

17 1619501 1619502 ENST00000575626.1 - 1619817 1619818 ENSG00000167716.14 + 315

17 1619503 1619504 ENST00000608245.1 - 1619817 1619818 ENSG00000167716.14 + 313

17 1619501 1619502 ENST00000610106.1 - 1619817 1619818 ENSG00000167716.14 + 315

17 1619504 1619505 ENST00000609990.1 - 1619817 1619818 ENSG00000167716.14 + 312

17 1619501 1619502 ENST00000608198.1 - 1619817 1619818 ENSG00000167716.14 + 315

17 1619502 1619503 ENST00000609442.1 - 1619817 1619818 ENSG00000167716.14 + 314

17 1619503 1619504 ENST00000608913.1 - 1619817 1619818 ENSG00000167716.14 + 313

17 1619540 1619541 ENST00000573075.1 - 1619817 1619818 ENSG00000167716.14 + 276

17 1619503 1619504 ENST00000574016.1 - 1619817 1619818 ENSG00000167716.14 + 313

17 4710307 4710308 ENST00000571067.1 - 4710391 4710392 ENSG00000129219.9 + 83

17 4981407 4981408 ENST00000574352.1 - 4981543 4981544 ENSG00000180787.5 + 135

17 7486835 7486836 ENST00000573187.1 - 7486847 7486848 ENSG00000129255.10 + 11

17 13972811 13972812 ENST00000602743.1 - 13972813 13972814 ENSG00000006695.6 + 1

17 13972774 13972775 ENST00000449363.1 - 13972813 13972814 ENSG00000006695.6 + 38

17 13972795 13972796 ENST00000602539.1 - 13972813 13972814 ENSG00000006695.6 + 17

17 19912546 19912547 ENST00000564549.1 - 19912657 19912658 ENSG00000128487.12 + 110

17 33569981 33569982 ENST00000590478.1 - 33570055 33570056 ENSG00000166750.5 + 73

17 35293959 35293960 ENST00000528383.1 - 35294084 35294085 ENSG00000132130.7 + 124

17 35293956 35293957 ENST00000532387.2 - 35294084 35294085 ENSG00000132130.7 + 127

17 35293950 35293951 ENST00000529264.1 - 35294084 35294085 ENSG00000132130.7 + 133

17 35293920 35293921 ENST00000525111.1 - 35294084 35294085 ENSG00000132130.7 + 163

17 41322419 41322420 ENST00000590740.1 - 41322498 41322499 ENSG00000188554.9 + 78

17 42385760 42385761 ENST00000586388.1 - 42385781 42385782 ENSG00000108309.8 + 20

17 43922122 43922123 ENST00000581125.1 - 43922256 43922257 ENSG00000185294.5 + 133

17 45000399 45000400 ENST00000572349.1 - 45000483 45000484 ENSG00000108433.11 + 83

17 45726781 45726782 ENST00000580045.1 - 45726842 45726843 ENSG00000108424.5 + 60

17 45973177 45973178 ENST00000582787.1 - 45973516 45973517 ENSG00000167182.11 + 338

17 45973134 45973135 ENST00000577279.1 - 45973516 45973517 ENSG00000167182.11 + 381

17 45973157 45973158 ENST00000580459.1 - 45973516 45973517 ENSG00000167182.11 + 358

17 46125411 46125412 ENST00000578660.1 - 46125691 46125692 ENSG00000082641.11 + 279

17 46125434 46125435 ENST00000584428.1 - 46125691 46125692 ENSG00000082641.11 + 256

17 48133102 48133103 ENST00000499842.1 - 48133332 48133333 ENSG00000005884.13 + 229

17 48585688 48585689 ENST00000502300.1 - 48585745 48585746 ENSG00000136449.9 + 56

17 55162382 55162383 ENST00000576871.1 - 55162453 55162454 ENSG00000121057.8 + 70

17 55162384 55162385 ENST00000576313.1 - 55162453 55162454 ENSG00000121057.8 + 68

17 56160564 56160565 ENST00000584805.1 - 56160776 56160777 ENSG00000264364.2 + 211

17 59476966 59476967 ENST00000590421.1 - 59477257 59477258 ENSG00000121068.9 + 290

17 59476948 59476949 ENST00000591313.1 - 59477257 59477258 ENSG00000121068.9 + 308

17 70116933 70116934 ENST00000533232.1 - 70117161 70117162 ENSG00000125398.5 + 227

17 72209480 72209481 ENST00000532794.1 - 72209653 72209654 ENSG00000141540.6 + 172

17 72209446 72209447 ENST00000531617.1 - 72209653 72209654 ENSG00000141540.6 + 206

17 79008500 79008501 ENST00000573167.1 - 79008948 79008949 ENSG00000175866.11 + 447

17 80415574 80415575 ENST00000578344.1 - 80416056 80416057 ENSG00000141562.13 + 481

17 80674130 80674131 ENST00000574471.1 - 80674559 80674560 ENSG00000141560.10 + 428

18 904481 904482 ENST00000582921.1 - 904944 904945 ENSG00000141433.8 + 462

18 3247083 3247084 ENST00000609924.1 - 3247479 3247480 ENSG00000101608.8 + 395

18 9334438 9334439 ENST00000584509.1 - 9334765 9334766 ENSG00000128791.7 + 326

18 19748928 19748929 ENST00000583490.1 - 19749404 19749405 ENSG00000141448.4 + 475

18 31158150 31158151 ENST00000591558.1 - 31158579 31158580 ENSG00000141431.5 + 428

18 33767410 33767411 ENST00000568654.1 - 33767482 33767483 ENSG00000075643.5 + 71

18 42259681 42259682 ENST00000592638.1 - 42260138 42260139 ENSG00000152217.12 + 456

18 54814228 54814229 ENST00000590942.1 - 54814293 54814294 ENSG00000228075.4 + 64

18 72265059 72265060 ENST00000580048.1 - 72265106 72265107 ENSG00000215421.5 + 46

18 72265035 72265036 ENST00000585279.1 - 72265106 72265107 ENSG00000215421.5 + 70

18 72264804 72264805 ENST00000577806.1 - 72265106 72265107 ENSG00000215421.5 + 301

18 77439744 77439745 ENST00000317008.4 - 77439801 77439802 ENSG00000060069.12 + 56

19 9945688 9945689 ENST00000591174.1 - 9945933 9945934 ENSG00000127445.9 + 244

19 10764519 10764520 ENST00000591501.1 - 10764937 10764938 ENSG00000129351.13 + 417

19 16435324 16435325 ENST00000588799.1 - 16435628 16435629 ENSG00000127528.5 + 303

19 33182655 33182656 ENST00000592431.1 - 33182867 33182868 ENSG00000213965.3 + 211

19 33210500 33210501 ENST00000587554.1 - 33210659 33210660 ENSG00000173809.11 + 158
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19 35417715 35417716 ENST00000604333.1 - 35417807 35417808 ENSG00000168661.10 + 91

19 36103567 36103568 ENST00000589603.1 - 36103646 36103647 ENSG00000249115.4 + 78

19 37178350 37178351 ENST00000433232.1 - 37178514 37178515 ENSG00000189042.9 + 163

19 37178311 37178312 ENST00000425254.2 - 37178514 37178515 ENSG00000189042.9 + 202

19 37178338 37178339 ENST00000590952.1 - 37178514 37178515 ENSG00000189042.9 + 175

19 37997525 37997526 ENST00000588845.1 - 37997841 37997842 ENSG00000188227.8 + 315

19 44529413 44529414 ENST00000592583.1 - 44529494 44529495 ENSG00000159885.9 + 80

19 52901009 52901010 ENST00000601562.1 - 52901102 52901103 ENSG00000167555.9 + 92

19 52901018 52901019 ENST00000596746.1 - 52901102 52901103 ENSG00000167555.9 + 83

19 52900921 52900922 ENST00000598892.1 - 52901102 52901103 ENSG00000167555.9 + 180

19 54959779 54959780 ENST00000416022.1 - 54960065 54960066 ENSG00000167615.12 + 285

19 57049943 57049944 ENST00000590613.1 - 57050317 57050318 ENSG00000196867.3 + 373

2 8818940 8818941 ENST00000433340.1 - 8818975 8818976 ENSG00000115738.5 + 34

2 8818773 8818774 ENST00000433592.1 - 8818975 8818976 ENSG00000115738.5 + 201

2 11272895 11272896 ENST00000447433.1 - 11273179 11273180 ENSG00000150873.7 + 283

2 11272946 11272947 ENST00000590373.1 - 11273179 11273180 ENSG00000150873.7 + 232

2 29320390 29320391 ENST00000446073.1 - 29320571 29320572 ENSG00000115295.15 + 180

2 32390825 32390826 ENST00000608489.1 - 32390933 32390934 ENSG00000152683.10 + 107

2 45168632 45168633 ENST00000456467.1 - 45168902 45168903 ENSG00000138083.3 + 269

2 47572127 47572128 ENST00000448713.1 - 47572297 47572298 ENSG00000119888.6 + 169

2 47572212 47572213 ENST00000441997.1 - 47572297 47572298 ENSG00000119888.6 + 84

2 47572104 47572105 ENST00000419035.1 - 47572297 47572298 ENSG00000119888.6 + 192

2 47572127 47572128 ENST00000450550.1 - 47572297 47572298 ENSG00000119888.6 + 169

2 48667735 48667736 ENST00000609028.1 - 48667737 48667738 ENSG00000162869.11 + 1

2 61108448 61108449 ENST00000439412.1 - 61108656 61108657 ENSG00000162924.9 + 207

2 64680931 64680932 ENST00000441630.1 - 64681103 64681104 ENSG00000119862.8 + 171

2 64751226 64751227 ENST00000561559.1 - 64751465 64751466 ENSG00000119844.10 + 238

2 70314451 70314452 ENST00000457076.1 - 70314585 70314586 ENSG00000169564.5 + 133

2 70314474 70314475 ENST00000415222.1 - 70314585 70314586 ENSG00000169564.5 + 110

2 70314137 70314138 ENST00000599673.1 - 70314585 70314586 ENSG00000169564.5 + 447

2 70314446 70314447 ENST00000434781.1 - 70314585 70314586 ENSG00000169564.5 + 138

2 70314131 70314132 ENST00000366234.3 - 70314585 70314586 ENSG00000169564.5 + 453

2 70314474 70314475 ENST00000425333.1 - 70314585 70314586 ENSG00000169564.5 + 110

2 70314146 70314147 ENST00000444410.1 - 70314585 70314586 ENSG00000169564.5 + 438

2 70314435 70314436 ENST00000458698.2 - 70314585 70314586 ENSG00000169564.5 + 149

2 70314552 70314553 ENST00000413791.1 - 70314585 70314586 ENSG00000169564.5 + 32

2 70314137 70314138 ENST00000596573.1 - 70314585 70314586 ENSG00000169564.5 + 447

2 70314566 70314567 ENST00000594548.1 - 70314585 70314586 ENSG00000169564.5 + 18

2 108443346 108443347 ENST00000457647.2 - 108443388 108443389 ENSG00000196862.8 + 41

2 108442910 108442911 ENST00000609354.1 - 108443388 108443389 ENSG00000196862.8 + 477

2 108443291 108443292 ENST00000594764.1 - 108443388 108443389 ENSG00000196862.8 + 96

2 108443325 108443326 ENST00000593452.1 - 108443388 108443389 ENSG00000196862.8 + 62

2 108442978 108442979 ENST00000609972.1 - 108443388 108443389 ENSG00000196862.8 + 409

2 109150637 109150638 ENST00000440975.1 - 109150857 109150858 ENSG00000169756.12 + 219

2 109745385 109745386 ENST00000567491.1 - 109745804 109745805 ENSG00000172985.8 + 418

2 113403266 113403267 ENST00000457336.1 - 113403434 113403435 ENSG00000144136.6 + 167

2 114647326 114647327 ENST00000602760.1 - 114647537 114647538 ENSG00000115091.7 + 210

2 124782749 124782750 ENST00000438816.1 - 124782864 124782865 ENSG00000155052.14 + 114

2 139259267 139259268 ENST00000431985.1 - 139259371 139259372 ENSG00000144228.4 + 103

2 139259243 139259244 ENST00000414911.1 - 139259371 139259372 ENSG00000144228.4 + 127

2 155554328 155554329 ENST00000443901.1 - 155554811 155554812 ENSG00000162989.3 + 482

2 160568940 160568941 ENST00000453016.1 - 160569000 160569001 ENSG00000136536.10 + 59

2 160568528 160568529 ENST00000418770.1 - 160569000 160569001 ENSG00000136536.10 + 471

2 160568945 160568946 ENST00000607836.1 - 160569000 160569001 ENSG00000136536.10 + 54

2 177053267 177053268 ENST00000417086.1 - 177053307 177053308 ENSG00000128645.11 + 39

2 177052996 177052997 ENST00000436126.1 - 177053307 177053308 ENSG00000128645.11 + 310

2 177053206 177053207 ENST00000425005.1 - 177053307 177053308 ENSG00000128645.11 + 100

2 177053258 177053259 ENST00000452365.1 - 177053307 177053308 ENSG00000128645.11 + 48

2 182756389 182756390 ENST00000567327.1 - 182756560 182756561 ENSG00000138434.12 + 170

2 200775804 200775805 ENST00000457577.3 - 200775979 200775980 ENSG00000178074.5 + 174

2 200775677 200775678 ENST00000417006.1 - 200775979 200775980 ENSG00000178074.5 + 301

2 200775777 200775778 ENST00000598349.1 - 200775979 200775980 ENSG00000178074.5 + 201

2 200775860 200775861 ENST00000599977.1 - 200775979 200775980 ENSG00000178074.5 + 118

2 200775881 200775882 ENST00000596619.1 - 200775979 200775980 ENSG00000178074.5 + 97

2 200775722 200775723 ENST00000608040.1 - 200775979 200775980 ENSG00000178074.5 + 256

2 200775812 200775813 ENST00000608498.1 - 200775979 200775980 ENSG00000178074.5 + 166

2 200775813 200775814 ENST00000608419.1 - 200775979 200775980 ENSG00000178074.5 + 165

2 214148928 214148929 ENST00000360083.3 - 214149113 214149114 ENSG00000144451.14 + 184

2 231860745 231860746 ENST00000414876.1 - 231860836 231860837 ENSG00000173699.11 + 90

2 231860746 231860747 ENST00000446741.1 - 231860836 231860837 ENSG00000173699.11 + 89

2 231860722 231860723 ENST00000434094.1 - 231860836 231860837 ENSG00000173699.11 + 113

2 231860726 231860727 ENST00000418330.1 - 231860836 231860837 ENSG00000173699.11 + 109

2 231860746 231860747 ENST00000426904.1 - 231860836 231860837 ENSG00000173699.11 + 89

2 231860595 231860596 ENST00000441063.1 - 231860836 231860837 ENSG00000173699.11 + 240
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2 231860743 231860744 ENST00000457803.1 - 231860836 231860837 ENSG00000173699.11 + 92

2 241526115 241526116 ENST00000567819.1 - 241526133 241526134 ENSG00000142330.15 + 17

20 305877 305878 ENST00000414676.1 - 306207 306208 ENSG00000177732.6 + 329

20 31804872 31804873 ENST00000419613.1 - 31805116 31805117 ENSG00000131059.7 + 243

20 35201559 35201560 ENST00000559455.1 - 35201891 35201892 ENSG00000118707.5 + 331

20 35201793 35201794 ENST00000559804.1 - 35201891 35201892 ENSG00000118707.5 + 97

20 37590753 37590754 ENST00000570096.1 - 37590942 37590943 ENSG00000101452.10 + 188

20 43595042 43595043 ENST00000434401.1 - 43595115 43595116 ENSG00000101109.7 + 72

20 47662580 47662581 ENST00000417781.1 - 47662849 47662850 ENSG00000124207.12 + 268

21 33031812 33031813 ENST00000449339.1 - 33031935 33031936 ENSG00000142168.10 + 122

21 45875166 45875167 ENST00000426578.1 - 45875369 45875370 ENSG00000160233.6 + 202

22 18560562 18560563 ENST00000426483.1 - 18560689 18560690 ENSG00000215193.8 + 126

22 25960428 25960429 ENST00000412773.1 - 25960816 25960817 ENSG00000100077.10 + 387

22 30115847 30115848 ENST00000416352.1 - 30116073 30116074 ENSG00000100314.3 + 225

22 30115736 30115737 ENST00000451180.1 - 30116073 30116074 ENSG00000100314.3 + 336

22 30115702 30115703 ENST00000420180.1 - 30116073 30116074 ENSG00000100314.3 + 370

22 39077791 39077792 ENST00000412067.1 - 39077953 39077954 ENSG00000100216.4 + 161

22 45559661 45559662 ENST00000426282.2 - 45559722 45559723 ENSG00000093000.14 + 60

22 45559539 45559540 ENST00000432502.1 - 45559722 45559723 ENSG00000093000.14 + 182

22 47158459 47158460 ENST00000564152.1 - 47158518 47158519 ENSG00000054611.9 + 58

22 51176566 51176567 ENST00000449652.1 - 51176624 51176625 ENSG00000100312.6 + 57

3 4534846 4534847 ENST00000412804.1 - 4535032 4535033 ENSG00000150995.13 + 185

3 8543283 8543284 ENST00000446281.1 - 8543393 8543394 ENSG00000071282.7 + 109

3 8543331 8543332 ENST00000452802.1 - 8543393 8543394 ENSG00000071282.7 + 61

3 8543340 8543341 ENST00000420095.1 - 8543393 8543394 ENSG00000071282.7 + 52

3 8543314 8543315 ENST00000455811.2 - 8543393 8543394 ENSG00000071282.7 + 78

3 9439176 9439177 ENST00000522525.1 - 9439299 9439300 ENSG00000168137.11 + 122

3 9439178 9439179 ENST00000520447.1 - 9439299 9439300 ENSG00000168137.11 + 120

3 9439112 9439113 ENST00000467069.2 - 9439299 9439300 ENSG00000168137.11 + 186

3 9439122 9439123 ENST00000494680.2 - 9439299 9439300 ENSG00000168137.11 + 176

3 9439157 9439158 ENST00000481221.2 - 9439299 9439300 ENSG00000168137.11 + 141

3 9439187 9439188 ENST00000469846.2 - 9439299 9439300 ENSG00000168137.11 + 111

3 9439179 9439180 ENST00000518437.1 - 9439299 9439300 ENSG00000168137.11 + 119

3 14989013 14989014 ENST00000424349.1 - 14989091 14989092 ENSG00000177463.11 + 77

3 14989011 14989012 ENST00000440079.1 - 14989091 14989092 ENSG00000177463.11 + 79

3 23244023 23244024 ENST00000452251.1 - 23244511 23244512 ENSG00000182247.5 + 487

3 23244033 23244034 ENST00000421375.1 - 23244511 23244512 ENSG00000182247.5 + 477

3 23244068 23244069 ENST00000430018.1 - 23244511 23244512 ENSG00000182247.5 + 442

3 26664180 26664181 ENST00000435884.1 - 26664297 26664298 ENSG00000179796.7 + 116

3 32280069 32280070 ENST00000565519.1 - 32280171 32280172 ENSG00000170293.4 + 101

3 47422488 47422489 ENST00000568593.1 - 47422501 47422502 ENSG00000076201.10 + 12

3 49591798 49591799 ENST00000421598.1 - 49591922 49591923 ENSG00000164061.4 + 123

3 49591772 49591773 ENST00000433882.1 - 49591922 49591923 ENSG00000164061.4 + 149

3 110788805 110788806 ENST00000467426.1 - 110788918 110788919 ENSG00000177707.6 + 112

3 119217027 119217028 ENST00000609598.1 - 119217379 119217380 ENSG00000113845.5 + 351

3 126113693 126113694 ENST00000506660.1 - 126113782 126113783 ENSG00000163885.7 + 88

3 126113430 126113431 ENST00000505467.1 - 126113782 126113783 ENSG00000163885.7 + 351

3 152879563 152879564 ENST00000487827.1 - 152880029 152880030 ENSG00000181467.2 + 465

3 156390658 156390659 ENST00000463449.1 - 156391024 156391025 ENSG00000163659.8 + 365

3 158288695 158288696 ENST00000479233.1 - 158288952 158288953 ENSG00000178053.13 + 256

3 159733647 159733648 ENST00000462431.1 - 159733811 159733812 ENSG00000242107.1 + 163

3 159943085 159943086 ENST00000486168.1 - 159943423 159943424 ENSG00000180044.3 + 337

3 160472929 160472930 ENST00000566372.1 - 160473390 160473391 ENSG00000163590.9 + 460

3 169684027 169684028 ENST00000487580.1 - 169684423 169684424 ENSG00000008952.12 + 395

3 169684013 169684014 ENST00000483289.2 - 169684423 169684424 ENSG00000008952.12 + 409

3 178865760 178865761 ENST00000435560.1 - 178865902 178865903 ENSG00000121879.3 + 141

3 180319722 180319723 ENST00000472596.1 - 180319918 180319919 ENSG00000163728.6 + 195

3 182511181 182511182 ENST00000488882.1 - 182511288 182511289 ENSG00000058063.11 + 106

4 3076240 3076241 ENST00000503893.1 - 3076408 3076409 ENSG00000197386.6 + 167

4 56262008 56262009 ENST00000592823.1 - 56262124 56262125 ENSG00000134851.8 + 115

4 56262008 56262009 ENST00000599135.1 - 56262124 56262125 ENSG00000134851.8 + 115

4 56262003 56262004 ENST00000601433.1 - 56262124 56262125 ENSG00000134851.8 + 120

4 56262013 56262014 ENST00000608136.1 - 56262124 56262125 ENSG00000134851.8 + 110

4 56261996 56261997 ENST00000598819.1 - 56262124 56262125 ENSG00000134851.8 + 127

4 79697126 79697127 ENST00000564925.1 - 79697496 79697497 ENSG00000138756.13 + 369

4 95128706 95128707 ENST00000501965.2 - 95128762 95128763 ENSG00000163104.13 + 55

4 95678683 95678684 ENST00000510795.1 - 95679119 95679120 ENSG00000138696.6 + 435

4 103422475 103422476 ENST00000563833.1 - 103422486 103422487 ENSG00000109320.7 + 10

4 106473511 106473512 ENST00000514879.1 - 106473777 106473778 ENSG00000236699.4 + 265

4 109541552 109541553 ENST00000507248.1 - 109541722 109541723 ENSG00000109475.12 + 169

4 109541584 109541585 ENST00000506795.1 - 109541722 109541723 ENSG00000109475.12 + 137

4 109541550 109541551 ENST00000509984.1 - 109541722 109541723 ENSG00000109475.12 + 171

4 109541615 109541616 ENST00000510212.1 - 109541722 109541723 ENSG00000109475.12 + 106

4 110354919 110354920 ENST00000510971.1 - 110354928 110354929 ENSG00000138802.7 + 8
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4 110736565 110736566 ENST00000609440.1 - 110736666 110736667 ENSG00000109534.12 + 100

4 113152751 113152752 ENST00000562919.1 - 113152893 113152894 ENSG00000138660.7 + 141

4 134070267 134070268 ENST00000505289.1 - 134070470 134070471 ENSG00000138650.7 + 202

4 134070270 134070271 ENST00000509715.1 - 134070470 134070471 ENSG00000138650.7 + 199

4 144106013 144106014 ENST00000507826.1 - 144106070 144106071 ENSG00000170185.5 + 56

4 144105981 144105982 ENST00000507486.1 - 144106070 144106071 ENSG00000170185.5 + 88

4 145567138 145567139 ENST00000508269.1 - 145567173 145567174 ENSG00000164161.5 + 34

4 145567063 145567064 ENST00000503066.1 - 145567173 145567174 ENSG00000164161.5 + 109

4 148538395 148538396 ENST00000508072.1 - 148538534 148538535 ENSG00000164168.3 + 138

4 152329986 152329987 ENST00000508847.1 - 152330368 152330369 ENSG00000164142.11 + 381

4 156129582 156129583 ENST00000511017.1 - 156129781 156129782 ENSG00000185149.5 + 198

4 174290965 174290966 ENST00000608794.1 - 174291120 174291121 ENSG00000164105.3 + 154

4 183064928 183064929 ENST00000505873.1 - 183065140 183065141 ENSG00000218336.3 + 211

4 183065040 183065041 ENST00000511052.1 - 183065140 183065141 ENSG00000218336.3 + 99

4 184020351 184020352 ENST00000578387.1 - 184020446 184020447 ENSG00000151718.11 + 94

4 184425646 184425647 ENST00000457303.3 - 184426147 184426148 ENSG00000168556.5 + 500

5 271630 271631 ENST00000512642.1 - 271736 271737 ENSG00000249915.3 + 105

5 612324 612325 ENST00000506629.1 - 612387 612388 ENSG00000112877.6 + 62

5 5140166 5140167 ENST00000512155.1 - 5140443 5140444 ENSG00000145536.11 + 276

5 10353712 10353713 ENST00000561606.1 - 10353815 10353816 ENSG00000145495.10 + 102

5 14664712 14664713 ENST00000563101.1 - 14664773 14664774 ENSG00000154124.4 + 60

5 14664681 14664682 ENST00000567048.1 - 14664773 14664774 ENSG00000154124.4 + 91

5 14664383 14664384 ENST00000564167.1 - 14664773 14664774 ENSG00000154124.4 + 389

5 33440724 33440725 ENST00000507251.1 - 33440802 33440803 ENSG00000113407.9 + 77

5 38845869 38845870 ENST00000513480.1 - 38845960 38845961 ENSG00000145623.8 + 90

5 38845930 38845931 ENST00000512519.1 - 38845960 38845961 ENSG00000145623.8 + 29

5 44808878 44808879 ENST00000503452.1 - 44809027 44809028 ENSG00000112996.5 + 148

5 44808843 44808844 ENST00000514597.1 - 44809027 44809028 ENSG00000112996.5 + 183

5 44808842 44808843 ENST00000505302.1 - 44809027 44809028 ENSG00000112996.5 + 184

5 44808860 44808861 ENST00000508945.1 - 44809027 44809028 ENSG00000112996.5 + 166

5 44808767 44808768 ENST00000508123.1 - 44809027 44809028 ENSG00000112996.5 + 259

5 44808860 44808861 ENST00000503179.1 - 44809027 44809028 ENSG00000112996.5 + 166

5 44808827 44808828 ENST00000505401.1 - 44809027 44809028 ENSG00000112996.5 + 199

5 44808837 44808838 ENST00000505637.1 - 44809027 44809028 ENSG00000112996.5 + 189

5 72251525 72251526 ENST00000606587.1 - 72251808 72251809 ENSG00000157107.9 + 282

5 72794117 72794118 ENST00000607001.1 - 72794233 72794234 ENSG00000145741.11 + 115

5 77656216 77656217 ENST00000513755.1 - 77656339 77656340 ENSG00000085365.13 + 122

5 77656330 77656331 ENST00000421004.3 - 77656339 77656340 ENSG00000085365.13 + 8

5 79783771 79783772 ENST00000508000.1 - 79783788 79783789 ENSG00000152380.5 + 16

5 99870889 99870890 ENST00000499025.1 - 99871009 99871010 ENSG00000174132.8 + 119

5 99870965 99870966 ENST00000504833.1 - 99871009 99871010 ENSG00000174132.8 + 43

5 118373362 118373363 ENST00000506486.1 - 118373467 118373468 ENSG00000172869.10 + 104

5 126112177 126112178 ENST00000509185.2 - 126112315 126112316 ENSG00000113368.7 + 137

5 131705339 131705340 ENST00000457998.2 - 131705444 131705445 ENSG00000197375.8 + 104

5 139487227 139487228 ENST00000499203.2 - 139487362 139487363 ENSG00000185129.4 + 134

5 139487050 139487051 ENST00000522747.1 - 139487362 139487363 ENSG00000185129.4 + 311

5 139487233 139487234 ENST00000521563.1 - 139487362 139487363 ENSG00000185129.4 + 128

5 146614421 146614422 ENST00000504297.1 - 146614526 146614527 ENSG00000169302.10 + 104

5 153825409 153825410 ENST00000501280.3 - 153825517 153825518 ENSG00000164576.7 + 107

5 153825381 153825382 ENST00000522312.1 - 153825517 153825518 ENSG00000164576.7 + 135

5 162864298 162864299 ENST00000458002.2 - 162864575 162864576 ENSG00000113328.14 + 276

5 162864331 162864332 ENST00000503504.1 - 162864575 162864576 ENSG00000113328.14 + 243

6 4021448 4021449 ENST00000415144.1 - 4021501 4021502 ENSG00000112739.12 + 52

6 7541570 7541571 ENST00000561592.1 - 7541808 7541809 ENSG00000096696.9 + 237

6 10747801 10747802 ENST00000606522.1 - 10747992 10747993 ENSG00000137210.9 + 190

6 10747895 10747896 ENST00000606652.1 - 10747992 10747993 ENSG00000137210.9 + 96

6 30026523 30026524 ENST00000422224.1 - 30026676 30026677 ENSG00000066379.10 + 152

6 30293910 30293911 ENST00000453558.1 - 30294256 30294257 ENSG00000204599.10 + 345

6 30294180 30294181 ENST00000602550.1 - 30294256 30294257 ENSG00000204599.10 + 75

6 30294163 30294164 ENST00000438412.1 - 30294256 30294257 ENSG00000204599.10 + 92

6 30294110 30294111 ENST00000444126.1 - 30294256 30294257 ENSG00000204599.10 + 145

6 30294123 30294124 ENST00000449544.1 - 30294256 30294257 ENSG00000204599.10 + 132

6 30294152 30294153 ENST00000454129.1 - 30294256 30294257 ENSG00000204599.10 + 103

6 30294162 30294163 ENST00000454269.1 - 30294256 30294257 ENSG00000204599.10 + 93

6 30294139 30294140 ENST00000602290.1 - 30294256 30294257 ENSG00000204599.10 + 116

6 30293913 30293914 ENST00000602498.1 - 30294256 30294257 ENSG00000204599.10 + 342

6 35704723 35704724 ENST00000452048.1 - 35704809 35704810 ENSG00000157343.4 + 85

6 37786993 37786994 ENST00000415890.1 - 37787275 37787276 ENSG00000156639.7 + 281

6 38682992 38682993 ENST00000439844.2 - 38683117 38683118 ENSG00000124721.13 + 124

6 41513980 41513981 ENST00000440194.1 - 41514164 41514165 ENSG00000137166.10 + 183

6 41513913 41513914 ENST00000414386.1 - 41514164 41514165 ENSG00000137166.10 + 250

6 41513811 41513812 ENST00000439386.1 - 41514164 41514165 ENSG00000137166.10 + 352

6 46097327 46097328 ENST00000444038.2 - 46097730 46097731 ENSG00000001561.6 + 402

6 46097442 46097443 ENST00000437249.2 - 46097730 46097731 ENSG00000001561.6 + 287
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6 47445307 47445308 ENST00000604014.1 - 47445525 47445526 ENSG00000198087.7 + 217

6 53659071 53659072 ENST00000429053.1 - 53659295 53659296 ENSG00000137269.10 + 223

6 69344853 69344854 ENST00000603261.1 - 69345259 69345260 ENSG00000135298.9 + 405

6 69344918 69344919 ENST00000604392.1 - 69345259 69345260 ENSG00000135298.9 + 340

6 89790385 89790386 ENST00000606729.1 - 89790470 89790471 ENSG00000146278.10 + 84

6 96025325 96025326 ENST00000564541.1 - 96025419 96025420 ENSG00000172469.10 + 93

6 134210119 134210120 ENST00000606544.1 - 134210276 134210277 ENSG00000118526.6 + 156

6 134210143 134210144 ENST00000607641.1 - 134210276 134210277 ENSG00000118526.6 + 132

6 146920066 146920067 ENST00000419168.2 - 146920101 146920102 ENSG00000118492.12 + 34

6 163834991 163834992 ENST00000604200.1 - 163835032 163835033 ENSG00000112531.12 + 40

6 167412552 167412553 ENST00000444102.1 - 167412670 167412671 ENSG00000213066.7 + 117

6 168227388 168227389 ENST00000359760.5 - 168227602 168227603 ENSG00000130396.16 + 213

6 168227134 168227135 ENST00000414943.1 - 168227602 168227603 ENSG00000130396.16 + 467

7 17338069 17338070 ENST00000419382.1 - 17338246 17338247 ENSG00000106546.8 + 176

7 17338069 17338070 ENST00000452249.1 - 17338246 17338247 ENSG00000106546.8 + 176

7 17338082 17338083 ENST00000415246.1 - 17338246 17338247 ENSG00000106546.8 + 163

7 23145321 23145322 ENST00000419813.1 - 23145353 23145354 ENSG00000122550.13 + 31

7 29603278 29603279 ENST00000447171.1 - 29603427 29603428 ENSG00000176532.3 + 148

7 35840215 35840216 ENST00000437235.3 - 35840542 35840543 ENSG00000122545.13 + 326

7 35840197 35840198 ENST00000412856.1 - 35840542 35840543 ENSG00000122545.13 + 344

7 35840225 35840226 ENST00000424194.1 - 35840542 35840543 ENSG00000122545.13 + 316

7 39605837 39605838 ENST00000439751.2 - 39605975 39605976 ENSG00000241127.3 + 137

7 39989353 39989354 ENST00000569710.1 - 39989636 39989637 ENSG00000065883.10 + 282

7 77325581 77325582 ENST00000440088.1 - 77325760 77325761 ENSG00000187257.10 + 178

7 77325578 77325579 ENST00000416650.1 - 77325760 77325761 ENSG00000187257.10 + 181

7 77325581 77325582 ENST00000398043.2 - 77325760 77325761 ENSG00000187257.10 + 178

7 77325569 77325570 ENST00000447009.1 - 77325760 77325761 ENSG00000187257.10 + 190

7 86781597 86781598 ENST00000433446.1 - 86781677 86781678 ENSG00000135164.14 + 79

7 86974830 86974831 ENST00000359941.5 - 86974997 86974998 ENSG00000005469.7 + 166

7 86974778 86974779 ENST00000610086.1 - 86974997 86974998 ENSG00000005469.7 + 218

7 86974801 86974802 ENST00000421293.1 - 86974997 86974998 ENSG00000005469.7 + 195

7 127292065 127292066 ENST00000490314.1 - 127292234 127292235 ENSG00000197157.6 + 168

7 129251470 129251471 ENST00000608694.1 - 129251555 129251556 ENSG00000106459.10 + 84

7 144052311 144052312 ENST00000470435.1 - 144052381 144052382 ENSG00000050327.10 + 69

7 155089250 155089251 ENST00000609974.1 - 155089486 155089487 ENSG00000186480.8 + 235

8 1921775 1921776 ENST00000517676.1 - 1922044 1922045 ENSG00000176595.3 + 268

8 6264068 6264069 ENST00000500118.2 - 6264113 6264114 ENSG00000147316.8 + 44

8 6264062 6264063 ENST00000606853.1 - 6264113 6264114 ENSG00000147316.8 + 50

8 9911763 9911764 ENST00000562143.1 - 9911778 9911779 ENSG00000175806.10 + 14

8 42010280 42010281 ENST00000564481.1 - 42010464 42010465 ENSG00000070718.7 + 183

8 42128428 42128429 ENST00000523459.1 - 42128820 42128821 ENSG00000104365.9 + 391

8 42128437 42128438 ENST00000518994.1 - 42128820 42128821 ENSG00000104365.9 + 382

8 42128714 42128715 ENST00000518213.1 - 42128820 42128821 ENSG00000104365.9 + 105

8 61429338 61429339 ENST00000530725.1 - 61429416 61429417 ENSG00000104388.10 + 77

8 61429353 61429354 ENST00000532232.1 - 61429416 61429417 ENSG00000104388.10 + 62

8 64081000 64081001 ENST00000603538.1 - 64081112 64081113 ENSG00000185728.12 + 111

8 67341211 67341212 ENST00000499642.1 - 67341263 67341264 ENSG00000179041.2 + 51

8 81397853 81397854 ENST00000605948.1 - 81397854 81397855 ENSG00000205189.7 + 0

8 86089275 86089276 ENST00000562577.1 - 86089460 86089461 ENSG00000133740.6 + 184

8 86089296 86089297 ENST00000566000.1 - 86089460 86089461 ENSG00000133740.6 + 163

8 90769954 90769955 ENST00000519655.2 - 90769975 90769976 ENSG00000104312.6 + 20

8 90769938 90769939 ENST00000504145.1 - 90769975 90769976 ENSG00000104312.6 + 36

8 90769591 90769592 ENST00000523859.1 - 90769975 90769976 ENSG00000104312.6 + 383

8 92082350 92082351 ENST00000522817.1 - 92082424 92082425 ENSG00000155100.6 + 73

8 92082416 92082417 ENST00000524003.1 - 92082424 92082425 ENSG00000155100.6 + 7

8 100025271 100025272 ENST00000521696.1 - 100025494 100025495 ENSG00000132549.14 + 222

8 125486804 125486805 ENST00000499418.2 - 125486979 125486980 ENSG00000170881.4 + 174

8 125486594 125486595 ENST00000519861.1 - 125486979 125486980 ENSG00000170881.4 + 384

8 125486816 125486817 ENST00000530778.1 - 125486979 125486980 ENSG00000170881.4 + 162

8 126010439 126010440 ENST00000523030.1 - 126010739 126010740 ENSG00000104549.7 + 299

8 143751387 143751388 ENST00000422119.2 - 143751726 143751727 ENSG00000167653.4 + 338

8 143751411 143751412 ENST00000512113.2 - 143751726 143751727 ENSG00000167653.4 + 314

8 143751405 143751406 ENST00000503272.1 - 143751726 143751727 ENSG00000167653.4 + 320

8 144450717 144450718 ENST00000518049.1 - 144451057 144451058 ENSG00000158106.8 + 339

9 2621412 2621413 ENST00000416826.2 - 2621834 2621835 ENSG00000147852.11 + 421

9 4679470 4679471 ENST00000609131.1 - 4679559 4679560 ENSG00000106993.7 + 88

9 4679501 4679502 ENST00000607997.1 - 4679559 4679560 ENSG00000106993.7 + 57

9 35658014 35658015 ENST00000602361.1 - 35658301 35658302 ENSG00000159884.7 + 286

9 35658013 35658014 ENST00000363046.1 - 35658301 35658302 ENSG00000159884.7 + 287

9 72435654 72435655 ENST00000439418.1 - 72435709 72435710 ENSG00000204711.4 + 54

9 72435582 72435583 ENST00000453410.1 - 72435709 72435710 ENSG00000204711.4 + 126

9 72435598 72435599 ENST00000526458.1 - 72435709 72435710 ENSG00000204711.4 + 110

9 98637868 98637869 ENST00000429781.1 - 98637983 98637984 ENSG00000182150.11 + 114

9 98637551 98637552 ENST00000427259.1 - 98637983 98637984 ENSG00000182150.11 + 431
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9 102668882 102668883 ENST00000529965.1 - 102668915 102668916 ENSG00000136874.6 + 32

9 108320309 108320310 ENST00000421614.1 - 108320411 108320412 ENSG00000106692.9 + 101

9 115512735 115512736 ENST00000440009.1 - 115513118 115513119 ENSG00000148158.12 + 382

X 11129228 11129229 ENST00000608176.1 - 11129421 11129422 ENSG00000004961.10 + 192

X 11129257 11129258 ENST00000608576.1 - 11129421 11129422 ENSG00000004961.10 + 163

X 11129233 11129234 ENST00000433747.2 - 11129421 11129422 ENSG00000004961.10 + 187

X 11129260 11129261 ENST00000608916.1 - 11129421 11129422 ENSG00000004961.10 + 160

X 23801072 23801073 ENST00000366134.2 - 23801290 23801291 ENSG00000130066.12 + 217

X 48367225 48367226 ENST00000445586.1 - 48367350 48367351 ENSG00000102312.16 + 124

X 118602224 118602225 ENST00000446986.1 - 118602363 118602364 ENSG00000005022.5 + 138

X 130192119 130192120 ENST00000412420.1 - 130192216 130192217 ENSG00000147256.6 + 96

X 146993334 146993335 ENST00000594922.1 - 146993469 146993470 ENSG00000102081.9 + 134

X 147582134 147582135 ENST00000456981.1 - 147582139 147582140 ENSG00000155966.9 + 4

X 149009869 149009870 ENST00000427671.1 - 149009941 149009942 ENSG00000156009.5 + 71

X 151883037 151883038 ENST00000415810.1 - 151883082 151883083 ENSG00000183305.9 + 44
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Table B1: List of genes regulated by ncRNA-RB1

Gene ID Fold-Change
kd_ncRNA−RB1

control

SLC45A1 2.200856122

CLSTN1 2.052514424

SPEN 2.069549204

DBT 2.046796354

AMY2A 2.120613752

AMY1B 0.482050047

AL592284.1 2.597208218

POLR3GL 0.475976256

BX842679.1 0.200342672

FLG 2.009668955

SYT11 2.523909518

KCNH1 2.046999604

CSGALNACT2 2.099423549

MARCH8 0.484836161

ARHGAP19-SLIT1 2.039554513

CTSW 2.016604618

DGAT2 0.433594527

RAB39A 2.964628456

UPK2 2.284171349

CBL 2.122902015

CD163 2.109484004

PTPRO 2.075954368

SLCO1B7 2.045546942

RP11-125O5.2 2.571298443

C12orf68 2.118379153

KRT84 0.151470779

HOXC8 0.287645099

AL359736.1 0.377747099

TTC7B 0.416658877

OTUB2 2.100004373

AL117190.2 2.197194635

MAP1A 2.381616911

FBN1 2.497451912

SHC4 2.083192263

RSL24D1 2.487629084

RBPMS2 0.316453401

SLC51B 0.478123123

RP11-210M15.2 2.017645666

RP11-89K11.1 2.020746078

APOBR 0.344020477

CMTM4 0.432268128

DEF8 0.286416002

CENPBD1 0.388158174

DBNDD1 0.357193652

GAS8 0.19740295

C16orf3 0.332046425

URAHP 0.225547274

PRDM7 0.112208436

ALOXE3 2.116305715

OMG 2.160162744

COPRS 0.441495917

RP11-1055B8.6 0.495849799

RP11-595B24.2 2.010587803

CRB3 0.467426508

C19orf80 2.621786745

CALR 0.492081732

Continued on next page
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Gene ID Fold-Change
kd_ncRNA−RB1
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RAB8A 0.406311533

SPINT2 0.445735337

LMTK3 21.74051663

SULT2B1 19.92038851

SPHK2 6.091379755

DBP 8.273742235

CA11 8.719269838

NTN5 20.57105759

FUT2 9.572867666

MAMSTR 85.97012861

FUT1 7.796864869

HSD17B14 4.733837457

DHDH 97.94071323

GP6 2.257961265

KRTCAP3 0.472891765

MRPL33 0.485832661

AC110084.1 0.389201934

AC007401.2 2.213433197

EPCAM 0.402526456

SPOPL 2.268759887

ARL6IP6 0.466299071

CHN1 0.466660949

ABCA12 2.099322046

MARCH4 2.07049195

SEC14L6 2.16698168

TTLL1 0.471709007

CDPF1 0.392831547

TSEN2 2.010354222

ADAMTS9 2.444829279

ZMAT3 2.350760587

AL590235.1 0.353380957

SMIM14 0.448806802

RBM47 0.422038329

IL8 2.035527583

CXCL5 0.235821495

SCARB2 0.468738074

CCNG2 0.496192408

AGPAT9 0.375176131

CDS1 0.494183429

HHIP 2.50113646

GLRB 0.478348281

RP11-404L6.2 2.974914831

POLR3G 2.039879453

FSTL4 2.163318407

PPP2R2B 2.413621617

SPINK9 2.221763016

DOCK2 2.070621931

FAM196B 2.084408787

CPLX2 2.03929938

RNF182 2.97167249

HIST1H4J 0.430188197

SPDEF 2.003949031

AL035588.1 0.412556322

COL12A1 2.352489754

TSPAN13 0.417739443

SNX10 0.486812049

CACNA2D1 2.358725145

CDK6 2.035218173

TMEM209 2.012902741

HIPK2 2.318693281

REXO1L1 2.123007569

MMP16 2.213718459

C8orf47 0.433759717

DNAJC25-GNG10 0.460545163

GNG10 0.454720497

COL5A1 2.309645421

NACC2 0.468154288

PNRC2 2.143791548

TXLNG 2.086003683

CDKL5 2.115138397

ARX 2.289863401

XAGE2 0.467589514

PGAM4 2.15137716

CT45A4 2.583966826

Continued on next page
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Gene ID Fold-Change
kd_ncRNA−RB1

control

SPANXB2 2.011163436

RAB39B 2.784522673

Table B2: List of genes regulated by RB1

Gene ID Fold-Change
kd_RB1

control

AL645608.1 0.496348767

ISG15 6.011936026

TNFRSF9 2.356636447

C1orf195 0.385091733

IFI6 8.765113707

AL929472.1 2.199898166

RNF11 0.429031613

IFI44 7.056040518

GBP1 3.334995929

ADAMTSL4 2.028343956

IFI16 2.566274123

RP11-565P22.6 0.488806935

NEK7 2.105128092

ZBED6 2.234199938

CDC42BPA 2.066592983

TET1 2.178094494

IFIT2 13.86814038

IFIT3 7.63782133

IFIT1 22.46841766

IFIT5 2.015337238

TRUB1 0.412436981

IRF7 4.612488379

TRIM21 2.366134984

ARHGAP1 0.495274562

RTN4RL2 0.451009799

BATF2 5.643334226

SC5D 2.002218921

ETS1 0.398759806

RBP5 2.159461508

SLC2A14 2.028005284

SLC2A3 2.099080959

ARHGDIB 0.411161608

KRT76 5.105891517

STAT2 2.57440064

CTD-2021H9.3 2.361680203

OAS1 4.430859636

OASL 14.56966859

CDK2AP1 0.42396939

RB1 0.230052032

LPAR6 0.382430448

RP11-468E2.4 2.343458152

IRF9 3.560310501

REC8 2.497430144

RP11-463J10.2 2.042905848

RP11-463C8.4 2.049107955

DICER1 2.103249894

GOLGA8F 0.397372179

DMXL2 2.146800707

GOLGA6L10 0.471862856

MMP25 2.421685609

ATP2A1 0.321290785

LAT 0.418663927

MT1F 0.316066589

MT1G 0.456719007

MT1X 0.418306129

NLRC5 2.521587392

CDH1 0.409909829

XAF1 6.334215702

SMCR8 2.13780816

DHX40 0.495999473

RNF213 2.142623537

RAB12 0.309236482

ANGPTL6 2.193284385

ZNF66 2.202291343

PRODH2 0.446919063

Continued on next page
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ZNF155 2.705246996

ZNF223 2.410867606

CTC-512J12.6 2.141150446

FOXA3 0.411965521

GYS1 28.57961281

RUVBL2 7.921797905

LHB 387.322803

CGB 68.35917932

CTB-60B18.6 164.6034365

CGB1 166.5939343

CGB2 186.2109748

CGB5 79.907749

NTF4 683.1759702

CGB8 70.71345588

CGB7 399.0746372

KCNA7 24.12471339

SNRNP70 3.955501268

LIN7B 157.2697791

C19orf73 56.52321157

PPFIA3 126.8576515

PRRG2 2.046114502

AC003006.7 2.097964729

AC004017.1 2.59196841

CTD-2583A14.10 2.014372286

UCN 0.403009393

EIF2AK2 2.09184868

TET3 2.113257406

INHBB 0.426525455

FMNL2 2.05165731

IFIH1 7.190730798

SP110 3.347794622

GBX2 0.403674585

ZNFX1 2.163459951

HELZ2 5.009543596

MX1 20.53270757

C2CD2 2.008169149

USP18 2.337882576

USP41 2.180782614

SERPIND1 2.248774077

TRANK1 6.121010385

RAD54L2 2.152380357

ZBTB20 2.25005579

PARP9 3.182996679

DTX3L 2.961074245

PARP14 2.804421962

PRR23C 2.06954897

PLSCR1 2.006500705

HES1 0.494739855

PPM1K 2.258972743

HERC6 2.72827973

HERC5 2.266687923

GPRIN3 2.094768223

KIAA1109 2.022597876

DDX60 3.072625407

DDX60L 2.711165839

C5orf42 2.126252783

MAP1B 2.048509157

PPP2CA 0.433223368

CDKL3 0.490103952

CD83 0.380728174

HIST1H2BK 0.386798675

HIST1H2AK 2.073774474

HIST1H2BO 0.430632403

COL21A1 0.43103872

DST 2.004345678

LIN28B 2.149980153

GJA1 0.474988475

SAMD9 4.720507484

SAMD9L 6.893337582

OCM2 34.74198481

LMTK2 4.677842253

BHLHA15 34.85102075

TECPR1 18.78460001

BRI3 3.155724838

Continued on next page
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Gene ID Fold-Change
kd_RB1

control

BAIAP2L1 3.424074807

RP11-514P8.7 0.488551893

SYPL1 0.485884106

AKR1B15 0.389139568

PARP12 2.707541259

ADRA1A 2.3200835

PARP10 2.829161647

CD274 2.318929348

DDX58 4.913801125

TGFBR1 0.417639969

ABCA1 2.107517179

RP11-101E3.5 2.098806621

C9orf69 0.49422568

CU459201.1 2.200566852

SCML2 2.126180295

RP2 2.025834543

CHIC1 2.030217957

ZDHHC9 2.04303871

F8 0.494078195

Table B3: List of genes regulated by nc-RNA-RB1 and RB1

Gene ID Fold-Change
kd_ncRNA−RB1

control
Fold-Change

kd_RB1

control

KIAA0754 2.193886781 2.326282358

ZBTB37 2.525633656 2.414134319

IGFN1 2.279235496 2.062475111

NCR3LG1 2.00177361 2.162970982

HIPK3 2.305087215 2.61995428

AP003733.1 0.030648413 0.040814426

INCENP 0.104715282 0.125444414

AP001925.1 3.497622695 3.398962578

RDX 3.021330283 2.824396109

DHH 13.40580023 16.88308423

LMBR1L 8.102637717 10.20901642

KRT82 0.146640094 0.486541227

KRT75 0.051271827 0.194347297

KRT6B 0.118769223 0.347175494

KRT6C 0.112821285 0.368585417

KRT6A 0.078428277 0.38319465

SLC16A7 2.007539194 2.07930596

FNDC3A 2.38475767 2.487311655

TSSK4 2.576205973 2.366561729

GOLGA8G 0.494859925 0.238520083

MORF4L1 2.168202053 2.156049443

HBQ1 0.471810309 0.429920944

RP11-297M9.1 2.232006855 2.240105922

ARL6IP1 2.550026605 2.3286886

SLC35G6 2.081618671 2.97510584

CBX1 3.308837941 2.696752573

GREB1L 2.178590112 2.561396771

NDUFS7 0.425512799 0.469398559

RTBDN 0.341173993 0.470333587

AC024580.1 3.899330479 3.224679756

REL 2.714835973 2.830569985

ANKRD36C 2.883660893 2.8811935

KCNJ13 2.921334517 2.16801154

MAPRE1 2.487375143 2.560045735

AL118506.1 2.571745892 2.558842453

B3GALT5 2.915357459 2.038098743

POM121L7 2.119590915 2.151236424

ECE2 0.457195116 0.405926594

CAMK2N2 0.495617152 0.491329341

C4orf48 0.42932756 0.448403529

FAM160A1 2.062530196 2.253470425

HLA-F 2.299996787 2.305506874

EZR 2.381701133 2.386192647

TNRC18 0.177217194 0.212649116

FBXL18 0.077967786 0.089800915

TRIM74 0.267592586 0.335382673

GNGT1 2.419031935 2.153626283

PEG10 2.949675248 2.608367231

Continued on next page
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Table B3: Continued from previous page

Gene ID Fold-Change
kd_ncRNA−RB1

control
Fold-Change

kd_RB1

control

RASA4B 0.181925973 0.166350175

POLR2J3 0.475593697 0.463867989

RASA4 0.036498707 0.038985032

RP11-514P8.6 0.164175709 0.165806702

UPK3BL 0.488685019 0.475438256

SPDYE2B 0.316198406 0.35361376

ARHGEF35 2.201013082 3.146591332

DNAJB6 2.320909515 2.218156815

HMBOX1 2.481281967 2.083994812

AL160274.1 3.141447865 2.224123841

PSAT1 3.229380337 2.893198017

RP11-508N12.4 4.72738864 4.034633898

GTF3C5 0.120619499 0.139591413

CEL 0.0028871 0.003322004

RALGDS 0.017582408 0.017262808

SURF6 0.182594494 0.211899928

MED22 0.067017556 0.072926663

XAGE5 0.008219026 0.013356565

MST4 2.75056185 2.175187511

LCA10 2.331475388 2.088458837
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