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Abstract: We have recently developed a distance metric for efficiently estimating the number
of substitutions per site between unaligned genome sequences. These substitution rates are
called “anchor distances” and can be used for phylogeny reconstruction. Most phylogenies come
with bootstrap support values, which are computed by resampling with replacement columns of
homologous residues from the original alignment. Unfortunately, this method cannot be applied
to anchor distances, as they are based on approximate pairwise local alignments rather than the
full multiple sequence alignment necessary for the classical bootstrap. We explore two alternatives:
pairwise bootstrap and quartet analysis, which we compare to classical bootstrap. With simulated
sequences and 53 human primate mitochondrial genomes, pairwise bootstrap gives better results than
quartet analysis. However, when applied to 29 E. coli genomes, quartet analysis comes closer to the
classical bootstrap.
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1. Introduction

Early phylogenies came without significance tests. It thus remained unclear whether the
reconstructed tree was significantly better than an alternative tree or how reliably individual nodes
would be recovered if a new set of characters were sampled. Of these two types of analyses, assessing
whole trees vs. assessing individual clades of a given tree, it is the latter that is most commonly carried
out. And among the methods available for doing this, the bootstrap is the most widely used [1].

The bootstrap is a simple, but highly effective method for solving the following problem in
statistics: given a sample of n measurements, what is the distribution of, say, the mean of these
measurements if we do not know the null distribution from which the original measurements were
drawn. The solution using the bootstrap consists of drawing n measurements with replacement from the
original sample and recalculating the statistic of interest; the mean in our example [2]. By repeating this
many times, the null distribution of the statistic is generated, which can be compared to another sample
in order to test the null hypothesis that the two samples were drawn from the same population [3].

This example shows two things: first, the bootstrap is only practical if computing is inexpensive, as
it has been since the introduction of the PC in the mid-1980s. Second, in the limit of a large sample size,
bootstrap samples become identical to the original sample.

Felsenstein introduced the bootstrap in phylogeny reconstruction [4]: Consider an alignment of
DNA sequences as an m by n matrix of nucleotides, where rows represent taxa and columns represent
homologous residues (Figure 1, top row). Compute a tree from this data matrix. Then, construct a
pseudo-sample by drawing with replacement n columns from the original sample. This pseudo-sample
is called a bootstrap sample. Compute the tree from the bootstrap sample and repeat this many times.
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Record the number of times each clade of the original tree appears in the bootstrapped trees. This value
is called the bootstrap support value (Figure 1, bottom row).
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Figure 1: Cartoon of classical bootstrap. The columns of the original alignment (top row) are repeatedly resampled
with replacement (second row). Distance matrices are computed from the bootstrap samples (third row) and sum-
marized as phylogenies (fourth row). The clades in the bootstrapped phylogenies are summarized in a consensus
tree with support values written next to the nodes (fifth row). A dot indicates a match to the nucleotide in the top
row.
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Figure 1. Cartoon of classical bootstrap. The columns of the original alignment (top row) are repeatedly
resampled with replacement (second row). Distance matrices are computed from the bootstrap samples
(third row) and summarized as phylogenies (fourth row). The clades in the bootstrapped phylogenies
are summarized in a consensus tree with support values written next to the nodes (fifth row). A dot
indicates a match to the nucleotide in the top row.

Assigning bootstrap values to individual nodes has become standard practice in alignment-based
phylogeny reconstruction. However, computing alignments of very long sequences, such as the
megabase-sized genomes of bacteria or the gigabase-sized genomes of mammals, is computationally
demanding. Nevertheless, an increasing number of bacterial outbreaks are being tracked by whole
genome sequencing. For example, 3085 strains of Streptococcus pneumoniae, each 2.2 Mb long, were
sequenced during an outbreak of this human pathogen [5]. A quick way to cluster sequence samples of
this magnitude is highly desirable.

Perhaps surprisingly, such clustering can be carried out without alignment [6,7]. Now, without
alignment, the original bootstrap can no longer be applied as it relies on resampling columns of
homologous nucleotides. However, one might argue that for megabase-long sequences and beyond,
the bootstrap reaches the limit in which it cannot generate any useful variation.

Here, we investigate this problem for our recently-published distance estimation program
andi [8]. It computes distances from approximate pairwise local alignments. Using suffix arrays, these
approximate pairwise alignments can be computed very quickly; for example, 3085 S. pneumoniae
strains are clustered on an 24-core computer in 4:37 h using 9.2 GB of RAM. However, the classical
bootstrap is not applicable to pairwise alignments, and we propose two alternatives: pairwise bootstrap
and quartet analysis. Pairwise bootstrap is a new variant of the Felsenstein bootstrap, while quartet
analysis, which evaluates the agreement between a phylogeny and the underlying distance matrix, is
taken from the literature [9]. We explore both methods by comparing them to the classical bootstrap
when applied to simulated datasets, where pairwise bootstrap clearly outperforms quartet analysis.
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We also analyze two empirical datasets. The first comprises 53 human mitochondrial genomes, which
are relatively short with only 16.6 kb each. The second dataset contains 29 complete E. coli/Shigella
genomes, which are roughly 300-times longer than the mitochondrial genomes. Pairwise bootstrap
outperforms quartet analysis when applied to the mitochondrial genomes. However, the converse is
true for the E. coli dataset.

2. Methods and Data

2.1. Classical Bootstrap

An alignment consists of m rows of nucleotides, corresponding to taxa, and n columns,
corresponding to homologous residues. Given such an alignment, we compute the “classical” bootstrap
by resampling columns with replacement and recomputing a matrix of Jukes–Cantor distances. This
procedure is implemented in our program dnaDist, the sources and documentation of which are
available from the website accompanying this paper:

http://evolbioinf.github.io/life2015

2.2. Quartet Analysis

Consider four taxa, a, b, c, d, connected by an unrooted phylogeny (Figure 2). Their pairwise
distances are given as dx,y. The topology shown in Figure 2 is correct if a is most closely related to b
and c to d. This condition is known more formally as the four-point criterion:

da,b + dc,d ≤ min (da,c + db,d, da,d + db,c)

A set of four taxa fulfilling the four-point criterion is a supporting quartet. The support value for an
edge is the proportion of supporting quartets that traverse it. The published program PhyD* implements
quartet analysis [10].

Quartet analysis is time consuming, because the traversal of all quartets takes time O(n4) for each
of n internal edges. Hence, quartet analysis is expected to run in time O(n5). This prompted us to
re-implement quartet analysis in our program afra with a view toward maximizing efficiency.

d

c

b

a

Figure 2: Phylogeny for four taxa.

g1 AATGCCACCGGGTGATGATAGCCTCGATAGGCCGCAGGTCTCGCGGGGAAATC
g2 GCGAGAGCGCACCACCGGGTGATGATAGCCTGGATAGGCCGCAGGACGGT

Figure 3: Illustration of anchors marked in red and blue for computing the anchor distance between the toy genomes
g1 and g2.

We bootstrap the local alignments implied by the anchor distances and call this pairwise bootstrap (Figure 4).
To implement pairwise bootstrap, let mij be the number of mismatches found among all approximate local align-
ments between sequences i and j, and let nij be the number of nucleotides covered by these alignments. Then the
number of mismatches per site, pij = mij/nij , is the probability of drawing a mismatch from the nij nucleotides.
Let m′

ij be the number of mismatches found after sampling with replacement nij times the nij homologous sites.
m′

ij is a random variable drawn from a binomial distribution parameterized by nij trials and success probability pij .
So instead of actually carrying out the bootstrap as illustrated in Figure 4, which becomes slow for long sequences,
we instantaneously draw m′

ij from a binomial distribution. For each pij we compute its bootstrapped version as
p′ij = m′

ij/nij to generate pseudo-sampled distance matrices. Any position-independent distance metric, e. g.
Jukes-Cantor or Kimura 2-parameter [8], can be calculated in this way.

2.4 Simulation
The agreement between classical bootstrap on the one hand, and pairwise bootstrap and quartet analysis on the
other, was assessed using the following simulation scheme. All programs not referenced are written by us and can
be reached via the website accompanying this paper.

1. Simulate n related sequences using the coalescent simulator ms [13].

2. Convert the output of ms to an alignment of DNA sequences, A, using ms2dna.

3. Subject A to bootstrap analysis using dnaDist.

g1 AATGCCACCGGGTGATGATAGCCTCGATAGGCCGCAGGTCTCGCGGGGAAATC
g2 GCGAGAGCGCACCACCGGGTGATGATAGCCTGGATAGGCCGCAGGACGGT

g1 CAGGGAGAGGGAGCAACTTCGCATCACTGAAGGA
g2 ..................................

g1 ATCCCCGGGGGCTTTAGGCGTGAACCAGCAGGCA
g2 ..................................

g1 GCCGTGGCTTTGCACAGCAGGGGCGCCATAGCTC
g2 ..G......................G.....G..

...

Figure 4: Pairwise bootstrap samples based on the anchors shown in Figure 3. Dots indicate matching nucleotides.
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Figure 2. Phylogeny for four taxa.

2.3. Pairwise Bootstrap

Anchor distances are based on long exact matches between pairs of genomes that flank regions
containing mismatches. An anchor is a unique exact match between two genomes of length ≥ l, where
l is the smallest value that makes it unlikely to find a match of this length by chance alone [8]. Figure 3
shows an example pair of genomes, g1 and g2. Genome g1 contains two anchors with the matches in g2

displayed in corresponding colors. The anchors have the same distance in g1 and g2, a single nucleotide,
and are thus regarded as an approximate local alignment. The mismatches per site between g1 and g2 are
then computed as one divided by the number of nucleotides covered by the red and blue anchors plus
the intervening nucleotide, that is 1/(20 + 13 + 1) = 0.029. This is Jukes–Cantor corrected to yield the
anchor distance of 0.031. The computation of anchor distances is implemented in our program andi [8].



Life 2016, 6, 11 4 of 12

g1 AATGCCACCGGGTGATGATAGCCTCGATAGGCCGCAGGTCTCGCGGGGAAATC
g2 GCGAGAGCGCACCACCGGGTGATGATAGCCTGGATAGGCCGCAGGACGGT

Figure 3. Illustration of anchors marked in red and blue for computing the anchor distance between the
toy genomes g1 and g2.

We bootstrap the local alignments implied by the anchor distances and call this pairwise bootstrap
(Figure 4). To implement pairwise bootstrap, let mij be the number of mismatches found among all
approximate local alignments between sequences i and j, and let nij be the number of nucleotides
covered by these alignments. Then, the number of mismatches per site, pij = mij/nij, is the probability
of drawing a mismatch from the nij nucleotides. Let m′ij be the number of mismatches found after
sampling with replacement nij times the nij homologous sites. m′ij is a random variable drawn from
a binomial distribution parameterized by nij trials and success probability pij. Therefore, instead of
actually carrying out the bootstrap as illustrated in Figure 4, which becomes slow for long sequences,
we instantaneously draw m′ij from a binomial distribution. For each pij, we compute its bootstrapped
version as p′ij = m′ij/nij to generate pseudo-sampled distance matrices. Any position-independent
distance metric, e.g., Jukes–Cantor or Kimura two-parameter [11], can be calculated in this way.

g1 AATGCCACCGGGTGATGATAGCCTCGATAGGCCGCAGGTCTCGCGGGGAAATC
g2 GCGAGAGCGCACCACCGGGTGATGATAGCCTGGATAGGCCGCAGGACGGT

g1 CAGGGAGAGGGAGCAACTTCGCATCACTGAAGGA
g2 ..................................

g1 ATCCCCGGGGGCTTTAGGCGTGAACCAGCAGGCA
g2 ..................................

g1 GCCGTGGCTTTGCACAGCAGGGGCGCCATAGCTC
g2 ..G......................G.....G..

...

Figure 4. Pairwise bootstrap samples based on the anchors shown in Figure 3. Dots indicate
matching nucleotides.

2.4. Simulation

The agreement between classical bootstrap, on the one hand, and pairwise bootstrap and quartet
analysis, on the other, was assessed using the following simulation scheme. All programs not referenced
are written by us and can be reached via the website accompanying this paper.

1. Simulate n related sequences using the coalescent simulator ms [12].
2. Convert the output of ms to an alignment of DNA sequences, A, using ms2dna.
3. Subject A to bootstrap analysis using dnaDist.
4. Compute the consensus tree and support values from the output of dnaDist using the program

consense, which is part of the PHYLIP package [13].
5. Subject A to pairwise bootstrap analysis as implemented in the latest version of andi [8] and

also calculate the consensus tree using consense.
6. Use afra to carry out quartet analysis on andi-distances computed from A.
7. For each cluster in the consensus tree, extract the three support values classical, pairwise and

quartet using the program correlation.js.
8. Repeat.

The panels in Figure 7 were generated from the output of this simulation by computing for each
classical bootstrap value the average value of the two alternative support values.
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2.5. Resource Consumption

All computations were carried out on a system with 24 Intel Xeon cores running at 2.60 GHz
under the Linux distribution Ubuntu 14.04 LTS. Time and memory consumption was measured using
commands like

/usr/bin/time -f "elapsed\t%Es\nuser\t%Us\nmem\t%MkB\n" \
andi -b 1000 foo.fasta > foo.dist

for pairwise bootstrap analysis, and

/usr/bin/time -f "elapsed\t%Es\nuser\t%Us\nmem\t%MkB\n" \
java -Xmx4096m -jar PhyDstar.jar -c -i foo.dist

for PhyD* [10].

2.6. Data

Apart from simulated data, we compared the performance of bootstrapped anchor distances
and alignment-based bootstrap distances by analyzing two example datasets: The first consisted of
53 human mitochondrial genomes [14] with an average length of 16.6 kb. The second dataset consisted
of 29 genomes of Escherichia coli and Shigella with an average length of 4.9 Mb. Both datasets are also
posted on the project website.

2.7. Alignment and Phylogeny Computation

The 53 human mitochondrial genomes were aligned using clustalw [15]. The 29 E. coli/Shigella
genomes were aligned using the fast genome aligner mugsy [16]. As described for the simulations
(Section 2.4), Jukes–Cantor distances were computed and bootstrapped using dnaDist, and the distance
matrices were subjected to neighbor joining as implemented in the program clustDist. Consensus trees
were computed using the PHYLIP program consense [13], and the output of two consense runs was
compared using the program correlation.js. Trees were midpoint-rooted using retree, which is also
part of PHYLIP.

3. Results and Discussion

3.1. Resource Consumption

Pairwise Bootstrap

Pairwise bootstrap takes time proportional to the size of the distance matrix. Accordingly, Figure 5A
shows for each doubling of the number of taxa a quadrupling of the run time. On the test computer,
100 taxa with 1-Mb sequences took approximately 15 s. The memory consumption of pairwise
bootstrapping is dominated by the parallelized suffix array computation underlying the calculation of
anchor distances [8]. Hence, the memory requirement grows linearly up to 24 taxa, the number of
cores on the test machine, and then levels off, only to pick up again when storing the raw sequence
data results in appreciable memory consumption as seen for 640 taxa each with 1 Mb (Figure 5B). This
requires approximately 1.7 GB of memory.

Quartet Analysis

The run time of quartet analysis given a distance matrix also grows polynomially with the number
of taxa. Figure 6A shows that our program afra takes approximately 0.04 s for 100 taxa, while the
reference implementation, PhyD* [10], requires approximately 4 s, that is 100-times longer. However,
both programs roughly increase their run time ten-fold for a doubling of the number of taxa. This
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deviates substantially from the theoretical O(n5) run time, according to which a doubling of sample size
should result in a 32-fold increase in run time. We do not know the reason for this discrepancy, but it
illustrates the importance of empirical resource measurements when analyzing software.

The memory consumption of afra is less than 1 MB for 100 taxa, while PhyD* uses approximately
100 MB for the same number of taxa (Figure 6B). However, memory consumption grows with similar
rates for both applications.
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Figure 5: Time (A) and memory (B) required by andi to compute 1000 bootstrap replicates as a function of the
number of taxa for sequences of 100 kb and 1 Mb length, L. The vertical line in B is at 24, the number of cores on
the test computer.

Quartet Analysis The run time of quartet analysis given a distance matrix also grows polynomially with the
number of taxa. Figure 6A shows that our program afra takes approximately 0.04s for 100 taxa, while the ref-
erence implementation, PhyD* [3], requires approximately 4s, that is, 100 times longer. However, both programs
roughly increase their run time ten-fold for a doubling of the number of taxa. This deviates substantially from the
theoretical O(n5) run time, according to which a doubling of sample size should result in a 32-fold increase in
run time. We do not know the reason for this discrepancy, but it illustrates the importance of empirical resource
measurements when analyzing software.

The memory consumption of afra is less than 1 MB for 100 taxa, while PhyD* uses approximately 100
MB for the same number of taxa (Figure 6B). However, memory consumption grows with similar rates for both
applications.

To test the scaleability of quartet analysis, we applied it to a sample of 3085 genomes of Streptococcus pneu-
moniae, which were sequenced in the course of a pneumococcal outbreak [2]. We calculated the corresponding
pairwise distance matrix and neighbor-joining tree using andi in 4:37 h. Quartet analysis then took 2:18 h and
occupied 150 MB memory. This shows that quartet analysis scales well to large data sets.

3.2 Accuracy
To quantify the correlation between classical bootstrap and the two alternative support values, pairwise bootstrap
and quartet analysis, we simulated 104 samples of 20 related sequences 100 kb or 1 Mb long. To perturb sequence
evolution, and thus increase the frequency of clades with low bootstrap support, we also added recombination.
Figure 7 shows the average values of pairwise bootstrap and quartet analysis as a function of classical bootstrap
values. In all cases the agreement between pairwise bootstrap is closer to the ideal diagonal—and hence classi-
cal bootstrap—than quartet analysis. This agreement improves as recombination is added; compare for example
Figure 7A with Figure 7C. The difference in fidelity between pairwise bootstrap and quartet analysis becomes
particularly conspicuous for the long sequences in Figure 7D, where the correlation between the raw classical and
pairwise bootstrap values is 0.967, while that between classical bootstrap and quartet analysis is only 0.562.

An important aspect of our simulations not represented in Figure 7 is that the proportion of clades with a
particular support value is not uniform across all possible outcomes. For example in Figure 7D, 65.8% of quartet
support values and 46.6% of pairwise bootstrap support values are maximal (not shown).
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Figure 5. Time (A) and memory (B) required by andi to compute 1000 bootstrap replicates as a function
of the number of taxa for sequences of 100 kb and 1 Mb length, L. The vertical line in (B) is at 24, the
number of cores on the test computer.
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Figure 6: Comparing time (A) and memory (B) consumption between two implementations of quartet analysis,
the published PhyD* [3] and our own program, afra, when applied to distance matrices of varying size.

3.3 Application to Real Sequence Data
Human Mitochondrial Genomes We investigated a sample of 53 complete human mitochondrial genomes
originally collected to help resolve the geographic origin of humans [14]. Figure 8 shows the midpoint-rooted
neighbor-joining tree based on these sequences. For two example nodes we quote the percent support values for
classical bootstrap (C), pairwise bootstrap (P), and quartet analysis (Q). The node pointed to by the arrow has a
classical bootstrap value of 73%. This is reflected by the pairwise bootstrap support of 58%, but not by the close to
perfect quartet support of 94%. Similarly, the other annotated node has a classical bootstrap value of 82%, which
is identical to the pairwise bootstrap support. Again, quartet analysis gives over-optimistic support (99%).

To investigate the relationship between classical bootstrap and its two alternatives further, the alternatives are
plotted as a function of classical bootstrap in Figure 9. The vertical lines mark the two nodes annotated in Figure 8.
Like in the simulations, it appears that pairwise bootstrap is more similar to its classical version than quartet
analysis. Indeed, the correlation between classical and pairwise bootstrap is 0.829 (P = 4 × 10−11), while that
between classical bootstrap and quartet analysis is only 0.777 (P = 6× 10−9). Notice also the clustering of points
in the top right hand corner of the graph, corresponding to a high frequency of clades with maximal support. This
phenomenon was already noted when discussing the simulations shown in Figure 7.

The program andi is designed for analyzing closely related genomes, which are increasingly often collected in
the course of pathogen outbreaks. For our second and final empirical example we therefore use a benchmark set of
29 E. coli/Shigella genomes. Figure 10A shows the tree computed from alignment-based distances. Bootstrapping
this alignment yields only a single clade with support less than 100%. This clade has bootstrap a support of 53 and
comprises six uropathogenic E. coli strains thought to be affected by horizontal gene transfer [5]. Interestingly, the
uropathogenic clade also contains the only major topological difference to the tree computed from andi-distances
in Figure 10B: strains 536 and ED1a have switched positions. However, pairwise bootstrap fails to flag this clade;
the only clades with pairwise bootstrap values less than 100% are part of the cluster of four very similar K12
strains. Quartet analysis on the other hand, returns non-maximal support values even outside the K12 clade. In
particular, it flags the group of uropathogenic strains. Note here that classical bootstrap evaluates individual nodes,
while quartets refer to edges. In the case of the uropathogenic bacteria, the two outgoing edges are flagged by
quartet analysis, as desired. In addition, quartet analysis indicates that two more clades in the flexneri/sonnei clade
might be problematic with support values of 72% and 77%.

The inability of pairwise bootstrap to flag the uropathogenic clade is probably due to the fact that the estimation
error of andi is large compared to the variance of the number of mismatches per site when bootstrapped from

7

Figure 6. Comparing time (A) and memory (B) consumption between two implementations of quartet
analysis, the published PhyD* [10] and our own program, afra, when applied to distance matrices of
varying size.
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To test the scalability of quartet analysis, we applied it to a sample of 3085 genomes of Streptococcus
pneumoniae, which were sequenced in the course of a pneumococcal outbreak [5]. We calculated the
corresponding pairwise distance matrix and neighbor-joining tree using andi in 4:37 h. Quartet analysis
then took 2:18 h and occupied 150 MB of memory. This shows that quartet analysis scales well to
large datasets.

3.2. Accuracy

To quantify the correlation between classical bootstrap and the two alternative support values,
pairwise bootstrap and quartet analysis, we simulated 104 samples of 20 related sequences 100 kb or
1 Mb long. To perturb sequence evolution, and thus increase the frequency of clades with low bootstrap
support, we also added recombination. Figure 7 shows the average values of pairwise bootstrap and
quartet analysis as a function of classical bootstrap values. In all cases, the agreement between pairwise
bootstrap is closer to the ideal diagonal, and hence, classical bootstrap, than quartet analysis. This
agreement improves as recombination is added; compare, for example, Figure 7A to Figure 7C. The
difference in fidelity between pairwise bootstrap and quartet analysis becomes particularly conspicuous
for the long sequences in Figure 7D, where the correlation between the raw classical and pairwise
bootstrap values is 0.967, while that between classical bootstrap and quartet analysis is only 0.562.

An important aspect of our simulations not represented in Figure 7 is that the proportion of
clades with a particular support value is not uniform across all possible outcomes. For example, in
Figure 7D, 65.8% of quartet support values and 46.6% of pairwise bootstrap support values are maximal
(not shown).

3.3. Application to Real Sequence Data

Human Mitochondrial Genomes

We investigated a sample of 53 complete human mitochondrial genomes originally collected to help
resolve the geographic origin of humans [14]. Figure 8 shows the midpoint-rooted neighbor-joining tree
based on these sequences. For two example nodes, we quote the percent support values for classical
bootstrap (C), pairwise bootstrap (P) and quartet analysis (Q). The node pointed to by the arrow has a
classical bootstrap value of 73%. This is reflected by the pairwise bootstrap support of 58%, but not
by the close to perfect quartet support of 94%. Similarly, the other annotated node has a classical
bootstrap value of 82%, which is identical to the pairwise bootstrap support. Again, quartet analysis
gives over-optimistic support (99%).

To investigate the relationship between classical bootstrap and its two alternatives further, the
alternatives are plotted as a function of classical bootstrap in Figure 9. The vertical lines mark the two
nodes annotated in Figure 8. Like in the simulations, it appears that pairwise bootstrap is more similar
to its classical version than quartet analysis. Indeed, the correlation between classical and pairwise
bootstrap is 0.829 (P = 4× 10−11), while that between classical bootstrap and quartet analysis is only
0.777 (P = 6 × 10−9). Notice also the clustering of points in the top right hand corner of the graph,
corresponding to a high frequency of clades with maximal support. This phenomenon was already
noted when discussing the simulations shown in Figure 7.

The program andi is designed for analyzing closely-related genomes, which are increasingly
often collected in the course of pathogen outbreaks. For our second and final empirical example, we
therefore use a benchmark set of 29 E. coli/Shigella genomes. Figure 10A shows the tree computed from
alignment-based distances. Bootstrapping this alignment yields only a single clade with support less
than 100%. This clade has a bootstrap support of 53 and comprises six uropathogenic E. coli strains
thought to be affected by horizontal gene transfer [17]. Interestingly, the uropathogenic clade also
contains the only major topological difference to the tree computed from andi-distances in Figure 10B:
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strains 536 and ED1a have switched positions. However, pairwise bootstrap fails to flag this clade; the
only clades with pairwise bootstrap values less than 100% are part of the cluster of four very similar
K12 strains. Quartet analysis, on the other hand, returns non-maximal support values even outside the
K12 clade. In particular, it flags the group of uropathogenic strains. Note here that classical bootstrap
evaluates individual nodes, while quartets refer to edges. In the case of the uropathogenic bacteria, the
two outgoing edges are flagged by quartet analysis, as desired. In addition, quartet analysis indicates
that two more clades in the flexneri/sonnei clade might be problematic with support values of 72%
and 77%.
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Figure 7: Average support values as a function of classical bootstrap support. All simulations with sample size
n = 20, 1% polymorphisms per position, and 104 iterations. The comparison along rows (e. g. A and B) shows the
effect of increasing the sequence length, L, from 10 kb to 100 kb. The comparison along the columns (e. g. A and
C) shows the effect of increasing the rate of recombination per nucleotide, ρ, from 0 to 2× 10−4. See Section 2.4
for details.
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Figure 7. Average support values as a function of classical bootstrap support. All simulations with
sample size n = 20, 1% polymorphisms per position, and 104 iterations. The comparison along rows
shows the effect of increasing the sequence length, L, from 10 kb (A,C) to 100 kb (B,D). The comparison
along the columns shows the effect of increasing the rate of recombination per nucleotide, ρ, from 0 (A,B)
to 2× 10−4 (C,D). See Section 2.4 for details.
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Figure 8. Phylogeny of humans computed from 53 complete mitochondrial genomes [14]. Example
bootstrap support values are quoted for two nodes: C: classical alignment-based; P: pairwise bootstrap
of andi distances; Q: quartet analysis of andi distances.

The inability of pairwise bootstrap to flag the uropathogenic clade is probably due to the fact that
the estimation error of andi is large compared to the variance of the number of mismatches per site
when bootstrapped from megabase-long genomes, such as those of E. coli. One indicator of the error
in andi measurements is the difference between the estimates based on the two possible query/subject
labellings [8]. For E. coli, this is often a few percent (not shown). Compare this to a mismatch rate of,
say, 1% between two typical E. coli genomes of length 5 Mb. The variance of the number of mismatches
is 5× 106× 0.01× 0.99 ≈ 5× 104, and the standard deviation of the per site mismatch rate is

√
104/(5×

106) = 2 × 10−5. In other words, 95% of the bootstrapped mismatch rates fall within an interval of
0.01± 4× 10−5. Note that the numerator of the standard deviation is proportional to the square root of
the sequence length, while the denominator is proportional to the untransformed sequence length. As a
result, bootstrap variation decreases with sequence length.
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Figure 10. Phylogeny of 29 strains of Escherichia coli/Shigella computed from their full genomes.
(A) Alignment-based; (B) andi-distances; the numbers refer to bootstrap support less than 100%;
P: pairwise bootstrap; unmarked values in (B) refer to quartet support.
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4. Conclusions

Our new pairwise bootstrap scheme for andi emulates classical bootstrap values. With simulated
data, the fit is quite good. With real data, where the estimation error is greater, classical bootstrap values
are still approximated for short sequences, such as human mitochondrial genomes, which comprise
approximate 16.6 kb. However, for longer sequences, such as E. coli genomes (5 Mb), the error in
estimating evolutionary distances using andi can overwhelm the sensitivity of the pairwise bootstrap.
In this situation, quartet analysis may be a suitable alternative. A topological difference between data
and tree remains detectable by quartet analysis regardless of the size of the dataset, making this method
immune to the saturation of the bootstrap with large samples. Our implementation of quartet analysis,
afra, is efficient enough to analyze distance matrices for thousands of taxa in a few hours.
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