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The quantum scattering of magnon bound states in the anisotropic Heisenberg spin chain is shown
to display features similar to the scattering of solitons in classical exactly solvable models. Local-
ized colliding Gaussian wave packets of bound magnons are constructed from string solutions of
the Bethe equations and subsequently evolved in time, relying on an algebraic Bethe ansatz based
framework for the computation of local expectation values in real space-time. The local magneti-
zation profile shows the trajectories of colliding wave packets of bound magnons, which obtain a
spatial displacement upon scattering. Analytic predictions on the displacements for various values
of anisotropy and string lengths are derived from scattering theory and Bethe ansatz phase shifts,
matching time evolution fits on the displacements. The time evolved block decimation (TEBD)
algorithm allows for the study of scattering displacements from spin-block states, showing similar
scattering displacement features.

I. INTRODUCTION

The study of classical dynamics in nonlinear media has
proven to be a source of astonishing surprises over the last
century. Two observations, both based on numerical sim-
ulations, have challenged prejudices and fundamentally
altered traditonal ways of thinking. First, the famous ob-
servation of Fermi, Pasta, Ulam, and Tsingou1 of a simple
nonlinearly-coupled set of oscillators showing nontrivial
recurrences, has shattered the long-held assumption that
all nonlinear dynamical systems ergodically explore their
full phase space. Second, the pioneering numerical anal-
ysis of Zabusky and Kruskal2 on the Korteweg-de Vries
equation3 demonstrated that this equation supports ex-
citations, which they coined ‘solitons’, displaying a num-
ber of surprising fundamental features. The solitons are
localized in space, with a form remaining stable under
time evolution which sees them moving uniformly at a
speed linearly proportional to their amplitude. Addition-
ally the astounding characteristic was observed of solitons
emerging intact from mutual scattering processes, during
which they simply ‘“pass through” one other without los-
ing their identity’,2 the only effect of the collision being
a relative spatial displacement as compared to their free
propagation. The proper understanding of solitons in
nonlinear media ultimately led to the development of the
classical inverse scattering method,4,5 which is the over-
arching framework for classical integrable models.

Nonlinear classical systems find their quantum me-
chanical analogue in the shape of interacting many-body
systems. In parallel to the classical case, some quan-
tum models have been shown to be special, in the sense
of being exactly solvable using the quantum version of
the inverse scattering method6 (one might also say in-
tegrable, though the quantum notion of integrability is
not as well-defined as its classical counterpart7). Funda-
mental representatives of this family are the Heisenberg

spin chain, solved by Bethe using what is now known as
the Bethe ansatz,8 along with the Lieb-Liniger model of
δ-interacting bosons on a line.9 For the latter, particle-
like excitations called Lieb Type I modes10 exist due to
the interparticle repulsion, along with Type II hole-like
excitations visualized as holes in an effective Fermi sea.
It is possible to distinguish the presence of Type I and
II modes in correlated bosonic gases in optical lattices
using Bragg spectroscopy.11,12 Quantum magnets such
as the Heisenberg spin chain similarly carry particle-like
magnon modes when the magnetization is close to satura-
tion. In the limit of small magnetization, hole-like modes
again appear, which in zero field are known as spinons.13

Their dynamics can be experimentally observed using in-
elastic neutron scattering.14,15 The Heisenberg chain sup-
ports distinct bound states of magnons, whose dynam-
ics has been investigated theoretically16 and has recently
been observed experimentally.17

One could view such excitations as the quantum equiv-
alents of classical solitons. This equivalence is however
only partial: on the one hand, these quantum mechanical
modes represent exact eigenstates and are stable under
time evolution; on the other hand, being exact eigen-
states of translationally-invariant systems, they are not
spatially localized. That said, as is usually the case in
quantum mechanics, it is possible to adopt a ‘complemen-
tary’ picture and create spatially localized excitations by
forming wave packets of fundamental excitations by lin-
early combining states over a range of differing momenta.
Locality however comes at a price: the wave packet, mix-
ing together states at different energies, will disperse and
is thus not stable over long timescales, unlike its classi-
cal counterpart. We use the term quasisoliton for such
a wave packet construction, an example of which was re-
cently studied in the context of the Lieb-Liniger model,18

while their mutual scattering has been studied in quan-
tum spin chains.19,20
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The spectroscopic methods traditionally employed to
experimentally study condensed-matter systems typi-
cally provide momentum- and energy-resolved measure-
ments. However, current experimental developments pro-
vide motivation to obtain a better theoretical under-
standing of spatially localized dynamics. Time-resolved
experiments are now able to track quantum many-body
systems at timescales smaller than relaxation timescales,
particularly in experiments with ultracold atoms,17,21,22

but also in NMR setups,23 and potentially in pump-probe
spectroscopy experiments.24 As a result, non-dissipative
dynamics of many-body systems out of equilibrium is
now a rapidly growing field of experimental as well as
theoretical investigation.25 Novel cold-atom experimen-
tal techniques for spatially resolved manipulation and ob-
servation at the single-site level17,22,26 have opened the
door to explicit high-resolution tracking of spatial prop-
agation phenomena. Moreover, an experiment with in-
teracting bosonic atoms has highlighted the interaction-
induced longevity of repulsive pairs.27 This has moti-
vated increased theoretical attention to the (anti-)bind-
ing of localized excitations and interactions of these
bound clusters, both in itinerant systems19,28 and in spin
chains.16,19,20,29 Very recently, the spatial dynamics of
itinerant clusters has been studied in experiment.30 Prop-
agation of quantum solitons in Bose-Hubbard chains has
also been studied numerically.31

In Ref. 19, the scattering of a magnon wave packet on
approximate bound eigenstates of n particles was studied
numerically in the Heisenberg chain. In the present work,
we present an algebraic framework and exact calculations
based on Bethe ansatz. We therefore consider quantum
scattering of localized excitations over a ferromagnetic
background in the Bethe ansatz solvable anisotropic spin-
1/2 Heisenberg chain (XXZ model)8,32,33

H = J

N∑
j=1

[
Sxj S

x
j+1 + Syj S

y
j+1 + ∆

(
Szj S

z
j+1 −

1

4

)]
.

(1)
The XXZ model is experimentally realizable, for example
in the setups of Refs. 17 and 22, which use two hyper-
fine states of bosonic atoms in the Mott phase to ex-
perimentally realize the spin-up and spin-down states.
The effective model is a nearly isotropic (∆ ≈ 1) Heisen-
berg chain, while an experimental setup with variable
anisotropy ∆ is under development.34 In addition, the
XXZ model has been shown to describe Josephson junc-
tion arrays of the flux qubit type,35 and may also be
realizable in optical lattices36 or with polaritons in cou-
pled arrays of cavities.37 It is conceivable that these or
similar experimental setups may provide time-resolved
observations of propagating and interacting localized ex-
citations.

The parameter J in Hamiltonian (1) is given by the
exchange interaction of two neighboring electrons or, in
the aforementioned experimental setup, by the exchange
interaction between two neighboring bosons in an opti-
cal lattice at unit filling. Its sign does not matter for

our purposes here;19,38,39 for definiteness, we set it to
J > 0. We distinguish two regions for the anisotropy
parameter ∆, namely the planar xy (|∆| < 1) or axial z
(|∆| > 1) cases. Due to the interaction term (∝ ∆) the
XXZ chain displays a whole zoology of fundamental ex-
citations: isolated down spins can form spatially bound
states (as was understood by Bethe already in his original
publication8), whose bond size decreases as ∆ increases.
These excitations are often referred to as ‘string states’,
as the rapidities describing Bethe states containing such
bound multi-magnons appear as approximately equally-
spaced vertical strings in the complex plane (the precise
set of available bound states depends on the value of ∆;
at the isotropic point ∆ = 1 and in the axial regime, all
string lengths are allowed).

We construct spatially localized wave packets of n
bound magnons using linear combinations of these string
states of length n with Gaussian-distributed momenta.
We call them ‘n-string wave packets’. We further
demonstrate that exact methods based on the algebraic
Bethe ansatz6 provide a framework to evaluate the time-
dependent expectation value of the local magnetization
〈Szj (t)〉 algebraically, which can be used to track those
localized magnon-like wave packets. We investigate their
stability and mutual scattering using a combination of
scattering theory, Bethe ansatz, and numerically exact
calculations.

At large anisotropy ∆ � 1, magnon bound states re-
semble having downturned spins on neighboring sites.
An n-string wave packet is thus closely approximated
by a consecutive block of n downturned spins. While
this correspondence breaks down at smaller ∆, this pro-
vides motivation to study the evolution of states with
downturned spins on a consecutive block of sites. In ad-
dition, this is exactly the type of initial state prepared
in experiments.17,22 Scattering of such blocks has been
explored in Ref. 19, where a spatial displacement of two
sites was observed for the block at several ∆, and ex-
plained at large ∆ in terms of energy conservation. In the
present work, we connect scattering phase shifts with tra-
jectory displacements in order to provide a Bethe ansatz
derivation of the observed displacements.

The paper is organized as follows. In Sec. II we will
introduce the concepts of string solutions and the scat-
tering phase shifts associated with n-strings, along with
details on the algebraic Bethe ansatz6 based evaluation
of the time-dependent expectation value of the local mag-
netization 〈Szj (t)〉, which can be used to track localized
magnon-like excitations of the spin chain. In Sec. III, we
elaborate on the construction, stability and time evolu-
tion of scattering of n-string wave packets. We also com-
pare with the stability of consecutive-site spin blocks. In
Sec. IV we consider the scattering trajectory displace-
ments, derive analytical results for them and compare
with numerical measurements. The ∆ → ∞ limit is
treated analytically, comparing with numerical data for
spin block initial states. The appendices provide details
involving scattering theory and details on obtaining the
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phase shift directly from the phase of the time-evolving
wave function.

II. TIME EVOLUTION FROM BETHE ANSATZ

In this section we present the basic formulas of the
Bethe ansatz for the spin-1/2 XXZ model and explain
the concept of string solutions and the scattering phase
shift associated with n-strings. In Subsec. II C, expres-
sions are given for the time evolved expectation value of
the local magnetization by using results from algebraic
Bethe ansatz. The method used here relies on the avail-
ability of determinant expressions for matrix elements
between Bethe states.40–42 This last subsection is rela-
tively technical and could be skipped on first reading.

A. Coordinate Bethe ansatz for the XXZ model

The eigenstates of the XXZ spin chain (1) can be con-
structed via the Bethe ansatz,8,33 and have the form

|{λ}〉 =
∑

j1<...<jM

∑
Q

AQ({λ})
M∏
a=1

eijap(λQa )S−ja |↑↑ . . . ↑〉 ,

(2)
where M denotes the number of downturned spins and
therefore fixes the magnetization. The sum over Q is
a sum over all permutations of M objects and the am-
plitudes AQ are related to the scattering phases. The
set of M complex rapidities {λ} ≡ {λj}Mj=1 completely
determines the Bethe state and is simply related to the
physical energy and momentum. By imposing periodic
boundary conditions, i.e. SαN+1 = Sα1 for α = x, y, z
in the Hamiltonian (1), each set of rapidities {λ} cor-
responding to an M -magnon eigenstate must obey Bethe
equations, (

φ1(λj)

φ−1(λj)

)N
=

M∏
k=1
k 6=j

φ2(λj − λk)

φ−2(λj − λk)
. (3)

The different definitions of φn(λ), θn(λ) and ζ for various
regions in anisotropy ∆ are given in Tab. I. Within Bethe
ansatz, the momenta of single downturned spins can be
parametrized in terms of rapidities,

p(λ) = −i ln

[
φ1(λ)

φ−1(λ)

]
= π − θ1(λ) . (4)

By invoking Schrödinger’s equation H|{λ}〉 = E|{λ}〉
for a Bethe state consisting of a single downturned spin,
the magnon dispersion relation

E(p) = J(cos(p)−∆) (5)

is easily derived. In the case of just two single magnons,
their scattering phase shift χ can be obtained from the

ζ φn(λ) θn(λ)

|∆| < 1 acos (∆) sinh
(
λ+ inζ

2

)
2 atan

(
tanh(λ)

tan(nζ
2

)

)
∆ = 1 − λ+ in

2
2 atan

(
2λ

n

)
∆ > 1 acosh (∆) sin

(
λ+ inζ

2

)
2 atan

(
tan(λ)

tanh(nζ
2

)

)

TABLE I. Definitions of functions appearing in Bethe ansatz
for different regions in anisotropy ∆.

permutation of two magnons in the Schrödinger equation,

AQ′

AQ
= −1 + ei(p1+p2) − 2∆eip2

1 + ei(p1+p2) − 2∆eip1
= −eiχ , (6)

where Q is the identity and Q′ interchanges the two
indices 1 and 2. Furthermore, the magnon momenta
p1 = p(λ1) and p2 = p(λ2) as well as the scattering phase
shift χ = θ2(λ1−λ2) are parametrized by the two rapidi-
ties λ1 and λ2.

B. Strings and magnons

The sets of rapidities solving Bethe Eqs (3) are self-
conjugate and arrange themselves in patterns of string
solutions,

λ
(n)
j,a = λ

(n)
j +

iζ

2
(n+ 1− 2a) + i

π

4
(1− νj) + iδ

(n)
j,a , (7)

where the string center λ
(n)
j ∈ R and a = 1, . . . , n is the

internal label of a rapidity within a string of length n and
parity νj . In the planar regime |∆| < 1, periodicity of the
trigonometric functions also allows for string centers to
be located on the line iπ/2, resulting in negative parity
strings (νj = −1). This type of strings will be left out
of consideration for the analysis of scattering magnons,
restricting to νj = 1.

At finite size, solutions are not exactly given by strings,

but rather contain string deformations δ
(n)
j,a ∈ C, under

the constraint that the full set of rapidities {λ} remains
self-conjugate. In the cases considered here the devi-
ations are exponentially small in system size and it is
therefore sufficient to take the limit of vanishing devia-
tions. In this limit, the product of the Bethe equations
of all rapidities within a string reduces to the Bethe-
Gaudin-Takahashi equations,43 which are similar to the
Bethe equations but given in terms of the n-string cen-

ters λ
(n)
j . In logarithmic form they read

θn(λ
(n)
j )− 1

N

∑
m

Mm∑
k=1

Θnm(λ
(n)
j − λ(m)

k ) =
2π

N
I

(n)
j ,

j = 1, . . . ,Mn , (8)
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where Mn denotes the number of n-strings present, sat-
isfying

∑
n nMn = M . The logarithmic scattering ker-

nels θn(λ) are defined in Tab. I and the scattering phase
shift between two individual strings of arbitrary length
is given by (for |∆| < 1 we consider only strings with
positive parity)

Θnm(λ) = (1− δnm)θ|n−m|(λ) + 2θ|n−m|+2(λ)

+ . . .+ 2θn+m−2(λ) + θn+m(λ) . (9)

The logarithmic form of the Bethe-Gaudin-Takahashi
equations allows for the introduction of string quantum

numbers I
(n)
j , obeying an exclusion principle for all Bethe

states, meaning that every Bethe state is characterized by
a unique set of string quantum numbers. By considering
the limit of sending a string center to infinity, the max-
imum allowed string quantum number can be derived.
These limiting quantum numbers define the dimensions
of sub-sectors of the Hilbert space containing a specific
string content.

Moreover, in the planar case |∆| < 1, the existence of
strings with a specific length n in the spectrum is deter-
mined by the anisotropy.43 Therefore restrictions on the
availability of n-string wave packets as well as on their
momenta44 are present in the planar case |∆| < 1, de-
pending on the value of ∆.

We get all Bethe states with the desired string content
by solving the Bethe-Gaudin-Takahashi equations (8) us-
ing an iterative algorithm for all combinations of allowed
string quantum numbers. After obtaining the rapidities,
the energy of a Bethe state containing strings is easily
computed as

E{λ} = −J
2
|φ2(0)|

∑
n

Mn∑
j=1

θ′n(λ
(n)
j ) , (10)

where θ′n is the derivative of θn. The energy contribution
E(n)(p) of a string of length n to the energy E{λ} is

E(n)(p) = J
φ2(0)

φ2n(0)
(cos(p)− εn) . (11)

where εn = cos(nζ), 1, cosh(nζ) for |∆| < 1, ∆ = 1, and
∆ > 1, respectively. The momentum p = p(n)(λ) of an
n-string with string center λ is given by

p(n)(λ) = π − θn(λ) . (12)

In the following we use the convention −π < p(n) ≤ π.
Note that for a single n-string the minimum of the energy
dispersion is always at λ(n) = 0, i.e. at momentum p(n) =
π. The total momentum of a Bethe state can be extracted
from its string quantum numbers,

P{λ} =
∑
n

Mnπ −
2π

N

∑
n,j

I
(n)
j mod 2π . (13)

In the thermodynamic limit and for a finite number M of
rapidities, each separate bound magnon represented by a

string quantum number I
(n)
j can be associated to a single

particle momentum p
(n)
j

p
(n)
j = p(n)(λ

(n)
j ) = π − 2π

N
I

(n)
j . (14)

To summarise, the rapiditites belonging to each eigen-
state are obtained by iteratively solving the Bethe-
Gaudin-Takahashi equations (8). They can be used to
evaluate the determinant expressions (18) for the nor-
malised matrix elements of the following section.

C. Magnetization expectation value

Time evolution of the expectation value of the local
magnetization 〈Szj (t)〉 is performed by making use of the

algebraic Bethe ansatz.6 The time dependent wave func-
tion is computed using unitary time evolution in a basis
of Bethe states |{λ}〉,

|Ψ(t)〉 = e−iHt|Ψ(0)〉 =
∑
{λ}

e−iE{λ}tC{λ}|{λ}〉 , (15)

where the coefficients C{λ} = 〈{λ}|Ψ(0)〉 are determined
by the initial state |Ψ(0)〉, which is given in Sec. III,
Eq. (23), for the construction of n-string wave packets.

The expectation value of the local magnetization at
site j is given by

〈Szj (t)〉 =
∑
{λ},{µ}

e−i(E{λ}−E{µ})tC{λ}C
∗
{µ}〈{µ}|S

z
j |{λ}〉 .

(16)
As the states |{λ}〉, |{µ}〉 are Bethe states determined
respectively by sets of rapidities {λj}Mj=1, {µj}Mj=1 that
obey Bethe Eqs (3) (here we have M rapidities in both
sets since the operator Szj does not change the magneti-
zation), the matrix elements are given by the normalised
expressions obtained from algebraic Bethe ansatz

〈{µ}|Szj |{λ}〉 =
F zj ({µ}, {λ})√
N ({µ})N ({λ})

. (17)

Here we make use of the determinant expressions ob-
tained in Ref. 42,

F zj ({µ}, {λ}) =
ϕj−1({µ})
ϕj−1({λ})

M∏
k=1

φ1(µk)

φ1(λk)

· det [H({µ}, {λ})− 2P ({µ}, {λ})]
M∏

k,l=1
k<l

φ0(µk − µl)φ0(λl − λk)

,

(18)

with ϕj({λ}) = e−iP{λ}j and φn(λ) defined in Tab. I. The
entries of the matrices H({µ}, {λ}) and P ({µ}, {λ}) are
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given by

Hab({µ}, {λ}) =
φ2(0)

φ0(µa − λb)

[ M∏
k=1
k 6=a

φ2(µk − λb)

−
[
φ−1(λb)

φ1(λb)

]N M∏
k=1
k 6=a

φ−2(µk − λb)
]
,

(19)

Pab({µ}, {λ}) =
φ2(0)

φ−1(µa)φ1(µa)

M∏
k=1

φ2(λk − λb) . (20)

The normalization N ({λ}) is computed from the Gaudin
determinant,45,46

N ({λ}) = [φ2(0)]M
M∏

k,l=1
k 6=l

φ2(λk − λl)
φ0(λk − λl)

det Φ({λ}) , (21)

where the Gaudin matrix is given by the Jacobian of the
Bethe equations,

Φab({λ}) = δab

[
Nθ′1(λa)−

M∑
k=1

θ′2(λa − λk)
]

+ θ′2(λa − λb) . (22)

The time-dependent expectation value of the local
magnetization is then obtained by evaluating the double
sum over matrix elements in Eq. (16). By construction,
the double sum only includes eigenstates with the same
particle content, which is not large for the few-magnon
states we will consider. As a result, the double summa-
tion is still tractable at lattice sites N ∼ O(102). In
the case of dealing with string solutions for the magnon
bound states, reduced determinants for strings described
in Ref. 47 must be used.

III. BOUND MAGNON WAVE PACKETS

The strings described in the previous section do not
correspond one to one to localized bound states of down-
turned spins, but rather are translationally invariant con-
stituents of Bethe eigenstates. In order to create states of
n bound magnons with localized magnetization features,
we construct Gaussian wave packets by summing over
single n-string states (labeled by the string center λ(n))
with momenta distributed around p,

|Ψ(0)〉 = N0

∑
p

e−ipx−
α2

4 (p−p)2

|λ(n)(p)〉 , (23)

where N0 is a normalization constant. Unitary time evo-
lution under Hamiltonian (1) implies an expression of
the velocities of the wave packets by expanding the dis-
persion relation (11) around p = p to first order (see

Appendix B),

v =
∂E(n)(p)

∂p

∣∣∣
p=p

= −J φ2(0)

φ2n(0)
sin(p) . (24)

The prefactor can be expanded for large anisotropy,

φ2(0)

φ2n(0)
' (2∆)−n+1 , (25)

implying that wave packets constructed from higher
strings have a lower velocity in real space.

In the remainder of this section we will analyze the sta-
bility of n-string wave packets, along with the stability of
another form of a localized multi-magnon, a consecutive-
site spin block. The two constructions are closely related
to each other for large ∆. Subsequently, scattering pro-
cesses of n-string wave packets are visualised by comput-
ing the time evolution of the local magnetization. Fur-
thermore, we describe a method for direct observation of
the phase accumulated by the wave function of a finite
spin chain during a scattering process.

A. Stability of n-string wave packets

The center of the wave packet x(t) and its width ∆x(t)
are respectively given by the expectation value and the
variance of the position operator

x̂ =

N∑
j=1

j

(
1

2
− Szj

)
. (26)

In the continuum limit, the sum over all possible n-string
momenta p = p(n) can be approximated by an integral.
For the width of the Gaussian wave packet in real space
we obtain

∆x(t = 0) :=

√
〈Ψ(0)| [x̂− x(0)]

2 |Ψ(0)〉 ≈ α

2
. (27)

String solutions, being associated with bound states
of magnons with exponentially decaying wave functions,
will add exponential terms to the shape of the n-string
wave packets in real space. By inserting the complex
momenta of the individual constituents of the string so-
lutions to the Bethe wave function, it can be shown
that for example a 2-string state with momentum π/2
contains exponentials in the Bethe wave function read-
ing e−(x2−x1)/ξ, with an effective binding length ξ =
2/ ln(2∆2). This average distance between the con-
stituent particles in the string states provides a lower
bound to how localized the wave packets constructed out
of such string states can be.

For α < ξ(∆), the wave packet will start to lose its
Gaussian shape in real space in favour of a simple ex-
ponential decay around the wave packet center. This is-
sue can be circumvented by choosing large enough Gaus-
sian widths, but will require much higher system sizes.
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The effective binding length becomes smaller at higher
anisotropy, making the problem of the extra exponen-
tially decaying shape to the Gaussian wave packet con-
struction relevant only at |∆| . 1.

Induced by the nonlinear dispersion relation of the
magnons, the width of a wave packet in real space will
furthermore increase in the course of time (see Eq. (A2)),

∆x(t) =

√
α2

4
+
δ2
nt

2

α2
, (28)

obtained by expanding the dispersion relation (Eq. (11))
to second order around the average momentum, yield-

ing δn = ∂2E(n)(p)
∂p2 |p=p. The broadening of n-string wave

packets in real space is therefore described by the initial
width α and

δ2
n = J2

(
φ2(0)

φ2n(0)

)2

cos2(p) . (29)

To first order, all strings of arbitrary length are stable
at momenta p = ±π/2, but possess a non-trivial de-
pendence on the anisotropy for other momenta. More-
over, the broadening of 1-string wave packets is not in-
fluenced by the anisotropy. The anisotropy dependent
factor can again be approximated in the large anisotropy
limit given by Eq. (25), showing that the stability of the
wave packets increases with increasing anisotropy and
string length.

In Fig. 1 the magnetization profile of a diffusing 2-
string wave packet with zero group velocity computed
from algebraic Bethe ansatz is shown. We used as average
momentum p = π since the energy dispersion relation
has its minimum there. Furthermore, fitted parameters
on the time-dependent wave packet width are compared
to the theoretical values of δ2

n for 2- and 3-strings.
The diverging behaviour at low anisotropy of both δ2

n

and the effective binding length of strings constrain the
applicability of scattering theory results for the planar
regime |∆| < 1.

B. Stability of spin blocks

A similar or even more drastic dispersing behaviour
can be observed for blocks of n adjacent sites. Fig. 2
shows the time evolution of a block of 20 upturned spins
in a ferromagnetic chain of downturned spins for different
anisotropy parameters ∆. The results shown in Figs. 2
and 6 were obtained using the time evolving block deci-
mation (TEBD) algorithm.16,19,48

In the axial regime ∆ > 1, the initial state mostly
projects onto many-magnon bound states, namely n-
strings with n ≤ 20, which for such anisotropy values are
tightly bound and thus have a large overlap with the ini-
tial spin block. A quantitative analysis of the overlap be-
tween the initial spin block and large strings is provided
by Refs. 49 and 50 for a comparable situation involving

tJ

j

δ
2

∆

0

40

80

20 40 60 80
0.2

0.3

0.4

0.5

〈S
z j
(t

)〉

∆ = 0.9 Two-string
Three-string

10−6

10−4

0.01

1

0 2 4 6 8 10

FIG. 1. Left: Decaying 2-string wave packet with zero group
velocity (bound state of two magnons with Gaussian momen-
tum distribution centered with α = 4 around p = π, where
the energy dispersion has its minimum), in a chain of N = 100
sites, calculated from algebraic Bethe ansatz matrix elements.
Right: prefactor δ2 of the t2 dependence of the wave packet
width. Theoretical curve, Eq. (29) with p = π and J = 1, as
a function of ∆. The data points are retrieved by fitting δ2

from the decaying wave packets from the Bethe ansatz time
evolutions.

a prepared domain wall state containing M consecutive
down-spins on a polarized background. The overlaps be-
tween the M -spin block state and a few string configura-
tions are considered, where the normalization saturation
becomes entirely dominated by the M -string states with
increasing anisotropy.

Since the spin blocks mostly contain large strings
for large anisotropy, they display slow dispersion
(see Eq. (11)), meaning that the initial spin block re-
mains more or less intact in time over long time scales.
However, as the isotropic point ∆ = 1 is approached,
the nature of the overlaps drastically changes. Eigen-
states with combinations of smaller strings start carry-
ing a larger fraction of the total overlap with the ini-
tial state. Under time evolution, one thus sees spacetime
propagation lines corresponding to shorter strings, which
disperse more rapidly. By the time one has entered the
planar regime, 0 < ∆ < 1, the initial spin block decom-
poses into all available string lengths including the most
rapidly-dispersing 1-string states, leading to a rapid dis-
persion of the magnetization throughout the ‘light cone’
defined by the maximal group velocity of the 1-strings.

A comparison of Figs 1 and 2 (both at p = π) shows
that spin blocks decay faster than n-string wave packets
of the previous subsection, which has a twofold explana-
tion. First, an n-string wave packet is a superposition of
n-string Bethe states which have no decay channel into
strings of smaller lengths. In contrast, in the superpo-
sition of the initial spin block state all smaller string
lengths are allowed and actually present. Second, in
the momentum distribution of the spin block, momenta
belonging to high velocities are not Gaussian-like sup-
pressed. Therefore, states with high velocities (p ≈ π/2)
are more dominant in the spin block state than in the
n-string wave packet both with p = π. However, the
spin-block state and the n-string wave packets become
similar at higher ∆, such that the analytic predictions



7

FIG. 2. Decay of a block of 20 upturned spins in a chain of
N = 1000 sites for different values of anisotropy, computed us-
ing TEBD. Around the isotropic point ∆ = 1, the behaviour
of the spin block changes drastically, as the spin block be-
comes less tightly bound and will start to decay into smaller
strings.

on scattering displacement becomes applicable to both
cases.

C. Scattering n-string wave packets

The pre-scattering bound magnon initial states |Ψ(0)〉
are composed of two Gaussian wave packets, where the
construction relies on allocation of individual momenta
to distinct strings within a single Bethe state according to
Eq. (14). We localize two Gaussian wave packets labeled
by j = 1, 2 with average momenta pj around two well-
separated lattice sites

|Ψ(0)〉 = N0

∑
p1,p2

cp1,p2
|λ(n)(p1), λ(m)(p2)〉 , (30)

where

cp1,p2 = e−i(p1x1+p2x2)−α2

4 (p1−p1)2−α2

4 (p2−p2)2

. (31)

For simplicity, we label Bethe states here only by the
two string centers λ(n) and λ(m) instead of the whole

set {λ} ≡ {λj}n+m
j=1 = {λ(n)

1,a}na=1 ∪ {λ
(m)
2,b }mb=1. The two

centers are respectively uniquely determined by the mo-
menta p1 and p2 via Eq. (12). Due to the energy disper-
sion (11) of the bound magnons, the relative velocity of
the wave packets is maximized at p1 = −p2 = −π/2.

Fig. 3 shows time-dependent magnetization profiles for
scattering of 1- and 2-string wave packets respectively,
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j j
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0

50

100

150

200
25 50 75

0.2
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)〉

FIG. 3. Time evolution of 〈Szj (t)〉 illustrating scattering n-
string wave packets, computed using algebraic Bethe ansatz,
for N = 100, ∆ = 2, p1 = −p2 = −π/2 and α = 4. Left:
scattering of 1-string wave packets (single magnons). Right:
scattering of 2-string wave packets (bound magnons).

computed from the algebraic Bethe ansatz matrix ele-
ments described in Sec. II C. A close examination of the
profiles shows distinctive features akin to soliton scatter-
ing, namely that the wave packets emerge out of a col-
lision intact, but spatially displaced. This displacement
will be quantified in the next section.

D. Direct phase shift measurements

The real-time scattering trajectories in this work are
analyzed using the idea that the scattering between two
localized wave packets is well-described by the scatter-
ing phase shift corresponding to the average momenta
of the two wave packets. This idea can also be veri-
fied through direct observation of the phase accumulated
by the wave function of a finite chain during a scatter-
ing process. We therefore compare the evolution of an
interacting chain (∆ 6= 0) with the evolution of a non-
interacting chain (∆ = 0), each containing two localized
1-string wave packets. The overlap between the two wave
functions,

Γ∆(t) = 〈Ψ[0](t)|Ψ[∆](t)〉 , (32)

gives the phase acquired due to the interaction between
the magnons. The value of ∆ is here indicated in the
superscript.

In Appendix C we show how the phase of the quantity
Γ∆ after a single scattering event, calculated using nu-
merical exact diagonalization, matches the Bethe ansatz
phase shift of Eq. (6), even for wave packets that are spa-
tially well localized. Such overlaps between time-evolved
wave functions are currently not directly accessible by
Bethe ansatz.

IV. SCATTERING DISPLACEMENT

The initial state constructed from Bethe states is pre-
pared as two wave packets of bound states of an arbitrary
finite number of magnons with initial average positions
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and momenta (xj , pj). The m- and n-string wave pack-
ets are constructed separately at large separation, such
that their motion before and after scattering can be con-
sidered to be free. In particular, the motion of the center
of each wave packet is (see Appendix A)

xj(t) =

{
xj + vjt before scattering,

xj + vjt− χj(p1, p2) after scattering,
(33)

given in units of lattice distance, where the velocity vj
was defined in Eq. (24). Note that, in the case of single
magnon scattering for example, a negative average mo-
mentum pj yields a positive velocity vj and vice versa
(see Eq. (5) with J positive).

The displacement χj(p1, p2) can be obtained by ex-
panding the scattering phase shift around the average
momenta, see also Eq. (B11), and is therefore given as

χj(p1, p2) = ∂pjχ(p1, p2)
∣∣
p1=p1,p2=p2

, (34)

where we introduced the notation with subscript j to
refer to the momentum derivative χj = ∂χ

∂pj
of the scat-

tering phase shift χ.
Eq. (33) assumes that all scatterings occur without

particle production, which is the case for the integrable
model we are dealing with.

A. Displacements from Bethe ansatz

An analytic expression for the displacement as a func-
tion of anisotropy and incoming momenta can be ex-
tracted from the Bethe ansatz scattering phase. The
phase shift of two bound magnons of arbitrary length
is obtained from the scattering kernel Θnm of the Bethe-
Gaudin-Takahashi Eqs (8), which consists of a sum over
the functions θs, s = |n−m|, . . . , n+m, defined in Tab. I,
see also Eq. (9).

For the scattering of an n-string wave packet labeled
by 1 with an m-string wave packet labeled by 2, the dis-
placements on the trajectories of the n- and m-string
wave packets (j = 1, 2 respectively) are given as a func-
tion of momenta as

χ
(n,m)
j (p1, p2) =

∂Θnm

(
λ(n)(p1)− λ(m)(p2)

)
∂pj

∣∣∣∣∣p1=p1
p2=p2

.

(35)
The n- and m-strings with centers λ(n) and λ(m) carry
momenta p1 and p2, respectively. The wave packets are
located such that x1 � x2 and v1 > v2.

We first discuss the planar case |∆| = | cos(ζ)| < 1.
By inverting Eq. (12), we express the string center of an
n-string in terms of its momentum as

λ(n)(p) = atanh

(
tan

nζ

2
tan

π − p
2

)
. (36)

Due to Eq. (9), expression (35) for the displacement con-
sists of a sum of the momentum derivative of the func-
tions θs of which the individual terms are computed as

∂θs(λ
(n)(p1)− λ(m)(p2))

∂p1
=
∂θs(λ

(n) − λ(m))

∂λ(n)

∂λ(n)(p1)

∂p1

=
sin(sζ)

cos(sζ)− ch(2λ
(n)
1 − 2λ

(m)
2 )

sin(nζ)

cos(nζ)− cos(p1)
. (37)

For the scattering phase shift of two 1-string wave
packets with p1 = −p2 = −π/2, the displacement is given
as a function of anisotropy as

χ
(1,1)
1

(
−π2 ,

π
2

)
=

sin(2ζ) tan(ζ)

cos(2ζ)− ch(4 atanh(tan ζ
2 ))

=
1

1 + ∆2
− 1 . (38)

The latter result could have been also obtained directly
by taking the derivative of Eq. (6).

Similarly, the scattering displacement of two 2-string
wave packets becomes

χ
(2,2)
1

(
−π2 ,

π
2

)
=

2 sin(2ζ) tan(2ζ)

cos(2ζ)− ch(4 atanh(tan ζ))

+
sin(4ζ) tan(2ζ)

cos(4ζ)− ch(4 atanh(tan ζ))

=
16∆6 − 4∆4 + 5

(4∆4 + 1)(1 + (2∆2 − 1)2)
− 3 . (39)

The validity of the latter equation only extends to the
region where ∆ > 1/

√
2, as 2-strings with momentum

p = ±π/2 do not exist for lower anisotropy16,44, which
can be shown from the anisotropy dependent maximum
string quantum numbers.

For the regime ∆ > 1, Eqs (38) and (39) hold as well,
since the θs(λ) for both regimes are just rotated in the
complex rapidity plane with respect to each other. Start-
ing from θs(λ) for ∆ > 1 with ζ = acosh(∆) therefore
yields identical results for the scattering displacements.

The displacements for the scattering of an 1-string
wave packet at a 3-string wave packet is given by

χ
(1,3)
1

(
−π2 ,

π
2

)
= − (4∆2 − 1)2(4∆2 − 3)

2(4∆2 + 1)(4∆4 − 3∆2 + 1)
, (40)

χ
(1,3)
2

(
−π2 ,

π
2

)
=

(4∆2 − 1)3

2(4∆2 + 1)(4∆4 − 3∆2 + 1)
, (41)

χ
(1,3)
1

(
−π2 , π

)
= − 2∆(2∆ + 1)3(2∆2 + ∆− 1)

(2∆2 + 2∆ + 1)(8∆4 + 8∆3 + 1)
,

(42)

χ
(1,3)
2

(
−π2 , π

)
=

2∆2(2∆ + 1)4

(2∆2 + 2∆ + 1)(8∆4 + 8∆3 + 1)
.

(43)
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B. Comparison of scattering theory and time
evolution

The displacement in the trajectories induced by scat-
tering effects is easily deduced from the time evolution
data of Fig. 3. For symmetric cases with identical parti-
cles, the average position of the magnetization of a single
wave packet can be computed on one half of the system
as a function of time,

〈j〉left
av (t) =

∑N/2
j=1 j

(
1
2 − 〈S

z
j (t)〉

)∑N/2
j=1

(
1
2 − 〈S

z
j (t)〉

)
=

2

M

N/2∑
j=1

j

(
1

2
− 〈Szj (t)〉

)
. (44)

The result for the scattering between two 2-string wave
packets is plotted in Fig. 4. Note that the plotted av-
erage location of the wave packet in Fig. 4 by means of
Eq. (44) does not resemble the actual trajectories when
the wave packets spatially overlap with each other, as
the trajectories are not properly defined during the scat-
tering event. A linear fit with the same slope is applied
to the propagation of the average position of the wave
packet before and after scattering. The horizontal differ-
ence between the two straight lines is the displacement of
the wave packet due to scattering effects. The procedure
of measuring the displacements by means of Eq. (44) was
performed for multiple values of anisotropy ∆. Moreover,
these results can be compared with Eq. (35), where the
displacements for the situations of Fig. 4 are specifically
given by Eqs (38) and (39) as function of anisotropy. The
results are plotted in Fig. 4 as well, showing agreement
between both approaches. The explicit time evolution
relying on algebraic Bethe ansatz matrix elements pro-
vides confirmation of the analytical predictions for the
displacements.

Besides symmetric scattering situations, colliding dis-
tinct n-string and m-string wave packets can be con-
structed and traced in the time-evolved magnetization
profile. Fig. 5 shows the scattering between an 1- and a
3-string wave packet. Two situations are distinguished,
the former with both wave packets at maximal veloc-
ity at p1 = −p2 = −π/2, where the larger string moves
much slower because of its effective mass, see Eq. (25).
The latter situation consists of an incoming 1-string wave
packet scattering on a stationary wall of a 3-string wave
packet at p2 = π. The corresponding analytic scattering
displacements, Eqs (40)-(43), are shown adjacent to the
time evolution plots in Fig. 5. The scattering displace-
ments are measured from the time evolution by impos-
ing a Gaussian fit on the wave packet after scattering and
comparing the average location to the time evolution of a
single wave packet without scattering. In the lower right
panel (p2 = π), the fitting procedure of the average lo-
cation of the 3-string wave packet becomes less accurate
for decreasing ∆.
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FIG. 4. Left: Measurement of the scattering displacement
from Bethe ansatz time evolution of bound magnons at ∆ =
2, by computing the average location of the wave packets
according to Eq. (44) and taking the horizontal difference of
the linear fits. Right: Scattering displacement (in units of
lattice distance) for single and bound magnons as function of
anisotropy. Measured data from algebraic Bethe ansatz time
evolution of magnetization (see left panel) compared to the
derivative of scattering phase shifts, see Eqs (38)-(39).

In the planar regime where |∆| < 1, we encounter sub-
stantial limitations (as described in Sec. III B) on both
the construction of the scattering wave packets, as well as
on the comparison to results of scattering theory. Due to
the effective binding length of the individual constituents
of the string states, the tails of the magnetization profile
of the wave packets start overlapping with each other sig-
nificantly at low ∆, invalidating important assumptions
of scattering theory which include asymptotic separation
of the wave packets before and after scattering. Compari-
son of the measured displacements to scattering theory is
therefore not meaningful for higher strings in the planar
regime. Only going to much larger system sizes would
resolve the aforementioned issue.

C. Displacements from TEBD calculations for
scattering of spin blocks compared to the Ising limit

The scattering displacement turns out to have a par-
ticularly simple form at large anisotropy. In particular, it
was found in Ref. 19 that when a propagating n-particle
cluster is incident on a larger block, the block is displaced
by 2n sites. This can be explained from the Bethe ansatz
results presented in previous subsections, by taking the
Ising limit ∆ → ∞ of Eq. (35) for the displacement of
an n-string wave packet scattering at an m-string wave
packet.

First, we obtain for all s

lim
∆→∞

∂θs
(
λ(n)(p1)− λ(m)(p2)

)
∂p1

= −1 , (45)

which is independent of n, m, p1, and p2. Using Eq. (9)
for the phase shift between an n-string and an m-string
eventually yields

lim
∆→∞

χ
(n,m)
1 (p1, p2) = −2 min(n,m) + δnm . (46)
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FIG. 5. Left: time evolution from algebraic Bethe ansatz
of 〈Szj (t)〉 for a single magnon wave packet with momentum
p1 = −π/2 scattering against a 3-string wave packet with
momentum p2 = π/2 (top) and p2 = π (bottom) respectively,
with N = 100, ∆ = 2 and α = 4. Right: Corresponding scat-
tering displacements (in units of lattice distance) as function
of anisotropy, see Eqs (40)-(43), where the points are mea-
sured displacements obtained from the time evolution data.

Thus, the scattering displacement for unequal wave pack-
ets (n 6= m) is equal to twice the number of particles in
the smaller wave packet.

The leading order term of the Ising limit in Eq. (46)
can be given for the case where cos(p1 − p2) 6= 0 as

χ
(n,m)
1,LO = −δnm

(
(2− δn1)

cos(p1 − p2)

2
− δn1

2

)
∆−2

− (1− δnm)
cos(p1 − p2)

2|n−m|−1
∆−|n−m|

− (2 min(n,m)− δnm)
cos(p1)

2n−1
∆−n , (47)

yielding an error estimate for Eq. (46). A systematic
expansion for all momenta becomes cumbersome due to
the summation in Eq. (9) and is left out of consideration.
If cos(p1 − p2) = 0, the leading contribution is given by
the third line of (47). If further cos(p1) = 0, the leading
order terms will be formed by higher powers like ∆−2n

for n = m or ∆−2|n−m| for m 6= n.
Fig. 6 shows TEBD results of the scattering of a two-

spin block excitation with a block consisting of 10 adja-
cent spins at ∆ = 5.0. The initial 2-spin block was cre-
ated by upturning two neighboring spins at lattice sites
2 and 3. The first site (with open boundary conditions)
is energetically inaccessible for large ∆; hence the 2-spin
block travels to the right and is incident on the 10-spin
block. The displacement is clearly by 4 sites, as predicted
by Eq. (46). A similar displacement by 2 sites in the case
of a single incident particle was highlighted in Ref. 19.

FIG. 6. TEBD time evolution of scattering of a two-spin block
state with a block of 10 upturned spins at ∆ = 5. The block of
10 upturned spins is shifted by four lattice sites upon impact
of the 2-string like bound magnon. This is in correspondence
with Eq. (46), yielding a shift of four caused by a 2-string on
a larger string.

Although the 2-spin block and the 10-spin block are
not explicity prepared as wave packets in this case, at
large ∆, string states are tightly bound, and therefore
these blocks may be understood intuitively to be close to
2-string wave packets and 10-string wave packets. The
Ising limit Eq. (46) thus provides a satisfactory explana-
tion to the shift observed in these numerical experiments.

Even more, it was observed19 that the behaviour of
the scattering displacement of a large spin-block state
close to the isotropic point at ∆ = 1.1 still resembles the
scattering behaviour of the large ∆ limit by shifting the
spin-block by two lattice sites upon scattering. In order
to explain this from Bethe ansatz, we take the limit of
Eq. (35) for the scattering of a large string (m� 1) with
center λ(m)(p2) and an 1-string with center λ(1)(p1) at
all values of ∆ > 1,

∂θs
(
λ(1)(p1)− λ(m)(p2)

)
∂p2

∣∣∣
m�1

=(
1 +O(e−sζ)

) (
1 +O(e−mζ)

)
, (48)

where s can only take on the values s = m − 1 or s =
m + 1, due to Eq. (9). The latter equation finally gives
for the displacement of the large m-string at ∆ > 1,

χ
(1,m)
2 (p1, p2)

∣∣
m�1

= 2 +O(e−(m−1)ζ) , (49)

implying that already at ∆ = 1.1 (ζ = 0.4436), the scat-
tering displacement of a large spin block should still be
close to two sites, as is in agreement with the aforemen-
tioned observation.

V. CONCLUSIONS

In this work, we have studied the quantum analogue of
soliton-like scattering phenomena in the anisotropic spin-
1/2 Heisenberg chain, by utilising the algebraic Bethe
ansatz. We considered quantum scattering of localized
excitations, created from linear combinations of Bethe
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states with Gaussian-distributed momenta, constructing
wave packets of n bound magnons. This construction
allows to study scattering phenomena of wave packets
containing an arbitrary number of bound magnons.

Exact methods based on the algebraic Bethe ansatz
provide a framework to evaluate the time-dependent ex-
pectation value of the local magnetization profile, which
allows for a spatial tracking of the localized excitations.
This explicit unitary time evolution of the initial state
relies on the availability of determinant expressions for
matrix elements of local spin operators.

The algebraic Bethe ansatz time evolution of colliding
wave packets of bound magnons displays a spatial dis-
placement in the trajectories of the wave packets under
scattering, consistent with scattering theory results. For
different values of anisotropy, fits on the displacements of
the time evolved trajectories are in agreement with an-
alytical results on the displacement from the derivative
of the Bethe ansatz scattering phase shifts, for several
combinations of string lengths.

The scattering phase shift can also be measured di-
rectly as well for the scattering between two localized
single-magnon wave packets, again matching phase shift
expressions provided by Bethe ansatz. Using TEBD,
scattering displacements from spin-block states have
been studied, showing similar scattering features and val-
idating the analytic predictions of the Ising limit for the
scattering displacement.

The experimental realizability of real time tracking
of localized excitations in the Heisenberg spin chain17,22

might provide an opportunity to study dynamical scat-
tering phenomena of (bound) magnons. A possible man-
ifestation of such phenomena might be provided by the
soliton-like scattering effects analysed in this work.

The results on the scattering displacements can be ex-
tended to other Bethe ansatz solvable models. Finally,
the time evolution method relying on matrix element ex-
pressions from algebraic Bethe ansatz can be used to con-
struct other initial states in spin chains as well and to
study their respective relaxation phenomena.
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Appendix A: General results from scattering theory

In this Appendix, we review some general results
from quantum scattering theory, emphasizing the direct
connection between physically observable quantities and
(derivatives of) the scattering phase shift.51,52

We consider an initial state with two well-separated
quasiparticles (e.g. magnons and magnon bound states)
with almost well-defined positions (x1, x2) and momenta
(p1, p2). In the asymptotic region, i.e. when the distance
between the two wave packets is much larger than the ra-
dius of the interaction, the time evolution is free. Hence,
the centers of the wave packets xj(t) = 〈x̂j(t)〉 translate
rigidly. The scattering between the two particles however
introduces a displacement proportional to the derivative
of the scattering phase χ(p1, p2). More precisely, in the
asymptotic regions, the motion of the center of each wave
packet is

xj(t) =

{
xj + vjt before scattering,

xj + vjt− χj(p1, p2) after scattering,
(A1)

where χj = ∂χ
∂pj

is the displacement, while the group

velocity vj is given by the derivative of the dispersion

relation, i.e. vj =
∂Ej
∂pj
|pj=pj .

Similarly, the scattering has an effect on the width of
each wave packet ∆x2

j (t) = 〈[x̂j(t)− xj(t)]2〉. For Gaus-
sian wave packets we have to first order

∆x2
1(t) =


α2

1

4 + t2δ2

α2
1

before scatt.,
α2

1

4 +
χ2

12

α2
2

+ (χ11−tδ1)2

α2
1

after scatt.,

(A2)

where αj =
√

∆x2
j (t)

∣∣∣
t=0

, while δj =
∂E2

j

∂p2
j

∣∣
pj=pj

and

χij = ∂2χ
∂pi∂pj

∣∣
pi=pi, pj=pj

. An analogous formula holds

for ∆x2
2(t) as well.

Scattering also builds up correlations between the
(initially uncorrelated) Gaussian wave packets, as can
be seen from the time evolution of the correlator
∆x1∆x2(t) = 〈[x̂1(t)− x1(t)] [x̂2(t)− x2(t)]〉,

∆x1∆x2(t) =

{
0 before scatt.,

χ12

[
χ11−tδ1
a2

1
+ χ22−tδ2

a2
2

]
after scatt.

(A3)

All the aforementioned quantities carry information
about the derivatives of the scattering phase and can be
in principle measured in a scattering experiment. These
results hold for any one dimensional theory with stable
particles. For the XXZ spin chain the stability of magnon
bound states above the binding energy threshold is pre-
served by the integrability of the theory.



12

Appendix B: Scattering of two particles in one
dimension

In this Appendix, we review some general results for
the scattering of two particles (magnons, magnon bound
states, etc.),51,52 and derive Eqs (A1)-(A3). For simplic-
ity, we consider the scattering of two distinguishable par-
ticles in a continuum integrable model. The same results
can be obtained for identical particles.

So, let us consider two particles with asymptotic mo-
menta p1 and p2 and different dispersion relations Ei(pi),
i = 1, 2 in an infinite volume (zero density). The state-
ment of the coordinate Bethe ansatz, see Eq. (2), is
that in the asymptotic region where the two particles
are very far apart the eigenfunctions of the system are
plane waves,

ϕp1,p2
(x1, x2) =

{
ei(p1x1+p2 x2) x1 � x2 ,

S(p1, p2) ei(p1x1+p2x2) x1 � x2 ,
(B1)

where S(p1, p2) = −eiχ(p1,p2) is the scattering matrix and
χ(p1, p2) the scattering phase shift. At zero density, the
energy is simply

E(p1, p2) = E1(p1) + E2(p2) . (B2)

Let us briefly comment on the structure of the wave func-
tion (B1). First of all, as we discussed in the main text
for the XXZ model, bound states are characterized by
complex conjugate rapidities, which leads to exponen-
tially decaying terms in the Bethe wave function (2) with
respect to the relative coordinate. This is a feature of
bound states that are characterized by a center of mass
coordinate. In what follows, we do not denote these ex-
ponentially decaying terms and label the bound states
only with the position of the center of mass. For elemen-
tary particles, Eq. (B1) is a consequence of the conser-
vation of energy and momentum in one dimension, and
as such it is valid for any model with a sufficiently short-
range potential. Instead, if one of these particles is not
elementary but it is a bound state, then for a general
theory the previous simple form of the wave function is
not true anymore. The bound state can decay and scat-
tering be diffractive. However, there exist models (such
as the XXZ spin chain) for which the scattering is always
non diffractive. Hence, the coordinate Bethe ansatz de-
scribes a complete set of asymptotic eigenfunctions, as
thoughtfully discussed in Sutherland’s book.44 For such
theories, bound states cannot decay, but are protected
by integrability.

Let us consider the scattering problem. At time t = 0
the two particles are far apart and have (almost) well-
defined positions xj and momenta pj , j = 1, 2. Without
loss of generality, we may assume that x1 � x2 and v1 >
v2, where vj is the group velocity,

vj =
∂Ej
∂pj

∣∣∣∣
pj=pj

. (B3)

When they are far apart, the two wave packets move
with velocities vj . If v1 < v2, the evolution is always
free, while for v1 > v2 at some time the two particles
become close and the interaction plays a role.

The time evolution of a two-body wave function is
given by

ψ(x1, x2, t) =

∫
dp1

2π

dp2

2π

[
C(p1, p2)

e−it(E(p1)+E(p2))ϕp1,p2
(x1, x2)

]
, (B4)

where

C(p1, p2) =

∫
dx1 dx2 ϕ

∗
p1,p2

(x1, x2)ψ(x1, x2) , (B5)

ϕp1,p2
is a complete set of eigenfunctions, and ψ(x1, x2)

is the initial wave function. Now, we consider an initial
state which is factorized,

ψ(x1, x2) = ψ1(x1)ψ2(x2) (B6)

where

ψj(xj) =

∫
dpj
2π

ψ̂j(pj) e
ipjxj , j = 1, 2 . (B7)

Since we are interested in computing also the spreading
in time of the wave packet, we assume that the functions
ψj(xj) are Gaussian wave packets with minimal indeter-
mination,

ψj(xj) =

(
2

π α2
j

) 1
4

eipjxj e
− (xj−xj)

2

α2
j , (B8)

where ∆x2
j =

∫
dxj (xj − xj)2 |ψj(xj)|2 = α2

j/4. This
assumption may be dropped if we are interested only in
the displacement, Eq. (A1).

Up to now, everything is exact. However, we can make
the following approximations:

• Since the initial state ψ(x1, x2) is sharply peaked
around x1 and x2 with x1 � x2, the only relevant
contributions to (B5) come from the regions around
these two points. We can then use the asymp-
totic formula (B1) for ϕp1,p2

(x1, x2) with x1 � x2.
Inserting Eq. (B1) into (B5), and using definition
(B7) yields

C(p1, p2) ≈ ψ̂1(p1)ψ̂2(p2) . (B9)

• Since the functions ψ̂j(pj), j = 1, 2, in (B9) are
peaked around pj ≈ pj , we can expand the disper-
sion relations Ej(pj) around these momenta in the
integrand of Eq. (B4). Moreover, for x1 � x2 we
may substitute the asymptotic expression (B1) for
ϕp1,p2

into (B4) and similarly expand the scatter-
ing phase shift χ(p1, p2). Up to second order these
expansions read

Ej(pj) = Ej(pj) + vj(pj − pj) +
δj
2

(pj − pj)2

(B10)
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FIG. 7. Left: Time evolution of 〈Szj (t)〉, performed using
numerical exact diagonalization for L = 26 sites. Two single-
magnon wave packets are prepared with initial width α =
5/
√

2 ≈ 3.5355 and opposite momenta ±k; here k = 0.5π
and ∆ = 2.5. Right: The Bethe ansatz phase shift (lines)
are compared with the phase of Γ (symbols, shifted by π),
obtained from the wave function of the time-evolved L = 26
chain. The comparison is shown for three k values.

with δj =
∂2Ej
∂p2
j

∣∣
pj=pj

, and

χ(p1, p2) = χ(p1, p2) + χi(p1, p2)(pi − pi)

+
1

2
(pi − pi)χij(p1, p2)(pj − pj) (B11)

with χi = ∂χ
∂pi

and χij = ∂2χ
∂pi∂pj

, and we sum over

repeated indices. These expansions up to the sec-
ond order are physically meaningful only if we can
ignore the distortion of the wave packet, and so
they are no more valid for times long enough.

Taking advantage of these approximations, we are now
in the position to derive Eqs (A1)-(A3). Before scatter-
ing, the two wave packets propagate freely. Since they
start around x1 and x2 with x1 � x2, they are cen-
tered around xj(t) with x1(t) � x2(t) for small times.
Thus, we can use the asymptotic formula of ϕp1,p2

(x1, x2)
valid for x1 � x2 in Eq. (B1), and hence perform the
Gaussian integrations thus obtaining the pre-scattering
results, Eqs (A1)-(A3). Similarly, long after the scatter-
ing, we have x1(t) � x2(t). Thus, taking advantage of
the proper asymptotic formula (B1) for the eigenfunc-
tions and the expansion (B11) of the scattering phase
shift we also obtain the post-scattering formulas (A1)-
(A3).

Appendix C: Obtaining the phase shift from the
phase of the wave function of the full chain

A prominent theme of this work is that real-time
scattering between two localized wave packets is well-
described by the phase shift corresponding to the average
momenta of the two wave packets. In this Appendix we
connect real-time scattering data for two single-magnon
(1-string) wave packets in a finite chain directly to the

definition of the scattering phase shift, namely, that the
scattering phase shift is the phase picked up by the sys-
tem wave function during the scattering process. To
demonstrate the robustness of this idea, we show results
from a stringent situation of rather small wave packets
(width of a few sites) in a rather small chain (≈ 25 sites),
far from the usual idealized limit of infinitely extended
excitations.

Here the Hamiltonian of the XXZ model is used in the
following form:

H∆ = J

L−1∑
j=1

[
Sxj S

x
j+1+Syj S

y
j+1 + ∆(Szj− 1

2 )(Szj+1− 1
2 )

]
.

(C1)
The extra terms compared to Eq. (1) are convenient for
considering the phase of the time-evolving wave func-
tion in the two-magnon sector. When evolving with the
Hamiltonian (1), there is a constant accumulation of ∆-
dependent phase in the time evolution even when the
magnons are spatially separated; this is avoided with the
above form. With this form, the interaction affects the
phase of the chain wave function only when the magnons
meet each other.

In the initial state, each magnon wave packet is pre-
pared as a Gaussian, localized approximately around L/4
and 3L/4 respectively, with opposite momenta ±k. The
initial state is thus

|ψ(0)〉 = N0

∑
x

S−x exp

[
− (x− x0)2

α2

]
e−ikx

×
∑
y

S−y exp

[
− (y − y0)2

α2

]
e+iky |↑↑ . . . ↑〉

(C2)

with x0 and y0 near the center of the left half and right
half of the chain. Here x and y are used as discrete
site indices, and N0 is a normalization constant. The
definition of the width α is chosen to be consistent with
α in the main text. To avoid excessive dispersion, we
use k near π/2. This preparation ensures that the two
wave packets will move toward each other, collide, and
continue on after the scattering, as shown in the left panel
of Fig. 7. The effect of the interaction J∆ should be
felt only when the particles are crossing each other. This
interaction gives a phase shift to the wave function during
the scattering.

The wave function at time t is

|ψ[∆](t)〉 = e−iH∆t|ψ[∆](0)〉 = e−iH∆t|ψ(0)〉 (C3)

(same initial state for every ∆). We consider the overlap

Γ∆(T ) = 〈ψ[0](T )|ψ[∆](T )〉 (C4)

at some appropriately chosen ‘final’ time t = T . Evolu-
tion with the ∆ = 0 (non-interacting) Hamiltonian gives
a ‘reference’ state. We are interested in the phase accu-
mulated in the evolution with the ∆ 6= 0 Hamiltonian in
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comparison with the reference state, namely the phase of
Γ∆. The final time T is chosen such that the particles
have completed their scattering, but have not reached
the boundaries of the chain. So, there are no edge ef-
fects. For example, in the process shown in Fig. 7(left),
it would be reasonable to compare overlaps at T∼13J−1.

The phase of Γ∆ should approximate the scattering
phase shift,

lim
L→∞,α→∞

arg (Γ∆) = χ− π . (C5)

The shift π is in accordance with the convention used in
this paper, e.g., in Eq. (6). For k = k2 = −k1, the Bethe

ansatz phase shift is obtained from Eq. (6) to be

χ = π − 2 atan

(
∆ sin(k)

1−∆ cos(k)

)
. (C6)

Fig. 7(right) compares the phases obtained from the
time-evolving wave function of a finite chain contain-
ing two relatively narrow wave packets, with the Bethe
ansatz phase shift expressions which are strictly valid for
delocalized excitations. Even with wave packets as nar-
row as α ≈ 3.5, the Bethe ansatz expressions match ex-
tremely well the phase acquired in real-time evolution.
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