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We provide a rigorous solution to the problem of constructing a structural evolution for a network
of coupled identical dynamical units that switches between specified topologies without constraints
on their structure. The evolution of the structure is determined indirectly, from a carefully built
transformation of the eigenvector matrices of the coupling Laplacians, which are guaranteed to
change smoothly in time. In turn, this allows to extend the Master Stability Function formalism,
which can be used to assess the stability of a synchronized state. This approach is independent from
the particular topologies that the network visits, and is not restructed to commuting structures.
Also, it does not depend on the time scale of the evolution, which can be faster than, comparable
to, or even secular with respect to the the dynamics of the units.

PACS numbers: 89.75.Hc, 05.45.Xt, 87.18.Sn, 89.75.-k

Networked structures, in which sets of distributed dy-
namical systems interact over a wiring of links with non-
trivial topology, are a key tool to investigate the emer-
gence of collective organization in many systems of inter-
est [1–3]. The analysis of synchronized states is particu-
larly relevant, as they play a crucial role in many natural
systems, such as brain networks [4], or ecological com-
munities [5]. In the past decade, the emergence of syn-
chronized states has been extensively reported and stud-
ied [6], with a notable emphasis on the effect of complex
static topologies on synchronization properties [7–17].
Nonetheless, static network models do not adequately
describe the processes that arise because of mutations in
some biological systems, such as infectious bacterial pop-
ulation, which are known to have adaptive mutation rates
that can become very highly elevated [18, 19]. These
require, instead, the use of time-dependent topologies
whose evolution occurs over time scales that are commen-
surate with those of the node dynamics [20, 21]. A power-
ful tool to assess the stability of the synchronous solution
in networks of N identical nodes with diffusive coupling,
is the so-called Master Stability Function (MSF) [7]. If
the evolution of such networks is along structures whose
Laplacians commute at all times, synchronization can be
significantly enhanced. In fact, studies have shown that
it can be achieved even when the connection structure
at each time would not allow a synchronized state, in
the static case [22, 23]. The far more realistic situation
of networks whose coupling matrices do not necessarily
commute has also generated significant interest. This has
led to the development of several results about synchro-
nizability in systems with specific properties, including
the study of the synchronous state in the case of moving
neighbourhood networks [24], the rigorous derivation of
sufficient conditions for synchronization in fast switching

networks [25], and the analysis of the system dynamics
in the so-called blinking limit [26, 27]. In this Article,
we propose a framework that allows to assess the stabil-
ity of a synchronous solution by means of an MSF when
the evolution of the topology is fully general and uncon-
strained, and without assuming any hypothesis on the
time scales of the topological evolution.

To this purpose, let us consider a network of N iden-
tical systems, evolving according to

ẋi = f (xi)− σ
N
∑

j=1

Lij (t)h (xj) . (1)

Here dot denotes time derivative, xi is an m-dimensional
row vector describing the state of the ith node, σ is
the interaction strength, and f and h are two vecto-
rial functions describing the local dynamics of the nodes
and the output from a node to another, respectively.
Also, L (t) = S (t) − W (t) is the Laplacian of the net-
work describing the time evolution of the connections.
In this expression, W is the weighted adjacency matrix,
and S is the diagonal strength matrix of the network:

Sij = δi,j
∑N

k=1 Wik. To fix the ideas, assume that the
network has an initial structure, with Laplacian L0, that
is constant from time t = 0 to t = t0. Also assume
that, at time t1 > t0, the network is found in a con-
figuration with Laplacian L1 6= L0. Note that in the
following we consider Laplacians with Hermitian struc-
ture. Also, as L (t) is a Laplacian matrix, the sum of
each row vanishes, its diagonal elements are strictly posi-
tive and its off-diagonal elements are non-positive. Now,
let xs be the state vector indicating the synchronized
solution, and define the mN -dimensional column vector

δX = (δx1, . . . , δxN )
T
, representing the global deviation

from the synchronized state. From Eq. 1, to linear order
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in δX, one has

δẊ = (1⊗ Jf (xs)− σL (t)⊗ Jh (xs)) δX , (2)

where 1 is the N -dimensional identity matrix, ⊗ denotes
the direct product, and J is the Jacobian operator. The
vector δX can be written at each time as a sum of di-
rect products of the eigenvectors vi of L (t) and a time-
dependent set of N m-dimensional row-vectors ηi (t):

δX =
N
∑

i=1

vi (t)⊗ ηi (t) .

Multiplying v
T
j from the left to both sides of Eq. 2, one

gets

d

dt
ηj = Kjηj −

N
∑

i=1

v
T
j (t) ·

d

dt
vi (t)ηi , (3)

where, for the sake of brevity, we defined Kj ≡
(Jf (xs)− νjJh(xs)) and νj ≡ σλj (t), in which λj (t) is
the jth eigenvalue of L (t). To assess the stability of this
dynamical system, one can compute the Master Stability
Function, which represents the dependence on ν of the
largest Lyapunov exponent Λmax associated to the equa-
tions 3. Then, the stability criterion for a given ν is that
the time averages of Λmax in the direction of all eigen-
vectors are negative. This allows to study systems with
highly non-trivial behaviour. As an example, one can
consider an evolving system where each “frozen” connec-
tion topology has at least one direction in which Λmax is
positive, but the synchronization manifold is transversely
stable [22]. Similarly, one can detect instabilities intro-
duced by the evolving nature of the Laplacian in systems
where the synchronization manifold in each frozen config-
uration is attracting [28]. This is particularly useful, as it
is well-known that non-linear perturbations in a system
can destroy the stability of the synchronized state [29].

Note that using the MSF is not the only possible
method to assess the stability of a synchronized state.
For instance, one could construct the Lyapunov function
for the synchronization manifold. This would guarantee
the stability since it is a necessary and sufficient condi-
tion, while in the general case the MSF is only a necessary
one. However, while it is certainly possible to build the
Lyapunov function in some specific cases [30], a general
construction method is not known. Also, it should be
noted that in the absence of fixed points or other attract-
ing sets far from the synchronization manifold, the MSF
provides a sufficient stability condition as well, thereby
becoming a widely used approach [31].

To use the MSF method, one must first note that the
boxed term in Eqs. 3 explicitly depends on the time vari-
ation of the eigenvectors of L. If the Laplacians L0 and
L1 commute, one can choose to study the problem in the
common basis of eigenvectors. In this reference frame
the eigenvectors do not change. Thus, the boxed term

vanishes and Eqs. 3 reduce to a set of variational equa-
tions. However, if we allow the network to switch to a
different structure without imposing the extra require-
ment of commutativity, the eigenvector variation must
be taken into account. Note that this forbids instan-
taneous jumps between the two structures, as a sudden
change in the eigenvectors would cause their derivatives
to be not defined. Therefore, the goal is constructing a
smooth evolution process from t = t0 to t = t1 to allow
the system to evolve between between the two topolo-
gies while keeping the eigenvector elements differentiable.
To achieve this, we first consider the matrices A and B,
consisting of the eigenvectors of L0 and L1, respectively,
and describe how to transform one into the other via a
proper rotation around a fixed axis. Then, we use this
framework to find a transformation between L0 and L1.
The rotation evolving A into B takes the form of a one-
parameter transformation group Gs such that G0A = A
and G1A = B. Note that, as we will use this mapping
to build the Laplacian, we must also impose the extra
requirement that the vector a, corresponding to the null
eigenvalue, is kept constant by Gs for all 0 6 s 6 1.

In general, the transformation O from A to B is a
rotation, which can be found by solving the linear system
of N2 equations in N2 variables OA = B. It is convenient
to work in the basis defined by the matrix A. In this
basis, A ≡ 1. Without loss of generality, assume that
the conserved vector a is the first vector of A. Then, the
transformation matrix O has the form

O =













1 0 0 · · · 0
0 O22 O23 · · · O2N

0 O32 O33 · · · O3N

...
...

...
. . .

...
0 ON2 ON3 · · · ONN













. (4)

As O ∈ O (N), it is a proper rotation if its determinant
is 1, or a composition of rotations and reflections if its
determinant is −1. The determinant of O equals the
determinant of the minor O′ obtained by removing the
first row and the first column from O. Thus, we only need
to find a solution to the problem in N − 1 dimensions.
We will henceforth use primes when referring to objects
in N − 1 dimensions.

From the considerations above, it is G′
0 = 1

′ G′
1 = O′,

and, of course, O′ ∈ O (N − 1). Thus, the problem
is equivalent to determining the possibility of finding a
path between the identity and O′. If |O′| = 1, then
O′ ∈ SO (N − 1). But SO (N − 1) is the connected iden-
tity component of the orthogonal group, and additionally,
since it is a manifold, it is path-connected [32]. Thus, for
every orthogonal (N − 1)×(N − 1) matrix in it, there is a
continuum of orthogonal matrices of the same dimension
connecting it to the identity. Each point along this path
corresponds to an orthogonal matrix that can be embed-
ded in SO (N) by adding a 1 in the top left corner. Since
every such embedded matrix keeps the synchronization
manifold vector invariant, a parametrization of the path
provides a direct solution to the original problem.
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If, instead, |O′| = −1, then O′ ∈ O (N − 1) \
SO (N − 1). While O (N − 1)\SO (N − 1) is also a con-
nected topological space, the identity does not belong
to it [32]. Thus, no path connects the identity to O′.
However, in our case, the labeling of the vectors is irrel-
evant. In other words, provided that the vector a is kept
constant, one can arbitrarily swap two vectors in the ba-
sis given by the matrix A, obtaining a new matrix C. Of
course, this imposes a swap of the corresponding columns
in the transformation matrix O as well. But swapping
two rows in a matrix changes the sign of its determinant.
This means that the new matrix O′ ∈ SO (N − 1), and a
path connecting it to the identity can be found. The only
consequence of the swap is a change of the order of the
eigenvalues. As we are considering unlabelled networks,
the problem can always be solved. To build an explicit
solution, we factor the transformation O′ into rotations
and reflections in mutually orthogonal subspaces.

Before describing the actual procedure, we recall a use-
ful, twofold result. First, any orthogonal operator X in
a normed space over R induces a 1- or 2-dimensional in-
variant subspace. To find one such subspace, first define
the unitary operator U acting on a+ ib as U (a+ ib) =
Xa + iXb, where a and b belong to R

N . Then, find a
non-vanishing eigenvector x = xR + ixI of U . The span
of xR and xI defines the invariant subspace: applying X
to any linear combination of xR and xI produces a vector
that is still a linear combination of xR and xI. Also, if
the corresponding eigenvalue is complex, xR and xI are
orthogonal.

Using this, we can describe the following algorithmic
procedure to build a transformation O of A into B:

1. Express the problem in the basis A, in which O has
the form of Eq. 4.

2. Consider the operator O′ obtained from O by re-
moving the first row and the first column, and let
d be its dimension.

3. Build the operator U that acts on a + ib as
U (a+ ib) = O′

a + iO′
b, where a and b belong

to R
d.

4. Find an eigenvector x = xR + ixI of U , with eigen-
value λ.

5. Normalize xR and xI.

6. If λ ∈ R then

(a) Pick the non-vanishing component between
xR and xI. If both are non-zero, choose one
randomly. Without loss of generality, assume
this is xR.

(b) Create d−1 other orthonormal vectors, all or-
thogonal to xR, and arrange all these vectors
so that xR is the last of them. This set of
vectors is an orthonormal basis C of Rd.

(c) Change the basis of the d-dimensional sub-
problem to C. In this basis, all the elements
in the last row and in the last column of O′

will be 0, except the last one, which will be
±1.

(d) If d > 1, consider a new operator O′ obtained
from the old O′ by removing the last row and
the last column. Let d be its dimension, and
restart from step 3. Otherwise stop.

If instead λ /∈ R, then

(a) Create d − 2 other orthonormal vectors, all
orthogonal to xR and xI, and arrange all these
vectors so that xR and xI are the first two of
them. This set of vectors is an orthonormal
basis C of Rd.

(b) Change the basis of the d-dimensional sub-
problem to C. In this basis, all the elements in
the first two rows and in the first two columns
of O′ will be 0, except the first two.

(c) If d > 2, consider a new operator O′ obtained
from the old O′ by removing the first two rows
and the first two columns. Let d be its dimen-
sion, and restart from step 3. Otherwise stop.

At each iteration of the steps above, 1 or 2 dimen-
sions are eliminated from the problem. All the subse-
quent changes of base leave the already determined ele-
ments of O unchanged, because they act on orthogonal
subspaces to those already eliminated. The procedure re-
constructs O piece by piece with a block-diagonal form,
in which the blocks correspond to the action of the or-
thogonal operator on the invariant subspaces. If the sub-
space is 1-dimensional, then the block is a single ±1 ele-
ment. If instead the subspace is 2-dimensional, then its
block is either a rotation or a reflection, i.e., it is either
(

cosα − sinα
sinα cosα

)

or

(

±1 0
0 ∓1

)

. Thus, the 1-dimensional

invariant subspaces induced by the operator correspond
either to leaving one direction untouched, or to reflect-
ing the system about that direction. Conversely, the 2-
dimensional invariant subspaces correspond to rotations
in mutually orthogonal planes.

Once this form of O is found, permute the basis vectors
from the second onwards so they correspond, in order,
first to all the actual rotation blocks, then to the −1 ele-
ments, and finally to the +1 elements. The new form of
the transformation matrix, ON , is simply ON = TOT−1,
where T is the required change-of-basis matrix.

Note that the determinant of ON could still be −1.
However, as seen before, in this case, one can relabel
two vectors of the original basis, inducing a swap of the
corresponding columns of ON . To perform this, first note
that, if |ON | = −1, then the number of −1 elements in
ON must be odd. Then, there are three possible cases.

If O′
N has at least one +1 element, swap the basis

vectors corresponding to the first −1 and the first +1
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elements in O′. Then, the first block after the “sin–

cos” blocks is

(

1 0
0 −1

)

. Swapping the labels of the the

two corresponding vectors, makes the block in O′ become
(

0 1
−1 0

)

=

(

cos
(

−π
2

)

− sin
(

−π
2

)

sin
(

−π
2

)

cos
(

−π
2

)

)

.

If instead O′
N has no +1 elements and only one −1 el-

ement, the basis vectors to swap are those corresponding
to the first two vectors in the last 3× 3 block of O′, that
becomes

M =





− sinϑk cosϑk 0
cosϑk sinϑk 0

0 0 −1



 .

Now, perform one more basis change, leaving all the basis
vectors unchanged, but mapping the last three into the
eigenvectors of M , which are

V =

(

0 (− secϑk−tanϑk) sin
(

π

4
−

ϑ
k

2

)

(secϑk−tanϑk) sin
(

ϑ
k

2
+π

4

)

0 1 1
1 0 0

)

.

The new form of M becomes

M ′ = V TMV =





−1 0 0
0 −1 0
0 0 1



 .

Finally, if O′
N has no +1 elements and at least three

−1 elements, swap the basis vectors corresponding to the

first two after the “sin–cos” blocks. Their 3 × 3 block is
now

M =





0 −1 0
−1 0 0
0 0 −1



 .

Next, do a change of basis as described in the previous
case. The eigenvector matrix of M is

V =





0 1√
2

− 1√
2

0 1√
2

1√
2

1 0 0



 ,

so, after the basis change, the new form of M is once
more

M ′ = V TMV =





−1 0 0
0 −1 0
0 0 1



 .

Regardless of the original value of |ON |, take now ev-
ery two subsequent −1 elements, if there are any, and

change their diagonal block into

(

cosπ − sinπ
sinπ cosπ

)

. This

yields the final general form for the transformation ma-
trix, which can be turned into the required transforma-
tion group via the introduction of a parameter s ∈ [0, 1]:

Gs =

































1 0 0 ··· 0 0 0 0 0 0 0 ··· 0 0
0 cos(ϑ1s) − sin(ϑ1s) ··· 0 0 0 0 0 0 0 ··· 0 0
0 sin(ϑ1s) cos(ϑ1s) ··· 0 0 0 0 0 0 0 ··· 0 0

...
...

...
... 0 0 0 0 0 0 0 ··· 0 0

0 0 0 0 cos(ϑks) − sin(ϑks) 0 0 0 0 0 ··· 0 0
0 0 0 0 sin(ϑks) cos(ϑks) 0 0 0 0 0 ··· 0 0

0 0 0 0 0 0 cos(−π

2
s) − sin(−π

2
s) 0 0 0 ··· 0 0

0 0 0 0 0 0 sin(−π

2
s) cos(−π

2
s) 0 0 0 ··· 0 0

0 0 0 0 0 0 0 0 cos(πs) − sin(πs) 0 ··· 0 0
0 0 0 0 0 0 0 0 sin(πs) cos(πs) 0 ··· 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 0 0 0 ··· 1 0
0 0 0 0 0 0 0 0 0 0 0 ··· 0 1

































. (5)

Notice that when s = 0, Gs = G0 = 1, and when
s = 1, Gs = G1 = O. Also, for every value of s, the
determinant of Gs is always 1, and the first vector is
kept constant, which means that Gs describes a proper
rotation around the axis defined by the eigenvector cor-
responding to the synchronization manifold. Moreover,
the first vector has always been left untouched by all the
possible basis transformations. Thus, as s is varied con-
tinuously between 0 and 1, the application of Gs sends
A into B continuously, as needed.

Finally, to describe how to obtain a transformation

between the two Laplacians L0 and L1, let R be the
change-of-basis matrix resulting from the composition of
all basis changes done in step 6 of the method, the per-
mutation of the vectors to obtain O, and the possible
final adjustment in case of negative determinant. Also,
to simplify the formalism, in the following we let B0 ≡ A
and B1 ≡ B. Since B0 and B1 are matrices of eigenvec-
tors, it is BT

0 L0B0 = D0 and BT
1 L1B1 = D1, where D0

and D1 are the diagonal matrices of the eigenvalues of
L0 and L1. Also, as Gs is a group of orthogonal transfor-
mations, it is GsRB0 = RBs ∀0 6 s 6 1, where Bs is a
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basis of RN . Multiplying this by RT on the left yields

RTGsRB0 = RTRBs = Bs , (6)

where we used RT = R−1.
Now, note that all the basis changes performed are

between orthonormal bases. Thus R is an isometry, as
is any Gs, since they are all proper rigid rotations, and
any Bs defines an orthonormal basis of RN . Then, the
Laplacian for the parameter s is given by the matrix Ls

that solves the equation

BT
s LsBs = Ds , (7)

where Ds is a diagonal matrix whose elements are the
eigenvalues of Ls, and Bs consists of the eigenvectors
of Ls. However, the equation above has two unknowns,
namely Ls and Ds.

This provides a certain freedom in describing the evo-
lution of the eigenvalues of the Laplacians. For instance,
one can choose the simplest evolution, which is given by
a set of linear transformations. Then, for all 1 6 i 6 N ,

λ
(s)
i = (1− s)λ

(0)
i + sλ

(1)
i , (8)

where λ
(0)
i and λ

(1)
i are the ith eigenvalues of L0 and L1,

respectively. Note that this allows for the possibility of
degeneracy of some eigenvalues for some particular value
of the parameter s∗. However, the transformation we
described leaves all the eigenvectors distinct and sepa-
rate throughout the evolution. Thus, the Laplacian can
always be diagonalized for any value of s. Multiplying
Eq. 7 on the right by BT

s yields BT
s LsBsB

T
s = DsB

T
s ,

hence BT
s Ls = DsB

T
s . Multiplying this on the left by

Bs, it is BsB
T
s Ls = BsDsB

T
s , hence Ls = BsDsB

T
s .

Substituting Eq. 6 into this last equation gives

Ls = RTGsRB0Ds

(

RTGsRB0

)T

= RTGsRB0DsB
T
0 R

TGT
s R .

(9)

In the equation above, B0 is known, R and Gs have
been explicitly built, and Ds is completely determined

by Eq. 8. Thus, Eq. 9 defines the Laplacian for any given
value of the parameter s. The evolution of the eigenvalues
is imposed by Eq. 8, and the evolution of the eigenvectors
is given by Eq. 6.

It is important to stress that the solution given by the
linear evolution of the eigenvalues is not unique. There
could be, in principle, many allowed transformations of
L0 into L1, each characterized by a specific eigenvalue
evolution. However, the difference between solutions is
only in the Kj term in Eq. 3, since the boxed term does
not depend on the eigenvalues. Thus, the specific choice
of eigenvalue evolution could change the phenomenology
of the system studied, but would not modify how the
switching between general structures affects the stability.
This is akin to the results presented in Ref. [22], which
can be considered a special case of the present treatment
that occurs when all the Laplacians commute.

With this result, one can finally describe the system
evolution through unconstrained topologies. From t = 0
to t = t0, the boxed term in Eq. 3 vanishes. To compute
its value during the switch, first note that the ith eigen-
vector at time t is the ith column of Bs, with s ≡ t−t0

t1−t0
.

But then, using Eq. 6, the kth element of the ith eigen-
vector is

(vi)k = (Bs)ki =
(

RTGsRB0

)

ki
=

=

N
∑

r=1

N
∑

q=1

N
∑

x=1

Rrk (Gs)rq Rqx (B0)xi .

Notice that in the equation above the only term that
depends on time is (Gs)rq, since R is just a change-of-
basis matrix, and B0 is the matrix of eigenvectors of L0

at time t = 0. Therefore, it is

d

dt
(vi)k =

N
∑

r=1

N
∑

q=1

N
∑

x=1

RrkRqx (B0)xi
1

t1 − t0

d

ds
(Gs)rq .

This allows a fully explicit expression for the boxed
term in Eqs. 3 that accounts for the time variation of the
eigenvectors:

−

N
∑

i=1

v
T
j (t)·

d

dt
vi (t)ηi = −

1

t1 − t0

N
∑

i=1

N
∑

k=1

[

N
∑

r=1

N
∑

q=1

N
∑

x=1

Rrk (Gs)rq Rqx (B0)xj

] [

N
∑

r=1

N
∑

q=1

N
∑

x=1

RrkRqx (B0)xi
d

ds
(Gs)rq

]

ηi.

(10)

However, for all practical purposes, one does not need
to use the expression above directly. In fact, considering
that most elements of Gs are 0, it is quite simple to com-
pute and store Bs in a symbolic form. Similarly, most of
the d

ds (Gs)rq terms are 0. In fact, they vanish if r = 1, if

q = 1, if |r − q| > 1, if r > 2b+1, and if q > 2b+1, where

b is the number of “sin–cos” blocks in Gs. Also, for all
other cases d

ds (Gs)rq is proportional to a sine or a cosine.

Then, define Ġs to be the matrix whose (rq) element is
1

t1−t0

d
ds (Gs)rq; also, define Ḃs ≡ RTĠsRB0. Again, Ḃs

can be easily computed and stored in a symbolic form.
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Figure 1: Network topologies. Each node is a chaotic Rössler oscillator. The edges represent weighted diffusive connections.
The weights are indicated by labels in the vicinity of the corresponding edges. The network switches between the configurations
in the two panels, remaining in each for some time.

Then, Eq. 10 becomes

−

N
∑

i=1

v
T
j (t) ·

d

dt
vi (t)ηi = −

N
∑

i=1

N
∑

k=1

(Bs)kj

(

Ḃs

)

ki
ηi .

(11)
Once more, the equation above can be computed symbol-
ically, and evaluated at any particular t, when needed.
Note that, despite the seemingly complex expressions,
Eqs. 10 and 11 are straightforward to deal with. This is
due to the fact that Gs and Ġs are always represented
as tridiagonal matrices, and, as mentioned above, many
of the non-trivial elements of Ġs vanish as well. Thus,
numerical applications of this approach can benefit not
only from a restricted amount of needed memory, but
also from sparse matrix methods that result in a small
computational complexity.

The treatment we built is valid for every positive, fi-
nite switching time t∗ ≡ t1 − t0 between configurations.
As explained above, this time cannot vanish, lest the
derivatives in Eq. 3 be not defined. Nonetheless, one
can wonder about the behaviour of a system when the
switching time becomes very small, although non-zero.
To this purpose, first note that this time only appears
as a multiplicative factor in Eq. 10. Thus, a very small
t∗ would have the effect of making the boxed term in
Eq. 3 much larger than the purely variational term. In
this regime, the effects on the the stability of the syn-
chronous solution are due mostly, if not exclusively, to
the switching process. In other words, if the expression
in Eq. 10 yields positive results, the synchronized state
is made more stable in the corresponding direction, and
vice versa for negative results, regardless of the contribu-
tion coming from the variational term. Note that this is

in agreement with the finding that blinking networks can
greatly facilitate synchronization [11, 25]. Similarly, one
can consider the opposite limit, namely that of a secular
switching for which t∗ becomes very large, while still re-
maining finite. In this case, for large enough switching
time, the boxed term in Eq. 3 becomes negligible com-
pared to the rest, and the stability is determined entirely
by the variational term. This case is very similar to that
of an evolution along commutative structures [22]. In
fact, in this regime of quasi-static evolution, the structure
at any given time t is, to first order, equal to the structure
at time t+dt. Thus, it is [Lt, Lt+dt] = ε. Therefore, one
can treat this case as the commutative one with the addi-
tion of a small perturbation. Note that this perturbation
does not change the stability of the synchronized state:
for a positive variational term, instability is maintained,
and for a negative one, the synchrony remains stable.
The only uncertainty happens for the critical condition
corresponding to a vanishing variational term, for which
the perturbation can have either effect on stability.

To illustrate the use of our method, we consider the ex-
ample of a weighted network of N = 10 chaotic Rössler
oscillators, switching back and forth between two topolo-
gies (Fig. 1). Letting the state vector x ≡ (x, y, z), each
of the oscillators obeys the local dynamics

f (x) = (−y − z, x+ 0.165y, 0.2 + z (x− 10)) , (12)

with the output function

h (x) = (0, y, 0) . (13)

The switching times and the time periods for which the
network remains in each of the two configurations (per-
manence times) are all set to 0.1. We perform two sim-
ulations, one with interaction strength σ = 1 and one
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Figure 2: (Color online) Estimating the largest Lyapunov
exponent. The average of the logarithm of the norm of η

(Eq. 14) for the example system converges to approximately
−0.3 when σ = 1 (black solid line), and to approximately
0.022 when σ = 0.1 (red dashed line), indicating that the
synchronized state is stable in the first case, and unstable in
the second. Note the logarithmic time scale.

with σ = 0.1, to illustrate two different cases and the
sensitivity of our method. To estimate the largest Lya-
punov exponent associated to the system of Eq. 3, we
compute the time-average of the logarithm of the norm
of the vector

η ≡ (η2,η3, . . . ,ηN ) (14)

at each integration step. The value to which < log |η| >
converges is Λmax. The results, in Fig. 2, show that
for the σ = 1 case the convergence value is approxi-
mately −0.3, indicating that the synchronized state is
stable. Conversely, when σ = 0.1, the estimated Lya-
punov exponent is just positive, with a value of approxi-
mately 0.022, corresponding to an unstable synchronized
state. To verify this numerical result, we simulated the
actual network evolution for the two cases according to
Eq. 1, and with f and h given by Eqs. 12 and 13 above.
Figure 3 shows the time evolution of the global synchro-
nization error

χ =
1

3 (N − 1)

N
∑

i=2

(|xi − x1|+ |yi − y1|+ |zi − z1|) .

(15)
For the σ = 1 case, after a certain transient, the synchro-
nization error decays to 0. When the interaction strength
is lowered to σ = 0.1, instead, χ eventually starts grow-
ing and oscillates wildly, always taking non-zero values.
These results indicate that the system is indeed able to
synchronize in the first case, while it never does in the
second, in agreement with the numerical calculations of
Λmax. Thus, the simulations not only confirm the valid-
ity of our treatment, but provide an example for which
the stability of the synchronized state can be changed

Figure 3: (Color online) Stability of the synchronized state.
The time evolution of the global synchronization error χ

(Eq. 15) shows that the system is able to reach synchroniza-
tion when σ = 1 (solid black line), while it never synchronizes
when σ = 0.1 (dashed red line), confirming the numerical re-
sults. Note the logarithmic time scale and the break in the
vertical axis.

by the tuning the parameters controlling the topological
evolution.

In summary, we demonstrated how to explicitly solve
the problem of constructing an appropriate time evolu-
tion of a system of networked dynamical units switching
between different topologies. Our method builds the evo-
lution from a mapping of the eigenvectors of the graph
Laplacians of the individual structures, and it ensures
that the elements of the eigenvectors are differentiable at
each intermediate time. This enables the use of the Mas-
ter Stability Function for network topologies that evolve
in time in a fully general and unconstrained way. While
the connection pathway is not unique, different solutions
only affect the variational part of the linearized system.
It has to be remarked that our treatment is valid regard-

less of the time scales involved. There is no restriction
on the permanence times of the network in each configu-
ration, and the only constraint on the switching times is
that they do not vanish. In addition, our method intro-
duces a numerical advantage, in that one only needs to
integrate a set of linear equations coupled with a sin-
gle non-linear one, rather than having to deal with a
system entirely composed of non-linear differential equa-
tions. Also, this approach does not rely on particular
assumptions concerning the structures visited by the sys-
tems, and contains the regimes of blinking networks and
commutative evolution as its limiting cases. Thus, our
results have a natural application in the study of synchro-
nization events in systems for which the temporal scales
of the topology evolution are comparable with (or even
secular with respect to) those characterizing the evolu-
tion of the dynamics in each networked unit. This is a
common occurrence in many real-world systems, such as
neural networks, where synchronization can become pos-
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sible due to mutations [33], or financial market, where
global properties are affected by adaptive social dynam-
ics.
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