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1 Downstream Analysis

Supplementary Figure 1: Illustration of the core steps of our analysis method to measure
ribosome drop-off rates in Ribo-seq data. a) The ORFs are divided in bins of equal
length; b) For each bin, the total number of RPFs mapping on it is reported in the
RPF matrix; c) The elements in each line of the RPF matrix are divided by the average
amount of RNA-seq reads mapping in each bin of the corresponding ORF, thus obtaining
the NRPF matrix; d) The logarithm of the average value of each column of the NRPF
matrix, ln(Y ), is plotted against the bin number X.

1.1 Bootstrap approach

To obtain an accurate estimate of RBS and of its associated error without making any
assumptions on the distribution of the number of RPFs, we implemented a bootstrap
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approach:

(i) We counted the number of elements EX in each column of the NRPF matrix, i.e.
the number of elements contributing to each bin (equal to the number of ORFs
with at least X bins). As suggested by Figure 1 of the main text, the number EX

is not constant for all the columns, due to heterogeneous ORF length of the genes
in the study.

(ii) From each column X of the NRPF matrix, we sampled a combination of EX

elements randomly with replacement, thus obtaining a matrix (call it BootStrap -
BS - Matrix) that has the same dimensions of the NRPF matrix and contains the
sampled elements in each column;

(iii) We computed the average for each column of the BS matrix, obtaining the vector
Yi

(iv) Given that the exponential relationship:

Y = A e−RX (1)

holds also for Yi and X, we computed the rate Ri as the slope of the weighted
linear regression of ln(Yi) against X.

For each of the studied datasets (listed in Table 1 of the main text), we repeated
the sequence of steps described above 105 times, thus obtaining 105 values for Ri

(R1, . . . , R105) for each dataset. Each distribution of the obtained values for Ri seems
to follow a Gaussian distribution (Pearson’s χ2 test with P-value < 0.01); therefore,
we assumed that the average value of each Ri distribution is representative of RBS

for the corresponding dataset. Supplementary Figure 2 provides an example of an Ri

distribution.

1.2 Evaluation of the error

Here we review the technical details of how we estimate the errors for R. Due to the
heterogeneous distribution of E. coli ORF lengths, the number of elements contribution
to each bin is not constant through the bins; in particular, in both the NRPF and BS
matrices, EX becomes progressively small as X increases (see Figure 1 of the main text).
Thus, the variance associated to the average of the EX elements becomes progressively
large and the bin average becomes a bad estimator of the correspondent element of the
vector Y . On one hand, these arguments motivate us to compute the linear regression
of ln(Y ) vs. X by weighting each average by its associated variance (weighted linear
regression). On the other hand, from the same arguments, it turns out that the reliability
of our estimate of R depends both on the number of bins (i.e. the length of the Y vector)
we consider for the linear regression and on the bin size.

To select the optimal bin size and the optimal Y length needed to obtain the best
estimate of R and the associated error, we analyzed a set of simulated data for each of
the 17 databases we considered.

2



R (per bin of 100 nucleotides)

Fr
eq

ue
nc

y

-0.012 -0.011 -0.010 -0.009 -0.008 -0.007

0
10

0
20

0
30

0
40

0
50

0
60

0

Supplementary Figure 2: Sample of a Ri distribution obtained from 105 iterations of
the bootstrapping process. The superimposed curve represents the best fitting Gaussian
function. The data used for this plot come from the analysis of dataset 17 (see Table 1
of the main text).

In each case, we generated a simulated dataset by redistributing the reads of each
ORF according to an exponential distribution with parameter equal to a preselected
nominal value. This value was chosen equal to the rate R that, for each dataset, can be
obtained by applying the bootstrap approach described above. Thus, in the simulations
we performed, we preserved some of the features of the original datasets, namely the
total number of reads per ORF and the gene lengths.

For each one of the original datasets we considered different bin sizes ranging from 10
to 130 nucleotides and, for each bin size, we generated 1000 simulated sets of ribosome
positions. For each simulated data set, we estimated the value of R 47 times, taking
into account a different number of bins each time. The minimum number of bins was 2
(the minimum required for linear regression), and the maximum number of bins is 49.
In each case, we obtained the best estimate of R for a bin size of 100 nucleotides and a
length of the Y vector of 39.

This data, combined with the results of the bootstrap procedure, allowed us to
evaluate the systematic error associated to our estimate of R. From these simulations,
we conclude that the correct value of R can be obtained by adding an offset ∆ from the
estimate RBS provided by the bootstrap procedure. The standard deviation associated
to the value of R (SR) can be computed from the square root of the sum of the variance
associated to the bootstrap process (SBS) and the variance associated to the offset (S∆)
by the formula:

SR =
√
S2
BS + S2

∆ (2)
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The values of ∆ and S∆ we obtained for each dataset, are reported in Supplementary
Table 1.

As described in the text, the value of R is obtained from the RBS after a correction
by ∆, according to the equation:

R = RBS −∆ (3)

1.3 Comparison with other methods

Even though strikingly simple in principle, our binning strategy represents the Columbus’
egg that allowed us to detect the signal of ribosome drop-off in Ribo-seq data. The other
analytical approaches reported so far in the literature failed to reach this goal, essentially
because the proposed binning strategy was not sensitive enough. As outlined in the main
text, the usual way of evaluating ribosome drop-off in Ribo-seq data (for an example,
see [1]) is by looking for a difference between the number of reads that map to two
subsequent halves of each ORF. A significant difference between the two halves (fewer
reads in the second half) reveals that a certain number of ribosomes has not successfully
completed translation. The results of this analysis are typically illustrated through
scatterplots similar to the one reported in Supplementary Figure 3, where the number
of reads (expressed in terms of ribosome density, i.e. number of reads per nucleotide or
per codon) mapping in the first half is plotted against the number of reads mapping in
the second half. If there is no significant difference between the quantities reported in
the two axes, the plotted points will cluster around a straight line having the slope equal
to 1, as it happens in the case reported in Supplementary Figure 3. If fewer reads map
in the second half with respect to the first half, the point corresponding to that ORF
will plot below the line mentioned above.

While this method is mathematically sound, it has a major drawback – the sensitivity
of this approach depends critically on the ORF length. When the frequency of drop-
off events is not large enough with respect to length of the ORFs, the difference in
ribosome density between the two halves of the ORF are too small to be detected by eye
and cannot influence the correlation coefficient in a log-log scatterplot. Supplementary
Figure 4 provides an illustration of this phenomenon.

As a consequence, if the genome of interest prevalently contains short genes, the
method may not be sensitive enough to detect the drop-off in the shorter genes. Then,
the conclusion would necessarily be that, at the genome scale, the ribosome drop-off rate
is not measurable. It turns out that the sensitivity of this method is too low to measure
ribosome drop off on a global level if the drop off is occurring in a biologically viable
cell; we discuss the specifics of this argument later.

Conversely, our analysis is not affected by the length of the ORFs. We can illustrate
this scenario at the genome-wide level: Supplementary Figure 5 reports the results of
a simulation where we spatially redistributed the RPFs associated to each ORF in the
dataset of Ref. [1]. The RPFs are distributed according to an exponential distribution
with parameter r equal to 1.40 × 10−4, which corresponds to the drop-off rate per codon
that we estimated for this dataset. In this way, we generated an artificial dataset very
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Supplementary Figure 3: Typical scatterplot obtained from the drop-off analysis method
proposed in [1]. The ribosome density (number of RPFs per codon) of the first half of
each gene is plotted against the ribosome density of the second half. The clustering
of the plotted points along the dashed line indicates that the ribosome drop-off rate is
negligible. Data taken from [1].

similar to the one from [1] except we have tailored the distribution of the RPFs on the
ORFs to explicitly mimic the presence of ribosome drop-off.

We then used this dataset as a benchmark to test the capabilities of our method and
the one proposed in [1] to detect the drop-off. As shown in Supplementary Figure 5a,
the scatterplot reporting on the differences of the number of RPFs in the two halves
of each ORFs shows a clustering around the straight line with slope equal to 1, which
would deceptively suggest that no drop-off events occurred. The plot resulting from our
analysis (Supplementary Figure 5b) is correctly consistent with the presence of drop-off,
even when it occurs at a low rate. Interestingly, if we repeat the simulation described
above in the case of an hypothetical genome with genes whose length is markedly longer
than those in E. coli, the method proposed in [1] successfully detects the signals of drop
off.

Thus, it turns out that the sensitivity of the method proposed in [1] suffices only
when the average gene length goes beyond a biologically reasonable threshold. Indeed
it is important to notice that for a given drop-off rate, the translation process remains
reliable only if the gene lengths remain bounded within certain limits, roughly by 1/r.
If we assume a drop-off rate (or, analogously, a drop-off probability) which is constant
along the whole length of the various mRNAs, the distribution of the RPFs density will
decrease along the messengers according to an exponential distribution. In this case, the
probability PS that a ribosome will reach the stop codon located L codons away from
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Supplementary Figure 4: Simulation for illustrating how a relatively low drop-off rate
is not detected by the analysis method proposed in [1]. (a): histogram describing the
simulated decrease in the number of RPFs mapping on the ORFs. This decrease is
generated as an exponential decay with rate 4 × 10−4 per codon, corresponding to the
E. coli drop-off rate estimated in [2]. The drawing below the histogram depicts three
ORFs of different lengths: 1000 nucleotides (close to the average ORF length in E. E.
coli), 7077 nucleotides (the maximum gene length in E. coli) and 3500 nucleotides, a
length about 5 times longer than the maximum ORF length in E. coli. The numbers
above the three depicted ORFs report the number of RPFs mapping on the two halves
according to the distribution above. (b): Scatterplot obtained plotting the the number
of RPFs mapping on the two halves of the sample ORFs depicted in Figure (a); square:
ORF length = 1000; solid circle: ORF length = 7077; triangle ORF length = 35000;
empty circle: ORF length = 100000 (not depicted in (a) ). Note that a significant
deviation from the dashed line is obtained only when non-biologically possible ORFs
lengths are considered .

the start codon (technically the survival probability) is:

PS = (1− r)L ∼ exp(−rL) , (4)

where r is the drop-off rate per codon, with r � 1. Thus, the probability for a ribosome
to successfully complete the translation process sharply decreases with the gene length.
If we set r at the value of 4 · 10−4 per codon, as estimated in [2], this probability falls un-
der 50% for genes longer than 1700 codons, meaning that, on average one ribosome over
two will drop-off the mRNA. In other words, the magnitude of the drop-off rate repre-
sents an important constraint for the possible genes lengths in living organisms, because
exceptionally long genes would never be reliably translated. This scenario is consistent
with the experimental results presented in [3], where the translation efficiency was ob-
served to markedly decrease when progressively longer β-galactosidase gene constructs
were assayed to detect ribosome drop-off.
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Supplementary Figure 5: Results of a simulation in which the distribution of the RPFs
on the E. coli ORFs was artificially set with a drop-off rate of 1.40 × 10−4 per codon. (a)
using the method proposed in [1] the drop-off is not detected (the plotted points cluster
along the dashed line); (b) our method allows the measurement of the drop-off rate
corresponding to the slope of the dashed line, obtained through the approach described
in the text. The ORFs length is measured in number of bins of 100 nucleotides. The
plot includes only the first 39 bins that we considered in our analysis. To facilitate the
comparison with the similar graphs present in the paper we shifted the plot so that the
y-intercepts of all plots will match.

2 Statistical tests

2.1 Computing the Confidence Interval

The 99% confidence interval (CI) was computed through the equation:

CI = r ± Z0.05 · Sr (5)

where Sr is the standard deviation associated to the estimation of r and Z0.05 is the
Z-score corresponding to 1−0.999

2 . The values we obtained for the confidence intervals
provide us with two important clues about the accuracy of our estimate and the features
of r. First, the relatively small value of Z0.05 × Sr, often referred to as the margin of
error, indicates that our approach yields accurate estimate of r. Moreover, the definition
of CI tells us that the “true value” of r (i.e. the average of the population of all possible
r) lies between the boundaries of the CI with a probability of 99%; there is only a 1%
probability that the values outside of the CI are a reliable estimate of r. The 4th column
of Table 2 of the main text shows that in all the cases but one (dataset 16) the values
close to 0 are not in the range of the CI. This suggests that, in these cases, the drop-off
rate r is significantly different from 0.
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2.2 Z-test for the mean

To check whether the values we obtained for the drop-off rate per codon (r) were sig-
nificantly different from 0, we performed a series of Z-tests for the mean. In particular,
we evaluated the probability that r belongs to the normal distribution H0 having the
average µ0 = 0 and the same standard deviation Sr associated to r. In other words,
we verified whether we can reject the null hypothesis (H0 : r = 0), which would indicate
that the alternative hypothesis (H1 : r 6= 0) is more likely to be true. To do this, we
computed the Z-score for each r hypothesizing that it belongs to H0 (Zr|H0

) through the
equation:

Zr|H0
=

r − 0

Sr
(6)

and we compared it to Z0.01 which is the Z-score corresponding to the significance level
0.01 (probability of type 1 error or false positive rate). To check whether the significance
level we chosen was meaningful for our purposes, we evaluated the type 2 error (false
negative rate) and the power of the test, considering the alternative hypothesis in which
r belongs to a normal distribution with average µa = r and Sr. The detailed results of
these tests are reported in Table 2.

2.3 The ANOVA test

To detect any possible significant difference between the values of r we measured, we
considered all the values of r significantly different from 0 and, through the ANOVA test,
we checked the null hypothesis that all of them are approximately equal, against the al-
ternative hypothesis that there are at least two values of r that are significantly different.
For the ANOVA test, we considered 13 groups (one for each estimated r significantly
different from 0) each composed by 105 elements, i.e. , the number of elements composing
each ri distribution. Thus, the degrees of freedom “between” turned out to be 12 while
the degrees of freedom “within” resulted to be 12999987. We set the significance level
to 0.001 and the test indicates that we should reject the null hypothesis.

3 Drop-off rate and growth medium

According to [4], the kinetic properties of ribosomes are influenced by the growth
medium. In particular, cells cultured in the same media should be characterized by
ribosomes with very similar features. To check whether this holds for ribosome drop-off
rate, we used a two-tailed Z-test to compare the values of r we obtained from samples
coming from different series (i.e. from different laboratories) referring to experiments
in which the bacteria were grown in the same medium in non-stressed conditions (con-
trol cultures). For the Z tests, we choose a significance level of 0.005. Table 3 reports
the results of the comparisons between samples referring to the rich medium (MOPS)
culturing conditions.

By comparing columns 2, 3 and 4, in two of three cases the Z-score falls into the
rejection area (i.e. the Z-score is out of the boundaries delimited by the Bonferroni-
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corrected significance levels). Hence, in spite of the fact that the cell cultures are grown
in the same medium, the basal drop-off rate turns out to be different sometimes, implying
that the experimental variability or some differences in the experimental protocols may
have affected the value of the ribosome drop-off rate, at least in some cases.

In table 4 we report the results of the comparison between samples referring to
bacteria grown in the minimal medium.

In this case the Z-score is consistent with the hypothesis of significantly equal drop-off
rates.

Summing up, the outcomes of our tests do not provide us a clear response about
possible correlations between the ribosome drop-off rate and the growth medium. Nev-
ertheless, given the variability we observed, our analysis reveals an important informa-
tion: even though cells are cultured on the same medium, the data coming from different
laboratories might unpredictably be significantly different in terms of ribosome drop-off
rates, possibly due to differences in the experimental protocols.

4 Complete plots

In this Section we report all the plots referring to the databases we analyzed. For the
sake of readability, the plots reported in the main text are cut at the 39th bin and
shifted vertically by a value corresponding to the intercept of the fitting line. These
modifications are not present in the plots reported hereafter.

4.1 Datasets 9, 11 and 13 : Ethanol-induced stress

4.2 Datasets 5, 6, 7, 8: Amino acids starvation

4.3 Datasets 15 and 16: a novel σE -induced sRNA

4.4 Datasets 1, 2, 3 and 4: Heat and Osmotic Stress.
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Supplementary Figure 6: Plot of the vector Y vs. the number of bins (X). The slopes
of the dashed lines correspond to the drop-off rate r reported in Table 1 of the main
text. a): Dataset 9 - Control (T0). b): Dataset 11 - T1, after 10’ of ethanol stress. c):
Dataset 13 - T2, after 70’ of ethanol stress.
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Supplementary Table 1: Parameters RBS , SBS , ∆ and S∆ used for the evaluation of the
error in the estimation of the drop-off rate. Column 1: Dataset ID. Column 2: the value
RBS estimated through the bootstrap approach. Column 3: the standard deviation SBS

associated to RBS . Columns 4 and 5: results of the simulations performed to evaluate
the error ∆ and the associated standard deviation S∆. Column 4: Offset ∆. Column
5: Standard deviation S∆. Column 6: the drop-off rate R per bin of 100 nucleotides.
Columns 7: the standard deviation associated to R.

Dataset ID RBS SBS ∆ S∆ R SR

(10−4) (10−4) (10−4) (10−4) (10−4) (10−4)

1 112.9 8.7 16.2 3.98 96.7 9.6

2 88.5 11.7 16.2 3.84 72.3 12.3

3 96.3 7.3 16.7 3.78 79.6 8.2

4 80.2 10.0 16.1 3.61 64.1 10.6

5 39.6 8.0 16.7 3.80 22.9 8.9

6 n.a. n.a. n.a. n.a. n.a. n.a.

7 79.2 6.9 16.0 3.64 63.2 7.8

8 n.a. n.a. n.a. n.a n.a. n.a.

9 97.6 17.0 16.7 3.81 80.9 17.4

10 89.1 22.1 16.7 3.80 72.4 22.4

11 184.8 12.1 16.9 3.65 167.9 12.6

12 201.5 10.0 16.9 3.89 184.6 10.7

13 94.2 7.8 16.2 3.76 78.0 8.7

14 91.3 8.0 16.5 3.63 74.8 8.8

15 116.7 9.2 16.8 3.70 99.9 9.9

16 0.00 12.7 16.2 3.72 0 13.2

17 63.0 7.0 16.5 3.75 46.5 7.9
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Supplementary Table 2: Results of the (right tail) Z-tests to assess whether the drop-
off rates are significantly different from 0. Columns 1 and 2: GEO coordinates of the
datasets (Series, Ribo-seq sample, RNA sample). Column 3: Drop-off rate per codon.
Column 4: percentile of the standard normal distribution corresponding to a rejection
area (right) of 0.01. Column 5: Z-score associated to the comparison between the
distribution with average r and standard deviation Sr versus the null distribution with
average 0 and the same standard deviation Sr. Column 6: power of the corresponding
Z-test.

Dataset ID Drop-off rate Z0.01 Zr|H0
Power

(Ref. Table 1) Per codon π
(×10−4)

1 2.9 2.33 9.67 0.97

2 2.2 2.33 5.50 0.96

3 2.4 2.33 12.0 0.98

4 1.9 2.33 6.30 0.93

5 0.7 2.33 2.41 0.83

6 n.a. 2.33 n.a. n.a.

7 1.9 2.33 9.50 0.90

8 n.a. 2.33 n.a n.a.

9 2.4 2.33 4.80 0.96

10 2.2 2.33 3.14 0.91

11 5.1 2.33 12.8 0.98

12 5.6 2.33 18.7 0.99

13 2.3 2.33 7.67 0.98

14 2.3 2.33 7.67 0.96

15 3.0 2.33 10.2 0.94

16 0.0 2.33 1.22 0.82

17 1.4 2.33 7.00 0.98
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Supplementary Table 3: Results of the Z-tests for comparing the drop-off rates of samples
coming from different GEO Series (different laboratories), referring to cultures in Rich
(MOPS) Medium. Column 1: Samples ID, referring to Table 1 of the main text. Column
2: Z-score computed from the comparison of the drop-off rates. Column 3: percentiles
of the standard normal distribution corresponding to a total rejection area of 0.005.
Column 4: percentiles of the standard normal distribution corresponding to a total
rejection area of 0.005, corrected according to the Bonferroni method.

Compared samples Z score Significance level ZB

(Sample ID) ( ±Z0.0025 )

15 vs. 17 4.24 ± 2.81 ± 3.14

5 vs. 17 2.00 ± 2.81 ± 3.14

5 vs.15 5.85 ± 2.81 ± 3.14

Supplementary Table 4: Results of the Z-tests for comparing the drop-off rates of samples
coming from different GEO Series, referring to cultures in Minimal Medium. Column 1:
Samples ID, referring to Table 1 of the main text. Column 2: Z-score computed from
the comparison of the drop-off rates. Column 3: percentiles of the standard normal
distribution corresponding to a total rejection area of 0.005. Column 4: percentiles
of the standard normal distribution corresponding to a total rejection area of 0.005,
corrected according to the Bonferroni method.

Compared samples Z score Significance level ZB

(Sample ID) ( ±Z0.0025 )

9 vs. 3 0.05 ± 2.81 n.a.
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Supplementary Figure 7: Plot of the vector Y vs. the number of bins (X). The slope of
the dashed line corresponds to the drop-off rate r reported in Table 1 of the main text.
a) Dataset 5 - Control (MOPS - Rich medium) b) Dataset 6 - Leucine starvation. In
this case, due to the poor fit with a single exponential model, we could not compute r.
Thus, the regression line is not represented here.
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Supplementary Figure 8: Plot of the vector Y vs. the number of bins (X). The slope
of the dashed line corresponds to the drop-off rate r reported in Table 1 of the main
text. a) Dataset 7 - Control (MOPS - Rich medium) b) Dataset 8 - Serine starvation.
In this case, due to the poor fit with a single exponential model, we could not compute
r. Thus, the regression line is not represented here.
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Supplementary Figure 9: Plot of the vector Y vs. the number of bins (X). The slope
of the dashed lines correspond to the drop-off rates r reported in TTable 1 of the main
text. a): Dataset 15 - Control (T0). b): Dataset 16 - T1, after 20 minutes of σE over
expression induction.
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Supplementary Figure 10: Plot of the vector Y vs. the number of bins (X). The slope
of the dashed line corresponds to the drop-off rate r reported in Table 1 of the main
text. a) Dataset 1 - Control (MOPS - Rich medium) b) Dataset 2 - Acute heat Stress
(47◦C for 7’)
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Supplementary Figure 11: Plot of the vector Y vs. the number of bins (X). The slope
of the dashed line corresponds to the drop-off rate r reported in Table 1 of the main
text. a) Dataset 3 - Control (Minimal medium) b) Dataset 4 - Osmotic Stress (NaCl
0.3M for 20’ at 37◦C).
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