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Abstract

Every moment counts in action recognition. A compre-
hensive understanding of human activity in video requires
labeling every frame according to the actions occurring,
placing multiple labels densely over a video sequence. To
study this problem we extend the existing THUMOS dataset
and introduce MultiTHUMOS, a new dataset of dense la-
bels over unconstrained internet videos. Modeling multi-
ple, dense labels benefits from temporal relations within and
across classes. We define a novel variant of long short-term
memory (LSTM) deep networks for modeling these tempo-
ral relations via multiple input and output connections. We
show that this model improves action labeling accuracy and
further enables deeper understanding tasks ranging from
structured retrieval to action prediction.

1. Introduction
Humans are great at multi-tasking: they can be walk-

ing while talking on the phone while holding a cup of cof-
fee. Further, human action is continual, and every minute
is filled with potential labeled action (Fig. 1). However,
most work on human action recognition in video focuses on
recognizing discrete instances or single actions at a time:
for example, which sport [8] or which single cooking activ-
ity [21] is taking place. We argue this setup is fundamen-
tally limiting. First, a single description is often insufficient
to fully describe a person’s activity. Second, operating in
a single-action regime largely ignores the intuition that ac-
tions are intricately connected. A person that is running and
then jumping is likely to be simultaneously doing a sport
such as basketball or long jump; a nurse that is taking a pa-
tient’s blood pressure and looking worried is likely to call a
doctor as her next action. In this work, we go beyond the
standard one-label paradigm to dense, detailed, multilabel
understanding of human actions in videos.

Figure 1: In most internet videos there are multiple simul-
taneous human actions. Here, we show a concrete example
from a basketball video to illustrate our target problem of
dense detailed multi-label action understanding.

There are two key steps on the path to tackling detailed
multilabel human action understanding: (1) finding the right
dataset and (2) developing an appropriate model. In this
paper we present work in both dimensions.

The desiderata for a video dataset include the follow-
ing: video clips need to be long enough to capture mul-
tiple consecutive actions, multiple simultaneous actions
need to be annotated, and labeling must be dense with
thorough coverage of action extents. Video annotation is
very time-consuming and expensive, and to the best of our
knowledge no such dataset currently exists. UCF101 [28],
HMDB51 [12], and Sports1M [8] are common challenging
action recognition datasets. However, each video is associ-
ated with non-localized labels (Sports1M), and the videos
in UCF101 and HMDB51 are further temporally clipped
around the action. MPII Cooking [21] and Breakfast [11]
datasets contain long untrimmed video sequences with mul-
tiple sequential actions but still only one label per frame;
further, they are restricted to closed-world kitchen environ-
ments. THUMOS [7] contains long untrimmed videos but
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most videos (85%) only contain a single action class.
To overcome these problems, we introduce a new action

detection dataset called MultiTHUMOS, significantly ex-
tending the annotations on 413 videos (30 hours) of THU-
MOS action detection dataset. First, MultiTHUMOS al-
lows for an in-depth study of simultaneous human action
in video: it extends THUMOS from 20 action classes with
0.3 labels per frame to 65 classes and 1.5 labels per frame.
Second, MultiTHUMOS allows for a thorough study of the
temporal interaction between consecutive actions: the aver-
age number of distinct action categories in a video is 10.5
(compared to 1.1 in THUMOS). Going further, MultiTHU-
MOS lends itself to studying intricate relationships between
action labels: the 45 new annotated classes include relation-
ships such as hierarchical (e.g., more general Throw or Pol-
eVault and more specific BasketballShot or PoleVaultPlant-
Pole) and fine-grained (e.g., Guard versus Block or Dribble
versus Pass in basketball). Fig. 1 shows an example of our
dense multilabel annotation.

Reasoning about multiple, dense labels on video requires
models capable of incorporating temporal dependencies.
Recent action recognition literature has used recurrent neu-
ral networks known as Long Short Term Memory (LSTM)
for action recognition in videos [3]. We introduce MultiL-
STM, a new LSTM-based model targeting dense, multilabel
action analysis. Taking advantage of the fact that more than
45% of frames in MultiTHUMOS have 2 or more labels, the
model can learn dependencies between actions in nearby
frames and between actions in the same frame, which al-
lows it to subsequently perform dense multilabel temporal
action detection on unseen videos.

In summary, our contributions are:

1. We introduce MultiTHUMOS, a new large-scale
dataset of dense, multilabel action annotations in tem-
porally untrimmed videos, and

2. We introduce MultiLSTM, a new recurrent model
based on an LSTM that features temporally-extended
input and output connections.

Our experiments demonstrate improved performance of
MultiLSTM relative to a plain LSTM baseline on our dense,
multilabel action detection benchmark.

2. Related Work
Visual analysis of human activity has a long history in

computer vision research. Thorough surveys of the litera-
ture include Poppe [20] and Weinland et al. [36]. Here we
review recent work relevant to dense labeling of videos.

Datasets. Research focus is closely intertwined with
dataset creation and availability. The KTH dataset [24] was
a catalyst for a body of work. This era focused on rec-
ognizing individual human actions, based on datasets con-

Detection Untrimmed Open-world Multilabel
UCF101 [28] - - yes -
HMDB51 [12] - - yes -
Sports1M [8] - yes yes -
Cooking [21] yes yes - -
Breakfast [11] yes yes - -
THUMOS [7] yes yes yes -
MultiTHUMOS yes yes yes yes

Table 1: Our MultiTHUMOS dataset overcomes many lim-
itations of previous datasets.

sisting of an individual human imaged against a generally
stationary background. In subsequent years, the attention
of the community moved towards more challenging tasks,
especially in the level of background clutter present in the
videos. The HMDB [12], UCF 101 [28], and THUMOS
[7] datasets exemplify this trend toward utilizing “uncon-
strained” internet video as a dataset source. Task direction
has also moved toward a retrieval setting, finding a (small)
set of videos from a large background collection, including
datasets such as TRECVID MED [18] and Sports 1M [8].

While the push toward unconstrained internet video is
positive in terms of the difficulty of this task, it has moved
focus away from human action toward identifying scene
context. Discriminating diving versus gymnastics largely
involves determining the scene of the event. The MPII
Cooking dataset [21] and Breakfast dataset [11] refocus ef-
forts toward human action within restricted action domains
(Table 1). The MultiTHUMOS dataset we propose shares
commonalities with this line, but emphasizes generality of
video, multiple labels per frame, and a broad set of general
to specific actions.

Deep learning for video. In common with object recog-
nition, hand-crafted features for video analysis are giving
way to deep convolutional feature learning strategies. The
best hand-crafted features, the dense trajectories of Wang
et al. [34], achieve excellent results on benchmark action
recognition datasets. However, recent work has shown su-
perior results by learning video features (often combined
with dense trajectories). Simonyan and Zisserman [26]
present a two-stream convolutional architecture utilizing
both image and optical flow data as input sources. Zha et
al. [40] examine aggregation strategies for combining deep
learned image-based features for each frame, obtaining im-
pressive results on TRECVID MED retrieval. Karpathy et
al. [8] and Tran et al. [32] learn spatio-temporal filters in a
deep network and apply them to a variety of human action
understanding tasks. Mansimov et al. [14] consider meth-
ods for incorporating ImageNet training data to assist in
initializing model parameters for learning spatio-temporal
features. Wang et al. [35] study temporal pooling strategies,
specifically focused on classification in variable-length in-
put videos.



Temporal models for video. Constructing models of the
temporal evolution of actions has deep roots in the litera-
ture. Early work includes Yamato et al. [38], using hid-
den Markov models for latent action state spaces. Discrim-
inative variants include those based on latent SVMs over
key poses and action grammars [17, 33, 19]. A recent set
of technical reports has deployed deep models using long
short-term memory (LSTM) models [5] for video analy-
sis [3, 15, 29, 39]. These papers have shown promising
results applying LSTMs for tasks including video classi-
fication and sentence generation. In contrast, we develop
a novel LSTM that performs spatial input aggregation and
output modeling for dense labeling output.

Action detection. Beyond assigning a single label to a
whole video, the task of action detection localizes this ac-
tion within the video sequence. An example of canonical
work in this vein is Ke et al. [9]. More recent work ex-
tended latent SVMs to spatio-temporal action detection and
localization [30, 13]. Rohrbach et al. [22] detect cooking
actions using hand-centric features accounting for human
pose variation. Ni et al. [16] similarly utilize hand-centric
features on the MPII Cooking dataset, but focus on multiple
levels of action granularity. Gkioxari and Malik [4] train
SVMs for actions on top of deep learned features, and fur-
ther link them in time for spatio-temporal action detection.
In contrast, we address the task of dense multilabel action
detection.

Attention-based models. Seminal work on computational
spatial attention models for images was done by Itti et
al. [6]. Recent action analysis work utilizing attention in-
cludes Shapovalova et al. [25] who use eye-gaze data to
drive action detection and localization. Xu et al. [37] use vi-
sual attention to assist in caption generation. Yao et al. [39]
develop an LSTM for video caption generation with soft
temporal attention. Our method builds on these directions,
using an attention-based input temporal context for dense
action labeling.

3. The MultiTHUMOS Dataset

Research on detailed, multilabel action understanding
requires a dataset of untrimmed, densely labeled videos.
However, we are not aware of any existing dataset that fits
these requirements. THUMOS [7] is untrimmed but con-
tains on average only a single distinct action labeled per
video. MPII Cooking [21] and Breakfast [11] datasets have
labels of sequential actions, but contain only a single label
per frame and are further captured in closed-world settings
of a single or small set of kitchens (Table 1).

To address the limitations of previous datasets, we intro-
duce a new dataset called MultiTHUMOS. MultiTHUMOS
contains dense, multilabel, frame-level action annotations
(Fig. 2) for 30 hours across 400 videos in the THUMOS

Figure 2: Our MultiTHUMOS dataset contains multiple ac-
tion annotations per frame.

Figure 3: Left. MultiTHUMOS has significantly more la-
bels per frame than THUMOS [7] (1.5 in MultiTHUMOS
versus 0.3 in THUMOS). Right. Additionally, MultiTHU-
MOS contains up to 25 action labels per video compared to
≤ 3 labels in THUMOS.

’14 action detection dataset. In particular, all videos in the
“Validation Data” and “Test Data” sets were labeled. 1 An-
notations were collected in collaboration with a commer-
cial crowdsourcing service. Workers were provided with
the name of an action, a brief (up to 1 sentence) description,
and 2 annotation examples, and asked to annotate the start
and end frame of the action in the videos. An action was
annotated if it occurred anywhere in the frame.

In total, we collected 32, 325 annotations of 45 ac-
tion classes, bringing the total number of annotations from
6, 365 over 20 classes in THUMOS to 38, 690 over 65
classes in MultiTHUMOS. The density of annotations in-
creased from 0.3 to 1.5 labels per frame on average (with
the maximum number per frame increasing from 2 in THU-

1 THUMOS training data consists of 3 sets of videos: temporally
clipped “Training Data”, temporally untrimmed “Validation Data” with
temporal annotations, and temporally untrimmed “Background Data” with
no temporal annotations. Test data consists of temporally untrimmed “Test
Data” with temporal annotations. We annotated all videos sets originally
including temporal annotations, i.e. “Validation Data” and “Test Data”.



Action #30/65: Hug

Action #46/65: BasketballDribble

Figure 5: Our MultiTHUMOS dataset is very challenging
due to high intra-class variation.

MOS to 9 in MultiTHUMOS), and from 1.1 to 10.5 action
classes per video. Maximum number of actions per video
increased from 3 in THUMOS to 25 in MultiTHUMOS.
Fig. 3 shows the full distribution of annotation density.

Using these dense multilabel video annotations, we are
able to learn and visualize the relationships between ac-
tions. The co-occurrence hierarchy of object classes in im-
ages based on mutual information of object annotations was
learned by Choi et al. [2]; we adapt their method to per-
frame action annotations in video. Fig. 4 shows the result-
ing action hierarchy. Classes such as Squat and BodyCon-
tract frequently co-occur; in contrast, classes such as Run
and Billiards rarely occur together in the same frame.

MultiTHUMOS is a very challenging dataset for three
key reasons. First, it has many fine-grained action cate-
gories with low visual inter-class variation, including hier-
archical (e.g. throw vs. baseball pitch), hierarchical within
a sport (e.g. pole vault vs. the act of planting the pole when
pole vaulting), and fine-grained (e.g. basketball dunk, shot,
dribble, guard, block, and pass). We also chose both sport-
specific actions (such as different basketball or volleyball
moves), as well as general actions that can occur in multi-
ple sports (e.g. pump fist, or one-handed catch). Second, it
has high intra-class variation as shown in Fig. 5. The same

Figure 6: MultiTHUMOS has a wider range of number of
per-class frames and instances (contiguous sequences of a
label) annotated than THUMOS. Some action classes like
Stand or Run have up to 3.5K instances (up to 18K seconds,
or 5.0 hours); others like VolleyballSet or Hug have only 15
and 46 instances (27 and 50 secs) respectively.

action looks visually very different across multiple frames.
Finally, MultiTHUMOS has between 27 seconds to 5 hours
of annotated video per action class, which challenges ac-
tion detection algorithms to effectively utilize both small
and large amounts of annotated data. In contrast, THUMOS
has much less variability, between 3.7 minutes to 1 hour of
annotated video per class. Fig. 6 shows the distribution.

4. Technical Approach

Actions in videos exhibit rich patterns, both within a
single frame due to action label relations and also across
frames as they evolve in time. The desire to elegantly in-
corporate these cues with state-of-the-art appearance-based
models has led to recent works [3, 15, 29] that study com-
binations of Convolutional Neural Networks (CNN) mod-
eling frame-level spatial appearance and Recurrent Neural
Networks (RNN) modeling the temporal dynamics. How-
ever, the density of the action labels in our dataset expands
the opportunities for more complex modeling at the tempo-
ral level. While in principle even a simple instantiation of
an ordinary RNN has the capacity to capture arbitrary tem-
poral patterns, it is not necessarily the best model to use in
practice. Indeed, our proposed MultiLSTM model extends
the recurrent models described in previous work, and our
experiments demonstrate its effectiveness.

4.1. LSTM

The specific type of Recurrent architecture that is com-
monly chosen in previous work is the Long Short-Term
Memory (LSTM), which owing to its appealing functional
properties has brought success in a wide range of sequence-
based tasks such as speech recognition, machine translation
and very recently, video activity classification. Let x be an
input sequence (x1, ..., xT ) and y be an output sequence
(y1, ..., yT ). An LSTM then maps x to y through a series



Figure 4: We use the method of [2] to learn the relationships between the 65 MultiTHUMOS classes based on per-frame
annotations. Blue (red) means positive (negative) correlation. The 20 original THUMOS classes are in green.

of intermediate representations:

it = σ(Wxixt +Whiht−1 + bi) (1)
ft = σ(Wxfxt +Whfht−1 + bf ) (2)
ot = σ(Wxoxt +Whoht−1 + bo) (3)
gt = tanh(Wxcxt +Whcht−1 + bc) (4)
ct = ftct−1 + itgt (5)
ht = ot tanh(ct) (6)
yt =Whyht + by (7)

Here c is the “internal memory” of the LSTM, and the gates
i, f , o control the degree to which the memory accumulates
new input g, attenuates its memory, or influences the hidden
layer output h, respectively. Intuitively, the LSTM has the
capacity to read and write to its internal memory, and hence
maintain and process information over time. Compared to
standard RNNs, the LSTM networks mitigate the “vanish-
ing gradients” problem because except for the forget gate,
the cell memory is influenced only by additive interactions
that can communicate the gradient signal over longer time
durations. The architecture is parametrized by the learnable
weight matrices W and biases b, and we refer the reader to
[5, 3] for further details.

However, an inherent flaw of the plain LSTM architec-
ture is that it is forced to make a definite and final prediction
at some time step based on what frame it happens to see at
that time step, and its previous context vector.

4.2. MultiLSTM

Our core insight is that providing the model with more
freedom in both reading its input and writing its output re-
duces the burden placed on the hidden layer representation.
Concretely, the MultiLSTM expands the temporal receptive
field of both input and output connections of an LSTM.
These allow the model to directly refine its predictions in
retrospect after seeing more frames, and additionally pro-
vide direct pathways for referencing previously-seen frames

without forcing the model to maintain and communicate
this information through its recurrent connections.

Multilabel Loss. In our specific application setting, the in-
put vectors xt correspond to the 4096-dimensional fc-7 fea-
tures of the VGG 16-layer Convolutional Network which
was first pretrained on ImageNet and then fine-tuned on our
dataset on an individual frame level. We interpret the vec-
tors yt as the unnormalized log probability of each action
class. Since each frame of a video can be labeled with mul-
tiple classes, instead of using the conventional softmax loss
we sum independent logistic regression losses per class:

L(y|x) =
∑
t,c

ztc log(σ(ytc)) + (1− ztc) log(1− σ(ytc))

where ytc is the score for class c at time t, and ztc is the
binary ground truth label for class c at time t.

Multiple Inputs with Temporal Attention. In a standard
LSTM network, all contextual information is summarized
in the hidden state vector. Therefore, the network relies on
the memory vector to contain all relevant information about
past inputs, without any ability to explicitly revisit past in-
puts. This is particularly challenging in the context of more
complex tasks such as dense, multilabel action detection.

To provide the LSTM with a more direct way of access-
ing recent inputs, we expand the temporal dimension of the
input to be a fixed-length window of frames previous to the
current time step (Fig. 7(a)). This allows the LSTM to spend
its modeling capacity on more complex and longer-term
interactions instead of maintaining summary of the recent
frames in case it may be useful for the next few frames. Fur-
thermore, we incorporate a soft-attention weighting mecha-
nism that has recently been proposed in the context of ma-
chine translation [1].

Concretely, given a video V = {v1, . . . vT }, the input
xi to the LSTM at time step i is now no longer the repre-
sentation of a single frame vt, but a weighted combination



(a) Connections to multiple inputs.

(b) Multiple outputs. (c) Variant: output offset.

Figure 7: Components of our MultiLSTM model.

xi =
∑

t αitvt where t ranges over a fixed-size window of
frames previous to i, and αit is the contribution of frame
vt to input xi as computed by the soft attention model. To
compute the attention coefficients αit, we use a model sim-
ilar to Bahdanau et al. [1]. The precise formulation that
worked best in our experiments is:

αit ∝ exp(wT
ae [tanh(Whahi−1)� tanh(Wvavt)]) (8)

Here � is element-wise multiplication, {wae,Wha,Wva}
are learned weights , and αt is normalized using the soft-
max function with the interpretation that αt expresses the
relative amount of attention assigned to each frame in the
input window. Intuitively, the first term tanh(Whahi−1)
allows the network to look for certain features in the in-
put, while the second term tanh(Wvavt) allows each input
to broadcast the presence/absence of these features. There-
fore, the multiplicative interaction followed by the weighted
sum with wae has the effect of quantifying the agreement
between what is present in the input and what the network
is looking for. Note that the standard LSTM formulation is
a special case of this model where all attention is focused
on the last input window frame.

Multiple Outputs. Analogous to providing explicit access
to a window of frames at the input, we allow the LSTM to
contribute to predictions in a window of frames at the out-
put (Fig. 7(b)). Intuitively, this mechanism lets the network
refine its predictions in retrospect, after having seen more
frames of the input. This feature is related to improvements
that can be achieved by use of bi-directional recurrent net-

works. However, unlike bi-directional models our formula-
tion can be used in an online setting where it delivers im-
mediate predictions that become refined with a short time
lag.2 Given the multiple outputs, we consolidate the pre-
dicted labels for all classes c at time t with a weighted av-
erage yt =

∑
i βitpit where pit are the predictions at the

ith time step for the tth frame, and βit weights the contri-
bution. βit can be learned although in our experiments we
use 1

N for simplicity to average the precitions. The standard
LSTM is a special case, where β is an indicator function at
the current time step. In our experiments we use the same
temporal windows at the input and output. Similar to the
inputs, we experimented with soft attention over the output
predictions but did not observe noticeable improvements.

Single Offset Output. We experimented with offset pre-
dictions to quantify how informative frames at time t are
towards predicting labels at some given offset in time. In
these experiments, the network is trained with shifted labels
yt+s, where s is a given offset (Fig. 7(c)). In our dense
label setting, this type of model additionally enables appli-
cations such as action prediction in unconstrained internet
video (c.f. [10]). For example, if the input is a frame de-
picting a person cocking his arm to throw, the model could
predict future actions such as Catch or Hit.

5. Experiments

Dataset. We evaluate our MultiLSTM model for dense,
multilabel action detection on the MultiTHUMOS dataset.
We use the same train and test splits as THUMOS (see Sec.
3 for details) but ignore the background training videos.
Clipped training videos (the “Training Data” set in THU-
MOS) act as weak supervision since they are only labeled
with THUMOS classes.

Implementation Details. Our single-frame baseline uses
the 16-layer VGG CNN model [27], which achieves near
state of the art performance on ILSVRC [23]. The model
was pre-trained on ImageNet and fine-tuned on MultiTHU-
MOS. The input to our LSTM models is the final 4096-
dimensional, frame-level fc7 representation.

We use 512 hidden units in the LSTM, and 50 units in
the attention component of MultiLSTM. We train the model
with an exact forward pass, passing LSTM hidden and cell
activations from one mini-batch to the next. However we
use approximate backpropagation through time where we
only backpropagate errors for the duration of a single mini-
batch. Our mini-batches consist of 32 frames (approx. 3.2
seconds), and we use RMSProp [31] to modulate the per-
parameter learning rate during optimization.

2A similar behavior can be obtained with a bi-directional model by
truncating the hidden state information from future time frames to zero,
but this artificially distorts the test-time behavior of the model’s outputs,
while our model always operates in the regime it was trained with.



Figure 8: Example timeline of multilabel action detections from our MultiLSTM model compared to a CNN. (best in color)

Performance Measure. We evaluate our models using Av-
erage Precision (AP) measured on our frame-level labels.
The focus of our work is dense labeling, hence this is the
measure we analyze to evaluate the performance of our
model. We report AP values for individual action classes
as well as mean Average Precision (mAP), the average of
these values across the action categories.

To verify that our baseline models are strong, we can
obtain discrete detection instances using standard heuristic
post-processing.3 Using this post-processing, our single-
frame CNN model achieves 32.4 detection mAP with over-
lap threshold 0.1 on the THUMOS subset of MultiTHU-
MOS. Since state of the art performance on THUMOS re-
ports 36.6 detection mAP including audio features, this
confirms that our single-frame CNN is a reasonable base-
line. Hereafter, we compare our models without this post-
processing to achieve a comparison of the models’ dense
labeling representational ability.

5.1. Action Detection

We first evaluate our models on the challenging task of
dense per-frame action labeling on MultiTHUMOS. The
MultiLSTM model achieves consistent improvements in
mean average precision (mAP) compared to baselines. The
basic single-frame CNN achieves 25.4% mAP. A base
LSTM network in the spirit of [3] but modified for mul-
tilabel action labeling4 boosts mAP to 28.1%. Our full
MultiLSTM model handily outperforms both baselines with
29.7% mAP. Table 2 additionally demonstrates that each
component of our model (input connections, input attention
and output connections) is important for accurate action la-

3Concretely, for each class we threshold the frame-level confidences at
λ (λ = 0.1 obtained by cross-validation) to get binary predictions and
then accumulate consecutive positive frames into detections. The score of
a detection for class C of length L with frame probabilities p1 . . . pL is

computed as (
∑L
i pi)× exp(

−α(L−µ(C))2

σ(C)2
) where µ(C) and σ(C) are

the mean and standard deviation of frame lengths on the training set (for
this class) and α = 0.01 is obtained by cross-validation.

4Specifically, the LSTM is trained using a multilabel loss function and
tied hidden context across 32 frame segments, as described in Section 4.2.

Model THUMOS mAP MultiTHUMOS mAP
Single-frame CNN [27] 34.7 25.4
Two-stream CNN [26] 36.2 27.6
LSTM 39.3 28.1
LSTM + i 39.5 28.7
LSTM + i + a 39.7 29.1
MultiLSTM 41.3 29.7

Table 2: Per-frame mean Average Precision (mAP) of the
MultiLSTM model compared to baselines. Two-stream
CNN is computed with single-frame flow. LSTM is imple-
mented in the spirit of [3] (details in Section 4.2). We show
the relative contributions of adding first the input connec-
tions with averaging (LSTM + i), then the attention (LSTM
+ i + a) as in Fig. 7(a), and finally the output connections to
create our proposed MultiLSTM model (LSTM + i + a + o)
as in Fig. 7(b).

Figure 9: Per-class Average Precision of the MultiLSTM
model compared to a single-frame CNN model [27] on
MultiTHUMOS. MultiLSTM outperforms the single-frame
CNN on 56 out of 65 action classes.

beling. Fig. 9 compares per-class results.
Fig. 8 visualizes some results of MultiLSTM compared

to a baseline CNN. For ease of visualization, we binarize



Pass, then Shot Throw, then OneHandedCatch

Pass, then Shot Throw, then TwoHandedCatch

Jump, then Fall Clean, then Jerk

Jump, then Fall Pitch, then OneHandedCatch

Figure 10: Examples of retrieved sequential actions (correct
in green, mistakes in red). Results are shown in pairs: first
action frame on the left, second action frame on the right.

Shot&Guard Shot&No Guard Sit&Talk Stand&Talk

Dive&Bodyroll Dive&No Bodyroll Hug&Pat PlantPole&Run

Figure 11: Examples of retrieved frames with co-occurring
actions (correct in green, mistakes in red).

outputs by thresholding rather than showing the per-frame
probabilistic action labels our model produces. The CNN
often produces short disjoint detections whereas MultiL-
STM effectively makes use of temporal and co-occurrence
context to produce more consistent detections.

The multilabel nature of our model and dataset allows
us to go beyond simple action labeling and tackle higher-
level tasks such as retrieval of video segments containing
sequences of actions (Fig. 10) and co-occurring actions
(Fig. 11). By learning accurate co-occurrence and temporal
relationships, the model is able to retrieve video fragments
with detailed action descriptions such as Pass and then Shot
or frames with simultaneous actions such as Sit and Talk.

Jump→ Fall

Jump→ Fall

Dribble→ Shot

Dribble→ Shot

Figure 12: Examples of predicted actions. For each pair of
actions, the first one (left) is the label of the current frame
and the second one (right) is the predicted label 1 second
into the future. Correct predictions are shown in green, and
failure cases are shown in red.

Figure 13: Action detection mAP when the MultiLSTM
model predicts the action for a past (offset < 0) or future
(offset > 0) frame rather than for the current frame (offset
= 0). The input window of the MultiLSTM model is shown
in gray. Thus, the left plot is of a model trained with input
from the past, and the right plot is of a model trained with
the input window centered around the current frame.

5.2. Action Prediction

Dense multilabel action labeling in unconstrained inter-
net videos is a challenging problem to tackle in and of it-
self. In this section we go one step further and aim to make
predictions about what is likely to happen next or what hap-
pened previously in the video. By utilizing the MultiLSTM
model with offset (Fig. 7(c)) we are able to use the learned
temporal relationships between actions to make inferences
about actions likely occurring in past or future frames.

We evaluate the performance of this model as a function
of temporal offset magnitude and report results in Fig. 13.
The plot on the left quantifies the prediction ability of the
model within a 4 second (+/- 2 second) window, provided
an input window of context spanning the previous 1.5 sec-
onds. The model is able to “see the future” – while predict-
ing actions 0.5 seconds in the past is easiest (mAP ≈ 30%),



reasonable prediction performance (mAP ≈ 20 − 25%) is
possible 1-2 seconds into the future. The plot on the right
shows the prediction ability of the model using an input con-
text centered around the current frame, instead of spanning
only the past. The model is able to provide stronger predic-
tions at past times compared to future times, giving quanti-
tative insight into the contribution of the hidden state vector
to providing past context.

Fig. 12 shows qualitative examples of predictions at
frames 1 second in the future from the current time. The
model is able to correctly infer that a Fall is likely to hap-
pen after a Jump, and a BasketballShot soon after a Dribble.

6. Conclusion

In conclusion, this paper presents progress in two as-
pects of human action understanding. First, we empha-
size a broader definition of the task, reasoning about dense,
multiple labels per frame of video. We have introduced a
new dataset MultiTHUMOS, containing a substantial set
of labeled data that we will release to spur research in
this direction of action recognition. Second, we develop
a novel LSTM-based model incorporating soft attention
input-output temporal context for dense action labeling. We
show that utilizing this model on our dataset leads to im-
proved accuracy of action labeling and permits detailed un-
derstanding of human action.
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