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Universality in string interactions
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In this letter, we provide evidence for universality in the low-energy expansion of tree-level string
interactions. More precisely, in the α

′-expansion of tree-level scattering amplitudes, we conjecture
that the leading transcendental coefficient at each order in α

′ is universal for all perturbative string
theories. We have checked this universality up to seven points and trace its origin to the ability to
restructure the disk integrals of open bosonic string into those of the superstring. The accompanying
kinematic functions have the same low-energy limit and do not introduce any transcendental numbers
in their α′-corrections. Universality in the closed-string sector then follows from the KLT-relations.

INTRODUCTION

One of the formidable challenges for a theory of quan-
tum gravity is the construction of a gravitational S-
matrix which respects unitarity at high energies. Pertur-
bative string theories provide candidate solutions, as its
four-point graviton S-matrix is exponentially suppressed
in the high-energy limit for fixed-angle scattering [1, 2].
In fact, assuming tree-level causality [3] and unitarity [4]
imposes stringent constraints, under which string theo-
ries provides the only known analytic solutions so far.
Different string theories are understood to be equiva-

lent through a web of strong-weak dualities which relate
different orders in the perturbative expansion [5]. At tree
level, however, the low-energy description in the form
of an effective action with expansion in curvature ten-
sors and covariant derivatives is largely unconstrained by
string dualities. More precisely, the coefficients of these
higher-dimensional operators are expected to be distinct
for different string theories. Thus, if some of these co-
efficients turn out to be universal, it is then conceivable
that such a phenomenon reflects a deeper principle in the
theory of quantum gravity beyond the known dualities.
At low energies, closed-string theories yield an effec-

tive action that augments the Einstein-Hilbert term SEH

with higher-dimensional operators. At tree level, type-
II superstring theories exhibit the following expansion in
the inverse string tension (or cut-off scale) α′,

Seff = SEH − 2α′3ζ3e
−6φR4 − ζ5α

′5e−10φD4R4

+ 2
3α

′6ζ23e
−12φD6R4 + · · · , (1)

with Einstein-frame conventions for the dilaton couplings
e−nφ. The ellipsis · · · represents loop-corrections and
higher-order terms in α′, while DnRm schematically rep-
resent contractions of covariant derivatives and Riemann
tensors. The tensor structure of each operator as well as
its coefficient furnished by multiple zeta values (MZVs)

ζn1,n2,...,nr
≡

∞
∑

0<k1<k2<...<kr

1

kn1
1 kn2

2 . . . knr
r

(2)

can be derived by expanding string-theory graviton am-
plitudes in α′. MZVs can be conjecturally categorized

according to their transcendental weight n1+n2+. . .+nr

and constitute a fruitful domain of common interest be-
tween high-energy physics and number theory. In fact,
for type-II theories, the transcendental weight for each
coefficient matches the order of α′. This property will be
referred to as uniform transcendentality, and it also exists
for open strings in the type-I theory. The type-I effective
action is now an expansion in non-abelian field-strength
operators tr(DnFm). In this light, uniform transcenden-
tality for closed strings is inherited from open strings
through the Kawai, Lewellen and Tye (KLT) relations [6].
In this letter, we conjecture that the leading transcen-

dental coefficient at each order in the α′-expansion of

tree-level amplitudes is universal among all perturbative

open- and closed-string theories. We have explicitly ver-
ified this up to the seven-point level, and the conjec-
tural all-multiplicity extension is discussed in a compan-
ion paper [7]. This remarkable property can be best un-
derstood by inspecting the world-sheet correlator of the
open-string amplitudes.
It was shown in [8] that the n-point tree amplitude of

the open superstring can be cast into an (n−3)! basis of
disk integrals, each augmented by Yang-Mills tree ampli-
tudes of different color-orderings. These basis integrals
exhibit uniform transcendentality upon α′-expansion, see
e.g. [9] for a proof. We claim that bosonic open-string
amplitudes can be cast upon the very same integral basis
where – in contrast to the superstring – the accompany-
ing functions of the kinematic data depend on α′. Apart
from the Yang-Mills trees recovered in their low-energy
limit α′ → 0, the α′-corrections of the kinematic func-
tions exclusively involve rational numbers upon Taylor-
expansion, i.e. they do not carry any transcendental
weight. Hence, the resulting α′-expansion of the bosonic
string amplitude will have the same leading transcenden-
tal pieces as found for the superstring.
The same property can be extended to closed strings

by utilizing the KLT-relations [6], which assemble closed-
string tree amplitudes from products of two open-
string trees. The accompanying sin-functions with α′-
dependent arguments do not alter the uniform tran-
scendentality of the type-II theory. Different double-
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copies of open bosonic strings and superstrings give rise
to three different closed-string theories – bosonic, het-
erotic and type-II superstrings. Their tree amplitudes
are governed by a universal basis of (n−3)!× (n−3)! in-
tegrals of uniform transcendentality inherited from the
open-string constituents. Only the kinematic coefficients
differ between the theories, where the additional α′-
corrections specific to open bosonic strings do not in-
troduce any transcendental weight and thereby do not
affect the leading-transcendental piece. This completes
the argument for universality in closed-string interac-
tions, namely for the O(α′n) order of the effective action,
the weight-n coefficient is universal for all perturbative
closed-string theories.

OPEN-STRING AMPLITUDES

A. The open superstring: The tree-level amplitude
for n gluon-multiplet states in open superstring theory
can be conveniently written as [8]

AS(1, 2ρ, . . . , (n−2)ρ, n−1, n;α′) =
∑

σ∈Sn−3

Fρ
σ(α′)

×AYM(1, 2σ, . . . , (n−2)σ, n−1, n) , (3)

where AS and AYM indicate color-ordered amplitudes of
the superstring and super Yang-Mills field theory, respec-
tively. Moreover, ρ, σ with jρ ≡ ρ(j) denote the (n−3)!
distinct permutations with legs 1, n−1, n held fixed, and
Fρ

σ(α′) are disk integral that capture the α′-dependence,

Fρ
σ(α′) ≡

∫

0≤z2ρ≤z3ρ≤...≤z(n−2)ρ≤1

dz2 . . . dzn−2

n
∏

i<l

|zil|
silσ

{

n−2
∏

k=2

k−1
∑

m=1

smk

zkm

}

,(4)

with zij ≡ zi − zj . We fix the SL(2) symmetry of the
disk by setting (z1, zn−1, zn) = (0, 1,∞), and we use di-
mensionless Mandelstam invariants

sij...l ≡ α′(ki + kj + . . .+ kl)
2 . (5)

When viewed as an (n−3)!×(n−3)! matrix, the row- and
column indices ρ and σ of Fρ

σ label different integration
domains and integrands, respectively, where σ acts on the
subscripts within the curly bracket in (4). Note that the
field-theory limit is recovered as Fρ

σ(α′) = δρ
σ +O(α′2),

and the (n−3)!-vector in (3) furnishes a basis of string
subamplitudes under monodromy relations [10, 11].
The α′-expansion of the integrals in (4) yields MZVs

(2) whose transcendental weight matches the degree of
the accompanying polynomials in sij . Since AYM do not
depend on α′, uniform transcendentality of the integrals
propagates to the disk amplitude (3). Initially addressed
via hypergeometric functions [12], the α′-corrections of
Fρ

σ(α′) at any multiplicity can be recursively generated
from the Drinfeld associator [9].
Once undoing the above choice of SL(2) frame, the

functions (4) can be identified as a superposition of

(n−3)! “single-cycle” disk integrals,

Zρ(1σ, 2σ, . . ., nσ) ≡

∫

dµn(ρ)

σ(z12z23 . . . zn1)
, (6)

where σ and ρ now act on all external legs in the inte-
grand and the integration domain, respectively, and the
measure is given by

∫

dµn(ρ) ≡

∫

−∞<z1ρ≤z2ρ≤...≤znρ<∞

dz1 dz2 . . . dzn
vol(SL(2))

n
∏

i<l

|zil|
sil . (7)

The integral reductions performed in [8] rely on partial-
fraction manipulations and integrations by parts (IBP)
among Zρ(1σ, . . ., nσ). At fixed ρ, these integral relations
for different choices of σ can be identified with the KK-
and BCJ-relations [13] of AYM(. . .) [14]. However, as al-
ready exploited in a superstring context [8, 15], IBP addi-
tionally allows to address closed subcycles of zij in the in-
tegrand such as double poles z−2

ij . Extending these tech-
niques to gluon amplitudes of the bosonic string yields
our main result to be reported in the following.

B. The bosonic open string: The tree-amplitude
prescription for n-gluon scattering in the bosonic string
introduces significantly more rational functions of zij of
suitable SL(2) weight than captured by the single cycles
in (6). Still, repeated use of IBP is expected to reduce
all of them to the single-cycle form and thereby to the
same integral basis as seen in (3) and (4), e.g.

∫

dµ4(ρ)

z214z
2
23

=
s12Zρ(1, 2, 3, 4)

1− s23
. (8)

The denominator on the right-hand side signals tachyon
exchange specific to the bosonic string and can be ex-
panded as a geometric series (1 − sij)

−1 =
∑∞

k=0 s
k
ij . In

a superstring context, the OPE among supersymmetric
vertex operators guarantees that tachyon poles as in (8)
are suppressed by numerators 1 − sij , see e.g. [8, 15].
Extending the integral reduction along the lines of (8) to
arbitrary multiplicity leads us to conjecture the following
structure for the n-gluon tree in bosonic string theory:

AB(1, 2ρ, . . . , (n−2)ρ, n−1, n;α′) =
∑

σ∈Sn−3

Fρ
σ(α′)

×B(1, 2σ, . . . , (n−2)σ, n−1, n;α′) . (9)

In comparison to the superstring result (3), the kinematic
factors AYM(. . .) are replaced by more general and α′-
dependent objects B(. . . ;α′). Both of them are rational
functions of sij and multilinear in the polarizations ej
entering via (ei · ej) and (ei · kj), and crucially do not
carry any transcendental weights. Upon α′-expansion,
the leading term reproduces Yang-Mills tree amplitudes,
and is therefore identical to that of the superstring, i.e.

B(1,. . ., n;α′) = AYM(1,. . ., n) +

∞
∑

k=1

(2α′)kBk(1,. . ., n) .(10)
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At generic multiplicity n, the Bk(. . .)’s have homogeneity
degree 4−n+2k in momenta. The simplest instances of
the subleading terms occur at the three-point level and
signal the F 3 interaction specific to the bosonic string,

B1(1,2,3) = (e1 ·k2)(e2 ·k3)(e3 ·k1) , Bk≥2(1,2,3) = 0 .(11)

The higher-point case requires integral reductions as in
(8), and the resulting geometric series yield non-zero
Bk(. . .) for any value of k. In the case of n=4, we find

B(1, 2, 3, 4;α′) = AYM(1, 2, 3, 4) + (2α′)2 (12)

×s13

[(

f12f34
s212(1−s12)

+ cyc(2, 3, 4)
)

− g1g2g3g4
s212s

2
13s

2
14

]

,

with gauge invariant constituents fij ≡ (ei · ej)(ki · kj)−
(ki · ej)(kj · ei) and gi ≡ (ki−1 · ei)si,i+1−(ki+1 · ei)si−1,i.
Note that both sij and gi carry a power of α′ when ex-
tracting the Bk(1, 2, 3, 4)’s from the second line of (12).

It is crucial to note that no MZVs or transcenden-
tal weight accompany the α′-dependence from B(. . . ;α′).
Given the uniform transcendentality of the Fρ

σ(α′) and
the absence of negative powers of α′ in the kinematic
factor (10), the transcendental weight cannot exceed the
accompanying order in α′ within the bosonic-string am-
plitude. At fixed order in α′, the leading-transcendental
part of the open bosonic string follows from picking up
B(. . . ;α′) → AYM(. . .) in (10) and therefore agrees with
the superstring amplitude. This leads to the conclusion

that the leading-transcendental pieces of the tree-level α′-

expansion and the resulting tr(DmFn) interactions are

universal in open-string theories.

C. BCJ-symmetries of the kinematic factors:

Although the kinematic factors Bk(. . .) in (10) differ
from AYM(. . .) in tensor structure and mass dimension,
we will now argue that they obey the same KK- and
BCJ-relations [13]. The universal monodromy relations
[10, 11] among bosonic-string subamplitudes have to
hold separately at each order in α′ and along with each
transcendentality. Hence, inserting (9) into the lowest-
transcendentality pieces of the monodromy relations and
identifying B0(. . .) ≡ AYM(. . .) yields

0 = Bk(1, 2, . . . , n) +Bk(2, 1, 3, . . . , n) +Bk(2, 3, 1, . . . , n)

+ . . .+Bk(2, 3, . . . , n− 1, 1, n) (13)

0 = s12Bk(2, 1, 3, . . . , n) + (s12+s13)Bk(2, 3, 1, 4, . . . , n)

+ . . .+ (s12+s13+. . .+s1,n−1)Bk(2, 3, . . . , n− 1, 1, n)

for any value of k. The idea of imposing monodromy re-
lations order by order has been exploited in [16] to derive
BCJ-relations for subamplitudes of the F 3 operators as
well as the supersymmetrized D2F 4 + F 5. Moreover, a
general argument for the entire gauge sector of the het-
erotic string has been given in [17]. By the same reason-

ing, (13) can be extended to an infinity of α′-corrections

B
j1j2...jp
k (1, 2σ, . . . , (n−2)σ, n−1, n) ≡

∑

τ∈Sn−3

(14)

(Mj1Mj2 . . .Mjp)σ
τBk(1, 2τ , . . . , (n−2)τ , n−1, n) ,

labelled by ji ∈ 2N + 1. The (n−3)! × (n−3)! matrix
Mj is the coefficient of ζj when casting the α′-expansion
of Fρ

σ in (4) into a conjectural basis of MZVs w.r.t. ra-
tional numbers Q [18]. The entries of Mj are degree-j
polynomials in spq, see [19] for examples at multiplicity
n ≤ 7. Note that the symmetry properties (13) of Bk(. . .)

and their deformations B
j1...jp
k (. . .) in (14) are inevitable

to verify permutation invariance of the world-sheet inte-
grand for the bosonic-string amplitude along with each
transcendentality and order in α′.

D. Supporting evidence: To confirm the central
conjecture (9) implying our universality results, one must
prove that the complete bosonic-string integrand includ-
ing multi-cycle generalizations of (6) can be reduced to
the single-cycle case. While a systematic all-multiplicity
analysis is relegated to future work [7], the following IBP
identities provide substantial support.
At five points, after partial-fractional manipulations,

we need following two identities in addition to reduce all
the integrals to a single-cycle basis (6):

∫

dµ5(ρ)

z223 (z15z54z41)
=

s12Zρ(1, 2, 3, 5, 4)− (1 ↔ 4)

s23 − 1
,

∫

dµ5(ρ) z25
z223z

2
15z24z45

=
s13Zρ(1, 3, 2, 4, 5)

1− s51
(15)

+
s14

1− s51

[

s12Zρ(1, 2, 3, 5, 4)− (1 ↔ 4)

s23 − 1

]

.

The resulting form of B(1, 2, 3, 4, 5;α′) is rather lengthy,
and an auxiliary mathematica notebook containing the
full expression is attached to the arXiv submission.
To arrive at (9) at six points, we find that after partial-

fraction manipulations, besides the single-cycle basis we
encounter integrands of following forms,

1

(z23z34z42) (z15z56z61)
,

1

z223 (z14z46z65z51)
, (16)

1

z212z
2
34z

2
56

,
z36

z223z
2
56z13z14z46

,
z26

z23z34z42z
2
56z12z16

.

We have checked that indeed all the above six-point inte-
grals can be reduced to single-cycle integrals via IBP, e.g.
∫

(s234 − 1) dµ6(ρ)

(z23z34z42) (z15z56z61)
= s13Zρ(1, 3, 4, 2, 6, 5) (17)

−s35Zρ(1, 6, 2, 4, 3, 5)− (3 ↔ 4) ,

and the analogous seven-point checks to arrive at (9) have
been performed as well. Note that all identities of (8),
(15) and (17) can alternatively be derived by imposing
linearized gauge invariance under ej → kj , and the same
is believed to hold for the integral reduction at arbitrary
multiplicity.
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CLOSED-STRING AMPLITUDES

Closed-string amplitudes at tree level can be obtained
from squares of open-string amplitudes through the KLT-
relations [6]. The accompanying sin-functions of πsij
conspire with the α′-expansion of the open string such as
various MZVs including all ζ2n cancel in a suitable basis
w.r.t. Q [18, 20]. These selection rules were identified in
[21] with the single-valued projection of MZVs [22].

A. The closed superstring: A representation of the
massless closed-superstring tree MS

n which manifests the
effect of these cancellations has been firstly given in [18]:

MS
n(α

′) =
∑

σ,ρ,τ∈Sn−3

ÃYM(1, 2σ, . . . , (n−2)σ, n, n−1)(S0)σ
ρ

× Gρ
τ (α′)AYM(1, 2τ , . . . , (n−2)τ , n−1, n) . (18)

The polarizations of the type-II supergravity multiplets
stem from tensor products of the gauge-multiplet polar-
izations in ÃYM and AYM. The matrix S0 has entries
of order (ki·kj)

n−3 and appears in the momentum-kernel
representation [23] of the KLT-formula for supergravity
trees [24]. The matrix Gρ

σ(α′) in (18) carries the entire
α′-dependence and takes the form [18]

G(α′) = 1 + 2ζ3M3 + 2ζ5M5 + 2ζ23M
2
3 +O(α′7) . (19)

The matricesM3 andM5 have been introduced with (14),
and (n ≤ 7)-point examples are available from [19]. To-
gether with the polarization-dependence from the super
Yang-Mills trees, they encode the tensor contractions of
the DnRm operators in the tree-level effective action to
the orders displayed in (1).
Given the ubiquitous matrix products with summa-

tions over permutations in Sn−3, we will drop indices
henceforth and rewrite (18) in the condensed notation

MS
n(α

′) = ÃYM · S0 ·G(α′) ·AYM , (20)

where the vectors ÃYM and AYM are understood to be
in the different (n−3)!-bases spelt out in (18).

B. Universality for closed string theories: As ex-
ploited in [17] for the heterotic string, the above structure
and α′-expansion of type-II closed-string amplitudes are
a property of the world-sheet integrals when two copies
of the integrands in (4) are integrated over the sphere.
Accordingly, the results on the integrals can be imported
in further contexts such as gravitational tree amplitudes
MH

n or MB
n in the heterotic or the closed bosonic string

which rest on one or two copies of the bosonic-string in-
tegrand in (9). The only modification as compared to the
superstring (18) is an exchange of AYM(. . .)↔B(. . . , α′),

MH
n (α′) = ÃYM · S0 ·G(α′) ·B(α′) (21)

MB
n (α

′) = B̃(α′) · S0 ·G(α′) ·B(α′) , (22)

where the same bases of color-orderings spelt out in (18)
are used for B̃(α′), ÃYM and B(α′), AYM, respectively.
Clearly, the Einstein-Hilbert interaction can be recovered
at leading order in α′ where G(α′) → 1, B(α′) → AYM

and B̃(α′) → ÃYM, and the R2-correction at subleading
order in α′ is recovered from instead setting B(α′) →
2α′B1 in (21). Note that, by level-matching, the tachy-
onic poles of the form (1 − sij...l)

−1 in B(α′) of the het-
erotic amplitude (21) are cancelled by corresponding ze-
ros in the entries of G(α′) as sij...l → 1. The structure
of (21) is expected to capture multitrace interactions in
the gauge sector of the heterotic string under appropriate
replacement of B(α′), see [7] for further details.

In complete analogy to the open bosonic string, it is
natural to organize (21) and (22) in a double-expansion
w.r.t. α′ and transcendental weight. While the kinematic
factors B(. . . ;α′) with an expansion as in (10) only in-
volve rational coefficients, the α′-corrections from G(α′)
still enjoy uniform transcendentality. At fixed order in
α′, the leading-transcendentality part is again obtained
by truncating B(. . . , α′) → AYM(. . .) and therefore iden-
tical in (20), (21) and (22). Hence, we have shown that,

at leading transcendentality, gravitational tree-level inter-

actions are universal to the bosonic, heterotic and type-II

closed-string theories.

CONCLUSIONS

In this letter, tree-level amplitudes in all pertur-
bative open- and closed-string theories are argued to
have universal leading-transcendental parts in their α′-
expansions. Manifest universality can be achieved by
casting the world-sheet correlators of the bosonic open
string into the same basis of disk integrals as the su-
perstring, augmented with α′-dependent kinematic fac-
tors. We have explicitly shown that such a reorganization
can be achieved up to seven points, and the conjectural
all-multiplicity extension is relegated to future work [7].
Generalizations to closed-string interactions in bosonic,
heterotic and type-II theories directly follow from the
KLT-relations. These universality results have greatly
facilitated the construction of matrix elements for coun-
terterms in half-maximal supergravity [25].
It would be interesting to apply the same organiz-

ing principles to massive-state scattering. We expect
the same basis of disk integrals to capture tree ampli-
tudes among any combination of massive open-string res-
onances. Moreover, the structure of (20) is believed to
apply to closed-string trees among massive resonances
upon appropriate replacements of AYM and ÃYM.
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